Hypoxia‐Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors

Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission qu...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 1; pp. e2205440 - n/a
Main Authors Tang, Yuqi, Wang, Xing, Zhu, Guanqun, Liu, Zhiyang, Chen, Xu‐Man, Bisoyi, Hari Krishna, Chen, Xiao, Chen, Xiaofei, Xu, Yiyi, Li, Juping, Li, Quan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202205440

Cover

Loading…
Abstract Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers. When the nonfluorescent hypoxia‐responsive photosensitizer TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate the fluorescent photosensitizer TPA‐BN with the aggregation‐induced emission property, which can realize the fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting.
AbstractList Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo . Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers.
Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers. When the nonfluorescent hypoxia‐responsive photosensitizer TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate the fluorescent photosensitizer TPA‐BN with the aggregation‐induced emission property, which can realize the fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting.
Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.
Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers.
Author Tang, Yuqi
Xu, Yiyi
Li, Quan
Zhu, Guanqun
Li, Juping
Wang, Xing
Chen, Xiao
Chen, Xiaofei
Chen, Xu‐Man
Liu, Zhiyang
Bisoyi, Hari Krishna
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Tang
  fullname: Tang, Yuqi
  organization: Southeast University
– sequence: 2
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  organization: Southeast University
– sequence: 3
  givenname: Guanqun
  surname: Zhu
  fullname: Zhu, Guanqun
  organization: Southeast University
– sequence: 4
  givenname: Zhiyang
  surname: Liu
  fullname: Liu, Zhiyang
  email: liuzhiyang@seu.edu.cn
  organization: Southeast University
– sequence: 5
  givenname: Xu‐Man
  surname: Chen
  fullname: Chen, Xu‐Man
  organization: Southeast University
– sequence: 6
  givenname: Hari Krishna
  surname: Bisoyi
  fullname: Bisoyi, Hari Krishna
  organization: Kent State University
– sequence: 7
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  organization: Southeast University
– sequence: 8
  givenname: Xiaofei
  surname: Chen
  fullname: Chen, Xiaofei
  organization: Southeast University
– sequence: 9
  givenname: Yiyi
  surname: Xu
  fullname: Xu, Yiyi
  organization: Southeast University
– sequence: 10
  givenname: Juping
  surname: Li
  fullname: Li, Juping
  organization: Southeast University
– sequence: 11
  givenname: Quan
  orcidid: 0000-0002-9042-360X
  surname: Li
  fullname: Li, Quan
  email: qli1@kent.edu
  organization: Kent State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36285777$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KAzEYRYMoaqtblzLgxk1r_jNZiv9QqWhdD2maqZGZyZjMqOPKR_AZfRIj1QqCuEoC53zfJbcHVitXGQB2EBwiCPFBKItiiCHGkFEKV8Am4ogMeIrl6vKO4AbohXAPIUGYinWwQThOmRBiE6jzrnbPVr2_vl2bULsq2EeTXN25xgUTH419MT6ZKD83ja3myXGrimTs56oyRWFCkju_oGddpUqrk8md8aruEpcnk7Z0PmyBtVwVwWx_nX1we3oyOTofjMZnF0eHo4GmRMJBKhnHPM9lTDg1nCiRTgXWU80I5YRSmiOkZ5ITaFItkOZIMEZVDrGiTM446YP9xdzau4fWhCYrbdAxZYzq2pBhgSXEHFER0b1f6L1rfRXTRYpDnlLJWKR2v6h2WppZVntbKt9l358XgeEC0N6F4E2-RBDMPtvJPtvJlu1Egf4StG1UY13VeGWLvzW50J5sYbp_lmQ3l6PRj_sBpd2k_Q
CitedBy_id crossref_primary_10_1002_cbf_3940
crossref_primary_10_3389_fphar_2024_1529631
crossref_primary_10_1002_bio_4659
crossref_primary_10_1002_asia_202400311
crossref_primary_10_1002_adhm_202403009
crossref_primary_10_1002_macp_202300194
crossref_primary_10_1021_acsami_3c17723
crossref_primary_10_1002_adhm_202404265
crossref_primary_10_1038_s41377_024_01673_1
crossref_primary_10_1186_s12951_024_02599_x
crossref_primary_10_2174_0109298673300702240805055930
crossref_primary_10_1021_acsami_3c13162
crossref_primary_10_1002_agt2_540
crossref_primary_10_1021_acsami_3c16795
crossref_primary_10_1002_agt2_665
crossref_primary_10_1002_asia_202400305
crossref_primary_10_1039_D4DT02605E
crossref_primary_10_1002_adfm_202405367
crossref_primary_10_1039_D4TB01014K
crossref_primary_10_1002_smo_20240033
crossref_primary_10_1039_D3TB01428B
crossref_primary_10_1002_adma_202416122
crossref_primary_10_1002_ajoc_202400385
crossref_primary_10_1002_adom_202301473
crossref_primary_10_1016_j_cej_2025_159807
crossref_primary_10_1021_acsanm_4c05408
crossref_primary_10_1002_ange_202402349
crossref_primary_10_1002_smo_20240023
crossref_primary_10_1021_acsanm_4c06594
crossref_primary_10_1002_rpm_20230009
crossref_primary_10_1038_s41467_024_53771_8
crossref_primary_10_1039_D4QM00725E
crossref_primary_10_1002_bio_4798
crossref_primary_10_3390_ijms25126421
crossref_primary_10_1002_adfm_202417979
crossref_primary_10_1002_rpm_20240016
crossref_primary_10_1002_rpm_20240012
crossref_primary_10_1002_rpm_20240014
crossref_primary_10_1002_adma_202300232
crossref_primary_10_1021_acs_chemrev_3c00778
crossref_primary_10_1002_smll_202406439
crossref_primary_10_1039_D3TB01648J
crossref_primary_10_1007_s11426_023_1996_7
crossref_primary_10_1002_smll_202409533
crossref_primary_10_1007_s11426_024_2301_3
crossref_primary_10_1002_adfm_202416359
crossref_primary_10_1002_mog2_67
crossref_primary_10_1002_anie_202402349
crossref_primary_10_1021_acs_chemrev_3c00186
crossref_primary_10_1021_acs_bioconjchem_3c00278
crossref_primary_10_1002_rpm_20240003
Cites_doi 10.1002/anie.201805446
10.1021/acsnano.9b04430
10.1002/sstr.202000036
10.1039/D2SC00381C
10.1002/adom.201900917
10.1002/smll.202006742
10.1002/anbr.202000080
10.1021/jacs.7b05019
10.1016/S1011-1344(96)07428-3
10.1002/adma.201902958
10.1039/D0MH01312A
10.1039/C1CS15179G
10.1007/s10103-008-0539-1
10.1002/adma.202007811
10.1158/0008-5472.CAN-07-0924
10.1002/chem.201902296
10.1038/nrc1894
10.1002/anie.202001103
10.1002/adfm.201804901
10.1002/anie.201909706
10.1002/anie.202205758
10.1021/ac502103t
10.1002/agt2.7
10.1002/advs.202100524
10.1002/chem.201600310
10.1021/acs.nanolett.1c00488
10.1002/adma.202101158
10.1039/C6CS00271D
10.1039/C7CS00630F
10.1021/ja105937q
10.1039/C5SC01733E
10.1039/C9OB02515D
10.1021/jacs.0c06872
10.1002/adma.201908435
10.1021/cr5004198
10.1002/adma.201801350
10.1021/acs.accounts.0c00060
10.1002/anie.201900366
10.1021/jacs.8b13141
10.1021/jacs.0c00734
10.1038/s41467-022-29872-7
10.1002/adma.201606167
10.1002/ange.202114239
10.1007/s11426-021-1176-5
10.1021/acs.chemrev.6b00525
10.1039/C8QM00672E
10.1021/ja402220t
10.1002/adfm.201502728
10.1002/adfm.201808153
10.1002/adfm.201604053
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202205440
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36285777
10_1002_smll_202205440
SMLL202205440
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: Jiangsu Innovation Team Program
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4390-895626ff9247be63a78b72cbc53463444f11cd9630e8c71c617554af02a459d63
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 23:17:59 EDT 2025
Fri Jul 25 11:54:29 EDT 2025
Wed Feb 19 02:23:47 EST 2025
Thu Apr 24 23:10:06 EDT 2025
Tue Jul 01 02:54:19 EDT 2025
Wed Jan 22 16:19:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords aggregation-induced emission
fluorescence on and off
tumors
hypoxia-responsive
photodynamic therapy
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-895626ff9247be63a78b72cbc53463444f11cd9630e8c71c617554af02a459d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9042-360X
PMID 36285777
PQID 2760684955
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2729026147
proquest_journals_2760684955
pubmed_primary_36285777
crossref_primary_10_1002_smll_202205440
crossref_citationtrail_10_1002_smll_202205440
wiley_primary_10_1002_smll_202205440_SMLL202205440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 8
2022; 134
2009; 24
2018; 28
2021; 21
2015; 6
2019; 3
2019; 31
2020; 142
2017; 27
2019; 13
2019; 58
2020; 59
2006; 6
2017; 29
2022; 65
2020; 32
2021; 1
2019; 141
2018; 48
2017; 117
2018; 47
2017; 139
2014; 86
2020; 18
2015; 25
2020; 1
2021; 33
2015; 115
2020; 53
2022; 61
2021; 17
2019; 25
2010; 132
2022; 13
1997; 39
2013; 135
2019; 29
2018; 30
2007; 67
2016; 45
2012; 41
2018; 57
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
Zhang Z. (e_1_2_7_15_1) 2022; 61
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Xu Q. (e_1_2_7_46_1) 2022; 134
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Tian X. (e_1_2_7_11_1) 2018; 48
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 53
  start-page: 962
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 1
  year: 1997
  publication-title: J. Photochem. Photobiol., B
– volume: 8
  start-page: 571
  year: 2021
  publication-title: Mater. Horiz.
– volume: 48
  start-page: 712
  year: 2018
  publication-title: Zhongguo Kexue: Huaxue
– volume: 21
  start-page: 3218
  year: 2021
  publication-title: Nano Lett.
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 4139
  year: 2022
  publication-title: Chem. Sci.
– volume: 13
  start-page: 2179
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 80
  year: 2020
  publication-title: Aggregate
– volume: 67
  start-page: 6647
  year: 2007
  publication-title: Cancer Res.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 22
  start-page: 8955
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 47
  start-page: 1044
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2021
  publication-title: Adv. Nanobiomed. Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 24
  start-page: 259
  year: 2009
  publication-title: Lasers Med. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 86
  start-page: 7987
  year: 2014
  publication-title: Anal. Chem.
– volume: 25
  start-page: 6586
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 5824
  year: 2015
  publication-title: Chem. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 65
  start-page: 647
  year: 2022
  publication-title: Sci. China: Chem.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 3
  start-page: 1097
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 142
  start-page: 5380
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 6160
  year: 2017
  publication-title: Chem. Rev.
– volume: 18
  start-page: 420
  year: 2020
  publication-title: Org. Biomol. Chem.
– volume: 115
  start-page: 1990
  year: 2015
  publication-title: Chem. Rev.
– volume: 141
  start-page: 2695
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 9634
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 5628
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 535
  year: 2006
  publication-title: Nat. Rev. Cancer
– volume: 45
  start-page: 6597
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 1809
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 59
  start-page: 9470
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 135
  start-page: 9777
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201805446
– ident: e_1_2_7_41_1
  doi: 10.1021/acsnano.9b04430
– ident: e_1_2_7_6_1
  doi: 10.1002/sstr.202000036
– ident: e_1_2_7_16_1
  doi: 10.1039/D2SC00381C
– ident: e_1_2_7_7_1
  doi: 10.1002/adom.201900917
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.202006742
– ident: e_1_2_7_21_1
  doi: 10.1002/anbr.202000080
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.7b05019
– ident: e_1_2_7_48_1
  doi: 10.1016/S1011-1344(96)07428-3
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201902958
– ident: e_1_2_7_43_1
  doi: 10.1039/D0MH01312A
– ident: e_1_2_7_13_1
  doi: 10.1039/C1CS15179G
– ident: e_1_2_7_3_1
  doi: 10.1007/s10103-008-0539-1
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.202007811
– ident: e_1_2_7_51_1
  doi: 10.1158/0008-5472.CAN-07-0924
– ident: e_1_2_7_20_1
  doi: 10.1002/chem.201902296
– ident: e_1_2_7_1_1
  doi: 10.1038/nrc1894
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202001103
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201804901
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.201909706
– volume: 61
  start-page: e202205758
  year: 2022
  ident: e_1_2_7_15_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202205758
– ident: e_1_2_7_24_1
  doi: 10.1021/ac502103t
– ident: e_1_2_7_29_1
  doi: 10.1002/agt2.7
– ident: e_1_2_7_42_1
  doi: 10.1002/advs.202100524
– ident: e_1_2_7_47_1
  doi: 10.1002/chem.201600310
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.nanolett.1c00488
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.202101158
– ident: e_1_2_7_4_1
  doi: 10.1039/C6CS00271D
– ident: e_1_2_7_12_1
  doi: 10.1039/C7CS00630F
– ident: e_1_2_7_45_1
  doi: 10.1021/ja105937q
– ident: e_1_2_7_37_1
  doi: 10.1039/C5SC01733E
– ident: e_1_2_7_44_1
  doi: 10.1039/C9OB02515D
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.0c06872
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201908435
– ident: e_1_2_7_2_1
  doi: 10.1021/cr5004198
– volume: 48
  start-page: 712
  year: 2018
  ident: e_1_2_7_11_1
  publication-title: Zhongguo Kexue: Huaxue
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201801350
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.accounts.0c00060
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201900366
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.8b13141
– ident: e_1_2_7_36_1
  doi: 10.1021/jacs.0c00734
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-022-29872-7
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201606167
– volume: 134
  start-page: e202114239
  year: 2022
  ident: e_1_2_7_46_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202114239
– ident: e_1_2_7_33_1
  doi: 10.1007/s11426-021-1176-5
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.6b00525
– ident: e_1_2_7_19_1
  doi: 10.1039/C8QM00672E
– ident: e_1_2_7_17_1
  doi: 10.1021/ja402220t
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201502728
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201808153
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201604053
SSID ssj0031247
Score 2.6152396
Snippet Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct...
Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2205440
SubjectTerms aggregation‐induced emission
Fluorescence
fluorescence on and off
Humans
Hypoxia
hypoxia‐responsive
Lipids
Lysosomes
Nanotechnology
Neoplasms - drug therapy
Neoplasms - pathology
Organelles
Photochemotherapy
Photodynamic therapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
Tumors
Title Hypoxia‐Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205440
https://www.ncbi.nlm.nih.gov/pubmed/36285777
https://www.proquest.com/docview/2760684955
https://www.proquest.com/docview/2729026147
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQp-UAu8urvGQkJE6BxHbzOK54qEKAUCkSt8h2HFFBG9QkK-DET-A37i9hJk6zLQghwS2Rx45jezzf2OPPhOxojSR7xoPZTypHqChypOCJA7Y6iqTwtDBVgOy537kSJ9ft64lT_JYfollwQ82o5mtUcKny_f-kofngDrcO8KCoEOi0Y8AWoqJuwx_FwXhVt6uAzXKQeGvM2uiy_ens01bpHdScRq6V6TleIHJcaRtxcrtXFmpPP73hc_zOX_0k8zUupX_sQPpFZszwN5mbYCtcJLLzeJ899OW_55duHVn719CLm6zIcgyDL_pPZkR7VWg5ZKCHJRRYnfXEzYGcAjy20snjUA76mvYsowHNUtorB9koXyJXx0e9g45T39DgaAAyrhOCd8X8NAUnLlDG5zIIVcC00m0ufC6ESD1PJ6Djrgl14GmASwBfZOoyKdpR4vNlMjvMhmaVUC0ldxOluS-UkJJFUFDCotBPDDipJmgRZ9xDsa7py_EWjbvYEi-zGJsubpquRXYb-XtL3PGh5Ma4w-NagfOYBeDZheA9tltku0kG1cP9FGi3rEQZFqELK6ByK3agNJ_ieDQ1CCCFVd39SR3iy7PT0-Zt7SuZ1skPeOZ2eWiDzBaj0mwCYCrUVqUUr0ppDc0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqeigc6AvKlpcrVeIUSGxvHkdUQFu6oAqC1FtkO466gt2gTYIKJ35Cf2N_CTNxkrIgVIkeE48dx_Z4ZuyZbwj5rDWC7BkPdj-pHKGiyJGCpw7I6iiSwtPC1A6yx_7gTBz-6LfehBgLY_EhugM35Ix6v0YGxwPpnb-oocX4Au8OMFJUCLDaX2Jab0xisHfSIUhxEF91fhWQWg5Cb7W4jS7bma0_K5ceKZuzumstfA5eE9V22_qcnG9XpdrWNw8QHf_rv96QxUY1pbt2Lb0lL8zkHVm4B1j4nsjB9WX-ayT_3P4-aZxrrwz9_jMv8wI94cvRjZnSuPYuhwp0r4IG63BPvB8oKGjIljq9nsjxSNPYghrQPKNxNc6nxRI5O9iPvwycJkmDo0GXcZ0QDCzmZxnYcYEyPpdBqAKmle5z4XMhROZ5OgU2d02oA0-DxgQajMxcJkU_Sn2-TOYm-cSsEKql5G6qNPeFElKyCBpKWRT6qQE71QQ94rRTlOgGwRwTaVwkFnuZJTh0STd0PbLV0V9a7I4nKdfaGU8aHi4SFoBxF4IB2e-RT10xcB9eqcC45RXSsAitWAGd-2BXSvcpjtGpQQAlrJ7vf_QhOT0aDrunj8-ptEleDeKjYTL8evxtlczDe25Pi9bIXDmtzDroT6XaqDnkDhx_Eec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQKyE48A9btixGQuIUSGw3P0cEVAUKQlAkbpHtOKJa2lRNgpae9hF4Rp6EcZxmKQghwTHx2HFsj-cbe_wZoR0pNcmecmD248JiIggszmhkga0OAs4cyVQRIHvhtm7Y6W3j9tUpfsMPUS24ac0o5mut4IMo3v9PGpr27vXWgT4oyhg47T-YCxqjYdFVRSBFwXoV16uA0bI089aYttEm-5P5J83SO6w5CV0L29NcQHxcaxNy8mcvz8SeHL0hdPzOby2i-RKY4gMzkpbQlOovo7lXdIUriLceB8nfLn_-93RVhtY-KHx5l2RJquPgs-5IDXGniC2HDPgohwKLw556dyDFgI-NdPTY572uxB1DaYCTGHfyXjJMV9FN87hz2LLKKxosCUjGtnxwr4gbx-DFeUK5lHu-8IgUskGZSxljsePICJTcVr70HAl4CfALj23CWSOIXLqGpvtJX_1EWHJO7UhI6jLBOCcBFBSRwHcjBV6q8mrIGvdQKEv-cn2Nxn1omJdJqJsurJquhnYr-YFh7vhQsj7u8LDU4DQkHrh2PriPjRrarpJB9_SGCrRbkmsZEmgflkHl1s1AqT5F9dlUz4MUUnT3J3UIr8_b7epp4yuZttDM5VEzbJ9cnP1Cs_CamqWiOprOhrnaBPCUid-FfrwA8j0Qnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia-Responsive+Photosensitizer+Targeting+Dual+Organelles+for+Photodynamic+Therapy+of+Tumors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tang%2C+Yuqi&rft.au=Wang%2C+Xing&rft.au=Zhu%2C+Guanqun&rft.au=Liu%2C+Zhiyang&rft.date=2023-01-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=1&rft.spage=e2205440&rft_id=info:doi/10.1002%2Fsmll.202205440&rft_id=info%3Apmid%2F36285777&rft.externalDocID=36285777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon