Hypoxia‐Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors
Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission qu...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 1; pp. e2205440 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202205440 |
Cover
Loading…
Abstract | Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers.
When the nonfluorescent hypoxia‐responsive photosensitizer TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate the fluorescent photosensitizer TPA‐BN with the aggregation‐induced emission property, which can realize the fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. |
---|---|
AbstractList | Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer,
TPA‐Azo
. Introducing the azo group into the photosensitizer
TPA‐BN
with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent
TPA‐Azo
enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer
TPA‐BN
with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers. Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers. When the nonfluorescent hypoxia‐responsive photosensitizer TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate the fluorescent photosensitizer TPA‐BN with the aggregation‐induced emission property, which can realize the fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers. Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia‐responsive photosensitizer, TPA‐Azo. Introducing the azo group into the photosensitizer TPA‐BN with aggregation‐induced emission quenches its fluorescence. When the nonfluorescent TPA‐Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA‐BN with an amino group that exhibits fluorescence‐activatable image‐guided photodynamic therapy with dual‐organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence‐activatable photosensitizers. |
Author | Tang, Yuqi Xu, Yiyi Li, Quan Zhu, Guanqun Li, Juping Wang, Xing Chen, Xiao Chen, Xiaofei Chen, Xu‐Man Liu, Zhiyang Bisoyi, Hari Krishna |
Author_xml | – sequence: 1 givenname: Yuqi surname: Tang fullname: Tang, Yuqi organization: Southeast University – sequence: 2 givenname: Xing surname: Wang fullname: Wang, Xing organization: Southeast University – sequence: 3 givenname: Guanqun surname: Zhu fullname: Zhu, Guanqun organization: Southeast University – sequence: 4 givenname: Zhiyang surname: Liu fullname: Liu, Zhiyang email: liuzhiyang@seu.edu.cn organization: Southeast University – sequence: 5 givenname: Xu‐Man surname: Chen fullname: Chen, Xu‐Man organization: Southeast University – sequence: 6 givenname: Hari Krishna surname: Bisoyi fullname: Bisoyi, Hari Krishna organization: Kent State University – sequence: 7 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: Southeast University – sequence: 8 givenname: Xiaofei surname: Chen fullname: Chen, Xiaofei organization: Southeast University – sequence: 9 givenname: Yiyi surname: Xu fullname: Xu, Yiyi organization: Southeast University – sequence: 10 givenname: Juping surname: Li fullname: Li, Juping organization: Southeast University – sequence: 11 givenname: Quan orcidid: 0000-0002-9042-360X surname: Li fullname: Li, Quan email: qli1@kent.edu organization: Kent State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36285777$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KAzEYRYMoaqtblzLgxk1r_jNZiv9QqWhdD2maqZGZyZjMqOPKR_AZfRIj1QqCuEoC53zfJbcHVitXGQB2EBwiCPFBKItiiCHGkFEKV8Am4ogMeIrl6vKO4AbohXAPIUGYinWwQThOmRBiE6jzrnbPVr2_vl2bULsq2EeTXN25xgUTH419MT6ZKD83ja3myXGrimTs56oyRWFCkju_oGddpUqrk8md8aruEpcnk7Z0PmyBtVwVwWx_nX1we3oyOTofjMZnF0eHo4GmRMJBKhnHPM9lTDg1nCiRTgXWU80I5YRSmiOkZ5ITaFItkOZIMEZVDrGiTM446YP9xdzau4fWhCYrbdAxZYzq2pBhgSXEHFER0b1f6L1rfRXTRYpDnlLJWKR2v6h2WppZVntbKt9l358XgeEC0N6F4E2-RBDMPtvJPtvJlu1Egf4StG1UY13VeGWLvzW50J5sYbp_lmQ3l6PRj_sBpd2k_Q |
CitedBy_id | crossref_primary_10_1002_cbf_3940 crossref_primary_10_3389_fphar_2024_1529631 crossref_primary_10_1002_bio_4659 crossref_primary_10_1002_asia_202400311 crossref_primary_10_1002_adhm_202403009 crossref_primary_10_1002_macp_202300194 crossref_primary_10_1021_acsami_3c17723 crossref_primary_10_1002_adhm_202404265 crossref_primary_10_1038_s41377_024_01673_1 crossref_primary_10_1186_s12951_024_02599_x crossref_primary_10_2174_0109298673300702240805055930 crossref_primary_10_1021_acsami_3c13162 crossref_primary_10_1002_agt2_540 crossref_primary_10_1021_acsami_3c16795 crossref_primary_10_1002_agt2_665 crossref_primary_10_1002_asia_202400305 crossref_primary_10_1039_D4DT02605E crossref_primary_10_1002_adfm_202405367 crossref_primary_10_1039_D4TB01014K crossref_primary_10_1002_smo_20240033 crossref_primary_10_1039_D3TB01428B crossref_primary_10_1002_adma_202416122 crossref_primary_10_1002_ajoc_202400385 crossref_primary_10_1002_adom_202301473 crossref_primary_10_1016_j_cej_2025_159807 crossref_primary_10_1021_acsanm_4c05408 crossref_primary_10_1002_ange_202402349 crossref_primary_10_1002_smo_20240023 crossref_primary_10_1021_acsanm_4c06594 crossref_primary_10_1002_rpm_20230009 crossref_primary_10_1038_s41467_024_53771_8 crossref_primary_10_1039_D4QM00725E crossref_primary_10_1002_bio_4798 crossref_primary_10_3390_ijms25126421 crossref_primary_10_1002_adfm_202417979 crossref_primary_10_1002_rpm_20240016 crossref_primary_10_1002_rpm_20240012 crossref_primary_10_1002_rpm_20240014 crossref_primary_10_1002_adma_202300232 crossref_primary_10_1021_acs_chemrev_3c00778 crossref_primary_10_1002_smll_202406439 crossref_primary_10_1039_D3TB01648J crossref_primary_10_1007_s11426_023_1996_7 crossref_primary_10_1002_smll_202409533 crossref_primary_10_1007_s11426_024_2301_3 crossref_primary_10_1002_adfm_202416359 crossref_primary_10_1002_mog2_67 crossref_primary_10_1002_anie_202402349 crossref_primary_10_1021_acs_chemrev_3c00186 crossref_primary_10_1021_acs_bioconjchem_3c00278 crossref_primary_10_1002_rpm_20240003 |
Cites_doi | 10.1002/anie.201805446 10.1021/acsnano.9b04430 10.1002/sstr.202000036 10.1039/D2SC00381C 10.1002/adom.201900917 10.1002/smll.202006742 10.1002/anbr.202000080 10.1021/jacs.7b05019 10.1016/S1011-1344(96)07428-3 10.1002/adma.201902958 10.1039/D0MH01312A 10.1039/C1CS15179G 10.1007/s10103-008-0539-1 10.1002/adma.202007811 10.1158/0008-5472.CAN-07-0924 10.1002/chem.201902296 10.1038/nrc1894 10.1002/anie.202001103 10.1002/adfm.201804901 10.1002/anie.201909706 10.1002/anie.202205758 10.1021/ac502103t 10.1002/agt2.7 10.1002/advs.202100524 10.1002/chem.201600310 10.1021/acs.nanolett.1c00488 10.1002/adma.202101158 10.1039/C6CS00271D 10.1039/C7CS00630F 10.1021/ja105937q 10.1039/C5SC01733E 10.1039/C9OB02515D 10.1021/jacs.0c06872 10.1002/adma.201908435 10.1021/cr5004198 10.1002/adma.201801350 10.1021/acs.accounts.0c00060 10.1002/anie.201900366 10.1021/jacs.8b13141 10.1021/jacs.0c00734 10.1038/s41467-022-29872-7 10.1002/adma.201606167 10.1002/ange.202114239 10.1007/s11426-021-1176-5 10.1021/acs.chemrev.6b00525 10.1039/C8QM00672E 10.1021/ja402220t 10.1002/adfm.201502728 10.1002/adfm.201808153 10.1002/adfm.201604053 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202205440 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36285777 10_1002_smll_202205440 SMLL202205440 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: Jiangsu Innovation Team Program |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4390-895626ff9247be63a78b72cbc53463444f11cd9630e8c71c617554af02a459d63 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 23:17:59 EDT 2025 Fri Jul 25 11:54:29 EDT 2025 Wed Feb 19 02:23:47 EST 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 02:54:19 EDT 2025 Wed Jan 22 16:19:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | aggregation-induced emission fluorescence on and off tumors hypoxia-responsive photodynamic therapy |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-895626ff9247be63a78b72cbc53463444f11cd9630e8c71c617554af02a459d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9042-360X |
PMID | 36285777 |
PQID | 2760684955 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2729026147 proquest_journals_2760684955 pubmed_primary_36285777 crossref_primary_10_1002_smll_202205440 crossref_citationtrail_10_1002_smll_202205440 wiley_primary_10_1002_smll_202205440_SMLL202205440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021; 8 2022; 134 2009; 24 2018; 28 2021; 21 2015; 6 2019; 3 2019; 31 2020; 142 2017; 27 2019; 13 2019; 58 2020; 59 2006; 6 2017; 29 2022; 65 2020; 32 2021; 1 2019; 141 2018; 48 2017; 117 2018; 47 2017; 139 2014; 86 2020; 18 2015; 25 2020; 1 2021; 33 2015; 115 2020; 53 2022; 61 2021; 17 2019; 25 2010; 132 2022; 13 1997; 39 2013; 135 2019; 29 2018; 30 2007; 67 2016; 45 2012; 41 2018; 57 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 Zhang Z. (e_1_2_7_15_1) 2022; 61 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Xu Q. (e_1_2_7_46_1) 2022; 134 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 Tian X. (e_1_2_7_11_1) 2018; 48 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 53 start-page: 962 year: 2020 publication-title: Acc. Chem. Res. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 39 start-page: 1 year: 1997 publication-title: J. Photochem. Photobiol., B – volume: 8 start-page: 571 year: 2021 publication-title: Mater. Horiz. – volume: 48 start-page: 712 year: 2018 publication-title: Zhongguo Kexue: Huaxue – volume: 21 start-page: 3218 year: 2021 publication-title: Nano Lett. – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 4139 year: 2022 publication-title: Chem. Sci. – volume: 13 start-page: 2179 year: 2022 publication-title: Nat. Commun. – volume: 1 start-page: 80 year: 2020 publication-title: Aggregate – volume: 67 start-page: 6647 year: 2007 publication-title: Cancer Res. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2020 publication-title: Small Struct. – volume: 22 start-page: 8955 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 47 start-page: 1044 year: 2018 publication-title: Chem. Soc. Rev. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2021 publication-title: Adv. Nanobiomed. Res. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 24 start-page: 259 year: 2009 publication-title: Lasers Med. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 86 start-page: 7987 year: 2014 publication-title: Anal. Chem. – volume: 25 start-page: 6586 year: 2015 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 5824 year: 2015 publication-title: Chem. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 65 start-page: 647 year: 2022 publication-title: Sci. China: Chem. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 3 start-page: 1097 year: 2019 publication-title: Mater. Chem. Front. – volume: 142 start-page: 5380 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 6160 year: 2017 publication-title: Chem. Rev. – volume: 18 start-page: 420 year: 2020 publication-title: Org. Biomol. Chem. – volume: 115 start-page: 1990 year: 2015 publication-title: Chem. Rev. – volume: 141 start-page: 2695 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 9634 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 5628 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 535 year: 2006 publication-title: Nat. Rev. Cancer – volume: 45 start-page: 6597 year: 2016 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 1809 year: 2012 publication-title: Chem. Soc. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 59 start-page: 9470 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 135 start-page: 9777 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_25_1 doi: 10.1002/anie.201805446 – ident: e_1_2_7_41_1 doi: 10.1021/acsnano.9b04430 – ident: e_1_2_7_6_1 doi: 10.1002/sstr.202000036 – ident: e_1_2_7_16_1 doi: 10.1039/D2SC00381C – ident: e_1_2_7_7_1 doi: 10.1002/adom.201900917 – ident: e_1_2_7_35_1 doi: 10.1002/smll.202006742 – ident: e_1_2_7_21_1 doi: 10.1002/anbr.202000080 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.7b05019 – ident: e_1_2_7_48_1 doi: 10.1016/S1011-1344(96)07428-3 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201902958 – ident: e_1_2_7_43_1 doi: 10.1039/D0MH01312A – ident: e_1_2_7_13_1 doi: 10.1039/C1CS15179G – ident: e_1_2_7_3_1 doi: 10.1007/s10103-008-0539-1 – ident: e_1_2_7_40_1 doi: 10.1002/adma.202007811 – ident: e_1_2_7_51_1 doi: 10.1158/0008-5472.CAN-07-0924 – ident: e_1_2_7_20_1 doi: 10.1002/chem.201902296 – ident: e_1_2_7_1_1 doi: 10.1038/nrc1894 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202001103 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201804901 – ident: e_1_2_7_38_1 doi: 10.1002/anie.201909706 – volume: 61 start-page: e202205758 year: 2022 ident: e_1_2_7_15_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202205758 – ident: e_1_2_7_24_1 doi: 10.1021/ac502103t – ident: e_1_2_7_29_1 doi: 10.1002/agt2.7 – ident: e_1_2_7_42_1 doi: 10.1002/advs.202100524 – ident: e_1_2_7_47_1 doi: 10.1002/chem.201600310 – ident: e_1_2_7_18_1 doi: 10.1021/acs.nanolett.1c00488 – ident: e_1_2_7_31_1 doi: 10.1002/adma.202101158 – ident: e_1_2_7_4_1 doi: 10.1039/C6CS00271D – ident: e_1_2_7_12_1 doi: 10.1039/C7CS00630F – ident: e_1_2_7_45_1 doi: 10.1021/ja105937q – ident: e_1_2_7_37_1 doi: 10.1039/C5SC01733E – ident: e_1_2_7_44_1 doi: 10.1039/C9OB02515D – ident: e_1_2_7_30_1 doi: 10.1021/jacs.0c06872 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201908435 – ident: e_1_2_7_2_1 doi: 10.1021/cr5004198 – volume: 48 start-page: 712 year: 2018 ident: e_1_2_7_11_1 publication-title: Zhongguo Kexue: Huaxue – ident: e_1_2_7_5_1 doi: 10.1002/adma.201801350 – ident: e_1_2_7_32_1 doi: 10.1021/acs.accounts.0c00060 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201900366 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.8b13141 – ident: e_1_2_7_36_1 doi: 10.1021/jacs.0c00734 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-022-29872-7 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201606167 – volume: 134 start-page: e202114239 year: 2022 ident: e_1_2_7_46_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202114239 – ident: e_1_2_7_33_1 doi: 10.1007/s11426-021-1176-5 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.6b00525 – ident: e_1_2_7_19_1 doi: 10.1039/C8QM00672E – ident: e_1_2_7_17_1 doi: 10.1021/ja402220t – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201502728 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201808153 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201604053 |
SSID | ssj0031247 |
Score | 2.6152396 |
Snippet | Developing safe and precise image‐guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct... Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2205440 |
SubjectTerms | aggregation‐induced emission Fluorescence fluorescence on and off Humans Hypoxia hypoxia‐responsive Lipids Lysosomes Nanotechnology Neoplasms - drug therapy Neoplasms - pathology Organelles Photochemotherapy Photodynamic therapy Photosensitizing Agents - pharmacology Photosensitizing Agents - therapeutic use Tumors |
Title | Hypoxia‐Responsive Photosensitizer Targeting Dual Organelles for Photodynamic Therapy of Tumors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205440 https://www.ncbi.nlm.nih.gov/pubmed/36285777 https://www.proquest.com/docview/2760684955 https://www.proquest.com/docview/2729026147 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQp-UAu8urvGQkJE6BxHbzOK54qEKAUCkSt8h2HFFBG9QkK-DET-A37i9hJk6zLQghwS2Rx45jezzf2OPPhOxojSR7xoPZTypHqChypOCJA7Y6iqTwtDBVgOy537kSJ9ft64lT_JYfollwQ82o5mtUcKny_f-kofngDrcO8KCoEOi0Y8AWoqJuwx_FwXhVt6uAzXKQeGvM2uiy_ens01bpHdScRq6V6TleIHJcaRtxcrtXFmpPP73hc_zOX_0k8zUupX_sQPpFZszwN5mbYCtcJLLzeJ899OW_55duHVn719CLm6zIcgyDL_pPZkR7VWg5ZKCHJRRYnfXEzYGcAjy20snjUA76mvYsowHNUtorB9koXyJXx0e9g45T39DgaAAyrhOCd8X8NAUnLlDG5zIIVcC00m0ufC6ESD1PJ6Djrgl14GmASwBfZOoyKdpR4vNlMjvMhmaVUC0ldxOluS-UkJJFUFDCotBPDDipJmgRZ9xDsa7py_EWjbvYEi-zGJsubpquRXYb-XtL3PGh5Ma4w-NagfOYBeDZheA9tltku0kG1cP9FGi3rEQZFqELK6ByK3agNJ_ieDQ1CCCFVd39SR3iy7PT0-Zt7SuZ1skPeOZ2eWiDzBaj0mwCYCrUVqUUr0ppDc0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqeigc6AvKlpcrVeIUSGxvHkdUQFu6oAqC1FtkO466gt2gTYIKJ35Cf2N_CTNxkrIgVIkeE48dx_Z4ZuyZbwj5rDWC7BkPdj-pHKGiyJGCpw7I6iiSwtPC1A6yx_7gTBz-6LfehBgLY_EhugM35Ix6v0YGxwPpnb-oocX4Au8OMFJUCLDaX2Jab0xisHfSIUhxEF91fhWQWg5Cb7W4jS7bma0_K5ceKZuzumstfA5eE9V22_qcnG9XpdrWNw8QHf_rv96QxUY1pbt2Lb0lL8zkHVm4B1j4nsjB9WX-ayT_3P4-aZxrrwz9_jMv8wI94cvRjZnSuPYuhwp0r4IG63BPvB8oKGjIljq9nsjxSNPYghrQPKNxNc6nxRI5O9iPvwycJkmDo0GXcZ0QDCzmZxnYcYEyPpdBqAKmle5z4XMhROZ5OgU2d02oA0-DxgQajMxcJkU_Sn2-TOYm-cSsEKql5G6qNPeFElKyCBpKWRT6qQE71QQ94rRTlOgGwRwTaVwkFnuZJTh0STd0PbLV0V9a7I4nKdfaGU8aHi4SFoBxF4IB2e-RT10xcB9eqcC45RXSsAitWAGd-2BXSvcpjtGpQQAlrJ7vf_QhOT0aDrunj8-ptEleDeKjYTL8evxtlczDe25Pi9bIXDmtzDroT6XaqDnkDhx_Eec |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQKyE48A9btixGQuIUSGw3P0cEVAUKQlAkbpHtOKJa2lRNgpae9hF4Rp6EcZxmKQghwTHx2HFsj-cbe_wZoR0pNcmecmD248JiIggszmhkga0OAs4cyVQRIHvhtm7Y6W3j9tUpfsMPUS24ac0o5mut4IMo3v9PGpr27vXWgT4oyhg47T-YCxqjYdFVRSBFwXoV16uA0bI089aYttEm-5P5J83SO6w5CV0L29NcQHxcaxNy8mcvz8SeHL0hdPzOby2i-RKY4gMzkpbQlOovo7lXdIUriLceB8nfLn_-93RVhtY-KHx5l2RJquPgs-5IDXGniC2HDPgohwKLw556dyDFgI-NdPTY572uxB1DaYCTGHfyXjJMV9FN87hz2LLKKxosCUjGtnxwr4gbx-DFeUK5lHu-8IgUskGZSxljsePICJTcVr70HAl4CfALj23CWSOIXLqGpvtJX_1EWHJO7UhI6jLBOCcBFBSRwHcjBV6q8mrIGvdQKEv-cn2Nxn1omJdJqJsurJquhnYr-YFh7vhQsj7u8LDU4DQkHrh2PriPjRrarpJB9_SGCrRbkmsZEmgflkHl1s1AqT5F9dlUz4MUUnT3J3UIr8_b7epp4yuZttDM5VEzbJ9cnP1Cs_CamqWiOprOhrnaBPCUid-FfrwA8j0Qnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia-Responsive+Photosensitizer+Targeting+Dual+Organelles+for+Photodynamic+Therapy+of+Tumors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tang%2C+Yuqi&rft.au=Wang%2C+Xing&rft.au=Zhu%2C+Guanqun&rft.au=Liu%2C+Zhiyang&rft.date=2023-01-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=1&rft.spage=e2205440&rft_id=info:doi/10.1002%2Fsmll.202205440&rft_id=info%3Apmid%2F36285777&rft.externalDocID=36285777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |