Dynamic Migration of Surface Fluorine Anions on Cobalt‐Based Materials to Achieve Enhanced Oxygen Evolution Catalysis

Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form we...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 47; pp. 15471 - 15475
Main Authors Chen, Pengzuo, Zhou, Tianpei, Wang, Sibo, Zhang, Nan, Tong, Yun, Ju, Huanxin, Chu, Wangsheng, Wu, Changzheng, Xie, Yi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.11.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Surface engineering by using fluoride ions was used to activate the catalytically active species of Co‐based materials. This is a completely new way of reconstruction toward OER‐active species. OER=oxygen evolution reaction; F green, Co purple.
AbstractList Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm −2 ) and reaction kinetics (54 mV dec −1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.
Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Surface engineering by using fluoride ions was used to activate the catalytically active species of Co‐based materials. This is a completely new way of reconstruction toward OER‐active species. OER=oxygen evolution reaction; F green, Co purple.
Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm ) and reaction kinetics (54 mV dec ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.
Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.
Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm-2 ) and reaction kinetics (54 mV dec-1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm-2 ) and reaction kinetics (54 mV dec-1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.
Author Ju, Huanxin
Chen, Pengzuo
Zhang, Nan
Tong, Yun
Zhou, Tianpei
Wang, Sibo
Wu, Changzheng
Xie, Yi
Chu, Wangsheng
Author_xml – sequence: 1
  givenname: Pengzuo
  surname: Chen
  fullname: Chen, Pengzuo
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Tianpei
  surname: Zhou
  fullname: Zhou, Tianpei
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Sibo
  surname: Wang
  fullname: Wang, Sibo
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Yun
  surname: Tong
  fullname: Tong, Yun
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Huanxin
  surname: Ju
  fullname: Ju, Huanxin
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Wangsheng
  surname: Chu
  fullname: Chu, Wangsheng
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Changzheng
  orcidid: 0000-0002-4416-6358
  surname: Wu
  fullname: Wu, Changzheng
  email: czwu@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30216619$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PFTEUhhuDkS-3Lk0TN27m2s-Zdnm9XpQEZCGuJ53eM1DS22I7A8yOn8Bv5JdYuIgJiXHVJu_znNP03UVbIQZA6B0lM0oI-2SCgxkjVBHNGHmFdqhktOJNw7fKXXBeNUrSbbSb80XhlSL1G7TNCaN1TfUOuv4yBbN2Fh-7s2QGFwOOPf4xpt5YwAd-jMkFwPNQkoxLuoid8cP97d1nk2GFj80AyRmf8RDx3J47uAK8DOcm2JKe3ExnEPDyKvrxcfbCDMZP2eV99LovFrx9OvfQz4Pl6eJbdXTy9XAxP6qs4JpUqlZUiFo0dd8RIW1jGRDSNMZI0jBhO2i6GqSmVHSdtEppze3KCA7EKEmA76GPm7mXKf4aIQ_t2mUL3psAccwto0QSycuCgn54gV7EMYXyukJxygTVmhbq_RM1dmtYtZfJrU2a2j9fWoDZBrAp5pygf0YoaR86ax86a587K4J4IVg3PFYxJOP8vzW90a6dh-k_S9r598PlX_c3q5KrUQ
CitedBy_id crossref_primary_10_1016_j_cej_2021_130328
crossref_primary_10_1021_acs_nanolett_0c02144
crossref_primary_10_1016_j_apcatb_2019_118267
crossref_primary_10_1007_s12274_021_3917_7
crossref_primary_10_1016_j_jcis_2024_01_026
crossref_primary_10_1021_jacs_9b12377
crossref_primary_10_1021_acssuschemeng_1c00288
crossref_primary_10_1002_advs_202300283
crossref_primary_10_1002_cssc_201901153
crossref_primary_10_1039_D4CY00643G
crossref_primary_10_1016_j_cej_2023_147560
crossref_primary_10_1021_acs_chemrev_1c00234
crossref_primary_10_1016_j_cej_2021_128488
crossref_primary_10_1016_j_jechem_2024_10_009
crossref_primary_10_1016_j_apsusc_2023_158620
crossref_primary_10_1016_j_jcis_2022_08_149
crossref_primary_10_1002_advs_202304071
crossref_primary_10_1016_j_cej_2022_136165
crossref_primary_10_1039_C9TA04442F
crossref_primary_10_1039_C9TA07918A
crossref_primary_10_1016_j_apsusc_2021_150696
crossref_primary_10_1039_D4CC00839A
crossref_primary_10_1016_j_cej_2024_152874
crossref_primary_10_1039_D1NJ00613D
crossref_primary_10_1002_sstr_202300013
crossref_primary_10_1016_j_eng_2020_01_018
crossref_primary_10_1021_acsami_0c07260
crossref_primary_10_1021_acsami_1c15419
crossref_primary_10_1073_pnas_2414112122
crossref_primary_10_1021_acs_inorgchem_4c02684
crossref_primary_10_1021_acsnano_4c03813
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1021_acsaem_1c02995
crossref_primary_10_1002_inf2_12597
crossref_primary_10_1016_j_ccr_2023_215083
crossref_primary_10_1016_j_apcatb_2021_120665
crossref_primary_10_1016_j_rser_2021_110709
crossref_primary_10_1016_j_apsusc_2023_157977
crossref_primary_10_1039_C9TA12104H
crossref_primary_10_1016_j_jechem_2022_12_051
crossref_primary_10_1021_acsaem_0c02417
crossref_primary_10_1021_acsami_1c09308
crossref_primary_10_1016_j_electacta_2024_143854
crossref_primary_10_1002_smll_202411017
crossref_primary_10_1016_j_jallcom_2024_173576
crossref_primary_10_1038_s41467_020_17108_5
crossref_primary_10_1039_D2QI02275C
crossref_primary_10_1002_admi_201900795
crossref_primary_10_1021_acsnano_3c05583
crossref_primary_10_1039_D0CC01215G
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1039_C9SC04027G
crossref_primary_10_1016_j_nanoen_2020_104948
crossref_primary_10_1002_aenm_202102573
crossref_primary_10_1016_j_electacta_2020_137280
crossref_primary_10_1016_j_ces_2024_120850
crossref_primary_10_1039_C9EE03634B
crossref_primary_10_1002_admi_201901939
crossref_primary_10_3390_catal9050459
crossref_primary_10_1021_acs_inorgchem_9b00463
crossref_primary_10_1002_chem_201903509
crossref_primary_10_1002_adsu_202300379
crossref_primary_10_1002_adfm_202410325
crossref_primary_10_1021_acsami_4c19192
crossref_primary_10_1039_D5NR00346F
crossref_primary_10_2139_ssrn_4053324
crossref_primary_10_1002_cctc_202000952
crossref_primary_10_1134_S1070363224100153
crossref_primary_10_1039_D2TA08004D
crossref_primary_10_1002_smtd_202100834
crossref_primary_10_1016_j_catcom_2022_106482
crossref_primary_10_1039_D0TA05038E
crossref_primary_10_1002_adfm_202415326
crossref_primary_10_2139_ssrn_4200017
crossref_primary_10_1016_j_electacta_2019_134815
crossref_primary_10_1039_D4EE00214H
crossref_primary_10_1016_j_mcat_2024_114595
crossref_primary_10_1016_j_jallcom_2022_165739
crossref_primary_10_1016_j_jcis_2020_12_098
crossref_primary_10_1016_j_cej_2021_128865
crossref_primary_10_1016_j_ijhydene_2021_05_178
crossref_primary_10_1002_adfm_202101578
crossref_primary_10_1016_j_ensm_2019_12_043
crossref_primary_10_1007_s12274_021_3545_2
crossref_primary_10_1039_D1DT00839K
crossref_primary_10_1039_D2NR00184E
crossref_primary_10_1007_s11426_024_2067_0
crossref_primary_10_1016_j_cej_2021_133541
crossref_primary_10_1021_acsaenm_3c00801
crossref_primary_10_1016_j_cej_2023_148030
crossref_primary_10_1016_j_ijhydene_2019_06_003
crossref_primary_10_1016_j_ijhydene_2021_10_127
crossref_primary_10_1021_acsmaterialslett_0c00209
crossref_primary_10_1002_smll_202301610
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1021_acsami_0c20886
crossref_primary_10_1016_j_jechem_2022_09_038
crossref_primary_10_1039_D0NR01496F
crossref_primary_10_1016_j_cej_2020_125500
crossref_primary_10_1039_D2SC05047A
crossref_primary_10_1016_j_enchem_2022_100091
crossref_primary_10_1002_smll_201904688
crossref_primary_10_1016_j_jechem_2024_08_056
crossref_primary_10_1016_j_cej_2024_153105
crossref_primary_10_1016_j_cej_2021_133776
crossref_primary_10_1016_j_ijhydene_2019_06_012
crossref_primary_10_1021_acsmaterialslett_0c00339
crossref_primary_10_1002_adma_201807468
crossref_primary_10_1016_j_ijhydene_2024_01_038
crossref_primary_10_1039_D2CC03630D
crossref_primary_10_1016_j_cej_2023_146754
crossref_primary_10_1021_acs_jpcc_2c01665
crossref_primary_10_1016_j_ijhydene_2021_08_002
crossref_primary_10_1016_j_jallcom_2022_165898
crossref_primary_10_1149_1945_7111_ad0a79
crossref_primary_10_1002_cctc_201901561
crossref_primary_10_1016_j_jcis_2022_04_080
crossref_primary_10_1002_slct_202003561
crossref_primary_10_1039_C9TA13122A
crossref_primary_10_1016_j_matlet_2021_129530
crossref_primary_10_1002_cssc_202001413
crossref_primary_10_1002_advs_202201916
crossref_primary_10_1002_cey2_630
crossref_primary_10_1002_cey2_631
crossref_primary_10_1002_smsc_202300294
crossref_primary_10_1016_j_apcatb_2023_122661
crossref_primary_10_1016_j_electacta_2023_141907
crossref_primary_10_1016_j_jcis_2021_05_170
crossref_primary_10_1002_ange_202007063
crossref_primary_10_2139_ssrn_4077739
crossref_primary_10_1016_j_jallcom_2022_166993
crossref_primary_10_1002_cssc_202002755
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_2139_ssrn_4156085
crossref_primary_10_1007_s12274_021_3559_9
crossref_primary_10_1016_j_est_2023_109259
crossref_primary_10_1021_acscatal_0c04200
crossref_primary_10_1039_D1GC04891K
crossref_primary_10_1021_acsami_1c01091
crossref_primary_10_1039_C9QI00325H
crossref_primary_10_1016_j_apcatb_2023_123171
crossref_primary_10_1002_asia_202301012
crossref_primary_10_1002_smll_202306663
crossref_primary_10_1016_j_mtener_2022_101008
crossref_primary_10_1016_j_apcatb_2022_122126
crossref_primary_10_3390_en15239031
crossref_primary_10_1039_C9NR09502K
crossref_primary_10_1016_j_cej_2021_129409
crossref_primary_10_1016_j_jcis_2025_137411
crossref_primary_10_1039_D0CC05876A
crossref_primary_10_1016_j_jechem_2022_01_045
crossref_primary_10_1039_D3MH00872J
crossref_primary_10_1002_adma_202311272
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1039_C9NR01804B
crossref_primary_10_1039_D0NJ06064J
crossref_primary_10_1021_acs_energyfuels_4c06264
crossref_primary_10_1021_acsenergylett_9b02316
crossref_primary_10_1016_j_cej_2021_134304
crossref_primary_10_1007_s42114_022_00537_9
crossref_primary_10_1016_j_cej_2020_126198
crossref_primary_10_1149_1945_7111_abb7de
crossref_primary_10_1021_acs_inorgchem_4c00568
crossref_primary_10_1021_acsanm_9b01330
crossref_primary_10_1016_j_cej_2024_149945
crossref_primary_10_1016_j_fuel_2024_132612
crossref_primary_10_1016_j_ijhydene_2019_07_228
crossref_primary_10_1007_s11708_021_0781_9
crossref_primary_10_1021_acsami_9b07417
crossref_primary_10_1016_j_cej_2020_124926
crossref_primary_10_1016_j_ceramint_2024_04_175
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1002_cctc_202300040
crossref_primary_10_1039_D1MH01307F
crossref_primary_10_1039_D3CC00412K
crossref_primary_10_1002_smll_202306367
crossref_primary_10_1016_j_jallcom_2024_176593
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1021_acssuschemeng_4c00906
crossref_primary_10_1039_D1NR03257G
crossref_primary_10_1002_adfm_202008190
crossref_primary_10_1002_advs_202103567
crossref_primary_10_1016_j_jmst_2023_05_054
crossref_primary_10_1021_acsomega_3c07867
crossref_primary_10_1002_smsc_202100011
crossref_primary_10_1039_D4TA06767C
crossref_primary_10_1016_j_elecom_2020_106901
crossref_primary_10_1021_acsnano_2c12735
crossref_primary_10_1016_j_apcatb_2022_121921
crossref_primary_10_1093_jmicro_dfad031
crossref_primary_10_1002_cphc_202400454
crossref_primary_10_1016_j_ijhydene_2024_07_109
crossref_primary_10_1016_j_jcis_2024_05_187
crossref_primary_10_1016_j_checat_2022_03_002
crossref_primary_10_1016_j_jechem_2019_12_008
crossref_primary_10_1039_D4DT00615A
crossref_primary_10_1016_j_elecom_2021_107177
crossref_primary_10_1016_j_jcis_2022_06_061
crossref_primary_10_1016_j_apcatb_2021_120063
crossref_primary_10_1016_j_apsusc_2022_152923
crossref_primary_10_1007_s12274_024_6413_z
crossref_primary_10_1021_acsami_3c17627
crossref_primary_10_1007_s40820_024_01328_1
crossref_primary_10_1016_j_cej_2022_136815
crossref_primary_10_1039_D1CC05375B
crossref_primary_10_1016_j_jechem_2020_07_005
crossref_primary_10_1002_smll_202205719
crossref_primary_10_1016_j_jssc_2020_121867
crossref_primary_10_1016_j_jcis_2024_10_002
crossref_primary_10_3390_nano14070573
crossref_primary_10_1016_j_jelechem_2025_119044
crossref_primary_10_1002_anie_202007063
crossref_primary_10_1016_j_mcat_2023_113142
crossref_primary_10_1002_smll_202308517
crossref_primary_10_1021_acssuschemeng_0c01383
crossref_primary_10_1002_sstr_202300555
Cites_doi 10.1002/ange.201610119
10.1002/ange.201306166
10.1021/ja504099w
10.1002/adma.201602868
10.1002/adma.201704681
10.1002/adma.201701584
10.1002/ange.201506480
10.1002/adma.201502696
10.1038/nmat3313
10.1002/anie.201612635
10.1002/anie.201702430
10.1002/ange.201702430
10.1039/C5QI00197H
10.1002/cjoc.201600229
10.1002/anie.201304481
10.1002/anie.201511032
10.1021/acs.accounts.8b00002
10.1002/adma.201601663
10.1002/anie.201610119
10.1002/anie.201411072
10.1039/C6CS00328A
10.1021/jacs.7b03507
10.1021/acs.accounts.6b00635
10.1002/aenm.201700242
10.1002/anie.201506480
10.1021/acscatal.7b02218
10.1002/ange.201612635
10.1021/jacs.5b08186
10.1039/C7TA03305B
10.1002/aenm.201602086
10.1002/ange.201511032
10.1002/ange.201411072
10.1016/j.nanoen.2016.04.006
10.1021/ja5119495
10.1002/smll.201502106
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201809220
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15475
ExternalDocumentID 30216619
10_1002_anie_201809220
ANIE201809220
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Basic Re-search Program of China
  funderid: 2107YFA0206703
– fundername: Natural Science Foundation of China
  funderid: 21893075011; 91745113; 11621063
– fundername: the Fundamental Research Funds for the Central Universities
  funderid: WK 2060190084
– fundername: Natural Science Foundation of China
  grantid: 21893075011
– fundername: National Basic Re-search Program of China
  grantid: 2015CB932302
– fundername: Natural Science Foundation of China
  grantid: 11621063
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: WK 2060190084
– fundername: Natural Science Foundation of China
  grantid: 91745113
– fundername: National Basic Re-search Program of China
  grantid: 2107YFA0206703
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4390-8681446476fb045c7c2e0077aa50724cbe7b6e59114bb5c88993cda43e0a850e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:40:56 EDT 2025
Fri Jul 25 12:01:21 EDT 2025
Thu Apr 03 06:57:28 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Tue Jul 01 02:26:34 EDT 2025
Wed Aug 20 07:27:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords cobalt oxides
oxygen evolution reaction
fluoride
surface reconstruction
dynamic migration
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-8681446476fb045c7c2e0077aa50724cbe7b6e59114bb5c88993cda43e0a850e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4416-6358
PMID 30216619
PQID 2131241991
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2105053476
proquest_journals_2131241991
pubmed_primary_30216619
crossref_primary_10_1002_anie_201809220
crossref_citationtrail_10_1002_anie_201809220
wiley_primary_10_1002_anie_201809220_ANIE201809220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 19, 2018
PublicationDateYYYYMMDD 2018-11-19
PublicationDate_xml – month: 11
  year: 2018
  text: November 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 50
2017; 7
2016 2016; 55 128
2016; 3
2015; 137
2017; 46
2017; 35
2015; 11
2015 2015; 54 127
2018; 51
2017; 29
2017 2017; 56 129
2016; 28
2012; 11
2014; 136
2016; 24
2017; 139
2013 2013; 52 125
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_23_1
e_1_2_2_6_2
e_1_2_2_20_3
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_8_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_12_3
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_31_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_35_2
References_xml – volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1704681
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7405
  year: 2017
  end-page: 7411
  publication-title: ACS Catal.
– volume: 56 129
  start-page: 7121 7227
  year: 2017 2017
  end-page: 7125 7231
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 7527
  year: 2016
  end-page: 7532
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1602868
  year: 2017
  publication-title: Adv. Mater.
– volume: 50
  start-page: 915
  year: 2017
  end-page: 923
  publication-title: Acc. Chem. Res.
– volume: 28
  start-page: 215
  year: 2016
  end-page: 230
  publication-title: Adv. Mater.
– volume: 56 129
  start-page: 610 625
  year: 2017 2017
  end-page: 614 629
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1602086
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 103
  year: 2016
  end-page: 110
  publication-title: Nano Energy
– volume: 136
  start-page: 10053
  year: 2014
  end-page: 10061
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1700242
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 54 127
  start-page: 14710 14923
  year: 2015 2015
  end-page: 14714 14927
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 236
  year: 2016
  end-page: 242
  publication-title: Inorg. Chem. Front.
– volume: 51
  start-page: 1571
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 29
  start-page: 1701584
  year: 2017
  publication-title: Adv. Mater.
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 13567 13812
  year: 2013 2013
  end-page: 13570 13815
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 6278
  year: 2015
  publication-title: Small
– volume: 56 129
  start-page: 3897 3955
  year: 2017 2017
  end-page: 3900 3958
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 2488 2534
  year: 2016 2016
  end-page: 2492 2538
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 12043
  year: 2017
  end-page: 12047
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 4119
  year: 2015
  end-page: 4125
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 14023
  year: 2015
  end-page: 14026
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 48
  year: 2017
  end-page: 54
  publication-title: Chin. J. Chem.
– volume: 54 127
  start-page: 2975 3018
  year: 2015 2015
  end-page: 2979 3022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201610119
– ident: e_1_2_2_1_1
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201306166
– ident: e_1_2_2_33_2
  doi: 10.1021/ja504099w
– ident: e_1_2_2_28_1
  doi: 10.1002/adma.201602868
– ident: e_1_2_2_15_2
  doi: 10.1002/adma.201704681
– ident: e_1_2_2_17_2
  doi: 10.1002/adma.201701584
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201506480
– ident: e_1_2_2_23_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_2_2_2
  doi: 10.1038/nmat3313
– ident: e_1_2_2_22_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201702430
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201702430
– ident: e_1_2_2_21_2
  doi: 10.1039/C5QI00197H
– ident: e_1_2_2_30_1
  doi: 10.1002/cjoc.201600229
– ident: e_1_2_2_31_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201304481
– ident: e_1_2_2_12_2
  doi: 10.1002/anie.201511032
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.accounts.8b00002
– ident: e_1_2_2_4_2
  doi: 10.1002/adma.201601663
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201610119
– ident: e_1_2_2_9_1
  doi: 10.1002/anie.201411072
– ident: e_1_2_2_7_2
  doi: 10.1039/C6CS00328A
– ident: e_1_2_2_34_1
– ident: e_1_2_2_13_1
  doi: 10.1021/jacs.7b03507
– ident: e_1_2_2_18_1
– ident: e_1_2_2_6_2
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_2_29_1
  doi: 10.1002/aenm.201700242
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201506480
– ident: e_1_2_2_27_2
  doi: 10.1021/acscatal.7b02218
– ident: e_1_2_2_14_1
– ident: e_1_2_2_22_2
  doi: 10.1002/ange.201612635
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_2_26_2
  doi: 10.1039/C7TA03305B
– ident: e_1_2_2_25_2
  doi: 10.1002/aenm.201602086
– ident: e_1_2_2_5_1
– ident: e_1_2_2_12_3
  doi: 10.1002/ange.201511032
– ident: e_1_2_2_24_1
– ident: e_1_2_2_9_2
  doi: 10.1002/ange.201411072
– ident: e_1_2_2_36_2
  doi: 10.1016/j.nanoen.2016.04.006
– ident: e_1_2_2_10_1
– ident: e_1_2_2_19_2
  doi: 10.1021/ja5119495
– ident: e_1_2_2_32_2
  doi: 10.1002/smll.201502106
SSID ssj0028806
Score 2.6398451
Snippet Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen...
Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15471
SubjectTerms Anions
Bonding strength
Catalysis
Catalysts
Cobalt
cobalt oxides
Design engineering
dynamic migration
Electron transfer
Electronegativity
Energy conversion
fluoride
Fluorine
Migration
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Reaction kinetics
surface reconstruction
Title Dynamic Migration of Surface Fluorine Anions on Cobalt‐Based Materials to Achieve Enhanced Oxygen Evolution Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201809220
https://www.ncbi.nlm.nih.gov/pubmed/30216619
https://www.proquest.com/docview/2131241991
https://www.proquest.com/docview/2105053476
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqbtoNUMojUJArIbFKm7GdxFkOw4zaSlMkoFJ30bXj0KpVBrVJeaz6Cf1GvoR74yQwIFSJ7hLZVvw41z52rs9l7JVUkAiIVWiElKEqdBZq5OGhKfTIgQFlCzoamB8me0fq4Dg-_u0Wv9eHGA7cyDLa-ZoMHMzl7i_RULqBTa5ZOsqEoE07OWwRK3o_6EcJBKe_XoT1oCj0vWpjJHaXiy-vSn9RzWXm2i49s_sM-kp7j5OznaY2O_b7H3qOd2nVA3av46V87IG0wVZc9ZCtTfpwcJvsy1sfu57PTz951PBFyT80FyVYx2fnDXnyOT6uCMccUyekNFL_uL55gwtlwedQe7DzesHH9uTUXTk-rU5aDwT-7us3RDKfXnWWwCd0rERqKY_Y0Wz6cbIXdlEbQovkJgp1ommPqdKkNMgXbWqFI9EgAKSeQlnjUpO4GCdZZUxsNW74pC1ASReBjiMnH7PValG5p4wnCgrMmZVZCiqOSm0iq5IS5AhcWpYyYGE_arntJM0pssZ57sWYRU7dmQ_dGbDXQ_7PXszjnzm3ehDknVFf5mIkkQ2Rr1jAtodkHAb6xwKVWzSUh0IDSmx9wJ548AyfksinkA5lARMtBG6pQz4-3J8Ob8_-p9Bztk7PdHdylG2x1fqicS-QRNXmZWsoPwFXthN1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CZVE2vB-BAkZCYpU2YzuJs5wOM5pCZ5CgldhFtuPQiiqDStIWVnwC39gv4d44CRoQQoJlYlvx41z72Lk-F-C5kDrhOpah4UKEslBZqJCHh6ZQI6eNlrago4HFMpkfylfv496bkO7CeH2I4cCNLKOdr8nA6UB656dqKF3BJt8sFWWc4679KoX1bndVbwcFKY7w9BeMsCYUh77XbYz4znr59XXpN7K5zl3bxWd2A0xfbe9z8nG7qc22_fqLouN_tesmXO-oKRt7LN2CK666DZuTPiLcHTh_6cPXs8XxBw8ctirZu-a01Nax2UlDznyOjSuCMsPUCYmN1Jffvu_iWlmwha493lm9YmN7dOzOHJtWR60TAntz8QXBzKZnnTGwCZ0skWDKXTicTQ8m87AL3BBa5DdRqBJF20yZJqVBymhTyx3pBmmN7JNLa1xqEhfjPCuNia3CPZ-whZbCRVrFkRP3YKNaVe4BsETqAnNmZZZqGUelMpGVSanFSLu0LEUAYT9sue1UzSm4xknu9Zh5Tt2ZD90ZwIsh_yev5_HHnFs9CvLOrj_nfCSQEJG7WADPhmQcBvrNoiu3aigPRQcU2PoA7nv0DJ8SSKmQEWUB8BYDf6lDPl7uTYenh_9S6Clszg8W-_n-3vL1I7hG7-kq5Sjbgo36tHGPkVPV5klrNT8AiDgXkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRQI2vCmBAkZCYpU2YzuJsxzmoRaYAQGVuotsx6EVVaYqSXms-AS-kS_h3jgJDAghwTKxrfhxrn3sXJ8L8EhInXAdy9BwIUJZqCxUyMNDU6iR00ZLW9DRwGKZ7O7LpwfxwU-3-L0-xHDgRpbRztdk4CdFufNDNJRuYJNrlooyznHTfl4mkSJcT18NAlIc0envF2FFKAx9L9sY8Z318uvL0m9cc526tmvP_Arovtbe5eTddlObbfv5F0HH_2nWVbjcEVM29ki6BudcdR0uTvp4cDfgw9QHr2eLo7ceNmxVstfNaamtY_Pjhlz5HBtXBGSGqROSGqm_ffn6BFfKgi107dHO6hUb28Mjd-bYrDpsXRDYi4-fEMpsdtaZApvQuRLJpdyE_fnszWQ37MI2hBbZTRSqRNEmU6ZJaZAw2tRyR6pBWiP35NIal5rExTjLSmNiq3DHJ2yhpXCRVnHkxC3YqFaVuw0skbrAnFmZpVrGUalMZGVSajHSLi1LEUDYj1puO01zCq1xnHs1Zp5Td-ZDdwbweMh_4tU8_phzqwdB3ln1-5yPBNIhchYL4OGQjMNAP1l05VYN5aHYgAJbH8CmB8_wKYGECvlQFgBvIfCXOuTj5d5seLrzL4UewIWX03n-fG_57C5cotd0j3KUbcFGfdq4e0ioanO_tZnvRdAWSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Migration+of+Surface+Fluorine+Anions+on+Cobalt-Based+Materials+to+Achieve+Enhanced+Oxygen+Evolution+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Pengzuo&rft.au=Zhou%2C+Tianpei&rft.au=Wang%2C+Sibo&rft.au=Zhang%2C+Nan&rft.date=2018-11-19&rft.eissn=1521-3773&rft.volume=57&rft.issue=47&rft.spage=15471&rft_id=info:doi/10.1002%2Fanie.201809220&rft_id=info%3Apmid%2F30216619&rft.externalDocID=30216619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon