Dynamic Migration of Surface Fluorine Anions on Cobalt‐Based Materials to Achieve Enhanced Oxygen Evolution Catalysis
Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form we...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 47; pp. 15471 - 15475 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.11.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.
Surface engineering by using fluoride ions was used to activate the catalytically active species of Co‐based materials. This is a completely new way of reconstruction toward OER‐active species. OER=oxygen evolution reaction; F green, Co purple. |
---|---|
AbstractList | Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm
−2
) and reaction kinetics (54 mV dec
−1
) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Surface engineering by using fluoride ions was used to activate the catalytically active species of Co‐based materials. This is a completely new way of reconstruction toward OER‐active species. OER=oxygen evolution reaction; F green, Co purple. Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm ) and reaction kinetics (54 mV dec ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal–fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt‐based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen‐related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F‐CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm−2) and reaction kinetics (54 mV dec−1) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm-2 ) and reaction kinetics (54 mV dec-1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm-2 ) and reaction kinetics (54 mV dec-1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system. |
Author | Ju, Huanxin Chen, Pengzuo Zhang, Nan Tong, Yun Zhou, Tianpei Wang, Sibo Wu, Changzheng Xie, Yi Chu, Wangsheng |
Author_xml | – sequence: 1 givenname: Pengzuo surname: Chen fullname: Chen, Pengzuo organization: University of Science and Technology of China – sequence: 2 givenname: Tianpei surname: Zhou fullname: Zhou, Tianpei organization: University of Science and Technology of China – sequence: 3 givenname: Sibo surname: Wang fullname: Wang, Sibo organization: University of Science and Technology of China – sequence: 4 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: University of Science and Technology of China – sequence: 5 givenname: Yun surname: Tong fullname: Tong, Yun organization: University of Science and Technology of China – sequence: 6 givenname: Huanxin surname: Ju fullname: Ju, Huanxin organization: University of Science and Technology of China – sequence: 7 givenname: Wangsheng surname: Chu fullname: Chu, Wangsheng organization: University of Science and Technology of China – sequence: 8 givenname: Changzheng orcidid: 0000-0002-4416-6358 surname: Wu fullname: Wu, Changzheng email: czwu@ustc.edu.cn organization: University of Science and Technology of China – sequence: 9 givenname: Yi surname: Xie fullname: Xie, Yi organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30216619$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PFTEUhhuDkS-3Lk0TN27m2s-Zdnm9XpQEZCGuJ53eM1DS22I7A8yOn8Bv5JdYuIgJiXHVJu_znNP03UVbIQZA6B0lM0oI-2SCgxkjVBHNGHmFdqhktOJNw7fKXXBeNUrSbbSb80XhlSL1G7TNCaN1TfUOuv4yBbN2Fh-7s2QGFwOOPf4xpt5YwAd-jMkFwPNQkoxLuoid8cP97d1nk2GFj80AyRmf8RDx3J47uAK8DOcm2JKe3ExnEPDyKvrxcfbCDMZP2eV99LovFrx9OvfQz4Pl6eJbdXTy9XAxP6qs4JpUqlZUiFo0dd8RIW1jGRDSNMZI0jBhO2i6GqSmVHSdtEppze3KCA7EKEmA76GPm7mXKf4aIQ_t2mUL3psAccwto0QSycuCgn54gV7EMYXyukJxygTVmhbq_RM1dmtYtZfJrU2a2j9fWoDZBrAp5pygf0YoaR86ax86a587K4J4IVg3PFYxJOP8vzW90a6dh-k_S9r598PlX_c3q5KrUQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_130328 crossref_primary_10_1021_acs_nanolett_0c02144 crossref_primary_10_1016_j_apcatb_2019_118267 crossref_primary_10_1007_s12274_021_3917_7 crossref_primary_10_1016_j_jcis_2024_01_026 crossref_primary_10_1021_jacs_9b12377 crossref_primary_10_1021_acssuschemeng_1c00288 crossref_primary_10_1002_advs_202300283 crossref_primary_10_1002_cssc_201901153 crossref_primary_10_1039_D4CY00643G crossref_primary_10_1016_j_cej_2023_147560 crossref_primary_10_1021_acs_chemrev_1c00234 crossref_primary_10_1016_j_cej_2021_128488 crossref_primary_10_1016_j_jechem_2024_10_009 crossref_primary_10_1016_j_apsusc_2023_158620 crossref_primary_10_1016_j_jcis_2022_08_149 crossref_primary_10_1002_advs_202304071 crossref_primary_10_1016_j_cej_2022_136165 crossref_primary_10_1039_C9TA04442F crossref_primary_10_1039_C9TA07918A crossref_primary_10_1016_j_apsusc_2021_150696 crossref_primary_10_1039_D4CC00839A crossref_primary_10_1016_j_cej_2024_152874 crossref_primary_10_1039_D1NJ00613D crossref_primary_10_1002_sstr_202300013 crossref_primary_10_1016_j_eng_2020_01_018 crossref_primary_10_1021_acsami_0c07260 crossref_primary_10_1021_acsami_1c15419 crossref_primary_10_1073_pnas_2414112122 crossref_primary_10_1021_acs_inorgchem_4c02684 crossref_primary_10_1021_acsnano_4c03813 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1021_acsaem_1c02995 crossref_primary_10_1002_inf2_12597 crossref_primary_10_1016_j_ccr_2023_215083 crossref_primary_10_1016_j_apcatb_2021_120665 crossref_primary_10_1016_j_rser_2021_110709 crossref_primary_10_1016_j_apsusc_2023_157977 crossref_primary_10_1039_C9TA12104H crossref_primary_10_1016_j_jechem_2022_12_051 crossref_primary_10_1021_acsaem_0c02417 crossref_primary_10_1021_acsami_1c09308 crossref_primary_10_1016_j_electacta_2024_143854 crossref_primary_10_1002_smll_202411017 crossref_primary_10_1016_j_jallcom_2024_173576 crossref_primary_10_1038_s41467_020_17108_5 crossref_primary_10_1039_D2QI02275C crossref_primary_10_1002_admi_201900795 crossref_primary_10_1021_acsnano_3c05583 crossref_primary_10_1039_D0CC01215G crossref_primary_10_1039_D4EE02365J crossref_primary_10_1039_C9SC04027G crossref_primary_10_1016_j_nanoen_2020_104948 crossref_primary_10_1002_aenm_202102573 crossref_primary_10_1016_j_electacta_2020_137280 crossref_primary_10_1016_j_ces_2024_120850 crossref_primary_10_1039_C9EE03634B crossref_primary_10_1002_admi_201901939 crossref_primary_10_3390_catal9050459 crossref_primary_10_1021_acs_inorgchem_9b00463 crossref_primary_10_1002_chem_201903509 crossref_primary_10_1002_adsu_202300379 crossref_primary_10_1002_adfm_202410325 crossref_primary_10_1021_acsami_4c19192 crossref_primary_10_1039_D5NR00346F crossref_primary_10_2139_ssrn_4053324 crossref_primary_10_1002_cctc_202000952 crossref_primary_10_1134_S1070363224100153 crossref_primary_10_1039_D2TA08004D crossref_primary_10_1002_smtd_202100834 crossref_primary_10_1016_j_catcom_2022_106482 crossref_primary_10_1039_D0TA05038E crossref_primary_10_1002_adfm_202415326 crossref_primary_10_2139_ssrn_4200017 crossref_primary_10_1016_j_electacta_2019_134815 crossref_primary_10_1039_D4EE00214H crossref_primary_10_1016_j_mcat_2024_114595 crossref_primary_10_1016_j_jallcom_2022_165739 crossref_primary_10_1016_j_jcis_2020_12_098 crossref_primary_10_1016_j_cej_2021_128865 crossref_primary_10_1016_j_ijhydene_2021_05_178 crossref_primary_10_1002_adfm_202101578 crossref_primary_10_1016_j_ensm_2019_12_043 crossref_primary_10_1007_s12274_021_3545_2 crossref_primary_10_1039_D1DT00839K crossref_primary_10_1039_D2NR00184E crossref_primary_10_1007_s11426_024_2067_0 crossref_primary_10_1016_j_cej_2021_133541 crossref_primary_10_1021_acsaenm_3c00801 crossref_primary_10_1016_j_cej_2023_148030 crossref_primary_10_1016_j_ijhydene_2019_06_003 crossref_primary_10_1016_j_ijhydene_2021_10_127 crossref_primary_10_1021_acsmaterialslett_0c00209 crossref_primary_10_1002_smll_202301610 crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1021_acsami_0c20886 crossref_primary_10_1016_j_jechem_2022_09_038 crossref_primary_10_1039_D0NR01496F crossref_primary_10_1016_j_cej_2020_125500 crossref_primary_10_1039_D2SC05047A crossref_primary_10_1016_j_enchem_2022_100091 crossref_primary_10_1002_smll_201904688 crossref_primary_10_1016_j_jechem_2024_08_056 crossref_primary_10_1016_j_cej_2024_153105 crossref_primary_10_1016_j_cej_2021_133776 crossref_primary_10_1016_j_ijhydene_2019_06_012 crossref_primary_10_1021_acsmaterialslett_0c00339 crossref_primary_10_1002_adma_201807468 crossref_primary_10_1016_j_ijhydene_2024_01_038 crossref_primary_10_1039_D2CC03630D crossref_primary_10_1016_j_cej_2023_146754 crossref_primary_10_1021_acs_jpcc_2c01665 crossref_primary_10_1016_j_ijhydene_2021_08_002 crossref_primary_10_1016_j_jallcom_2022_165898 crossref_primary_10_1149_1945_7111_ad0a79 crossref_primary_10_1002_cctc_201901561 crossref_primary_10_1016_j_jcis_2022_04_080 crossref_primary_10_1002_slct_202003561 crossref_primary_10_1039_C9TA13122A crossref_primary_10_1016_j_matlet_2021_129530 crossref_primary_10_1002_cssc_202001413 crossref_primary_10_1002_advs_202201916 crossref_primary_10_1002_cey2_630 crossref_primary_10_1002_cey2_631 crossref_primary_10_1002_smsc_202300294 crossref_primary_10_1016_j_apcatb_2023_122661 crossref_primary_10_1016_j_electacta_2023_141907 crossref_primary_10_1016_j_jcis_2021_05_170 crossref_primary_10_1002_ange_202007063 crossref_primary_10_2139_ssrn_4077739 crossref_primary_10_1016_j_jallcom_2022_166993 crossref_primary_10_1002_cssc_202002755 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_2139_ssrn_4156085 crossref_primary_10_1007_s12274_021_3559_9 crossref_primary_10_1016_j_est_2023_109259 crossref_primary_10_1021_acscatal_0c04200 crossref_primary_10_1039_D1GC04891K crossref_primary_10_1021_acsami_1c01091 crossref_primary_10_1039_C9QI00325H crossref_primary_10_1016_j_apcatb_2023_123171 crossref_primary_10_1002_asia_202301012 crossref_primary_10_1002_smll_202306663 crossref_primary_10_1016_j_mtener_2022_101008 crossref_primary_10_1016_j_apcatb_2022_122126 crossref_primary_10_3390_en15239031 crossref_primary_10_1039_C9NR09502K crossref_primary_10_1016_j_cej_2021_129409 crossref_primary_10_1016_j_jcis_2025_137411 crossref_primary_10_1039_D0CC05876A crossref_primary_10_1016_j_jechem_2022_01_045 crossref_primary_10_1039_D3MH00872J crossref_primary_10_1002_adma_202311272 crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1039_C9NR01804B crossref_primary_10_1039_D0NJ06064J crossref_primary_10_1021_acs_energyfuels_4c06264 crossref_primary_10_1021_acsenergylett_9b02316 crossref_primary_10_1016_j_cej_2021_134304 crossref_primary_10_1007_s42114_022_00537_9 crossref_primary_10_1016_j_cej_2020_126198 crossref_primary_10_1149_1945_7111_abb7de crossref_primary_10_1021_acs_inorgchem_4c00568 crossref_primary_10_1021_acsanm_9b01330 crossref_primary_10_1016_j_cej_2024_149945 crossref_primary_10_1016_j_fuel_2024_132612 crossref_primary_10_1016_j_ijhydene_2019_07_228 crossref_primary_10_1007_s11708_021_0781_9 crossref_primary_10_1021_acsami_9b07417 crossref_primary_10_1016_j_cej_2020_124926 crossref_primary_10_1016_j_ceramint_2024_04_175 crossref_primary_10_1002_smtd_202201138 crossref_primary_10_1002_cctc_202300040 crossref_primary_10_1039_D1MH01307F crossref_primary_10_1039_D3CC00412K crossref_primary_10_1002_smll_202306367 crossref_primary_10_1016_j_jallcom_2024_176593 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1021_acssuschemeng_4c00906 crossref_primary_10_1039_D1NR03257G crossref_primary_10_1002_adfm_202008190 crossref_primary_10_1002_advs_202103567 crossref_primary_10_1016_j_jmst_2023_05_054 crossref_primary_10_1021_acsomega_3c07867 crossref_primary_10_1002_smsc_202100011 crossref_primary_10_1039_D4TA06767C crossref_primary_10_1016_j_elecom_2020_106901 crossref_primary_10_1021_acsnano_2c12735 crossref_primary_10_1016_j_apcatb_2022_121921 crossref_primary_10_1093_jmicro_dfad031 crossref_primary_10_1002_cphc_202400454 crossref_primary_10_1016_j_ijhydene_2024_07_109 crossref_primary_10_1016_j_jcis_2024_05_187 crossref_primary_10_1016_j_checat_2022_03_002 crossref_primary_10_1016_j_jechem_2019_12_008 crossref_primary_10_1039_D4DT00615A crossref_primary_10_1016_j_elecom_2021_107177 crossref_primary_10_1016_j_jcis_2022_06_061 crossref_primary_10_1016_j_apcatb_2021_120063 crossref_primary_10_1016_j_apsusc_2022_152923 crossref_primary_10_1007_s12274_024_6413_z crossref_primary_10_1021_acsami_3c17627 crossref_primary_10_1007_s40820_024_01328_1 crossref_primary_10_1016_j_cej_2022_136815 crossref_primary_10_1039_D1CC05375B crossref_primary_10_1016_j_jechem_2020_07_005 crossref_primary_10_1002_smll_202205719 crossref_primary_10_1016_j_jssc_2020_121867 crossref_primary_10_1016_j_jcis_2024_10_002 crossref_primary_10_3390_nano14070573 crossref_primary_10_1016_j_jelechem_2025_119044 crossref_primary_10_1002_anie_202007063 crossref_primary_10_1016_j_mcat_2023_113142 crossref_primary_10_1002_smll_202308517 crossref_primary_10_1021_acssuschemeng_0c01383 crossref_primary_10_1002_sstr_202300555 |
Cites_doi | 10.1002/ange.201610119 10.1002/ange.201306166 10.1021/ja504099w 10.1002/adma.201602868 10.1002/adma.201704681 10.1002/adma.201701584 10.1002/ange.201506480 10.1002/adma.201502696 10.1038/nmat3313 10.1002/anie.201612635 10.1002/anie.201702430 10.1002/ange.201702430 10.1039/C5QI00197H 10.1002/cjoc.201600229 10.1002/anie.201304481 10.1002/anie.201511032 10.1021/acs.accounts.8b00002 10.1002/adma.201601663 10.1002/anie.201610119 10.1002/anie.201411072 10.1039/C6CS00328A 10.1021/jacs.7b03507 10.1021/acs.accounts.6b00635 10.1002/aenm.201700242 10.1002/anie.201506480 10.1021/acscatal.7b02218 10.1002/ange.201612635 10.1021/jacs.5b08186 10.1039/C7TA03305B 10.1002/aenm.201602086 10.1002/ange.201511032 10.1002/ange.201411072 10.1016/j.nanoen.2016.04.006 10.1021/ja5119495 10.1002/smll.201502106 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201809220 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 15475 |
ExternalDocumentID | 30216619 10_1002_anie_201809220 ANIE201809220 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Basic Re-search Program of China funderid: 2107YFA0206703 – fundername: Natural Science Foundation of China funderid: 21893075011; 91745113; 11621063 – fundername: the Fundamental Research Funds for the Central Universities funderid: WK 2060190084 – fundername: Natural Science Foundation of China grantid: 21893075011 – fundername: National Basic Re-search Program of China grantid: 2015CB932302 – fundername: Natural Science Foundation of China grantid: 11621063 – fundername: the Fundamental Research Funds for the Central Universities grantid: WK 2060190084 – fundername: Natural Science Foundation of China grantid: 91745113 – fundername: National Basic Re-search Program of China grantid: 2107YFA0206703 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4390-8681446476fb045c7c2e0077aa50724cbe7b6e59114bb5c88993cda43e0a850e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:40:56 EDT 2025 Fri Jul 25 12:01:21 EDT 2025 Thu Apr 03 06:57:28 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 Tue Jul 01 02:26:34 EDT 2025 Wed Aug 20 07:27:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | cobalt oxides oxygen evolution reaction fluoride surface reconstruction dynamic migration |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-8681446476fb045c7c2e0077aa50724cbe7b6e59114bb5c88993cda43e0a850e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4416-6358 |
PMID | 30216619 |
PQID | 2131241991 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2105053476 proquest_journals_2131241991 pubmed_primary_30216619 crossref_primary_10_1002_anie_201809220 crossref_citationtrail_10_1002_anie_201809220 wiley_primary_10_1002_anie_201809220_ANIE201809220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 19, 2018 |
PublicationDateYYYYMMDD | 2018-11-19 |
PublicationDate_xml | – month: 11 year: 2018 text: November 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 50 2017; 7 2016 2016; 55 128 2016; 3 2015; 137 2017; 46 2017; 35 2015; 11 2015 2015; 54 127 2018; 51 2017; 29 2017 2017; 56 129 2016; 28 2012; 11 2014; 136 2016; 24 2017; 139 2013 2013; 52 125 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_23_1 e_1_2_2_6_2 e_1_2_2_20_3 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_8_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_12_3 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_36_2 e_1_2_2_11_3 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_31_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_35_2 |
References_xml | – volume: 46 start-page: 337 year: 2017 end-page: 365 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1704681 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 7405 year: 2017 end-page: 7411 publication-title: ACS Catal. – volume: 56 129 start-page: 7121 7227 year: 2017 2017 end-page: 7125 7231 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 7527 year: 2016 end-page: 7532 publication-title: Adv. Mater. – volume: 29 start-page: 1602868 year: 2017 publication-title: Adv. Mater. – volume: 50 start-page: 915 year: 2017 end-page: 923 publication-title: Acc. Chem. Res. – volume: 28 start-page: 215 year: 2016 end-page: 230 publication-title: Adv. Mater. – volume: 56 129 start-page: 610 625 year: 2017 2017 end-page: 614 629 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1602086 year: 2017 publication-title: Adv. Energy Mater. – volume: 24 start-page: 103 year: 2016 end-page: 110 publication-title: Nano Energy – volume: 136 start-page: 10053 year: 2014 end-page: 10061 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1700242 year: 2017 publication-title: Adv. Energy Mater. – volume: 54 127 start-page: 14710 14923 year: 2015 2015 end-page: 14714 14927 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 236 year: 2016 end-page: 242 publication-title: Inorg. Chem. Front. – volume: 51 start-page: 1571 year: 2018 publication-title: Acc. Chem. Res. – volume: 29 start-page: 1701584 year: 2017 publication-title: Adv. Mater. – volume: 139 start-page: 8320 year: 2017 end-page: 8328 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 13567 13812 year: 2013 2013 end-page: 13570 13815 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 6278 year: 2015 publication-title: Small – volume: 56 129 start-page: 3897 3955 year: 2017 2017 end-page: 3900 3958 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 2488 2534 year: 2016 2016 end-page: 2492 2538 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 12043 year: 2017 end-page: 12047 publication-title: J. Mater. Chem. A – volume: 137 start-page: 4119 year: 2015 end-page: 4125 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 14023 year: 2015 end-page: 14026 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 48 year: 2017 end-page: 54 publication-title: Chin. J. Chem. – volume: 54 127 start-page: 2975 3018 year: 2015 2015 end-page: 2979 3022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – ident: e_1_2_2_8_3 doi: 10.1002/ange.201610119 – ident: e_1_2_2_1_1 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201306166 – ident: e_1_2_2_33_2 doi: 10.1021/ja504099w – ident: e_1_2_2_28_1 doi: 10.1002/adma.201602868 – ident: e_1_2_2_15_2 doi: 10.1002/adma.201704681 – ident: e_1_2_2_17_2 doi: 10.1002/adma.201701584 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201506480 – ident: e_1_2_2_23_1 doi: 10.1002/adma.201502696 – ident: e_1_2_2_2_2 doi: 10.1038/nmat3313 – ident: e_1_2_2_22_1 doi: 10.1002/anie.201612635 – ident: e_1_2_2_11_2 doi: 10.1002/anie.201702430 – ident: e_1_2_2_11_3 doi: 10.1002/ange.201702430 – ident: e_1_2_2_21_2 doi: 10.1039/C5QI00197H – ident: e_1_2_2_30_1 doi: 10.1002/cjoc.201600229 – ident: e_1_2_2_31_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201304481 – ident: e_1_2_2_12_2 doi: 10.1002/anie.201511032 – ident: e_1_2_2_3_2 doi: 10.1021/acs.accounts.8b00002 – ident: e_1_2_2_4_2 doi: 10.1002/adma.201601663 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201610119 – ident: e_1_2_2_9_1 doi: 10.1002/anie.201411072 – ident: e_1_2_2_7_2 doi: 10.1039/C6CS00328A – ident: e_1_2_2_34_1 – ident: e_1_2_2_13_1 doi: 10.1021/jacs.7b03507 – ident: e_1_2_2_18_1 – ident: e_1_2_2_6_2 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_2_29_1 doi: 10.1002/aenm.201700242 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201506480 – ident: e_1_2_2_27_2 doi: 10.1021/acscatal.7b02218 – ident: e_1_2_2_14_1 – ident: e_1_2_2_22_2 doi: 10.1002/ange.201612635 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.5b08186 – ident: e_1_2_2_26_2 doi: 10.1039/C7TA03305B – ident: e_1_2_2_25_2 doi: 10.1002/aenm.201602086 – ident: e_1_2_2_5_1 – ident: e_1_2_2_12_3 doi: 10.1002/ange.201511032 – ident: e_1_2_2_24_1 – ident: e_1_2_2_9_2 doi: 10.1002/ange.201411072 – ident: e_1_2_2_36_2 doi: 10.1016/j.nanoen.2016.04.006 – ident: e_1_2_2_10_1 – ident: e_1_2_2_19_2 doi: 10.1021/ja5119495 – ident: e_1_2_2_32_2 doi: 10.1002/smll.201502106 |
SSID | ssj0028806 |
Score | 2.6398451 |
Snippet | Fluorine‐anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen... Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15471 |
SubjectTerms | Anions Bonding strength Catalysis Catalysts Cobalt cobalt oxides Design engineering dynamic migration Electron transfer Electronegativity Energy conversion fluoride Fluorine Migration Oxygen oxygen evolution reaction Oxygen evolution reactions Reaction kinetics surface reconstruction |
Title | Dynamic Migration of Surface Fluorine Anions on Cobalt‐Based Materials to Achieve Enhanced Oxygen Evolution Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201809220 https://www.ncbi.nlm.nih.gov/pubmed/30216619 https://www.proquest.com/docview/2131241991 https://www.proquest.com/docview/2105053476 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqbtoNUMojUJArIbFKm7GdxFkOw4zaSlMkoFJ30bXj0KpVBrVJeaz6Cf1GvoR74yQwIFSJ7hLZVvw41z52rs9l7JVUkAiIVWiElKEqdBZq5OGhKfTIgQFlCzoamB8me0fq4Dg-_u0Wv9eHGA7cyDLa-ZoMHMzl7i_RULqBTa5ZOsqEoE07OWwRK3o_6EcJBKe_XoT1oCj0vWpjJHaXiy-vSn9RzWXm2i49s_sM-kp7j5OznaY2O_b7H3qOd2nVA3av46V87IG0wVZc9ZCtTfpwcJvsy1sfu57PTz951PBFyT80FyVYx2fnDXnyOT6uCMccUyekNFL_uL55gwtlwedQe7DzesHH9uTUXTk-rU5aDwT-7us3RDKfXnWWwCd0rERqKY_Y0Wz6cbIXdlEbQovkJgp1ommPqdKkNMgXbWqFI9EgAKSeQlnjUpO4GCdZZUxsNW74pC1ASReBjiMnH7PValG5p4wnCgrMmZVZCiqOSm0iq5IS5AhcWpYyYGE_arntJM0pssZ57sWYRU7dmQ_dGbDXQ_7PXszjnzm3ehDknVFf5mIkkQ2Rr1jAtodkHAb6xwKVWzSUh0IDSmx9wJ548AyfksinkA5lARMtBG6pQz4-3J8Ob8_-p9Bztk7PdHdylG2x1fqicS-QRNXmZWsoPwFXthN1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CZVE2vB-BAkZCYpU2YzuJs5wOM5pCZ5CgldhFtuPQiiqDStIWVnwC39gv4d44CRoQQoJlYlvx41z72Lk-F-C5kDrhOpah4UKEslBZqJCHh6ZQI6eNlrago4HFMpkfylfv496bkO7CeH2I4cCNLKOdr8nA6UB656dqKF3BJt8sFWWc4679KoX1bndVbwcFKY7w9BeMsCYUh77XbYz4znr59XXpN7K5zl3bxWd2A0xfbe9z8nG7qc22_fqLouN_tesmXO-oKRt7LN2CK666DZuTPiLcHTh_6cPXs8XxBw8ctirZu-a01Nax2UlDznyOjSuCMsPUCYmN1Jffvu_iWlmwha493lm9YmN7dOzOHJtWR60TAntz8QXBzKZnnTGwCZ0skWDKXTicTQ8m87AL3BBa5DdRqBJF20yZJqVBymhTyx3pBmmN7JNLa1xqEhfjPCuNia3CPZ-whZbCRVrFkRP3YKNaVe4BsETqAnNmZZZqGUelMpGVSanFSLu0LEUAYT9sue1UzSm4xknu9Zh5Tt2ZD90ZwIsh_yev5_HHnFs9CvLOrj_nfCSQEJG7WADPhmQcBvrNoiu3aigPRQcU2PoA7nv0DJ8SSKmQEWUB8BYDf6lDPl7uTYenh_9S6Clszg8W-_n-3vL1I7hG7-kq5Sjbgo36tHGPkVPV5klrNT8AiDgXkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRQI2vCmBAkZCYpU2YzuJsxzmoRaYAQGVuotsx6EVVaYqSXms-AS-kS_h3jgJDAghwTKxrfhxrn3sXJ8L8EhInXAdy9BwIUJZqCxUyMNDU6iR00ZLW9DRwGKZ7O7LpwfxwU-3-L0-xHDgRpbRztdk4CdFufNDNJRuYJNrlooyznHTfl4mkSJcT18NAlIc0envF2FFKAx9L9sY8Z318uvL0m9cc526tmvP_Arovtbe5eTddlObbfv5F0HH_2nWVbjcEVM29ki6BudcdR0uTvp4cDfgw9QHr2eLo7ceNmxVstfNaamtY_Pjhlz5HBtXBGSGqROSGqm_ffn6BFfKgi107dHO6hUb28Mjd-bYrDpsXRDYi4-fEMpsdtaZApvQuRLJpdyE_fnszWQ37MI2hBbZTRSqRNEmU6ZJaZAw2tRyR6pBWiP35NIal5rExTjLSmNiq3DHJ2yhpXCRVnHkxC3YqFaVuw0skbrAnFmZpVrGUalMZGVSajHSLi1LEUDYj1puO01zCq1xnHs1Zp5Td-ZDdwbweMh_4tU8_phzqwdB3ln1-5yPBNIhchYL4OGQjMNAP1l05VYN5aHYgAJbH8CmB8_wKYGECvlQFgBvIfCXOuTj5d5seLrzL4UewIWX03n-fG_57C5cotd0j3KUbcFGfdq4e0ioanO_tZnvRdAWSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Migration+of+Surface+Fluorine+Anions+on+Cobalt-Based+Materials+to+Achieve+Enhanced+Oxygen+Evolution+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Pengzuo&rft.au=Zhou%2C+Tianpei&rft.au=Wang%2C+Sibo&rft.au=Zhang%2C+Nan&rft.date=2018-11-19&rft.eissn=1521-3773&rft.volume=57&rft.issue=47&rft.spage=15471&rft_id=info:doi/10.1002%2Fanie.201809220&rft_id=info%3Apmid%2F30216619&rft.externalDocID=30216619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |