3D Continuously Porous Graphene for Energy Applications
Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures,...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 15; pp. e2108750 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study.
3D continuously porous graphene formed by folding a single‐sheet graphene into a 3D porous architecture has well‐retained 2D properties of graphene and novel functionalities from 3D structure, representing a distinct class of graphene materials with numerous unique and extraordinary properties. A comprehensive review of 3D continuously porous graphene and their applications in energy conversion and storage is provided. |
---|---|
AbstractList | Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study.Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study. Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. 3D continuously porous graphene formed by folding a single‐sheet graphene into a 3D porous architecture has well‐retained 2D properties of graphene and novel functionalities from 3D structure, representing a distinct class of graphene materials with numerous unique and extraordinary properties. A comprehensive review of 3D continuously porous graphene and their applications in energy conversion and storage is provided. Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. |
Author | Johnson, Isaac Han, Jiuhui Chen, Mingwei |
Author_xml | – sequence: 1 givenname: Jiuhui surname: Han fullname: Han, Jiuhui organization: Tohoku University – sequence: 2 givenname: Isaac surname: Johnson fullname: Johnson, Isaac organization: Johns Hopkins University – sequence: 3 givenname: Mingwei orcidid: 0000-0002-8274-3099 surname: Chen fullname: Chen, Mingwei email: mwchen@jhu.edu organization: Johns Hopkins University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34870863$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9LwzAYQIMoOqdXj1Lw4qXzS5qkzXHMn6DoQc8lTVPtaJOatEj_ezM3JwjiKYG8l-_jHaJdY41G6ATDDAOQC1m2ckaAYMhSBjtoghnBMQXBdtEERMJiwWl2gA69XwKA4MD30UFCsxQynkxQmlxGC2v62gx28M0YPVkXLtGNk92bNjqqrIuujHavYzTvuqZWsq-t8Udor5KN18ebc4perq-eF7fx_ePN3WJ-HyuaCIgZ0ymlDBekUFVWibJgCjAmRSG4UCRlVGQCc86AVGXCOaa6kKDDY4GJ5CqZovP1v52z74P2fd7WXummkUaHPXPCIU2A8zQL6NkvdGkHZ8J2gVrNYSkmgTrdUEPR6jLvXN1KN-bfSQIwWwPKWe-drrYIhnzVPF81z7fNg0B_Caruvyr1TtbN35pYax91o8d_huTzy4f5j_sJbO-TDA |
CitedBy_id | crossref_primary_10_1021_acssensors_2c02790 crossref_primary_10_1016_j_est_2025_116160 crossref_primary_10_1080_17452759_2023_2273949 crossref_primary_10_1021_acsomega_3c07438 crossref_primary_10_1016_j_ensm_2025_104181 crossref_primary_10_1039_D4RA03160A crossref_primary_10_1142_S0218625X25300096 crossref_primary_10_3390_polym14163428 crossref_primary_10_1002_solr_202300846 crossref_primary_10_1016_j_diamond_2023_109838 crossref_primary_10_1016_j_diamond_2024_111191 crossref_primary_10_1021_jacsau_4c00555 crossref_primary_10_1038_s41467_023_37436_6 crossref_primary_10_1039_D3TA07229K crossref_primary_10_1016_j_cej_2025_159958 crossref_primary_10_1016_j_ijoes_2023_100321 crossref_primary_10_1016_j_nanoen_2022_107904 crossref_primary_10_1039_D2RA03673H crossref_primary_10_1016_j_flatc_2022_100453 crossref_primary_10_1002_smtd_202301426 crossref_primary_10_1016_j_commatsci_2023_112280 crossref_primary_10_1021_accountsmr_2c00186 crossref_primary_10_1021_acsnano_3c08486 crossref_primary_10_1002_aesr_202400362 crossref_primary_10_1016_j_ijhydene_2024_11_038 crossref_primary_10_1002_anie_202311657 crossref_primary_10_1016_j_carbon_2024_119856 crossref_primary_10_1002_smll_202401767 crossref_primary_10_1016_j_matlet_2023_135701 crossref_primary_10_1002_adom_202300737 crossref_primary_10_1002_advs_202204702 crossref_primary_10_1016_j_jallcom_2023_169489 crossref_primary_10_1039_D3RA08478G crossref_primary_10_3390_catal12091073 crossref_primary_10_1016_j_jece_2024_113415 crossref_primary_10_1002_crat_202200186 crossref_primary_10_1021_acs_langmuir_4c01966 crossref_primary_10_1016_j_colsurfa_2024_134595 crossref_primary_10_1039_D2AY00517D crossref_primary_10_1016_j_ensm_2023_102768 crossref_primary_10_1016_j_carbon_2025_120026 crossref_primary_10_1088_1674_4926_44_3_031701 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1002_smll_202307923 crossref_primary_10_1016_j_diamond_2024_111216 crossref_primary_10_1002_advs_202301045 crossref_primary_10_1002_slct_202403178 crossref_primary_10_1002_ange_202311657 crossref_primary_10_3390_ma16217042 crossref_primary_10_1063_5_0223785 crossref_primary_10_1016_j_cej_2023_142139 crossref_primary_10_3390_ma17030576 crossref_primary_10_1038_s41598_025_93663_5 crossref_primary_10_1016_j_electacta_2024_143820 crossref_primary_10_1007_s10008_024_06176_y crossref_primary_10_1016_j_electacta_2022_141009 crossref_primary_10_1021_acsnano_4c03102 crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_3390_nano14070569 crossref_primary_10_1039_D2TA07677B crossref_primary_10_1557_s43578_022_00820_x crossref_primary_10_1002_smll_202308404 crossref_primary_10_1002_smll_202304246 crossref_primary_10_1016_j_addma_2023_103643 crossref_primary_10_1021_acsapm_3c02130 crossref_primary_10_1002_cplu_202400198 crossref_primary_10_1080_10601325_2023_2177170 crossref_primary_10_1016_j_ensm_2024_103829 crossref_primary_10_1039_D4TA03682D crossref_primary_10_1002_adfm_202213578 crossref_primary_10_1016_j_colsurfa_2023_132178 crossref_primary_10_1063_5_0215608 crossref_primary_10_1002_adma_202210734 crossref_primary_10_1002_adma_202311792 crossref_primary_10_1016_j_cej_2024_153221 crossref_primary_10_1002_adma_202205986 crossref_primary_10_1039_D3TC04677J crossref_primary_10_1002_adma_202313930 crossref_primary_10_1007_s10854_023_09937_z crossref_primary_10_1002_cey2_229 crossref_primary_10_1021_accountsmr_2c00097 crossref_primary_10_1016_j_carbon_2023_118292 |
Cites_doi | 10.1103/PhysRevLett.100.016602 10.1002/adma.201803621 10.1021/es504421y 10.1002/adma.201504765 10.1126/science.1137201 10.1038/nenergy.2016.133 10.1002/adfm.201202638 10.1002/aenm.201700759 10.1002/adfm.201401216 10.1038/314604a0 10.1002/adma.202005838 10.1039/C3CS60401B 10.1002/adma.201704162 10.1039/C5SC03695J 10.1038/ncomms13949 10.1002/smll.201803858 10.1021/acs.nanolett.5b04123 10.1038/nnano.2011.38 10.1021/ar400057n 10.1002/adma.201805334 10.1002/smtd.201800331 10.1002/aenm.201501870 10.1021/acs.chemrev.8b00325 10.1021/jacs.6b02262 10.1002/adma.201004331 10.1038/nmat1849 10.1002/anie.201906079 10.1039/C4EE00050A 10.1002/anie.201915001 10.1021/acs.nanolett.5b03923 10.1021/cr900070d 10.1016/j.matt.2019.07.021 10.1021/acsenergylett.8b00739 10.1016/j.mattod.2018.09.001 10.1039/C4CS00442F 10.1002/aenm.201601933 10.1002/adma.201503182 10.1038/nmat3391 10.1021/nn300097q 10.1038/nmat3191 10.1021/acscatal.7b04091 10.1002/aenm.201600755 10.1002/anie.201307976 10.1002/adma.201205332 10.1002/adma.201400570 10.1002/anie.201410050 10.1038/nmat4477 10.1038/nmat1672 10.1039/C4EE01475H 10.1002/anie.201805514 10.1002/smtd.201800144 10.1021/acsaem.8b00234 10.1016/j.nantod.2014.12.001 10.1002/pssb.19680250120 10.1002/smll.202005255 10.1126/science.aad0832 10.1016/j.matt.2019.10.001 10.1103/PhysRevLett.68.1168 10.1002/anie.201507381 10.1039/C2CS35353A 10.1021/acsnano.5b06857 10.1038/ncomms7141 10.1002/adma.201803588 10.1038/s41427-018-0095-5 10.1002/adfm.201707013 10.1557/mrs.2017.303 10.1073/pnas.1210072109 10.1002/adma.201304148 10.1002/admi.202001904 10.1038/natrevmats.2016.33 10.1126/science.1157996 10.1038/ncomms2251 10.1002/smtd.202100736 10.1002/adma.201701677 10.1002/adma.201702590 10.1021/acsomega.7b00706 10.1038/nenergy.2016.128 10.1016/j.carbon.2019.10.072 10.1021/acsbiomaterials.8b00658 10.1002/adma.201303115 10.1021/nl902515k 10.1021/nn300655c 10.1002/adma.201202289 10.1557/mrs2009.157 10.1039/C5TA02685G 10.1039/C8EE03184C 10.1039/C6MH00358C 10.1002/adma.202007650 10.1038/nature04235 10.1039/C8TA03488E 10.1038/ncomms12697 10.1016/0001-6160(64)90077-X 10.1002/adfm.201601355 10.1002/adma.201901186 10.1021/cr500054y 10.1002/adma.201807267 10.1039/C7EE03031B 10.1038/nmat3001 10.1038/ncomms2747 10.1002/adma.201900843 10.1039/C4CS00181H 10.1002/adsu.201900045 10.1063/1.2773757 10.1126/sciadv.1400198 10.1016/j.biomaterials.2011.07.019 10.1039/C5NR08852F 10.1021/acsnano.8b02444 10.1016/j.nanoen.2016.04.019 10.1016/j.carbon.2014.04.077 10.1021/jacs.9b03811 10.1016/j.chempr.2017.01.010 10.1002/smll.201100990 10.1126/science.1171245 10.1038/nature07853 10.1063/1.1709399 10.1038/ncomms14885 10.1021/acsami.5b12677 10.1063/1.2948902 10.1007/s10853-018-2285-5 10.1039/C4CS00015C 10.1038/nature16484 10.1039/C7TA05979E 10.1039/D1NR02074A 10.1039/D1TA02326H 10.1002/adfm.201602459 10.1002/adma.201501115 10.1021/nn501506p 10.1016/j.ssc.2008.02.024 10.1002/anie.201402662 10.1002/adma.201806843 10.1038/ncomms15437 10.1016/j.actamat.2018.10.012 10.1002/adfm.201503726 10.1038/nnano.2017.16 10.1016/j.nanoen.2018.04.063 10.1039/B801151F 10.1021/nl0731872 10.1039/C7CS00852J 10.1039/C5NR05011A 10.1038/nnano.2016.32 10.1126/science.1102896 10.1002/anie.201809315 10.1016/j.nanoen.2018.01.006 10.1039/C7CP07667C 10.1021/nn501434a 10.1021/acs.chemrev.0c00083 10.1021/acs.accounts.5b00117 10.1002/anie.201703720 10.1021/jz502655m 10.1039/D1NR01612A 10.1021/acsami.5b01201 10.1039/C6SC03911A 10.1021/acsnano.9b09928 10.1038/nenergy.2016.71 10.1002/adma.201601067 10.1002/adma.201501832 10.1002/adma.201604318 10.1002/aenm.201200496 10.1002/adma.201702752 10.1002/adma.201306104 10.1038/ncomms13869 10.1103/PhysRevLett.101.166601 10.1021/acsnano.9b08191 10.1002/aenm.201903802 10.1002/admi.201701212 10.1126/sciadv.aat6951 10.1038/nchem.1646 10.1021/nl403461n 10.1016/j.nanoen.2015.11.029 10.1021/nn101187z 10.1021/jacs.8b06414 10.1038/35068529 10.1002/adma.201402728 10.1021/acsnano.7b01987 10.1016/j.nanoen.2014.11.025 10.1016/j.apcatb.2020.119172 10.1002/smll.201903780 10.1021/cr5003563 10.1038/ncomms5449 10.1002/adfm.201909035 10.1038/ncomms3905 10.1002/adfm.201504146 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202108750 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34870863 10_1002_adma_202108750 ADMA202108750 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Early‐Career Scientists funderid: 19K15389 – fundername: Research Activity Start‐up funderid: 18H05939 – fundername: Tohoku University – fundername: National Science Foundation funderid: DMR‐1804320 – fundername: Fusion Research Funds – fundername: Early-Career Scientists grantid: 19K15389 – fundername: National Science Foundation grantid: DMR-1804320 – fundername: Research Activity Start-up grantid: 18H05939 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4390-55e74451b2bcf8f9db5c0112bb969c2754989166502fd36614eba0e969b12a6c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 17:03:15 EDT 2025 Fri Jul 25 06:32:37 EDT 2025 Mon Jul 21 05:59:54 EDT 2025 Tue Jul 01 02:33:11 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Jan 22 16:26:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | energy conversion energy storage topological defects 3D graphene curvature |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-55e74451b2bcf8f9db5c0112bb969c2754989166502fd36614eba0e969b12a6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8274-3099 |
PMID | 34870863 |
PQID | 2649895712 |
PQPubID | 2045203 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_2607306678 proquest_journals_2649895712 pubmed_primary_34870863 crossref_primary_10_1002_adma_202108750 crossref_citationtrail_10_1002_adma_202108750 wiley_primary_10_1002_adma_202108750_ADMA202108750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2013; 4 2019; 12 2019; 15 2014; 26 2020; 14 2014; 24 2020; 10 2018; 45 2008; 101 2008; 100 2019; 163 2018; 43 2013; 5 2012; 11 2018; 49 2018; 47 2018; 6 2001; 410 2018; 8 2018; 3 2018; 2 2018; 5 2018; 1 2019; 24 2010; 110 2007; 6 2018; 30 2012; 24 2010; 4 2018; 28 2019; 3 2019; 5 2016; 19 2019; 31 2019; 1 2015; 54 2016; 10 2007; 91 2020; 32 2004; 306 2016; 16 2011; 6 2016; 15 2018; 20 2011; 7 2014; 43 2012; 109 2009; 458 2016; 11 2016; 6 2016; 7 2016; 1 2007; 315 2015; 115 2020; 30 2018; 118 2017; 56 1985; 314 2020; 276 2020; 157 1964; 12 1967; 38 2018; 12 2018; 11 2016; 28 2018; 10 2016; 26 2016; 8 2016; 24 2017; 5 1968; 25 2017; 7 2017; 8 2017; 2 2013; 25 2017; 4 2020; 120 2013; 23 2019; 58 2020; 59 2008; 8 2011; 10 2008; 146 2015; 48 2014; 5 2015; 49 2021; 33 2013; 13 2015; 44 2011; 23 2014; 9 2014; 8 2014; 7 2016; 351 2009; 324 2014; 53 2021; 9 2015; 1 2021; 8 2015; 6 2021; 5 2018; 140 2015; 3 2013; 46 2013; 42 2015; 11 2016; 529 2005; 438 2006; 5 2011; 32 2017; 29 2008; 321 2019; 141 2008; 92 2015; 7 2014; 114 2009; 34 2021; 13 2015; 27 2012; 3 2017; 11 2021; 17 2017; 12 2009; 9 1992; 68 2016; 138 2012; 6 2018; 53 2009; 38 2014; 76 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 3 start-page: 281 year: 2013 publication-title: Adv. Energy Mater. – volume: 48 start-page: 1666 year: 2015 publication-title: Acc. Chem. Res. – volume: 26 start-page: 3992 year: 2014 publication-title: Adv. Mater. – volume: 14 start-page: 937 year: 2020 publication-title: ACS Nano – volume: 11 start-page: 356 year: 2015 publication-title: Nano Energy – volume: 20 start-page: 6024 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 141 start-page: 9664 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1241 year: 2012 publication-title: Nat. Commun. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 8 start-page: 6481 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 529 start-page: 377 year: 2016 publication-title: Nature – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 314 start-page: 604 year: 1985 publication-title: Nature – volume: 4 start-page: 7 year: 2017 publication-title: Mater. Horiz. – volume: 8 start-page: 3579 year: 2018 publication-title: ACS Catal. – volume: 146 start-page: 351 year: 2008 publication-title: Solid State Commun. – volume: 276 year: 2020 publication-title: Appl. Catal., B – volume: 26 start-page: 4145 year: 2014 publication-title: Adv. Mater. – volume: 47 start-page: 3018 year: 2018 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 3163 year: 2011 publication-title: Small – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 15 start-page: 43 year: 2016 publication-title: Nat. Mater. – volume: 16 start-page: 349 year: 2016 publication-title: Nano Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 4268 year: 2009 publication-title: Nano Lett. – volume: 43 start-page: 7295 year: 2014 publication-title: Chem. Soc. Rev. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 34 start-page: 577 year: 2009 publication-title: MRS Bull. – volume: 38 start-page: 226 year: 2009 publication-title: Chem. Soc. Rev. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 5 start-page: 193 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 1603 year: 2016 publication-title: Adv. Mater. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 410 start-page: 450 year: 2001 publication-title: Nature – volume: 27 start-page: 4302 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 785 year: 2014 publication-title: Nano Today – volume: 5 start-page: 567 year: 2006 publication-title: Nat. Mater. – volume: 42 start-page: 794 year: 2013 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1732 year: 2013 publication-title: Nat. Commun. – volume: 46 start-page: 2263 year: 2013 publication-title: Acc. Chem. Res. – volume: 438 start-page: 201 year: 2005 publication-title: Nature – volume: 44 start-page: 5926 year: 2015 publication-title: Chem. Soc. Rev. – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 902 year: 2008 publication-title: Nano Lett. – volume: 17 year: 2021 publication-title: Small – volume: 49 start-page: 354 year: 2018 publication-title: Nano Energy – volume: 43 start-page: 2841 year: 2014 publication-title: Chem. Soc. Rev. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 163 start-page: 161 year: 2019 publication-title: Acta Mater. – volume: 76 start-page: 266 year: 2014 publication-title: Carbon – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 11 start-page: 6860 year: 2017 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 27 start-page: 5264 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 6141 year: 2015 publication-title: Nat. Commun. – volume: 53 start-page: 442 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 59 start-page: 4525 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 38 start-page: 698 year: 1967 publication-title: J. Appl. Phys. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 4822 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2021 publication-title: Small Methods – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 6372 year: 2014 publication-title: Adv. Funct. Mater. – volume: 315 start-page: 1379 year: 2007 publication-title: Science – volume: 6 start-page: 658 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 115 start-page: 4823 year: 2015 publication-title: Chem. Rev. – volume: 5 start-page: 4449 year: 2014 publication-title: Nat. Commun. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 1542 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1411 year: 2016 publication-title: ACS Nano – volume: 23 start-page: 2263 year: 2013 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1044 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 849 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 5139 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3206 year: 2012 publication-title: ACS Nano – volume: 24 start-page: 5083 year: 2012 publication-title: Adv. Mater. – volume: 24 start-page: 158 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 489 year: 2013 publication-title: Nat. Chem. – volume: 2 year: 2018 publication-title: Small Methods – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1090 year: 2017 publication-title: Chem. Sci. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 6136 year: 2013 publication-title: Nano Lett. – volume: 10 start-page: 1037 year: 2018 publication-title: NPG Asia Mater – volume: 26 start-page: 6418 year: 2016 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 6360 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 11 start-page: 772 year: 2018 publication-title: Energy Environ. Sci. – volume: 157 start-page: 437 year: 2020 publication-title: Carbon – volume: 56 start-page: 7847 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 20 year: 2018 publication-title: MRS Bull. – volume: 12 start-page: 1057 year: 1964 publication-title: Acta Metall. – volume: 14 start-page: 4374 year: 2020 publication-title: ACS Nano – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 391 year: 2016 publication-title: Nano Energy – volume: 110 start-page: 132 year: 2010 publication-title: Chem. Rev. – volume: 2 start-page: 171 year: 2017 publication-title: Chem – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 25 start-page: 2474 year: 2013 publication-title: Adv. Mater. – volume: 12 start-page: 6117 year: 2018 publication-title: ACS Nano – volume: 54 start-page: 2131 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 68 start-page: 1168 year: 1992 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1850 year: 2014 publication-title: Energy Environ. Sci. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 25 start-page: 209 year: 1968 publication-title: Phys. Status Solidi – volume: 1 start-page: 1077 year: 2019 publication-title: Matter – volume: 4 start-page: 4324 year: 2010 publication-title: ACS Nano – volume: 6 start-page: 3573 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 2905 year: 2013 publication-title: Nat. Commun. – volume: 26 start-page: 7162 year: 2014 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 start-page: 3709 year: 2014 publication-title: Energy Environ. Sci. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 24 start-page: 26 year: 2019 publication-title: Mater. Today – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1148 year: 2019 publication-title: Matter – volume: 8 start-page: 5290 year: 2014 publication-title: ACS Nano – volume: 27 start-page: 6137 year: 2015 publication-title: Adv. Mater. – volume: 23 start-page: 2443 year: 2011 publication-title: Adv. Mater. – volume: 7 start-page: 1268 year: 2016 publication-title: Chem. Sci. – volume: 32 start-page: 7741 year: 2011 publication-title: Biomaterials – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 775 year: 2012 publication-title: Nat. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 45 start-page: 273 year: 2018 publication-title: Nano Energy – volume: 49 start-page: 67 year: 2015 publication-title: Environ. Sci. Technol. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 458 start-page: 190 year: 2009 publication-title: Nature – volume: 26 start-page: 1271 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 277 year: 2011 publication-title: Nat. Nanotechnol. – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 53 year: 2018 publication-title: J. Mater. Sci. – volume: 2 start-page: 3691 year: 2017 publication-title: ACS Omega – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 6856 year: 2014 publication-title: ACS Nano – volume: 118 start-page: 9281 year: 2018 publication-title: Chem. Rev. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 1 start-page: 2183 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 16 start-page: 466 year: 2016 publication-title: Nano Lett. – volume: 26 start-page: 577 year: 2016 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1539 year: 2018 publication-title: ACS Energy Lett. – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevLett.100.016602 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201803621 – ident: e_1_2_8_51_1 doi: 10.1021/es504421y – ident: e_1_2_8_169_1 doi: 10.1002/adma.201504765 – ident: e_1_2_8_8_1 doi: 10.1126/science.1137201 – ident: e_1_2_8_134_1 doi: 10.1038/nenergy.2016.133 – ident: e_1_2_8_80_1 doi: 10.1002/adfm.201202638 – ident: e_1_2_8_122_1 doi: 10.1002/aenm.201700759 – ident: e_1_2_8_158_1 doi: 10.1002/adfm.201401216 – ident: e_1_2_8_19_1 doi: 10.1038/314604a0 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202005838 – ident: e_1_2_8_114_1 doi: 10.1039/C3CS60401B – ident: e_1_2_8_179_1 doi: 10.1002/adma.201704162 – ident: e_1_2_8_133_1 doi: 10.1039/C5SC03695J – ident: e_1_2_8_152_1 doi: 10.1038/ncomms13949 – ident: e_1_2_8_10_1 doi: 10.1002/smll.201803858 – ident: e_1_2_8_119_1 doi: 10.1021/acs.nanolett.5b04123 – ident: e_1_2_8_142_1 doi: 10.1038/nnano.2011.38 – ident: e_1_2_8_61_1 doi: 10.1021/ar400057n – ident: e_1_2_8_34_1 doi: 10.1002/adma.201805334 – ident: e_1_2_8_126_1 doi: 10.1002/smtd.201800331 – ident: e_1_2_8_33_1 doi: 10.1002/aenm.201501870 – ident: e_1_2_8_57_1 doi: 10.1021/acs.chemrev.8b00325 – ident: e_1_2_8_74_1 doi: 10.1021/jacs.6b02262 – ident: e_1_2_8_144_1 doi: 10.1002/adma.201004331 – ident: e_1_2_8_6_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_131_1 doi: 10.1002/anie.201906079 – ident: e_1_2_8_39_1 doi: 10.1039/C4EE00050A – ident: e_1_2_8_125_1 doi: 10.1002/anie.201915001 – ident: e_1_2_8_82_1 doi: 10.1021/acs.nanolett.5b03923 – ident: e_1_2_8_55_1 doi: 10.1021/cr900070d – ident: e_1_2_8_37_1 doi: 10.1016/j.matt.2019.07.021 – ident: e_1_2_8_105_1 doi: 10.1021/acsenergylett.8b00739 – ident: e_1_2_8_18_1 doi: 10.1016/j.mattod.2018.09.001 – ident: e_1_2_8_139_1 doi: 10.1039/C4CS00442F – ident: e_1_2_8_181_1 doi: 10.1002/aenm.201601933 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201503182 – ident: e_1_2_8_66_1 doi: 10.1038/nmat3391 – ident: e_1_2_8_165_1 doi: 10.1021/nn300097q – ident: e_1_2_8_173_1 doi: 10.1038/nmat3191 – ident: e_1_2_8_112_1 doi: 10.1021/acscatal.7b04091 – ident: e_1_2_8_72_1 doi: 10.1002/aenm.201600755 – ident: e_1_2_8_176_1 doi: 10.1002/anie.201307976 – ident: e_1_2_8_88_1 doi: 10.1002/adma.201205332 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201400570 – ident: e_1_2_8_27_1 doi: 10.1002/anie.201410050 – ident: e_1_2_8_58_1 doi: 10.1038/nmat4477 – ident: e_1_2_8_141_1 doi: 10.1038/nmat1672 – ident: e_1_2_8_161_1 doi: 10.1039/C4EE01475H – ident: e_1_2_8_121_1 doi: 10.1002/anie.201805514 – ident: e_1_2_8_171_1 doi: 10.1002/smtd.201800144 – ident: e_1_2_8_104_1 doi: 10.1021/acsaem.8b00234 – ident: e_1_2_8_52_1 doi: 10.1016/j.nantod.2014.12.001 – ident: e_1_2_8_91_1 doi: 10.1002/pssb.19680250120 – ident: e_1_2_8_54_1 doi: 10.1002/smll.202005255 – ident: e_1_2_8_117_1 doi: 10.1126/science.aad0832 – ident: e_1_2_8_11_1 doi: 10.1016/j.matt.2019.10.001 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevLett.68.1168 – ident: e_1_2_8_106_1 doi: 10.1002/anie.201507381 – ident: e_1_2_8_38_1 doi: 10.1039/C2CS35353A – ident: e_1_2_8_86_1 doi: 10.1021/acsnano.5b06857 – ident: e_1_2_8_95_1 doi: 10.1038/ncomms7141 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201803588 – ident: e_1_2_8_182_1 doi: 10.1038/s41427-018-0095-5 – ident: e_1_2_8_160_1 doi: 10.1002/adfm.201707013 – ident: e_1_2_8_68_1 doi: 10.1557/mrs.2017.303 – ident: e_1_2_8_153_1 doi: 10.1073/pnas.1210072109 – ident: e_1_2_8_163_1 doi: 10.1002/adma.201304148 – ident: e_1_2_8_130_1 doi: 10.1002/admi.202001904 – ident: e_1_2_8_44_1 doi: 10.1038/natrevmats.2016.33 – ident: e_1_2_8_3_1 doi: 10.1126/science.1157996 – ident: e_1_2_8_93_1 doi: 10.1038/ncomms2251 – ident: e_1_2_8_124_1 doi: 10.1002/smtd.202100736 – ident: e_1_2_8_164_1 doi: 10.1002/adma.201701677 – ident: e_1_2_8_138_1 doi: 10.1002/adma.201702590 – ident: e_1_2_8_102_1 doi: 10.1021/acsomega.7b00706 – ident: e_1_2_8_174_1 doi: 10.1038/nenergy.2016.128 – ident: e_1_2_8_85_1 doi: 10.1016/j.carbon.2019.10.072 – ident: e_1_2_8_53_1 doi: 10.1021/acsbiomaterials.8b00658 – ident: e_1_2_8_46_1 doi: 10.1002/adma.201303115 – ident: e_1_2_8_60_1 doi: 10.1021/nl902515k – ident: e_1_2_8_89_1 doi: 10.1021/nn300655c – ident: e_1_2_8_97_1 doi: 10.1002/adma.201202289 – ident: e_1_2_8_65_1 doi: 10.1557/mrs2009.157 – ident: e_1_2_8_162_1 doi: 10.1039/C5TA02685G – ident: e_1_2_8_78_1 doi: 10.1039/C8EE03184C – ident: e_1_2_8_116_1 doi: 10.1039/C6MH00358C – ident: e_1_2_8_127_1 doi: 10.1002/adma.202007650 – ident: e_1_2_8_7_1 doi: 10.1038/nature04235 – ident: e_1_2_8_84_1 doi: 10.1039/C8TA03488E – ident: e_1_2_8_128_1 doi: 10.1038/ncomms12697 – ident: e_1_2_8_92_1 doi: 10.1016/0001-6160(64)90077-X – ident: e_1_2_8_150_1 doi: 10.1002/adfm.201601355 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201901186 – ident: e_1_2_8_175_1 doi: 10.1021/cr500054y – ident: e_1_2_8_75_1 doi: 10.1002/adma.201807267 – ident: e_1_2_8_13_1 doi: 10.1039/C7EE03031B – ident: e_1_2_8_62_1 doi: 10.1038/nmat3001 – ident: e_1_2_8_143_1 doi: 10.1038/ncomms2747 – ident: e_1_2_8_107_1 doi: 10.1002/adma.201900843 – ident: e_1_2_8_48_1 doi: 10.1039/C4CS00181H – ident: e_1_2_8_137_1 doi: 10.1002/adsu.201900045 – ident: e_1_2_8_70_1 doi: 10.1063/1.2773757 – ident: e_1_2_8_79_1 doi: 10.1126/sciadv.1400198 – ident: e_1_2_8_21_1 doi: 10.1016/j.biomaterials.2011.07.019 – ident: e_1_2_8_166_1 doi: 10.1039/C5NR08852F – ident: e_1_2_8_59_1 doi: 10.1021/acsnano.8b02444 – ident: e_1_2_8_167_1 doi: 10.1016/j.nanoen.2016.04.019 – ident: e_1_2_8_23_1 doi: 10.1016/j.carbon.2014.04.077 – ident: e_1_2_8_132_1 doi: 10.1021/jacs.9b03811 – ident: e_1_2_8_42_1 doi: 10.1016/j.chempr.2017.01.010 – ident: e_1_2_8_159_1 doi: 10.1002/smll.201100990 – ident: e_1_2_8_56_1 doi: 10.1126/science.1171245 – ident: e_1_2_8_140_1 doi: 10.1038/nature07853 – ident: e_1_2_8_90_1 doi: 10.1063/1.1709399 – ident: e_1_2_8_31_1 doi: 10.1038/ncomms14885 – ident: e_1_2_8_99_1 doi: 10.1021/acsami.5b12677 – ident: e_1_2_8_25_1 doi: 10.1063/1.2948902 – ident: e_1_2_8_20_1 doi: 10.1007/s10853-018-2285-5 – ident: e_1_2_8_170_1 doi: 10.1039/C4CS00015C – ident: e_1_2_8_177_1 doi: 10.1038/nature16484 – ident: e_1_2_8_73_1 doi: 10.1039/C7TA05979E – ident: e_1_2_8_113_1 doi: 10.1039/D1NR02074A – ident: e_1_2_8_81_1 doi: 10.1039/D1TA02326H – ident: e_1_2_8_77_1 doi: 10.1002/adfm.201602459 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201501115 – ident: e_1_2_8_118_1 doi: 10.1021/nn501506p – ident: e_1_2_8_1_1 doi: 10.1016/j.ssc.2008.02.024 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201402662 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201806843 – ident: e_1_2_8_111_1 doi: 10.1038/ncomms15437 – ident: e_1_2_8_69_1 doi: 10.1016/j.actamat.2018.10.012 – ident: e_1_2_8_76_1 doi: 10.1002/adfm.201503726 – ident: e_1_2_8_154_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_103_1 doi: 10.1016/j.nanoen.2018.04.063 – ident: e_1_2_8_147_1 doi: 10.1039/B801151F – ident: e_1_2_8_4_1 doi: 10.1021/nl0731872 – ident: e_1_2_8_49_1 doi: 10.1039/C7CS00852J – ident: e_1_2_8_146_1 doi: 10.1039/C5NR05011A – ident: e_1_2_8_156_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_8_5_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_109_1 doi: 10.1002/anie.201809315 – ident: e_1_2_8_36_1 doi: 10.1016/j.nanoen.2018.01.006 – ident: e_1_2_8_101_1 doi: 10.1039/C7CP07667C – ident: e_1_2_8_110_1 doi: 10.1021/nn501434a – ident: e_1_2_8_9_1 doi: 10.1021/acs.chemrev.0c00083 – ident: e_1_2_8_45_1 doi: 10.1021/acs.accounts.5b00117 – ident: e_1_2_8_120_1 doi: 10.1002/anie.201703720 – ident: e_1_2_8_50_1 doi: 10.1021/jz502655m – ident: e_1_2_8_108_1 doi: 10.1039/D1NR01612A – ident: e_1_2_8_98_1 doi: 10.1021/acsami.5b01201 – ident: e_1_2_8_129_1 doi: 10.1039/C6SC03911A – ident: e_1_2_8_151_1 doi: 10.1021/acsnano.9b09928 – ident: e_1_2_8_155_1 doi: 10.1038/nenergy.2016.71 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201601067 – ident: e_1_2_8_136_1 doi: 10.1002/adma.201501832 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201604318 – ident: e_1_2_8_145_1 doi: 10.1002/aenm.201200496 – ident: e_1_2_8_180_1 doi: 10.1002/adma.201702752 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201306104 – ident: e_1_2_8_123_1 doi: 10.1038/ncomms13869 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevLett.101.166601 – ident: e_1_2_8_83_1 doi: 10.1021/acsnano.9b08191 – ident: e_1_2_8_41_1 doi: 10.1002/aenm.201903802 – ident: e_1_2_8_47_1 doi: 10.1002/admi.201701212 – ident: e_1_2_8_71_1 doi: 10.1126/sciadv.aat6951 – ident: e_1_2_8_178_1 doi: 10.1038/nchem.1646 – ident: e_1_2_8_149_1 doi: 10.1021/nl403461n – ident: e_1_2_8_157_1 doi: 10.1016/j.nanoen.2015.11.029 – ident: e_1_2_8_94_1 doi: 10.1021/nn101187z – ident: e_1_2_8_40_1 doi: 10.1021/jacs.8b06414 – ident: e_1_2_8_63_1 doi: 10.1038/35068529 – ident: e_1_2_8_148_1 doi: 10.1002/adma.201402728 – ident: e_1_2_8_87_1 doi: 10.1021/acsnano.7b01987 – ident: e_1_2_8_168_1 doi: 10.1016/j.nanoen.2014.11.025 – ident: e_1_2_8_172_1 doi: 10.1016/j.apcatb.2020.119172 – ident: e_1_2_8_12_1 doi: 10.1002/smll.201903780 – ident: e_1_2_8_115_1 doi: 10.1021/cr5003563 – ident: e_1_2_8_135_1 doi: 10.1038/ncomms5449 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.201909035 – ident: e_1_2_8_96_1 doi: 10.1038/ncomms3905 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201504146 |
SSID | ssj0009606 |
Score | 2.6233513 |
SecondaryResourceType | review_article |
Snippet | Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In... Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2108750 |
SubjectTerms | 3D graphene Curvature Energy conversion Energy storage Graphene Mass transport Materials science Microstructure Minimal surfaces Thermal conductivity topological defects Transport properties |
Title | 3D Continuously Porous Graphene for Energy Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108750 https://www.ncbi.nlm.nih.gov/pubmed/34870863 https://www.proquest.com/docview/2649895712 https://www.proquest.com/docview/2607306678 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_EJ33w-6M6pYLgU7Y2bdP2cbjNIUxEHOytJGkK4uhkHw_613tJP7YpIuhbS5M2ucvd_a5JfgG4jpSIYpenJKIZJz5VAeGRdAmPnczXx0eHhm1_8MD6Q_9-FIxWdvEX_BD1DzdtGcZfawPnYtZakoby1PAGYcqCkFsn7XrBlkZFT0v-KA3PDdmeF5CY-VHF2ujQ1nr19aj0DWquI1cTenq7wKtGFytOXpuLuWjKjy98jv_p1R7slLjUbhcDaR82VH4A2ytshYcQeh1bk1m95IvJYjZ-tx8nU7yw7zTnNbpMG_Gv3TV7Ce32yrz4EQx73efbPinPXSAS4YlDgkCFmrdMUCGzKItTEUh0A1SImMWShphSon4ZYjuapZ4O8EpwR-FD4VLOpHcMm_kkV6dgZ2nmspAyFQvPx1cJiQDCw4ETO5FgXFhAKrknsiQl12djjJOCTpkmWiBJLRALburybwUdx48lG5Uak9IsZwmiP2x6ELrUgqv6MRqUniXhuUKhYRnt9RgGcQtOCvXXn8I-hJgDehZQo8Rf2pC0O4N2fXf2l0rnsEX1hguzVqgBm_PpQl0gDJqLSzPUPwFq4Pt2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED-rB96M-KwiestumbdoeF11dHysiK3grSZqCuHRFtwf99U7SbXdXEUFvLUnaZCaTfJPHNwDHkRJR7PKURDTjxKcqIDySLuGxk_k6fHRo2Pa7t6zz4F89BtVpQn0XpuSHqBfctGWY8VobuF6Qbo5ZQ3lqiIPQZ0HMjV77nA7rbbyq-zGDlAbohm7PC0jM_KjibXRoc7r89Lz0DWxOY1cz-Zwvg6iqXZ45eW4UQ9GQH18YHf_VrhVYGkFTu1X2pVWYUfkaLE4QFq5D6J3Zms_qKS8GxVv_3b4bvOKDfaFpr3HUtBEC221zndBuTWyNb8DDebt32iGj0AtEIkJxSBCoUFOXCSpkFmVxKgKJIwEVImaxpCF6lahihvCOZqmn53gluKMwUbiUM-ltwmw-yNU22FmauSykTMXC8_FTQiKG8LDvxE4kGBcWkErwiRzxkuvwGP2kZFSmiRZIUgvEgpM6_0vJyPFjzr1Kj8nIMt8SBIBY9SB0qQVHdTLalN4o4blCoWEePfAxnMct2Cr1X_8K2xCiG-hZQI0Wf6lD0jrrtuq3nb8UOoT5Tq97k9xc3l7vwgLV9y_M0aE9mB2-FmofUdFQHJh-_wkyQf-R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD90t1agXBp8w2bdP2cbjNeWWIg72VJE1BlE50fdBf70m6dZsigr61NGmTc8t3muQLwEmkRBS7PCURzTjxqQoIj6RLeOxkvj4-OjRs-7d3rNPzr_pBf2oXf8kPUf1w055h4rV28Jc0O5uQhvLU8AZhyoKQG5P2BZ85kbbr5v2EQErjc8O25wUkZn40pm106Nls_dlh6RvWnIWuZuxprwIft7pccvJUL4aiLj--EDr-p1trsDICpnajtKR1mFP5BixP0RVuQug1bc1m9ZgXg-Lt-d3uDl7xwr7QpNcYM20EwHbLbCa0G1MT41vQa7cezjtkdPACkYhPHBIEKtTEZYIKmUVZnIpAYhygQsQsljTEnBIVzBDc0Sz19AivBHcUPhQu5Ux62zCfD3K1C3aWZi4LKVOx8Hx8lZCIIDy0nNiJBOPCAjKWeyJHrOT6cIznpORTpokWSFIJxILTqvxLycfxY8naWI3JyC_fEoR_2PQgdKkFx9Vj9Cg9TcJzhULDMjrsMRzFLdgp1V99CvsQYhLoWUCNEn9pQ9Jo3jaqu72_VDqCxW6zndxc3l3vwxLVmy_MuqEazA9fC3WAkGgoDo3VfwJBOv5J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Continuously+Porous+Graphene+for+Energy+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Jiuhui&rft.au=Johnson%2C+Isaac&rft.au=Chen%2C+Mingwei&rft.date=2022-04-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=15&rft.spage=e2108750&rft_id=info:doi/10.1002%2Fadma.202108750&rft_id=info%3Apmid%2F34870863&rft.externalDocID=34870863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |