3D Continuously Porous Graphene for Energy Applications

Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 15; pp. e2108750 - n/a
Main Authors Han, Jiuhui, Johnson, Isaac, Chen, Mingwei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. 3D continuously porous graphene formed by folding a single‐sheet graphene into a 3D porous architecture has well‐retained 2D properties of graphene and novel functionalities from 3D structure, representing a distinct class of graphene materials with numerous unique and extraordinary properties. A comprehensive review of 3D continuously porous graphene and their applications in energy conversion and storage is provided.
AbstractList Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study.Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study.
Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. 3D continuously porous graphene formed by folding a single‐sheet graphene into a 3D porous architecture has well‐retained 2D properties of graphene and novel functionalities from 3D structure, representing a distinct class of graphene materials with numerous unique and extraordinary properties. A comprehensive review of 3D continuously porous graphene and their applications in energy conversion and storage is provided.
Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study.
Author Johnson, Isaac
Han, Jiuhui
Chen, Mingwei
Author_xml – sequence: 1
  givenname: Jiuhui
  surname: Han
  fullname: Han, Jiuhui
  organization: Tohoku University
– sequence: 2
  givenname: Isaac
  surname: Johnson
  fullname: Johnson, Isaac
  organization: Johns Hopkins University
– sequence: 3
  givenname: Mingwei
  orcidid: 0000-0002-8274-3099
  surname: Chen
  fullname: Chen, Mingwei
  email: mwchen@jhu.edu
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34870863$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9LwzAYQIMoOqdXj1Lw4qXzS5qkzXHMn6DoQc8lTVPtaJOatEj_ezM3JwjiKYG8l-_jHaJdY41G6ATDDAOQC1m2ckaAYMhSBjtoghnBMQXBdtEERMJiwWl2gA69XwKA4MD30UFCsxQynkxQmlxGC2v62gx28M0YPVkXLtGNk92bNjqqrIuujHavYzTvuqZWsq-t8Udor5KN18ebc4perq-eF7fx_ePN3WJ-HyuaCIgZ0ymlDBekUFVWibJgCjAmRSG4UCRlVGQCc86AVGXCOaa6kKDDY4GJ5CqZovP1v52z74P2fd7WXummkUaHPXPCIU2A8zQL6NkvdGkHZ8J2gVrNYSkmgTrdUEPR6jLvXN1KN-bfSQIwWwPKWe-drrYIhnzVPF81z7fNg0B_Caruvyr1TtbN35pYax91o8d_huTzy4f5j_sJbO-TDA
CitedBy_id crossref_primary_10_1021_acssensors_2c02790
crossref_primary_10_1016_j_est_2025_116160
crossref_primary_10_1080_17452759_2023_2273949
crossref_primary_10_1021_acsomega_3c07438
crossref_primary_10_1016_j_ensm_2025_104181
crossref_primary_10_1039_D4RA03160A
crossref_primary_10_1142_S0218625X25300096
crossref_primary_10_3390_polym14163428
crossref_primary_10_1002_solr_202300846
crossref_primary_10_1016_j_diamond_2023_109838
crossref_primary_10_1016_j_diamond_2024_111191
crossref_primary_10_1021_jacsau_4c00555
crossref_primary_10_1038_s41467_023_37436_6
crossref_primary_10_1039_D3TA07229K
crossref_primary_10_1016_j_cej_2025_159958
crossref_primary_10_1016_j_ijoes_2023_100321
crossref_primary_10_1016_j_nanoen_2022_107904
crossref_primary_10_1039_D2RA03673H
crossref_primary_10_1016_j_flatc_2022_100453
crossref_primary_10_1002_smtd_202301426
crossref_primary_10_1016_j_commatsci_2023_112280
crossref_primary_10_1021_accountsmr_2c00186
crossref_primary_10_1021_acsnano_3c08486
crossref_primary_10_1002_aesr_202400362
crossref_primary_10_1016_j_ijhydene_2024_11_038
crossref_primary_10_1002_anie_202311657
crossref_primary_10_1016_j_carbon_2024_119856
crossref_primary_10_1002_smll_202401767
crossref_primary_10_1016_j_matlet_2023_135701
crossref_primary_10_1002_adom_202300737
crossref_primary_10_1002_advs_202204702
crossref_primary_10_1016_j_jallcom_2023_169489
crossref_primary_10_1039_D3RA08478G
crossref_primary_10_3390_catal12091073
crossref_primary_10_1016_j_jece_2024_113415
crossref_primary_10_1002_crat_202200186
crossref_primary_10_1021_acs_langmuir_4c01966
crossref_primary_10_1016_j_colsurfa_2024_134595
crossref_primary_10_1039_D2AY00517D
crossref_primary_10_1016_j_ensm_2023_102768
crossref_primary_10_1016_j_carbon_2025_120026
crossref_primary_10_1088_1674_4926_44_3_031701
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1002_smll_202307923
crossref_primary_10_1016_j_diamond_2024_111216
crossref_primary_10_1002_advs_202301045
crossref_primary_10_1002_slct_202403178
crossref_primary_10_1002_ange_202311657
crossref_primary_10_3390_ma16217042
crossref_primary_10_1063_5_0223785
crossref_primary_10_1016_j_cej_2023_142139
crossref_primary_10_3390_ma17030576
crossref_primary_10_1038_s41598_025_93663_5
crossref_primary_10_1016_j_electacta_2024_143820
crossref_primary_10_1007_s10008_024_06176_y
crossref_primary_10_1016_j_electacta_2022_141009
crossref_primary_10_1021_acsnano_4c03102
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_3390_nano14070569
crossref_primary_10_1039_D2TA07677B
crossref_primary_10_1557_s43578_022_00820_x
crossref_primary_10_1002_smll_202308404
crossref_primary_10_1002_smll_202304246
crossref_primary_10_1016_j_addma_2023_103643
crossref_primary_10_1021_acsapm_3c02130
crossref_primary_10_1002_cplu_202400198
crossref_primary_10_1080_10601325_2023_2177170
crossref_primary_10_1016_j_ensm_2024_103829
crossref_primary_10_1039_D4TA03682D
crossref_primary_10_1002_adfm_202213578
crossref_primary_10_1016_j_colsurfa_2023_132178
crossref_primary_10_1063_5_0215608
crossref_primary_10_1002_adma_202210734
crossref_primary_10_1002_adma_202311792
crossref_primary_10_1016_j_cej_2024_153221
crossref_primary_10_1002_adma_202205986
crossref_primary_10_1039_D3TC04677J
crossref_primary_10_1002_adma_202313930
crossref_primary_10_1007_s10854_023_09937_z
crossref_primary_10_1002_cey2_229
crossref_primary_10_1021_accountsmr_2c00097
crossref_primary_10_1016_j_carbon_2023_118292
Cites_doi 10.1103/PhysRevLett.100.016602
10.1002/adma.201803621
10.1021/es504421y
10.1002/adma.201504765
10.1126/science.1137201
10.1038/nenergy.2016.133
10.1002/adfm.201202638
10.1002/aenm.201700759
10.1002/adfm.201401216
10.1038/314604a0
10.1002/adma.202005838
10.1039/C3CS60401B
10.1002/adma.201704162
10.1039/C5SC03695J
10.1038/ncomms13949
10.1002/smll.201803858
10.1021/acs.nanolett.5b04123
10.1038/nnano.2011.38
10.1021/ar400057n
10.1002/adma.201805334
10.1002/smtd.201800331
10.1002/aenm.201501870
10.1021/acs.chemrev.8b00325
10.1021/jacs.6b02262
10.1002/adma.201004331
10.1038/nmat1849
10.1002/anie.201906079
10.1039/C4EE00050A
10.1002/anie.201915001
10.1021/acs.nanolett.5b03923
10.1021/cr900070d
10.1016/j.matt.2019.07.021
10.1021/acsenergylett.8b00739
10.1016/j.mattod.2018.09.001
10.1039/C4CS00442F
10.1002/aenm.201601933
10.1002/adma.201503182
10.1038/nmat3391
10.1021/nn300097q
10.1038/nmat3191
10.1021/acscatal.7b04091
10.1002/aenm.201600755
10.1002/anie.201307976
10.1002/adma.201205332
10.1002/adma.201400570
10.1002/anie.201410050
10.1038/nmat4477
10.1038/nmat1672
10.1039/C4EE01475H
10.1002/anie.201805514
10.1002/smtd.201800144
10.1021/acsaem.8b00234
10.1016/j.nantod.2014.12.001
10.1002/pssb.19680250120
10.1002/smll.202005255
10.1126/science.aad0832
10.1016/j.matt.2019.10.001
10.1103/PhysRevLett.68.1168
10.1002/anie.201507381
10.1039/C2CS35353A
10.1021/acsnano.5b06857
10.1038/ncomms7141
10.1002/adma.201803588
10.1038/s41427-018-0095-5
10.1002/adfm.201707013
10.1557/mrs.2017.303
10.1073/pnas.1210072109
10.1002/adma.201304148
10.1002/admi.202001904
10.1038/natrevmats.2016.33
10.1126/science.1157996
10.1038/ncomms2251
10.1002/smtd.202100736
10.1002/adma.201701677
10.1002/adma.201702590
10.1021/acsomega.7b00706
10.1038/nenergy.2016.128
10.1016/j.carbon.2019.10.072
10.1021/acsbiomaterials.8b00658
10.1002/adma.201303115
10.1021/nl902515k
10.1021/nn300655c
10.1002/adma.201202289
10.1557/mrs2009.157
10.1039/C5TA02685G
10.1039/C8EE03184C
10.1039/C6MH00358C
10.1002/adma.202007650
10.1038/nature04235
10.1039/C8TA03488E
10.1038/ncomms12697
10.1016/0001-6160(64)90077-X
10.1002/adfm.201601355
10.1002/adma.201901186
10.1021/cr500054y
10.1002/adma.201807267
10.1039/C7EE03031B
10.1038/nmat3001
10.1038/ncomms2747
10.1002/adma.201900843
10.1039/C4CS00181H
10.1002/adsu.201900045
10.1063/1.2773757
10.1126/sciadv.1400198
10.1016/j.biomaterials.2011.07.019
10.1039/C5NR08852F
10.1021/acsnano.8b02444
10.1016/j.nanoen.2016.04.019
10.1016/j.carbon.2014.04.077
10.1021/jacs.9b03811
10.1016/j.chempr.2017.01.010
10.1002/smll.201100990
10.1126/science.1171245
10.1038/nature07853
10.1063/1.1709399
10.1038/ncomms14885
10.1021/acsami.5b12677
10.1063/1.2948902
10.1007/s10853-018-2285-5
10.1039/C4CS00015C
10.1038/nature16484
10.1039/C7TA05979E
10.1039/D1NR02074A
10.1039/D1TA02326H
10.1002/adfm.201602459
10.1002/adma.201501115
10.1021/nn501506p
10.1016/j.ssc.2008.02.024
10.1002/anie.201402662
10.1002/adma.201806843
10.1038/ncomms15437
10.1016/j.actamat.2018.10.012
10.1002/adfm.201503726
10.1038/nnano.2017.16
10.1016/j.nanoen.2018.04.063
10.1039/B801151F
10.1021/nl0731872
10.1039/C7CS00852J
10.1039/C5NR05011A
10.1038/nnano.2016.32
10.1126/science.1102896
10.1002/anie.201809315
10.1016/j.nanoen.2018.01.006
10.1039/C7CP07667C
10.1021/nn501434a
10.1021/acs.chemrev.0c00083
10.1021/acs.accounts.5b00117
10.1002/anie.201703720
10.1021/jz502655m
10.1039/D1NR01612A
10.1021/acsami.5b01201
10.1039/C6SC03911A
10.1021/acsnano.9b09928
10.1038/nenergy.2016.71
10.1002/adma.201601067
10.1002/adma.201501832
10.1002/adma.201604318
10.1002/aenm.201200496
10.1002/adma.201702752
10.1002/adma.201306104
10.1038/ncomms13869
10.1103/PhysRevLett.101.166601
10.1021/acsnano.9b08191
10.1002/aenm.201903802
10.1002/admi.201701212
10.1126/sciadv.aat6951
10.1038/nchem.1646
10.1021/nl403461n
10.1016/j.nanoen.2015.11.029
10.1021/nn101187z
10.1021/jacs.8b06414
10.1038/35068529
10.1002/adma.201402728
10.1021/acsnano.7b01987
10.1016/j.nanoen.2014.11.025
10.1016/j.apcatb.2020.119172
10.1002/smll.201903780
10.1021/cr5003563
10.1038/ncomms5449
10.1002/adfm.201909035
10.1038/ncomms3905
10.1002/adfm.201504146
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202108750
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34870863
10_1002_adma_202108750
ADMA202108750
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Early‐Career Scientists
  funderid: 19K15389
– fundername: Research Activity Start‐up
  funderid: 18H05939
– fundername: Tohoku University
– fundername: National Science Foundation
  funderid: DMR‐1804320
– fundername: Fusion Research Funds
– fundername: Early-Career Scientists
  grantid: 19K15389
– fundername: National Science Foundation
  grantid: DMR-1804320
– fundername: Research Activity Start-up
  grantid: 18H05939
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4390-55e74451b2bcf8f9db5c0112bb969c2754989166502fd36614eba0e969b12a6c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 17:03:15 EDT 2025
Fri Jul 25 06:32:37 EDT 2025
Mon Jul 21 05:59:54 EDT 2025
Tue Jul 01 02:33:11 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Jan 22 16:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords energy conversion
energy storage
topological defects
3D graphene
curvature
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-55e74451b2bcf8f9db5c0112bb969c2754989166502fd36614eba0e969b12a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8274-3099
PMID 34870863
PQID 2649895712
PQPubID 2045203
PageCount 29
ParticipantIDs proquest_miscellaneous_2607306678
proquest_journals_2649895712
pubmed_primary_34870863
crossref_primary_10_1002_adma_202108750
crossref_citationtrail_10_1002_adma_202108750
wiley_primary_10_1002_adma_202108750_ADMA202108750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2013; 4
2019; 12
2019; 15
2014; 26
2020; 14
2014; 24
2020; 10
2018; 45
2008; 101
2008; 100
2019; 163
2018; 43
2013; 5
2012; 11
2018; 49
2018; 47
2018; 6
2001; 410
2018; 8
2018; 3
2018; 2
2018; 5
2018; 1
2019; 24
2010; 110
2007; 6
2018; 30
2012; 24
2010; 4
2018; 28
2019; 3
2019; 5
2016; 19
2019; 31
2019; 1
2015; 54
2016; 10
2007; 91
2020; 32
2004; 306
2016; 16
2011; 6
2016; 15
2018; 20
2011; 7
2014; 43
2012; 109
2009; 458
2016; 11
2016; 6
2016; 7
2016; 1
2007; 315
2015; 115
2020; 30
2018; 118
2017; 56
1985; 314
2020; 276
2020; 157
1964; 12
1967; 38
2018; 12
2018; 11
2016; 28
2018; 10
2016; 26
2016; 8
2016; 24
2017; 5
1968; 25
2017; 7
2017; 8
2017; 2
2013; 25
2017; 4
2020; 120
2013; 23
2019; 58
2020; 59
2008; 8
2011; 10
2008; 146
2015; 48
2014; 5
2015; 49
2021; 33
2013; 13
2015; 44
2011; 23
2014; 9
2014; 8
2014; 7
2016; 351
2009; 324
2014; 53
2021; 9
2015; 1
2021; 8
2015; 6
2021; 5
2018; 140
2015; 3
2013; 46
2013; 42
2015; 11
2016; 529
2005; 438
2006; 5
2011; 32
2017; 29
2008; 321
2019; 141
2008; 92
2015; 7
2014; 114
2009; 34
2021; 13
2015; 27
2012; 3
2017; 11
2021; 17
2017; 12
2009; 9
1992; 68
2016; 138
2012; 6
2018; 53
2009; 38
2014; 76
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 281
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 1666
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 3992
  year: 2014
  publication-title: Adv. Mater.
– volume: 14
  start-page: 937
  year: 2020
  publication-title: ACS Nano
– volume: 11
  start-page: 356
  year: 2015
  publication-title: Nano Energy
– volume: 20
  start-page: 6024
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 141
  start-page: 9664
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1241
  year: 2012
  publication-title: Nat. Commun.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 8
  start-page: 6481
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 529
  start-page: 377
  year: 2016
  publication-title: Nature
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 314
  start-page: 604
  year: 1985
  publication-title: Nature
– volume: 4
  start-page: 7
  year: 2017
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 3579
  year: 2018
  publication-title: ACS Catal.
– volume: 146
  start-page: 351
  year: 2008
  publication-title: Solid State Commun.
– volume: 276
  year: 2020
  publication-title: Appl. Catal., B
– volume: 26
  start-page: 4145
  year: 2014
  publication-title: Adv. Mater.
– volume: 47
  start-page: 3018
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 3163
  year: 2011
  publication-title: Small
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 15
  start-page: 43
  year: 2016
  publication-title: Nat. Mater.
– volume: 16
  start-page: 349
  year: 2016
  publication-title: Nano Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4268
  year: 2009
  publication-title: Nano Lett.
– volume: 43
  start-page: 7295
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  start-page: 577
  year: 2009
  publication-title: MRS Bull.
– volume: 38
  start-page: 226
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 193
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 1603
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 27
  start-page: 4302
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 785
  year: 2014
  publication-title: Nano Today
– volume: 5
  start-page: 567
  year: 2006
  publication-title: Nat. Mater.
– volume: 42
  start-page: 794
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1732
  year: 2013
  publication-title: Nat. Commun.
– volume: 46
  start-page: 2263
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 438
  start-page: 201
  year: 2005
  publication-title: Nature
– volume: 44
  start-page: 5926
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 902
  year: 2008
  publication-title: Nano Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 49
  start-page: 354
  year: 2018
  publication-title: Nano Energy
– volume: 43
  start-page: 2841
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 163
  start-page: 161
  year: 2019
  publication-title: Acta Mater.
– volume: 76
  start-page: 266
  year: 2014
  publication-title: Carbon
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 11
  start-page: 6860
  year: 2017
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5264
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6141
  year: 2015
  publication-title: Nat. Commun.
– volume: 53
  start-page: 442
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 59
  start-page: 4525
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 698
  year: 1967
  publication-title: J. Appl. Phys.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 4822
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 6372
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 315
  start-page: 1379
  year: 2007
  publication-title: Science
– volume: 6
  start-page: 658
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4449
  year: 2014
  publication-title: Nat. Commun.
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 1542
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1411
  year: 2016
  publication-title: ACS Nano
– volume: 23
  start-page: 2263
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1044
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 849
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5139
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3206
  year: 2012
  publication-title: ACS Nano
– volume: 24
  start-page: 5083
  year: 2012
  publication-title: Adv. Mater.
– volume: 24
  start-page: 158
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 489
  year: 2013
  publication-title: Nat. Chem.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1090
  year: 2017
  publication-title: Chem. Sci.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 6136
  year: 2013
  publication-title: Nano Lett.
– volume: 10
  start-page: 1037
  year: 2018
  publication-title: NPG Asia Mater
– volume: 26
  start-page: 6418
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 6360
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 11
  start-page: 772
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 157
  start-page: 437
  year: 2020
  publication-title: Carbon
– volume: 56
  start-page: 7847
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 20
  year: 2018
  publication-title: MRS Bull.
– volume: 12
  start-page: 1057
  year: 1964
  publication-title: Acta Metall.
– volume: 14
  start-page: 4374
  year: 2020
  publication-title: ACS Nano
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 391
  year: 2016
  publication-title: Nano Energy
– volume: 110
  start-page: 132
  year: 2010
  publication-title: Chem. Rev.
– volume: 2
  start-page: 171
  year: 2017
  publication-title: Chem
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 25
  start-page: 2474
  year: 2013
  publication-title: Adv. Mater.
– volume: 12
  start-page: 6117
  year: 2018
  publication-title: ACS Nano
– volume: 54
  start-page: 2131
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 68
  start-page: 1168
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1850
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 209
  year: 1968
  publication-title: Phys. Status Solidi
– volume: 1
  start-page: 1077
  year: 2019
  publication-title: Matter
– volume: 4
  start-page: 4324
  year: 2010
  publication-title: ACS Nano
– volume: 6
  start-page: 3573
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 2905
  year: 2013
  publication-title: Nat. Commun.
– volume: 26
  start-page: 7162
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 3709
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 26
  year: 2019
  publication-title: Mater. Today
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 1148
  year: 2019
  publication-title: Matter
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 27
  start-page: 6137
  year: 2015
  publication-title: Adv. Mater.
– volume: 23
  start-page: 2443
  year: 2011
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1268
  year: 2016
  publication-title: Chem. Sci.
– volume: 32
  start-page: 7741
  year: 2011
  publication-title: Biomaterials
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 775
  year: 2012
  publication-title: Nat. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 45
  start-page: 273
  year: 2018
  publication-title: Nano Energy
– volume: 49
  start-page: 67
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 458
  start-page: 190
  year: 2009
  publication-title: Nature
– volume: 26
  start-page: 1271
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 277
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 53
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 2
  start-page: 3691
  year: 2017
  publication-title: ACS Omega
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 6856
  year: 2014
  publication-title: ACS Nano
– volume: 118
  start-page: 9281
  year: 2018
  publication-title: Chem. Rev.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 1
  start-page: 2183
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 16
  start-page: 466
  year: 2016
  publication-title: Nano Lett.
– volume: 26
  start-page: 577
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1539
  year: 2018
  publication-title: ACS Energy Lett.
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevLett.100.016602
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201803621
– ident: e_1_2_8_51_1
  doi: 10.1021/es504421y
– ident: e_1_2_8_169_1
  doi: 10.1002/adma.201504765
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1137201
– ident: e_1_2_8_134_1
  doi: 10.1038/nenergy.2016.133
– ident: e_1_2_8_80_1
  doi: 10.1002/adfm.201202638
– ident: e_1_2_8_122_1
  doi: 10.1002/aenm.201700759
– ident: e_1_2_8_158_1
  doi: 10.1002/adfm.201401216
– ident: e_1_2_8_19_1
  doi: 10.1038/314604a0
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202005838
– ident: e_1_2_8_114_1
  doi: 10.1039/C3CS60401B
– ident: e_1_2_8_179_1
  doi: 10.1002/adma.201704162
– ident: e_1_2_8_133_1
  doi: 10.1039/C5SC03695J
– ident: e_1_2_8_152_1
  doi: 10.1038/ncomms13949
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.201803858
– ident: e_1_2_8_119_1
  doi: 10.1021/acs.nanolett.5b04123
– ident: e_1_2_8_142_1
  doi: 10.1038/nnano.2011.38
– ident: e_1_2_8_61_1
  doi: 10.1021/ar400057n
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201805334
– ident: e_1_2_8_126_1
  doi: 10.1002/smtd.201800331
– ident: e_1_2_8_33_1
  doi: 10.1002/aenm.201501870
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.chemrev.8b00325
– ident: e_1_2_8_74_1
  doi: 10.1021/jacs.6b02262
– ident: e_1_2_8_144_1
  doi: 10.1002/adma.201004331
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_131_1
  doi: 10.1002/anie.201906079
– ident: e_1_2_8_39_1
  doi: 10.1039/C4EE00050A
– ident: e_1_2_8_125_1
  doi: 10.1002/anie.201915001
– ident: e_1_2_8_82_1
  doi: 10.1021/acs.nanolett.5b03923
– ident: e_1_2_8_55_1
  doi: 10.1021/cr900070d
– ident: e_1_2_8_37_1
  doi: 10.1016/j.matt.2019.07.021
– ident: e_1_2_8_105_1
  doi: 10.1021/acsenergylett.8b00739
– ident: e_1_2_8_18_1
  doi: 10.1016/j.mattod.2018.09.001
– ident: e_1_2_8_139_1
  doi: 10.1039/C4CS00442F
– ident: e_1_2_8_181_1
  doi: 10.1002/aenm.201601933
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.201503182
– ident: e_1_2_8_66_1
  doi: 10.1038/nmat3391
– ident: e_1_2_8_165_1
  doi: 10.1021/nn300097q
– ident: e_1_2_8_173_1
  doi: 10.1038/nmat3191
– ident: e_1_2_8_112_1
  doi: 10.1021/acscatal.7b04091
– ident: e_1_2_8_72_1
  doi: 10.1002/aenm.201600755
– ident: e_1_2_8_176_1
  doi: 10.1002/anie.201307976
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201205332
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201400570
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201410050
– ident: e_1_2_8_58_1
  doi: 10.1038/nmat4477
– ident: e_1_2_8_141_1
  doi: 10.1038/nmat1672
– ident: e_1_2_8_161_1
  doi: 10.1039/C4EE01475H
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201805514
– ident: e_1_2_8_171_1
  doi: 10.1002/smtd.201800144
– ident: e_1_2_8_104_1
  doi: 10.1021/acsaem.8b00234
– ident: e_1_2_8_52_1
  doi: 10.1016/j.nantod.2014.12.001
– ident: e_1_2_8_91_1
  doi: 10.1002/pssb.19680250120
– ident: e_1_2_8_54_1
  doi: 10.1002/smll.202005255
– ident: e_1_2_8_117_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_8_11_1
  doi: 10.1016/j.matt.2019.10.001
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevLett.68.1168
– ident: e_1_2_8_106_1
  doi: 10.1002/anie.201507381
– ident: e_1_2_8_38_1
  doi: 10.1039/C2CS35353A
– ident: e_1_2_8_86_1
  doi: 10.1021/acsnano.5b06857
– ident: e_1_2_8_95_1
  doi: 10.1038/ncomms7141
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201803588
– ident: e_1_2_8_182_1
  doi: 10.1038/s41427-018-0095-5
– ident: e_1_2_8_160_1
  doi: 10.1002/adfm.201707013
– ident: e_1_2_8_68_1
  doi: 10.1557/mrs.2017.303
– ident: e_1_2_8_153_1
  doi: 10.1073/pnas.1210072109
– ident: e_1_2_8_163_1
  doi: 10.1002/adma.201304148
– ident: e_1_2_8_130_1
  doi: 10.1002/admi.202001904
– ident: e_1_2_8_44_1
  doi: 10.1038/natrevmats.2016.33
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1157996
– ident: e_1_2_8_93_1
  doi: 10.1038/ncomms2251
– ident: e_1_2_8_124_1
  doi: 10.1002/smtd.202100736
– ident: e_1_2_8_164_1
  doi: 10.1002/adma.201701677
– ident: e_1_2_8_138_1
  doi: 10.1002/adma.201702590
– ident: e_1_2_8_102_1
  doi: 10.1021/acsomega.7b00706
– ident: e_1_2_8_174_1
  doi: 10.1038/nenergy.2016.128
– ident: e_1_2_8_85_1
  doi: 10.1016/j.carbon.2019.10.072
– ident: e_1_2_8_53_1
  doi: 10.1021/acsbiomaterials.8b00658
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.201303115
– ident: e_1_2_8_60_1
  doi: 10.1021/nl902515k
– ident: e_1_2_8_89_1
  doi: 10.1021/nn300655c
– ident: e_1_2_8_97_1
  doi: 10.1002/adma.201202289
– ident: e_1_2_8_65_1
  doi: 10.1557/mrs2009.157
– ident: e_1_2_8_162_1
  doi: 10.1039/C5TA02685G
– ident: e_1_2_8_78_1
  doi: 10.1039/C8EE03184C
– ident: e_1_2_8_116_1
  doi: 10.1039/C6MH00358C
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.202007650
– ident: e_1_2_8_7_1
  doi: 10.1038/nature04235
– ident: e_1_2_8_84_1
  doi: 10.1039/C8TA03488E
– ident: e_1_2_8_128_1
  doi: 10.1038/ncomms12697
– ident: e_1_2_8_92_1
  doi: 10.1016/0001-6160(64)90077-X
– ident: e_1_2_8_150_1
  doi: 10.1002/adfm.201601355
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201901186
– ident: e_1_2_8_175_1
  doi: 10.1021/cr500054y
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201807267
– ident: e_1_2_8_13_1
  doi: 10.1039/C7EE03031B
– ident: e_1_2_8_62_1
  doi: 10.1038/nmat3001
– ident: e_1_2_8_143_1
  doi: 10.1038/ncomms2747
– ident: e_1_2_8_107_1
  doi: 10.1002/adma.201900843
– ident: e_1_2_8_48_1
  doi: 10.1039/C4CS00181H
– ident: e_1_2_8_137_1
  doi: 10.1002/adsu.201900045
– ident: e_1_2_8_70_1
  doi: 10.1063/1.2773757
– ident: e_1_2_8_79_1
  doi: 10.1126/sciadv.1400198
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biomaterials.2011.07.019
– ident: e_1_2_8_166_1
  doi: 10.1039/C5NR08852F
– ident: e_1_2_8_59_1
  doi: 10.1021/acsnano.8b02444
– ident: e_1_2_8_167_1
  doi: 10.1016/j.nanoen.2016.04.019
– ident: e_1_2_8_23_1
  doi: 10.1016/j.carbon.2014.04.077
– ident: e_1_2_8_132_1
  doi: 10.1021/jacs.9b03811
– ident: e_1_2_8_42_1
  doi: 10.1016/j.chempr.2017.01.010
– ident: e_1_2_8_159_1
  doi: 10.1002/smll.201100990
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1171245
– ident: e_1_2_8_140_1
  doi: 10.1038/nature07853
– ident: e_1_2_8_90_1
  doi: 10.1063/1.1709399
– ident: e_1_2_8_31_1
  doi: 10.1038/ncomms14885
– ident: e_1_2_8_99_1
  doi: 10.1021/acsami.5b12677
– ident: e_1_2_8_25_1
  doi: 10.1063/1.2948902
– ident: e_1_2_8_20_1
  doi: 10.1007/s10853-018-2285-5
– ident: e_1_2_8_170_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_8_177_1
  doi: 10.1038/nature16484
– ident: e_1_2_8_73_1
  doi: 10.1039/C7TA05979E
– ident: e_1_2_8_113_1
  doi: 10.1039/D1NR02074A
– ident: e_1_2_8_81_1
  doi: 10.1039/D1TA02326H
– ident: e_1_2_8_77_1
  doi: 10.1002/adfm.201602459
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201501115
– ident: e_1_2_8_118_1
  doi: 10.1021/nn501506p
– ident: e_1_2_8_1_1
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.201402662
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201806843
– ident: e_1_2_8_111_1
  doi: 10.1038/ncomms15437
– ident: e_1_2_8_69_1
  doi: 10.1016/j.actamat.2018.10.012
– ident: e_1_2_8_76_1
  doi: 10.1002/adfm.201503726
– ident: e_1_2_8_154_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_103_1
  doi: 10.1016/j.nanoen.2018.04.063
– ident: e_1_2_8_147_1
  doi: 10.1039/B801151F
– ident: e_1_2_8_4_1
  doi: 10.1021/nl0731872
– ident: e_1_2_8_49_1
  doi: 10.1039/C7CS00852J
– ident: e_1_2_8_146_1
  doi: 10.1039/C5NR05011A
– ident: e_1_2_8_156_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_109_1
  doi: 10.1002/anie.201809315
– ident: e_1_2_8_36_1
  doi: 10.1016/j.nanoen.2018.01.006
– ident: e_1_2_8_101_1
  doi: 10.1039/C7CP07667C
– ident: e_1_2_8_110_1
  doi: 10.1021/nn501434a
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.chemrev.0c00083
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.accounts.5b00117
– ident: e_1_2_8_120_1
  doi: 10.1002/anie.201703720
– ident: e_1_2_8_50_1
  doi: 10.1021/jz502655m
– ident: e_1_2_8_108_1
  doi: 10.1039/D1NR01612A
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.5b01201
– ident: e_1_2_8_129_1
  doi: 10.1039/C6SC03911A
– ident: e_1_2_8_151_1
  doi: 10.1021/acsnano.9b09928
– ident: e_1_2_8_155_1
  doi: 10.1038/nenergy.2016.71
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201601067
– ident: e_1_2_8_136_1
  doi: 10.1002/adma.201501832
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201604318
– ident: e_1_2_8_145_1
  doi: 10.1002/aenm.201200496
– ident: e_1_2_8_180_1
  doi: 10.1002/adma.201702752
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201306104
– ident: e_1_2_8_123_1
  doi: 10.1038/ncomms13869
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevLett.101.166601
– ident: e_1_2_8_83_1
  doi: 10.1021/acsnano.9b08191
– ident: e_1_2_8_41_1
  doi: 10.1002/aenm.201903802
– ident: e_1_2_8_47_1
  doi: 10.1002/admi.201701212
– ident: e_1_2_8_71_1
  doi: 10.1126/sciadv.aat6951
– ident: e_1_2_8_178_1
  doi: 10.1038/nchem.1646
– ident: e_1_2_8_149_1
  doi: 10.1021/nl403461n
– ident: e_1_2_8_157_1
  doi: 10.1016/j.nanoen.2015.11.029
– ident: e_1_2_8_94_1
  doi: 10.1021/nn101187z
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.8b06414
– ident: e_1_2_8_63_1
  doi: 10.1038/35068529
– ident: e_1_2_8_148_1
  doi: 10.1002/adma.201402728
– ident: e_1_2_8_87_1
  doi: 10.1021/acsnano.7b01987
– ident: e_1_2_8_168_1
  doi: 10.1016/j.nanoen.2014.11.025
– ident: e_1_2_8_172_1
  doi: 10.1016/j.apcatb.2020.119172
– ident: e_1_2_8_12_1
  doi: 10.1002/smll.201903780
– ident: e_1_2_8_115_1
  doi: 10.1021/cr5003563
– ident: e_1_2_8_135_1
  doi: 10.1038/ncomms5449
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.201909035
– ident: e_1_2_8_96_1
  doi: 10.1038/ncomms3905
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201504146
SSID ssj0009606
Score 2.6233513
SecondaryResourceType review_article
Snippet Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In...
Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2108750
SubjectTerms 3D graphene
Curvature
Energy conversion
Energy storage
Graphene
Mass transport
Materials science
Microstructure
Minimal surfaces
Thermal conductivity
topological defects
Transport properties
Title 3D Continuously Porous Graphene for Energy Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108750
https://www.ncbi.nlm.nih.gov/pubmed/34870863
https://www.proquest.com/docview/2649895712
https://www.proquest.com/docview/2607306678
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_EJ33w-6M6pYLgU7Y2bdP2cbjNIUxEHOytJGkK4uhkHw_613tJP7YpIuhbS5M2ucvd_a5JfgG4jpSIYpenJKIZJz5VAeGRdAmPnczXx0eHhm1_8MD6Q_9-FIxWdvEX_BD1DzdtGcZfawPnYtZakoby1PAGYcqCkFsn7XrBlkZFT0v-KA3PDdmeF5CY-VHF2ujQ1nr19aj0DWquI1cTenq7wKtGFytOXpuLuWjKjy98jv_p1R7slLjUbhcDaR82VH4A2ytshYcQeh1bk1m95IvJYjZ-tx8nU7yw7zTnNbpMG_Gv3TV7Ce32yrz4EQx73efbPinPXSAS4YlDgkCFmrdMUCGzKItTEUh0A1SImMWShphSon4ZYjuapZ4O8EpwR-FD4VLOpHcMm_kkV6dgZ2nmspAyFQvPx1cJiQDCw4ETO5FgXFhAKrknsiQl12djjJOCTpkmWiBJLRALburybwUdx48lG5Uak9IsZwmiP2x6ELrUgqv6MRqUniXhuUKhYRnt9RgGcQtOCvXXn8I-hJgDehZQo8Rf2pC0O4N2fXf2l0rnsEX1hguzVqgBm_PpQl0gDJqLSzPUPwFq4Pt2
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED-rB96M-KwiestumbdoeF11dHysiK3grSZqCuHRFtwf99U7SbXdXEUFvLUnaZCaTfJPHNwDHkRJR7PKURDTjxKcqIDySLuGxk_k6fHRo2Pa7t6zz4F89BtVpQn0XpuSHqBfctGWY8VobuF6Qbo5ZQ3lqiIPQZ0HMjV77nA7rbbyq-zGDlAbohm7PC0jM_KjibXRoc7r89Lz0DWxOY1cz-Zwvg6iqXZ45eW4UQ9GQH18YHf_VrhVYGkFTu1X2pVWYUfkaLE4QFq5D6J3Zms_qKS8GxVv_3b4bvOKDfaFpr3HUtBEC221zndBuTWyNb8DDebt32iGj0AtEIkJxSBCoUFOXCSpkFmVxKgKJIwEVImaxpCF6lahihvCOZqmn53gluKMwUbiUM-ltwmw-yNU22FmauSykTMXC8_FTQiKG8LDvxE4kGBcWkErwiRzxkuvwGP2kZFSmiRZIUgvEgpM6_0vJyPFjzr1Kj8nIMt8SBIBY9SB0qQVHdTLalN4o4blCoWEePfAxnMct2Cr1X_8K2xCiG-hZQI0Wf6lD0jrrtuq3nb8UOoT5Tq97k9xc3l7vwgLV9y_M0aE9mB2-FmofUdFQHJh-_wkyQf-R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD90t1agXBp8w2bdP2cbjNeWWIg72VJE1BlE50fdBf70m6dZsigr61NGmTc8t3muQLwEmkRBS7PCURzTjxqQoIj6RLeOxkvj4-OjRs-7d3rNPzr_pBf2oXf8kPUf1w055h4rV28Jc0O5uQhvLU8AZhyoKQG5P2BZ85kbbr5v2EQErjc8O25wUkZn40pm106Nls_dlh6RvWnIWuZuxprwIft7pccvJUL4aiLj--EDr-p1trsDICpnajtKR1mFP5BixP0RVuQug1bc1m9ZgXg-Lt-d3uDl7xwr7QpNcYM20EwHbLbCa0G1MT41vQa7cezjtkdPACkYhPHBIEKtTEZYIKmUVZnIpAYhygQsQsljTEnBIVzBDc0Sz19AivBHcUPhQu5Ux62zCfD3K1C3aWZi4LKVOx8Hx8lZCIIDy0nNiJBOPCAjKWeyJHrOT6cIznpORTpokWSFIJxILTqvxLycfxY8naWI3JyC_fEoR_2PQgdKkFx9Vj9Cg9TcJzhULDMjrsMRzFLdgp1V99CvsQYhLoWUCNEn9pQ9Jo3jaqu72_VDqCxW6zndxc3l3vwxLVmy_MuqEazA9fC3WAkGgoDo3VfwJBOv5J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Continuously+Porous+Graphene+for+Energy+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Jiuhui&rft.au=Johnson%2C+Isaac&rft.au=Chen%2C+Mingwei&rft.date=2022-04-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=15&rft.spage=e2108750&rft_id=info:doi/10.1002%2Fadma.202108750&rft_id=info%3Apmid%2F34870863&rft.externalDocID=34870863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon