Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling

The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 14; no. 19; pp. 4115 - 4122
Main Author Kawai, Fusako
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme‐attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described. PET project: Pretreatment of waste polyethylene terephthalate (PET) is requisite for practical realization of enzymatic PET treatment. Amorphized and micronized PET is more susceptible to PET hydrolase attack. PET hydrolase must be thermostable at higher than 70 °C for a certain period of time (preferably ≤10 h). Recycling and upcycling are dependent on the state of waste PET such as purity, single use, mixed use, and how they work together.
AbstractList The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme-attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described.The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme-attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described.
The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme‐attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described.
The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases; higher thermostability results in higher activity (a higher level of degradation products). Additionally, processing pre-treatment of waste PET to more enzyme-attackable forms is necessary for PET biorecycling. This review summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described.
The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme‐attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described. PET project: Pretreatment of waste polyethylene terephthalate (PET) is requisite for practical realization of enzymatic PET treatment. Amorphized and micronized PET is more susceptible to PET hydrolase attack. PET hydrolase must be thermostable at higher than 70 °C for a certain period of time (preferably ≤10 h). Recycling and upcycling are dependent on the state of waste PET such as purity, single use, mixed use, and how they work together.
Author Kawai, Fusako
Author_xml – sequence: 1
  givenname: Fusako
  orcidid: 0000-0002-3206-6093
  surname: Kawai
  fullname: Kawai, Fusako
  email: fkawai@kit.ac.jp, fkawai@okayama-u.ac.jp
  organization: Okayama University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33949146$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEURoMovrcuZcCNm9a8JmmWWuoDBMUquAuZzJ02kk5qMkXm3xupDxDEVW7gnI_L_fbQZhtaQOiI4CHBmJ7ZlOyQYpo_kuMNtEtGgg9KwZ83v2dGdtBeSi8YC6yE2EY7jCmuCBe76GmygDhz7ayYdtF0MHOQCtcW98H30M17Dy0UjxBhOe_mxmeiuO7rGLxJUDxAAhPtvGhCLC5ciGB763PYAdpqjE9w-Pnuo6fLyeP4enB7d3UzPr8dWM4UHvCaC9sQ4KW10lSkrBgIQ7BgsqqZZCCZpRazERU1xoZVoAhIwFWjlJKlZfvodJ27jOF1BanTC5cseG9aCKukaUkpU3LEZUZPfqEvYRXbvF2mpMKSCjbK1PEntaoWUOtldAsTe_11sAzwNWBjSClCo63rTOdCm8_nvCZYf_SiP3rR371kbfhL-0r-U1Br4c156P-h9Xg6Hf-478HQoBw
CitedBy_id crossref_primary_10_1007_s00894_024_06066_0
crossref_primary_10_1021_acscatal_1c05856
crossref_primary_10_1002_cbic_202200516
crossref_primary_10_1016_j_jhazmat_2022_128816
crossref_primary_10_3390_ma15248950
crossref_primary_10_1186_s13568_022_01474_y
crossref_primary_10_1016_j_ijbiomac_2024_137857
crossref_primary_10_3389_fmicb_2023_1265139
crossref_primary_10_1016_j_bpj_2022_07_002
crossref_primary_10_1021_acs_chemrev_2c00644
crossref_primary_10_1016_j_cscee_2024_100673
crossref_primary_10_1021_acscatal_4c06344
crossref_primary_10_1039_D2RA03394A
crossref_primary_10_1021_acsomega_4c06528
crossref_primary_10_1111_1462_2920_16516
crossref_primary_10_1186_s40643_023_00648_1
crossref_primary_10_3389_fbioe_2023_1263996
crossref_primary_10_1039_D4CC01609B
crossref_primary_10_1039_D4SU00658E
crossref_primary_10_30728_boron_1148497
crossref_primary_10_1021_acssuschemeng_2c01093
crossref_primary_10_1039_D3GC03663D
crossref_primary_10_1007_s00253_024_13222_2
crossref_primary_10_1021_acscatal_4c05363
crossref_primary_10_1039_D3GC01872E
crossref_primary_10_3389_fbioe_2022_865787
crossref_primary_10_1016_j_cej_2024_155227
crossref_primary_10_1038_s41467_023_37374_3
crossref_primary_10_2139_ssrn_4110033
crossref_primary_10_1002_cbic_202300373
crossref_primary_10_1021_acssuschemeng_4c00060
crossref_primary_10_3390_md22100441
crossref_primary_10_1016_j_ijbiomac_2022_11_126
crossref_primary_10_1016_j_scitotenv_2024_174978
crossref_primary_10_1021_acscatal_3c02922
crossref_primary_10_1039_D3GC04174C
crossref_primary_10_3390_catal13030591
Cites_doi 10.1007/s00253-014-5860-y
10.1002/app.1974.070181207
10.1016/j.jbiosc.2017.02.007
10.1002/jcc.20084
10.1038/s41598-019-52379-z
10.1007/s00253-014-5672-0
10.1016/j.molcatb.2013.08.010
10.1021/ma200949p
10.1074/jbc.M800848200
10.1128/AEM.01187-06
10.1111/1751-7915.12734
10.1128/AEM.02773-17
10.1016/j.envpol.2018.01.024
10.1007/s12010-013-0219-x
10.1007/s00253-018-9374-x
10.1111/1751-7915.12714
10.1021/ma9005318
10.1002/2211-5463.12053
10.3389/fmicb.2019.02187
10.1002/bit.26372
10.1186/1471-2105-10-89
10.3389/fmicb.2020.00114
10.1002/marc.200500410
10.1002/cssc.201802096
10.1007/s00253-011-3402-4
10.1016/j.jbiosc.2015.03.006
10.1002/prot.26034
10.1126/sciadv.1700782
10.1038/s41598-021-83659-2
10.3390/genes10050373
10.1128/AEM.62.2.456-460.1996
10.1016/j.scitotenv.2019.136138
10.3390/polym4010617
10.3109/10242422.2012.644435
10.1021/acssuschemeng.0c01638
10.3389/fmicb.2017.00938
10.1264/jsme2.ME17165
10.1002/bit.21167
10.1128/AEM.06725-11
10.1038/s41598-020-79031-5
10.1007/10_2010_87
10.1002/2211-5463.12097
10.1016/j.enzmictec.2018.05.010
10.1002/bit.25941
10.1126/science.aad6359
10.1098/rstb.2009.0053
10.1007/s00253-019-09717-y
10.1186/s13568-014-0044-9
10.1038/s41467-019-13492-9
10.1038/s41586-020-2149-4
10.1038/srep35358
10.1016/j.polymdegradstab.2011.03.022
10.1128/AEM.04111-14
10.1021/acs.biochem.7b01189
10.1016/j.enzmictec.2020.109715
10.1021/acscatal.0c05126
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202100740
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 4122
ExternalDocumentID 33949146
10_1002_cssc_202100740
CSSC202100740
Genre reviewArticle
Journal Article
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4390-4d46cf1e45cc7ab15b3e6a10637bd373e73c2c03826d00a3be91e7e0bf99975c3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 10:12:16 EDT 2025
Fri Jul 25 12:16:52 EDT 2025
Mon Jul 21 06:02:55 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 00:36:17 EDT 2025
Wed Jan 22 16:29:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Cutinases
Mesophilic PET Hydrolase
PET Degradation
PET Hydrolase
Thermophilic PET Hydrolase
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-4d46cf1e45cc7ab15b3e6a10637bd373e73c2c03826d00a3be91e7e0bf99975c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3206-6093
PMID 33949146
PQID 2579072638
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_2522397847
proquest_journals_2579072638
pubmed_primary_33949146
crossref_citationtrail_10_1002_cssc_202100740
crossref_primary_10_1002_cssc_202100740
wiley_primary_10_1002_cssc_202100740_CSSC202100740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 5, 2021
PublicationDateYYYYMMDD 2021-10-05
PublicationDate_xml – month: 10
  year: 2021
  text: October 5, 2021
  day: 05
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 3
2006; 72
2009; 42
2019; 10
2004; 25
2011; 96
2018; 84
2020; 11
2020; 10
2005; 26
2017; 114
1974; 18
2020; 8
2011; 125
2018; 8
2014; 4
2009; 10
2015; 81
2016; 113
2009; 364
1996; 62
2018; 33
2018; 77
2017; 124
2016; 351
2014; 98
2019; 9
2021; 89
2019; 6
2020; 580
2018; 102
2015; 120
2019; 103
2021; 143
2007; 96
2012; 78
2020; 709
2008; 283
2012; 30
2012; 93
2016; 6
2010; 86
2021; 11
2020; 0(0)
2018; 116
2021
2017; 10
2018; 235
2011; 44
2017
2013; 170
2012; 4
2014; 103
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_3_1
Kawai F. (e_1_2_8_17_1) 2021; 11
Blair R. M. (e_1_2_8_6_1) 2017
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
Wei R. (e_1_2_8_48_1) 2019; 6
Nikolaivits E. (e_1_2_8_13_1) 2018; 8
Lu M. (e_1_2_8_38_1) 2021
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Sinsereekul N. (e_1_2_8_47_1) 2010; 86
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Yan F. L. (e_1_2_8_49_1) 2020; 0
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 8
  start-page: 8894
  year: 2020
  end-page: 8908
  publication-title: ACS Sustainable Chem. Eng.
– volume: 170
  start-page: 654
  year: 2013
  end-page: 675
  publication-title: Appl. Biochem. Biotechnol.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 1340
  year: 2021
  end-page: 1350
  publication-title: ACS Catal.
– volume: 30
  start-page: 2
  year: 2012
  end-page: 9
  publication-title: Biocatal. Biotransform.
– volume: 8
  start-page: 938
  year: 2017
  publication-title: Front. Microbiol.
– volume: 709
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 5581
  year: 2019
  publication-title: Nat. Commun.
– volume: 235
  start-page: 1030
  year: 2018
  end-page: 1034
  publication-title: Environ. Pollut.
– volume: 102
  start-page: 10067
  year: 2018
  end-page: 10077
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 6
  start-page: 35358
  year: 2016
  publication-title: Sci. Rep.
– volume: 9
  start-page: 16038
  year: 2019
  publication-title: Sci. Rep.
– volume: 4
  start-page: 617
  year: 2012
  end-page: 629
  publication-title: Polymer
– volume: 81
  start-page: 3586
  year: 2015
  end-page: 3592
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: 612
  year: 2018
  publication-title: Catalysis
– volume: 93
  start-page: 229
  year: 2012
  end-page: 240
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 103
  start-page: 4253
  year: 2019
  end-page: 4268
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 103
  start-page: 72
  year: 2014
  end-page: 78
  publication-title: J. Mol. Catal. B
– volume: 84
  start-page: e02773
  year: 2018
  end-page: 17
  publication-title: Appl. Environ. Microbiol.
– volume: 114
  start-page: 2481
  year: 2017
  end-page: 2488
  publication-title: Biotechnol. Bioeng.
– volume: 364
  start-page: 2153
  year: 2009
  end-page: 2166
  publication-title: Philos. Trans. R. Soc. London Ser. B
– volume: 72
  start-page: 7331
  year: 2006
  end-page: 7338
  publication-title: Appl. Environ. Microbiol.
– volume: 42
  start-page: 5128
  year: 2009
  end-page: 5138
  publication-title: Macromolecules
– volume: 10
  start-page: 1302
  year: 2017
  end-page: 1307
  publication-title: Microb. Biotechnol.
– volume: 86
  start-page: 1775
  year: 2010
  end-page: 1784
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 425
  year: 2016
  end-page: 432
  publication-title: FEBS Open Bio.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 0(0)
  start-page: 1
  year: 2020
  end-page: 12
  publication-title: Microb. Biotechnol.
– volume: 4
  start-page: 44
  year: 2014
  publication-title: AMB Express
– volume: 10
  start-page: 2187
  year: 2020
  publication-title: Front. Microbiol.
– volume: 96
  start-page: 1342
  year: 2011
  end-page: 1348
  publication-title: Polym. Degrad. Stab.
– volume: 351
  start-page: 1196
  year: 2016
  end-page: 1199
  publication-title: Science
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 33
  start-page: 107
  year: 2018
  end-page: 110
  publication-title: Microbes Environ.
– volume: 116
  start-page: 33
  year: 2018
  end-page: 40
  publication-title: Enzyme Microb. Technol.
– volume: 18
  start-page: 3571
  year: 1974
  end-page: 3579
  publication-title: J. Appl. Polym. Sci.
– volume: 10
  start-page: 373
  year: 2019
  publication-title: Genesis
– volume: 78
  start-page: 1556
  year: 2012
  end-page: 1562
  publication-title: Appl. Environ. Microbiol.
– volume: 11
  start-page: 4431
  year: 2021
  publication-title: Sci. Rep.
– volume: 283
  start-page: 25854
  year: 2008
  end-page: 25862
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 89
  year: 2009
  publication-title: BMC Bioinf.
– volume: 44
  start-page: 4632
  year: 2011
  end-page: 4640
  publication-title: Macromolecules
– volume: 77
  start-page: 4018
  year: 2018
  end-page: 4025
  publication-title: ChemSusChem.
– volume: 11
  start-page: 114
  year: 2020
  publication-title: Front. Microbiol.
– volume: 11
  start-page: 928
  year: 2021
  publication-title: Sci. Rep.
– volume: 6
  start-page: 919
  year: 2016
  end-page: 927
  publication-title: FEBS Open Bio
– volume: 62
  start-page: 456
  year: 1996
  end-page: 460
  publication-title: Appl. Environ. Microbiol.
– volume: 580
  start-page: 216
  year: 2020
  end-page: 219
  publication-title: Nature
– year: 2021
  publication-title: bioRxiv
– volume: 89
  start-page: 502
  year: 2021
  end-page: 511
  publication-title: Proteins
– volume: 125
  start-page: 97
  year: 2011
  end-page: 120
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 113
  start-page: 1658
  year: 2016
  end-page: 1665
  publication-title: Biotechnol. Bioeng.
– volume: 98
  start-page: 10053
  year: 2014
  end-page: 10064
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 11
  start-page: 206
  year: 2021
  publication-title: Catalysis
– volume: 96
  start-page: 780
  year: 2007
  end-page: 794
  publication-title: Biotechnol. Bioeng.
– volume: 143
  year: 2021
  publication-title: Enzyme Microb. Technol.
– year: 2017
  publication-title: Springer Sci. Rev.
– volume: 26
  start-page: 1400
  year: 2005
  end-page: 1405
  publication-title: Macromol. Rapid Commun.
– volume: 120
  start-page: 491
  year: 2015
  end-page: 497
  publication-title: J. Biosci. Bioeng.
– volume: 57
  start-page: 1190
  year: 2018
  end-page: 1200
  publication-title: Biochemistry
– volume: 124
  start-page: 28
  year: 2017
  end-page: 35
  publication-title: J. Biosci. Bioeng.
– volume: 98
  start-page: 7815
  year: 2014
  end-page: 7823
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: 1376
  year: 2017
  end-page: 1383
  publication-title: Microb. Biotechnol.
– ident: e_1_2_8_25_1
  doi: 10.1007/s00253-014-5860-y
– ident: e_1_2_8_7_1
  doi: 10.1002/app.1974.070181207
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jbiosc.2017.02.007
– ident: e_1_2_8_66_1
  doi: 10.1002/jcc.20084
– year: 2017
  ident: e_1_2_8_6_1
  publication-title: Springer Sci. Rev.
– volume: 6
  start-page: 190049
  year: 2019
  ident: e_1_2_8_48_1
  publication-title: Adv. Sci.
– ident: e_1_2_8_63_1
  doi: 10.1038/s41598-019-52379-z
– ident: e_1_2_8_55_1
  doi: 10.1007/s00253-014-5672-0
– ident: e_1_2_8_45_1
  doi: 10.1016/j.molcatb.2013.08.010
– ident: e_1_2_8_56_1
  doi: 10.1021/ma200949p
– volume: 8
  start-page: 612
  year: 2018
  ident: e_1_2_8_13_1
  publication-title: Catalysis
– ident: e_1_2_8_52_1
  doi: 10.1074/jbc.M800848200
– ident: e_1_2_8_4_1
– ident: e_1_2_8_59_1
  doi: 10.1128/AEM.01187-06
– ident: e_1_2_8_67_1
  doi: 10.1111/1751-7915.12734
– volume: 86
  start-page: 1775
  year: 2010
  ident: e_1_2_8_47_1
  publication-title: Appl. Environ. Microbiol.
– ident: e_1_2_8_35_1
  doi: 10.1128/AEM.02773-17
– ident: e_1_2_8_5_1
  doi: 10.1016/j.envpol.2018.01.024
– ident: e_1_2_8_54_1
  doi: 10.1007/s12010-013-0219-x
– ident: e_1_2_8_31_1
  doi: 10.1007/s00253-018-9374-x
– ident: e_1_2_8_30_1
  doi: 10.1111/1751-7915.12714
– volume: 11
  start-page: 206
  year: 2021
  ident: e_1_2_8_17_1
  publication-title: Catalysis
– ident: e_1_2_8_27_1
  doi: 10.1021/ma9005318
– ident: e_1_2_8_43_1
  doi: 10.1002/2211-5463.12053
– ident: e_1_2_8_42_1
  doi: 10.3389/fmicb.2019.02187
– ident: e_1_2_8_22_1
  doi: 10.1002/bit.26372
– ident: e_1_2_8_10_1
  doi: 10.1186/1471-2105-10-89
– ident: e_1_2_8_29_1
– ident: e_1_2_8_41_1
  doi: 10.3389/fmicb.2020.00114
– ident: e_1_2_8_18_1
  doi: 10.1002/marc.200500410
– ident: e_1_2_8_64_1
  doi: 10.1002/cssc.201802096
– ident: e_1_2_8_8_1
  doi: 10.1007/s00253-011-3402-4
– ident: e_1_2_8_34_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jbiosc.2015.03.006
– ident: e_1_2_8_44_1
  doi: 10.1002/prot.26034
– ident: e_1_2_8_3_1
  doi: 10.1126/sciadv.1700782
– ident: e_1_2_8_11_1
  doi: 10.1038/s41598-021-83659-2
– year: 2021
  ident: e_1_2_8_38_1
  publication-title: bioRxiv
– ident: e_1_2_8_65_1
  doi: 10.3390/genes10050373
– ident: e_1_2_8_12_1
  doi: 10.1128/AEM.62.2.456-460.1996
– ident: e_1_2_8_58_1
  doi: 10.1016/j.scitotenv.2019.136138
– ident: e_1_2_8_23_1
  doi: 10.3390/polym4010617
– ident: e_1_2_8_21_1
  doi: 10.3109/10242422.2012.644435
– ident: e_1_2_8_16_1
  doi: 10.1021/acssuschemeng.0c01638
– ident: e_1_2_8_51_1
  doi: 10.3389/fmicb.2017.00938
– ident: e_1_2_8_37_1
  doi: 10.1264/jsme2.ME17165
– ident: e_1_2_8_46_1
  doi: 10.1002/bit.21167
– ident: e_1_2_8_26_1
  doi: 10.1128/AEM.06725-11
– ident: e_1_2_8_40_1
  doi: 10.1038/s41598-020-79031-5
– ident: e_1_2_8_15_1
  doi: 10.1007/10_2010_87
– ident: e_1_2_8_57_1
  doi: 10.1002/2211-5463.12097
– ident: e_1_2_8_53_1
  doi: 10.1016/j.enzmictec.2018.05.010
– ident: e_1_2_8_19_1
  doi: 10.1002/bit.25941
– ident: e_1_2_8_2_1
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aad6359
– ident: e_1_2_8_1_1
  doi: 10.1098/rstb.2009.0053
– ident: e_1_2_8_14_1
  doi: 10.1007/s00253-019-09717-y
– ident: e_1_2_8_24_1
  doi: 10.1186/s13568-014-0044-9
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-019-13492-9
– ident: e_1_2_8_33_1
  doi: 10.1038/s41586-020-2149-4
– ident: e_1_2_8_60_1
  doi: 10.1038/srep35358
– ident: e_1_2_8_9_1
  doi: 10.1016/j.polymdegradstab.2011.03.022
– ident: e_1_2_8_61_1
  doi: 10.1128/AEM.04111-14
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.biochem.7b01189
– ident: e_1_2_8_36_1
  doi: 10.1016/j.enzmictec.2020.109715
– ident: e_1_2_8_39_1
  doi: 10.1021/acscatal.0c05126
– volume: 0
  start-page: 1
  year: 2020
  ident: e_1_2_8_49_1
  publication-title: Microb. Biotechnol.
SSID ssj0060966
Score 2.512352
SecondaryResourceType review_article
Snippet The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4115
SubjectTerms Biodegradability
biorecycling
cutinases
Enzymes
Gene expression
Mutation
PET hydrolase
Polyethylene terephthalate
Thermal stability
waste plastics
Title Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202100740
https://www.ncbi.nlm.nih.gov/pubmed/33949146
https://www.proquest.com/docview/2579072638
https://www.proquest.com/docview/2522397847
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NvMDLxte28CUjIfEUSGzHTh6hGqqQQNOgEm-R7VwHokqrpn0ofz3npAkr0zRpe0uUs5LYvrvf2effAZxk2ippeRLa1FKAgkKFhtxwyLOU3ENqdFr4dcibW9UfyOuH5OGXU_wNP0S34OY1o7bXXsGNrc7fSENdVXkKQu63-aUP2n3ClkdFPzr-KEX4vD5elCoZJkrELWtjxM9Xm696pd-g5ipyrV3P1Scw7Uc3GSfPZ_OZPXMv7_gc_-evNuHjEpeyi2YibcEHLLdhvdeWg9uBgV--8hWNWEtoixV7Ktn38WiBNNrkvZDd4xQnj7NHMyIJ1l8UU4qcK2Rtfh8jiMwun8ZkZhf-TObPXRhcfbvv9cNlTYbQEXSJQllI5YYxysQ5bWycWIHKUFwptC2EFqiF4y4SFLUUUWSExSxGjZEdEhLViROfYa0cl_gVWFoogndkY4ZWSDm0aVLICF2RcaQJouIAwnZMcrckLPd1M0Z5Q7XMc99ZeddZAZx28pOGquOPkgftEOdLla1ysl1ZpDnZowCOu8fUyX4HxZQ4nnsZQlMUd0sdwJdmanSvEiKTGfmdAHg9wH_5hrx3d9fr7vb-pdE-bPjrOrUwOYC12XSOhwSRZvaoVoNXldwG4Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VciiX8oZAASOBOKVNbMdODhxgS7WlDyG6K_UWYmeWVl0l1WZXaPlX_BV-EeO80IIQElIPHJM4iWPP4xtn_A3Ai0QbJQ2PfBMbClBQKD8jN-zzJCb3EGc6zt065NGxGo7l-9PodA2-dXthGn6IfsHNaUZtr52CuwXpnZ-sobaqHAchd__5ZdDmVR7g8gtFbdXr_V2a4pec770bDYZ-W1jAt-R_A1_mUtlJiDKyVmcmjIxAlVFwJLTJhRaoheU2EAS98yDIhMEkRI2BmRCc0pEV9NxrcN2VEXd0_bsfe8YqRRFBvaEpVtKPlAg7nsiA76z2d9UP_gZuV7Fy7ez2bsL3bpiaHJeL7cXcbNuvvzBI_lfjeAs2W-jN3jS6chvWsLgDG4Ou4t1dGLsVOle0iXWcvVix84J9KKdLJIEmB41shDO8PJufZVNqwYbLfFZSAIKsS2FkFAWwt-cleZKl23b6-R6Mr-Sr7sN6URb4EFicK0KwZEYnRkg5MXGUywBtnnAkHVChB34nBKltOdldaZBp2rBJ89RNTtpPjgev-vaXDRvJH1tudTKVtlapSsk8J4HmZHI9eN5fpkF2P4myAsuFa0OAMdEEWjx40Mhi_yohEpmQa_WA1xL1lz6kg5OTQX_06F9uegYbw9HRYXq4f3zwGG6483UmZbQF6_PZAp8QIpybp7UOMvh01cL6A8hBZJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vKGBAkYCsUrr2I6dLFjADKMphaqiHam7NHYcWnWUjCYzQsNX8Sv8Edd5oQEhJKQuWMZxEse-j3P9OBfgRay0FJqFvo40BiiWSz9FN-yzOEL3EKUqytw85McDOZ6I9yfhyQZ8687CNPwQ_YSb04zaXjsFn2X57k_SUFNVjoKQuWV-Qdttlft29QWDtur13hBH-CVjo3fHg7Hf5hXwDbpf6otMSJMHVoTGqFQHoeZWphgbcaUzrrhV3DBDOSLvjNKUaxsHVlmqc0RTKjQc33sFrgpJY5csYvipJ6zCknp1NIik8EPJg44mkrLd9fauu8HfsO06VK593egWfO96qdnicrGzXOgd8_UXAsn_qRtvw80WeJM3jabcgQ1b3IXrgy7f3T2YuPk5l7KJdIy9tiLnBTkspyuL4ozu2ZJjO7ezs8VZOsUaZLzK5iWGH5Z0GxgJxgDk7XmJfmTlDp1-vg-TS_mrB7BZlIXdAhJlEvErGtFccyFyHYWZoNZkMbOoATLwwO9kIDEtI7tLDDJNGi5plrjBSfrB8eBVX3_WcJH8seZ2J1JJa5OqBI1zTBVDg-vB8_42drJbIkoLWy5dHYSLsULI4sHDRhT7T3EeixgdqwesFqi_tCEZHB0N-qtH__LQM7h2OBwlH_YO9h_DDVdcb6MMt2FzMV_aJwgHF_pprYEETi9bVn8AE3FjPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Strategies+in+Polyethylene+Terephthalate+Hydrolase+Research+for+Biorecycling&rft.jtitle=ChemSusChem&rft.au=Kawai%2C+Fusako&rft.date=2021-10-05&rft.eissn=1864-564X&rft_id=info:doi/10.1002%2Fcssc.202100740&rft_id=info%3Apmid%2F33949146&rft.externalDocID=33949146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon