MXene‐Derived Ferroelectric Crystals
This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Mat...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1806860 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
05.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
MXene‐derived high‐aspect‐ratio potassium niobate (KNbO3) single crystals are successfully synthesized using 2D Nb3C MXene and potassium hydroxide (KOH) as the niobium and potassium source, respectively. The well‐defined butterfly loops of the piezoresponse force microscopy amplitude signals and the distinct 180° switching of the phase signals further corroborate the presence of robust ferroelectricity in M‐KNbO3 crystals. |
---|---|
AbstractList | This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
MXene‐derived high‐aspect‐ratio potassium niobate (KNbO3) single crystals are successfully synthesized using 2D Nb3C MXene and potassium hydroxide (KOH) as the niobium and potassium source, respectively. The well‐defined butterfly loops of the piezoresponse force microscopy amplitude signals and the distinct 180° switching of the phase signals further corroborate the presence of robust ferroelectricity in M‐KNbO3 crystals. This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO ) ferroelectric crystals is successfully synthesized using 2D Nb C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO crystals exhibit a saturated polarization of ≈21 µC cm , a remnant polarization of ≈17 µC cm , and a coercive field of ≈50 kV cm . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric crystals is successfully synthesized using 2D Nb2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm-2 , a remnant polarization of ≈17 µC cm-2 , and a coercive field of ≈50 kV cm-1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric crystals is successfully synthesized using 2D Nb2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm-2 , a remnant polarization of ≈17 µC cm-2 , and a coercive field of ≈50 kV cm-1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO 3 ) ferroelectric crystals is successfully synthesized using 2D Nb 2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO 3 orthorhombic phase with Amm 2 symmetry is obtained. Additionally, ferroelectricity in KNbO 3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO 3 crystals exhibit a saturated polarization of ≈21 µC cm −2 , a remnant polarization of ≈17 µC cm −2 , and a coercive field of ≈50 kV cm −1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. |
Author | Ming, Fangwang Zhang, Junwei Tu, Shaobo Alshareef, Husam N. Zhang, Xixiang |
Author_xml | – sequence: 1 givenname: Shaobo orcidid: 0000-0002-9684-689X surname: Tu fullname: Tu, Shaobo organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Fangwang orcidid: 0000-0003-4574-9720 surname: Ming fullname: Ming, Fangwang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Xixiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xixiang email: xixiang.zhang@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30762903$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKw0AUQAep2IduXUpBEDepdx6ZZJaltSq0uFFwFyaTG0jJo84kSnd-gt_ol5jSWqEgru7mnHsvp086ZVUiIecURhSA3eik0CMGNAQZSjgiPeoz6glQfof0QHHfU1KEXdJ3bgkASoI8IV0OgWQKeI9cLV6wxK-Pzyna7A2T4QytrTBHU9vMDCd27Wqdu1NynLYDz3ZzQJ5nt0-Te2_-ePcwGc89I7gCj8dhgkJJBpJqGQAGIA0ogdpo5D5LpI9hHAtuYt-kgqVoQqqZMomMBYLPB-R6u3dlq9cGXR0VmTOY57rEqnERY8CoEpzJFr08QJdVY8v2uw1FAwharqUudlQTF5hEK5sV2q6jnwItMNoCxlbOWUz3CIVokzjaJI72iVtBHAgmq3WdVWVtdZb_ramt9p7luP7nSDSeLsa_7jeos47I |
CitedBy_id | crossref_primary_10_1039_D0RA04568C crossref_primary_10_1007_s10853_020_04663_x crossref_primary_10_1021_acsanm_3c02004 crossref_primary_10_1016_j_matt_2023_01_019 crossref_primary_10_1002_adfm_202418230 crossref_primary_10_1021_acs_inorgchem_3c01286 crossref_primary_10_1002_adfm_201909843 crossref_primary_10_1021_jacs_9b11446 crossref_primary_10_1063_5_0070118 crossref_primary_10_1016_j_nanoen_2022_107008 crossref_primary_10_1039_D0TC03384G crossref_primary_10_1002_smll_202107987 crossref_primary_10_1002_smtd_202201559 crossref_primary_10_1002_smtd_202000630 crossref_primary_10_1002_advs_202303998 crossref_primary_10_1021_acsabm_0c00007 crossref_primary_10_1039_D4TA07376B crossref_primary_10_1021_acssuschemeng_2c03508 crossref_primary_10_1039_D4RA07447E crossref_primary_10_1016_j_cej_2023_147387 crossref_primary_10_1039_D0SE00927J crossref_primary_10_1002_adma_202004039 crossref_primary_10_1021_acs_est_1c02452 crossref_primary_10_1002_smll_202204942 crossref_primary_10_1021_acsaem_0c01906 crossref_primary_10_1016_j_compscitech_2021_109191 crossref_primary_10_1002_smll_202306572 crossref_primary_10_1021_acsenergylett_1c01656 crossref_primary_10_1063_5_0156495 crossref_primary_10_1016_j_joule_2021_09_006 crossref_primary_10_1021_acsmaterialslett_9b00419 crossref_primary_10_1002_adfm_202113367 crossref_primary_10_1016_j_mattod_2023_01_020 crossref_primary_10_1002_smll_202300914 crossref_primary_10_1021_acs_est_2c06842 crossref_primary_10_1039_D0NR06773C crossref_primary_10_1021_acsaem_2c00676 crossref_primary_10_1002_advs_202003185 |
Cites_doi | 10.1088/1361-6528/aa53c2 10.1016/j.materresbull.2007.06.043 10.1038/nature12622 10.1111/j.1151-2916.1967.tb15121.x 10.1021/jacs.7b07818 10.1039/b907561p 10.1039/b400130n 10.1111/j.1551-2916.2009.03240.x 10.1002/anie.201606643 10.1021/ja500506k 10.1063/1.354934 10.1063/1.95796 10.1016/j.supflu.2005.02.005 10.1155/2013/567420 10.1016/j.jpowsour.2016.03.066 10.1021/acsnano.7b08895 10.1103/PhysRev.82.727 10.1111/j.1551-2916.2005.00347.x 10.1063/1.4929565 10.1103/PhysRevB.13.3109 10.1557/mrs2009.174 10.1016/0960-8974(90)90023-L 10.1021/acsami.5b03737 10.1016/j.snb.2015.04.090 10.1098/rsos.180368 10.1016/j.ijhydene.2006.10.005 10.1016/j.elecom.2012.01.002 10.1021/acsenergylett.8b00270 10.1038/natrevmats.2016.98 10.1038/ncomms2664 10.1038/nature05921 10.1002/pssa.2211370122 10.1557/JMR.2003.0044 10.1038/ncomms8747 10.1116/1.1288195 10.1007/BF00587695 10.1021/jp053800a 10.1021/ja405735d 10.1021/cm500381g |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806860 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30762903 10_1002_adma_201806860 ADMA201806860 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4390-3b8de4962061a670e706c094eacae352d65e8bb43cb5cf42fec81a29cd6b4e053 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:50:59 EDT 2025 Fri Jul 25 04:44:43 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Tue Jul 01 00:44:49 EDT 2025 Wed Jan 22 16:36:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | MXene-derived MAX phase hydrothermal synthesis single crystal ferroelectricity |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-3b8de4962061a670e706c094eacae352d65e8bb43cb5cf42fec81a29cd6b4e053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4574-9720 0000-0001-5029-2142 0000-0002-3478-6414 0000-0002-9684-689X |
PMID | 30762903 |
PQID | 2201707943 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2202194326 proquest_journals_2201707943 pubmed_primary_30762903 crossref_primary_10_1002_adma_201806860 crossref_citationtrail_10_1002_adma_201806860 wiley_primary_10_1002_adma_201806860_ADMA201806860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 5, 2019 |
PublicationDateYYYYMMDD | 2019-04-05 |
PublicationDate_xml | – month: 04 year: 2019 text: April 5, 2019 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2017; 2 2013; 4 2007; 447 2017; 28 2013; 503 2014; 26 2006; 110 2016; 326 2003; 18 2012; 16 2015; 107 1951; 82 2007; 32 2015; 7 2014; 136 2005; 88 1985; 46 2017; 139 2016; 55 2009; 34 2009; 11 1990; 20 2018; 3 2000; 18 1976; 13 2018; 5 2004; 432 1990; 25 2009; 92 2013; 2013 2004; 14 1967; 50 1993; 74 2013; 135 2008; 43 2015; 218 2018; 12 1993; 137 2005; 35 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_40_1 (e_1_2_5_13_1) 2004; 432 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 218 start-page: 60 year: 2015 publication-title: Sens. Actuators, B – volume: 34 start-page: 634 year: 2009 publication-title: MRS Bull. – volume: 5 start-page: 180368 year: 2018 publication-title: R. Soc. Open Sci. – volume: 11 start-page: 1958 year: 2009 publication-title: CrystEngComm – volume: 137 start-page: 247 year: 1993 publication-title: Phys. Status Solidi A – volume: 6 start-page: 1 year: 2015 publication-title: Nat. Commun. – volume: 135 start-page: 15966 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 432 start-page: 1 year: 2004 publication-title: Phys. Status Solidi B – volume: 26 start-page: 2195 year: 2014 publication-title: Chem. Mater. – volume: 20 start-page: 161 year: 1990 publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 139 start-page: 16235 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 2269 year: 2007 publication-title: Int. J. Hydrogen Energy – volume: 136 start-page: 4113 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 254 year: 2005 publication-title: J. Supercrit. Fluids – volume: 326 start-page: 686 year: 2016 publication-title: J. Power Sources – volume: 7 start-page: 13707 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 110 start-page: 58 year: 2006 publication-title: J. Phys. Chem. B – volume: 16 start-page: 61 year: 2012 publication-title: Electrochem. Commun. – volume: 46 start-page: 1018 year: 1985 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 338 year: 2003 publication-title: J. Mater. Res. – volume: 18 start-page: 2412 year: 2000 publication-title: J. Vac. Sci. Technol., A – volume: 43 start-page: 1412 year: 2008 publication-title: Mat. Res. Bull. – volume: 82 start-page: 727 year: 1951 publication-title: Phys. Rev. – volume: 88 start-page: 1754 year: 2005 publication-title: J. Am. Ceram. Soc. – volume: 50 start-page: 329 year: 1967 publication-title: J. Am. Ceram. Soc. – volume: 74 start-page: 1287 year: 1993 publication-title: J. Appl. Phys. – volume: 503 start-page: 509 year: 2013 publication-title: Nature – volume: 14 start-page: 2046 year: 2004 publication-title: J. Mater. Chem. – volume: 107 start-page: 081602 year: 2015 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 1629 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 3 start-page: 970 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 16098 year: 2017 publication-title: Nat. Rev. Mater. – volume: 55 start-page: 14569 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1 year: 2013 publication-title: Nat. Commun. – volume: 13 start-page: 3109 year: 1976 publication-title: Phys. Rev. B – volume: 2013 start-page: 567420 year: 2013 publication-title: Adv. Condens. Matter Phys. – volume: 12 start-page: 3369 year: 2018 publication-title: ACS Nano – volume: 447 start-page: 1098 year: 2007 publication-title: Nature – volume: 25 start-page: 3333 year: 1990 publication-title: J. Mater. Sci. – volume: 28 start-page: 075706 year: 2017 publication-title: Nanotechnology – ident: e_1_2_5_24_1 doi: 10.1088/1361-6528/aa53c2 – ident: e_1_2_5_40_1 doi: 10.1016/j.materresbull.2007.06.043 – ident: e_1_2_5_10_1 doi: 10.1038/nature12622 – ident: e_1_2_5_23_1 doi: 10.1111/j.1151-2916.1967.tb15121.x – ident: e_1_2_5_28_1 doi: 10.1021/jacs.7b07818 – ident: e_1_2_5_20_1 doi: 10.1039/b907561p – ident: e_1_2_5_21_1 doi: 10.1039/b400130n – ident: e_1_2_5_37_1 doi: 10.1111/j.1551-2916.2009.03240.x – ident: e_1_2_5_9_1 doi: 10.1002/anie.201606643 – ident: e_1_2_5_5_1 doi: 10.1021/ja500506k – ident: e_1_2_5_12_1 doi: 10.1063/1.354934 – ident: e_1_2_5_11_1 doi: 10.1063/1.95796 – ident: e_1_2_5_22_1 doi: 10.1016/j.supflu.2005.02.005 – ident: e_1_2_5_34_1 doi: 10.1155/2013/567420 – ident: e_1_2_5_27_1 doi: 10.1016/j.jpowsour.2016.03.066 – ident: e_1_2_5_6_1 doi: 10.1021/acsnano.7b08895 – ident: e_1_2_5_16_1 doi: 10.1103/PhysRev.82.727 – ident: e_1_2_5_18_1 doi: 10.1111/j.1551-2916.2005.00347.x – ident: e_1_2_5_29_1 doi: 10.1063/1.4929565 – ident: e_1_2_5_32_1 doi: 10.1103/PhysRevB.13.3109 – ident: e_1_2_5_36_1 doi: 10.1557/mrs2009.174 – ident: e_1_2_5_15_1 doi: 10.1016/0960-8974(90)90023-L – ident: e_1_2_5_7_1 doi: 10.1021/acsami.5b03737 – ident: e_1_2_5_8_1 doi: 10.1016/j.snb.2015.04.090 – ident: e_1_2_5_30_1 doi: 10.1098/rsos.180368 – ident: e_1_2_5_33_1 doi: 10.1016/j.ijhydene.2006.10.005 – ident: e_1_2_5_2_1 doi: 10.1016/j.elecom.2012.01.002 – ident: e_1_2_5_26_1 doi: 10.1021/acsenergylett.8b00270 – ident: e_1_2_5_1_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_5_3_1 doi: 10.1038/ncomms2664 – ident: e_1_2_5_14_1 doi: 10.1038/nature05921 – ident: e_1_2_5_35_1 doi: 10.1002/pssa.2211370122 – ident: e_1_2_5_17_1 doi: 10.1557/JMR.2003.0044 – ident: e_1_2_5_25_1 doi: 10.1038/ncomms8747 – ident: e_1_2_5_39_1 doi: 10.1116/1.1288195 – ident: e_1_2_5_19_1 doi: 10.1007/BF00587695 – volume: 432 start-page: 1 year: 2004 ident: e_1_2_5_13_1 publication-title: Phys. Status Solidi B – ident: e_1_2_5_31_1 doi: 10.1021/jp053800a – ident: e_1_2_5_4_1 doi: 10.1021/ja405735d – ident: e_1_2_5_38_1 doi: 10.1021/cm500381g |
SSID | ssj0009606 |
Score | 2.4910073 |
Snippet | This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric... This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO 3 ) ferroelectric... This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO ) ferroelectric... This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1806860 |
SubjectTerms | Coercivity Crystal growth Ferroelectric crystals Ferroelectric materials Ferroelectricity hydrothermal synthesis Materials science MAX phase MXenes MXene‐derived Niobium carbide Orthorhombic phase Polarization Potassium Potassium hydroxides Potassium niobates single crystal |
Title | MXene‐Derived Ferroelectric Crystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806860 https://www.ncbi.nlm.nih.gov/pubmed/30762903 https://www.proquest.com/docview/2201707943 https://www.proquest.com/docview/2202194326 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqlOqSD61K1L07R5HJtjCPNBHOytJGkK4uik2wR98if4G_0lnqSXbYoI-tZLDs3pyTn5cvsOQhfCV57vJp7DpCIOIV7i8IRRR7qCuiSQ-jSj3m1xS_tDcjPyR0un-HN-iGrCTXuGidfawbmYNhekoTw2vEGtUB9y0IN2vWFLo6K7BX-UhueGbM_zHUZJWLI2uri5Kr7aK32DmqvI1XQ9vS3Ey0rnO04eG_OZaMjXL3yO_9FqG20WuNRu5w1pB62pdBdtLLEV7qHLwQgC48fbexcePKvY7qksm-R5dB6k3cleAGmOp_to2Lu-7_SdIs2CIwGNQBQWYawIoxi6dk4DVwUulTDqg5DMwZA4pr4KhSCeFL5MCE6UDFscMxlTQXRmiQNUSyepOkI2JkIyFhOmFCUCsBAHgBGDpC8CqaiwkFP-5kgWHOQ6FcY4ytmTcaT1jyr9LXRVlX_K2Td-LFkvrRYVXjiNMNbsQJoCz0Ln1WvwH70owlM1mZsyELQJoFgLHebWrj4F8Y9i5oI0Njb7pQ5RuztoV3fHfxE6QetwbZarXL-OarNsrk4B9czEmWnZn8Xg9yk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YPKgH3w8UFROjp0LZbpfukYAEFTgYSLg13e02MRIwPEz05E_wN_pLnN3SIhpjosdud9Kdzs7st69vAM6FqxzXjhyLS0UtSp3ICiLOLGkLZtOy1LcZ9WmLNmt06U3PTU4T6rswMT9EuuCmPcPEa-3gekG6OGcNDUJDHFTy9C0HnLUv67TeZlZ1N2eQ0gDd0O05rsUZ9RLeRpsUF-UXx6VvYHMRu5rBp74BIml2fObkoTCdiIJ8-cLo-C-9NmF9Bk3zlbgvbcGSGmzD2ifCwh24aPUwNr6_vtWw4EmF-boajYZxKp17ma-OnhFs9se70K1fdaoNa5ZpwZIISDAQCy9UlDOCo3vAyrYq20zixA-jcoC2JCFzlScEdaRwZURJpKRXCgiXIRNUJ5fYg8xgOFAHkCdUSM5DypViVCAcChBjhCjpirJUTGTBSv6zL2c05DobRt-PCZSJr_X3U_2zcJnWf4wJOH6smUvM5s8ccewTogmCNAteFs7S1-hCel8kGKjh1NTBuE0RyGZhPzZ3-ikMgYxwG6WJMdovbfArtVYlfTr8i9AprDQ6rabfvG7fHsEqlpvdK9vNQWYymqpjBEETcWK6-QdE7_tE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD98t06gTRp25ZmmbN49gc87Ih4mBvpUlTEEc3dhH0yZ_gb_SXeNJu3aaIoI9Nc2hOT87Jl9t3AM6ko22HhLYllGYWY3Zo-aHgliKSE1ZS5jajOW3R5PUWu2477Zlb_Ak_RLrgZjwjjtfGwXtBWJiShvpBzBtUdM0lB5y0LzFOXNOvq_dTAimDz2O2PduxBGfuhLaR0MK8_Pyw9A1rzkPXeOyprYM_aXVy5OQpPxrKvHr9Quj4H7U2YG0MTHPlpCdtwoKOtmB1hq5wG84bbYyMH2_vVSx41kGupvv9bpJI51HlKv0XhJqdwQ60apcPlbo1zrNgKYQjGIalG2gmOMWx3eclokuEK5z2YUz20ZI04I52pWS2ko4KGQ21cos-FSrgkpnUEruwGHUjvQ85yqQSImBCa84kgiEfEUaAko4sKc1lBqzJb_bUmITc5MLoeAl9MvWM_l6qfwYu0vq9hH7jx5rZidW8sRsOPEoNPZDhwMvAafoaHcjsiviR7o7iOhi1GcLYDOwl1k4_hQGQU0FQmsY2-6UNXrnaKKdPB38ROoHlu2rNu71q3hzCChbHW1fEycLisD_SR4iAhvI47uSfZ-n5_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-Derived+Ferroelectric+Crystals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tu%2C+Shaobo&rft.au=Ming%2C+Fangwang&rft.au=Zhang%2C+Junwei&rft.au=Zhang%2C+Xixiang&rft.date=2019-04-05&rft.eissn=1521-4095&rft.spage=e1806860&rft_id=info:doi/10.1002%2Fadma.201806860&rft_id=info%3Apmid%2F30762903&rft.externalDocID=30762903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |