MXene‐Derived Ferroelectric Crystals

This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Mat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 14; pp. e1806860 - n/a
Main Authors Tu, Shaobo, Ming, Fangwang, Zhang, Junwei, Zhang, Xixiang, Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. MXene‐derived high‐aspect‐ratio potassium niobate (KNbO3) single crystals are successfully synthesized using 2D Nb3C MXene and potassium hydroxide (KOH) as the niobium and potassium source, respectively. The well‐defined butterfly loops of the piezoresponse force microscopy amplitude signals and the distinct 180° switching of the phase signals further corroborate the presence of robust ferroelectricity in M‐KNbO3 crystals.
AbstractList This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals. MXene‐derived high‐aspect‐ratio potassium niobate (KNbO3) single crystals are successfully synthesized using 2D Nb3C MXene and potassium hydroxide (KOH) as the niobium and potassium source, respectively. The well‐defined butterfly loops of the piezoresponse force microscopy amplitude signals and the distinct 180° switching of the phase signals further corroborate the presence of robust ferroelectricity in M‐KNbO3 crystals.
This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO ) ferroelectric crystals is successfully synthesized using 2D Nb C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO crystals exhibit a saturated polarization of ≈21 µC cm , a remnant polarization of ≈17 µC cm , and a coercive field of ≈50 kV cm . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric crystals is successfully synthesized using 2D Nb2C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm−2, a remnant polarization of ≈17 µC cm−2, and a coercive field of ≈50 kV cm−1. This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric crystals is successfully synthesized using 2D Nb2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm-2 , a remnant polarization of ≈17 µC cm-2 , and a coercive field of ≈50 kV cm-1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric crystals is successfully synthesized using 2D Nb2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm-2 , a remnant polarization of ≈17 µC cm-2 , and a coercive field of ≈50 kV cm-1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO 3 ) ferroelectric crystals is successfully synthesized using 2D Nb 2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO 3 orthorhombic phase with Amm 2 symmetry is obtained. Additionally, ferroelectricity in KNbO 3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO 3 crystals exhibit a saturated polarization of ≈21 µC cm −2 , a remnant polarization of ≈17 µC cm −2 , and a coercive field of ≈50 kV cm −1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.
Author Ming, Fangwang
Zhang, Junwei
Tu, Shaobo
Alshareef, Husam N.
Zhang, Xixiang
Author_xml – sequence: 1
  givenname: Shaobo
  orcidid: 0000-0002-9684-689X
  surname: Tu
  fullname: Tu, Shaobo
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Fangwang
  orcidid: 0000-0003-4574-9720
  surname: Ming
  fullname: Ming, Fangwang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Xixiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xixiang
  email: xixiang.zhang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30762903$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKw0AUQAep2IduXUpBEDepdx6ZZJaltSq0uFFwFyaTG0jJo84kSnd-gt_ol5jSWqEgru7mnHsvp086ZVUiIecURhSA3eik0CMGNAQZSjgiPeoz6glQfof0QHHfU1KEXdJ3bgkASoI8IV0OgWQKeI9cLV6wxK-Pzyna7A2T4QytrTBHU9vMDCd27Wqdu1NynLYDz3ZzQJ5nt0-Te2_-ePcwGc89I7gCj8dhgkJJBpJqGQAGIA0ogdpo5D5LpI9hHAtuYt-kgqVoQqqZMomMBYLPB-R6u3dlq9cGXR0VmTOY57rEqnERY8CoEpzJFr08QJdVY8v2uw1FAwharqUudlQTF5hEK5sV2q6jnwItMNoCxlbOWUz3CIVokzjaJI72iVtBHAgmq3WdVWVtdZb_ramt9p7luP7nSDSeLsa_7jeos47I
CitedBy_id crossref_primary_10_1039_D0RA04568C
crossref_primary_10_1007_s10853_020_04663_x
crossref_primary_10_1021_acsanm_3c02004
crossref_primary_10_1016_j_matt_2023_01_019
crossref_primary_10_1002_adfm_202418230
crossref_primary_10_1021_acs_inorgchem_3c01286
crossref_primary_10_1002_adfm_201909843
crossref_primary_10_1021_jacs_9b11446
crossref_primary_10_1063_5_0070118
crossref_primary_10_1016_j_nanoen_2022_107008
crossref_primary_10_1039_D0TC03384G
crossref_primary_10_1002_smll_202107987
crossref_primary_10_1002_smtd_202201559
crossref_primary_10_1002_smtd_202000630
crossref_primary_10_1002_advs_202303998
crossref_primary_10_1021_acsabm_0c00007
crossref_primary_10_1039_D4TA07376B
crossref_primary_10_1021_acssuschemeng_2c03508
crossref_primary_10_1039_D4RA07447E
crossref_primary_10_1016_j_cej_2023_147387
crossref_primary_10_1039_D0SE00927J
crossref_primary_10_1002_adma_202004039
crossref_primary_10_1021_acs_est_1c02452
crossref_primary_10_1002_smll_202204942
crossref_primary_10_1021_acsaem_0c01906
crossref_primary_10_1016_j_compscitech_2021_109191
crossref_primary_10_1002_smll_202306572
crossref_primary_10_1021_acsenergylett_1c01656
crossref_primary_10_1063_5_0156495
crossref_primary_10_1016_j_joule_2021_09_006
crossref_primary_10_1021_acsmaterialslett_9b00419
crossref_primary_10_1002_adfm_202113367
crossref_primary_10_1016_j_mattod_2023_01_020
crossref_primary_10_1002_smll_202300914
crossref_primary_10_1021_acs_est_2c06842
crossref_primary_10_1039_D0NR06773C
crossref_primary_10_1021_acsaem_2c00676
crossref_primary_10_1002_advs_202003185
Cites_doi 10.1088/1361-6528/aa53c2
10.1016/j.materresbull.2007.06.043
10.1038/nature12622
10.1111/j.1151-2916.1967.tb15121.x
10.1021/jacs.7b07818
10.1039/b907561p
10.1039/b400130n
10.1111/j.1551-2916.2009.03240.x
10.1002/anie.201606643
10.1021/ja500506k
10.1063/1.354934
10.1063/1.95796
10.1016/j.supflu.2005.02.005
10.1155/2013/567420
10.1016/j.jpowsour.2016.03.066
10.1021/acsnano.7b08895
10.1103/PhysRev.82.727
10.1111/j.1551-2916.2005.00347.x
10.1063/1.4929565
10.1103/PhysRevB.13.3109
10.1557/mrs2009.174
10.1016/0960-8974(90)90023-L
10.1021/acsami.5b03737
10.1016/j.snb.2015.04.090
10.1098/rsos.180368
10.1016/j.ijhydene.2006.10.005
10.1016/j.elecom.2012.01.002
10.1021/acsenergylett.8b00270
10.1038/natrevmats.2016.98
10.1038/ncomms2664
10.1038/nature05921
10.1002/pssa.2211370122
10.1557/JMR.2003.0044
10.1038/ncomms8747
10.1116/1.1288195
10.1007/BF00587695
10.1021/jp053800a
10.1021/ja405735d
10.1021/cm500381g
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201806860
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30762903
10_1002_adma_201806860
ADMA201806860
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4390-3b8de4962061a670e706c094eacae352d65e8bb43cb5cf42fec81a29cd6b4e053
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:50:59 EDT 2025
Fri Jul 25 04:44:43 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 00:44:49 EDT 2025
Wed Jan 22 16:36:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords MXene-derived
MAX phase
hydrothermal synthesis
single crystal
ferroelectricity
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-3b8de4962061a670e706c094eacae352d65e8bb43cb5cf42fec81a29cd6b4e053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4574-9720
0000-0001-5029-2142
0000-0002-3478-6414
0000-0002-9684-689X
PMID 30762903
PQID 2201707943
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2202194326
proquest_journals_2201707943
pubmed_primary_30762903
crossref_primary_10_1002_adma_201806860
crossref_citationtrail_10_1002_adma_201806860
wiley_primary_10_1002_adma_201806860_ADMA201806860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 5, 2019
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: April 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2017; 2
2013; 4
2007; 447
2017; 28
2013; 503
2014; 26
2006; 110
2016; 326
2003; 18
2012; 16
2015; 107
1951; 82
2007; 32
2015; 7
2014; 136
2005; 88
1985; 46
2017; 139
2016; 55
2009; 34
2009; 11
1990; 20
2018; 3
2000; 18
1976; 13
2018; 5
2004; 432
1990; 25
2009; 92
2013; 2013
2004; 14
1967; 50
1993; 74
2013; 135
2008; 43
2015; 218
2018; 12
1993; 137
2005; 35
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_40_1
(e_1_2_5_13_1) 2004; 432
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 218
  start-page: 60
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 34
  start-page: 634
  year: 2009
  publication-title: MRS Bull.
– volume: 5
  start-page: 180368
  year: 2018
  publication-title: R. Soc. Open Sci.
– volume: 11
  start-page: 1958
  year: 2009
  publication-title: CrystEngComm
– volume: 137
  start-page: 247
  year: 1993
  publication-title: Phys. Status Solidi A
– volume: 6
  start-page: 1
  year: 2015
  publication-title: Nat. Commun.
– volume: 135
  start-page: 15966
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 432
  start-page: 1
  year: 2004
  publication-title: Phys. Status Solidi B
– volume: 26
  start-page: 2195
  year: 2014
  publication-title: Chem. Mater.
– volume: 20
  start-page: 161
  year: 1990
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 139
  start-page: 16235
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 2269
  year: 2007
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 4113
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 254
  year: 2005
  publication-title: J. Supercrit. Fluids
– volume: 326
  start-page: 686
  year: 2016
  publication-title: J. Power Sources
– volume: 7
  start-page: 13707
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  start-page: 58
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 16
  start-page: 61
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 46
  start-page: 1018
  year: 1985
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 338
  year: 2003
  publication-title: J. Mater. Res.
– volume: 18
  start-page: 2412
  year: 2000
  publication-title: J. Vac. Sci. Technol., A
– volume: 43
  start-page: 1412
  year: 2008
  publication-title: Mat. Res. Bull.
– volume: 82
  start-page: 727
  year: 1951
  publication-title: Phys. Rev.
– volume: 88
  start-page: 1754
  year: 2005
  publication-title: J. Am. Ceram. Soc.
– volume: 50
  start-page: 329
  year: 1967
  publication-title: J. Am. Ceram. Soc.
– volume: 74
  start-page: 1287
  year: 1993
  publication-title: J. Appl. Phys.
– volume: 503
  start-page: 509
  year: 2013
  publication-title: Nature
– volume: 14
  start-page: 2046
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 107
  start-page: 081602
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 1629
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 970
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 16098
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 55
  start-page: 14569
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1
  year: 2013
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3109
  year: 1976
  publication-title: Phys. Rev. B
– volume: 2013
  start-page: 567420
  year: 2013
  publication-title: Adv. Condens. Matter Phys.
– volume: 12
  start-page: 3369
  year: 2018
  publication-title: ACS Nano
– volume: 447
  start-page: 1098
  year: 2007
  publication-title: Nature
– volume: 25
  start-page: 3333
  year: 1990
  publication-title: J. Mater. Sci.
– volume: 28
  start-page: 075706
  year: 2017
  publication-title: Nanotechnology
– ident: e_1_2_5_24_1
  doi: 10.1088/1361-6528/aa53c2
– ident: e_1_2_5_40_1
  doi: 10.1016/j.materresbull.2007.06.043
– ident: e_1_2_5_10_1
  doi: 10.1038/nature12622
– ident: e_1_2_5_23_1
  doi: 10.1111/j.1151-2916.1967.tb15121.x
– ident: e_1_2_5_28_1
  doi: 10.1021/jacs.7b07818
– ident: e_1_2_5_20_1
  doi: 10.1039/b907561p
– ident: e_1_2_5_21_1
  doi: 10.1039/b400130n
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1551-2916.2009.03240.x
– ident: e_1_2_5_9_1
  doi: 10.1002/anie.201606643
– ident: e_1_2_5_5_1
  doi: 10.1021/ja500506k
– ident: e_1_2_5_12_1
  doi: 10.1063/1.354934
– ident: e_1_2_5_11_1
  doi: 10.1063/1.95796
– ident: e_1_2_5_22_1
  doi: 10.1016/j.supflu.2005.02.005
– ident: e_1_2_5_34_1
  doi: 10.1155/2013/567420
– ident: e_1_2_5_27_1
  doi: 10.1016/j.jpowsour.2016.03.066
– ident: e_1_2_5_6_1
  doi: 10.1021/acsnano.7b08895
– ident: e_1_2_5_16_1
  doi: 10.1103/PhysRev.82.727
– ident: e_1_2_5_18_1
  doi: 10.1111/j.1551-2916.2005.00347.x
– ident: e_1_2_5_29_1
  doi: 10.1063/1.4929565
– ident: e_1_2_5_32_1
  doi: 10.1103/PhysRevB.13.3109
– ident: e_1_2_5_36_1
  doi: 10.1557/mrs2009.174
– ident: e_1_2_5_15_1
  doi: 10.1016/0960-8974(90)90023-L
– ident: e_1_2_5_7_1
  doi: 10.1021/acsami.5b03737
– ident: e_1_2_5_8_1
  doi: 10.1016/j.snb.2015.04.090
– ident: e_1_2_5_30_1
  doi: 10.1098/rsos.180368
– ident: e_1_2_5_33_1
  doi: 10.1016/j.ijhydene.2006.10.005
– ident: e_1_2_5_2_1
  doi: 10.1016/j.elecom.2012.01.002
– ident: e_1_2_5_26_1
  doi: 10.1021/acsenergylett.8b00270
– ident: e_1_2_5_1_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_5_3_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_5_14_1
  doi: 10.1038/nature05921
– ident: e_1_2_5_35_1
  doi: 10.1002/pssa.2211370122
– ident: e_1_2_5_17_1
  doi: 10.1557/JMR.2003.0044
– ident: e_1_2_5_25_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_5_39_1
  doi: 10.1116/1.1288195
– ident: e_1_2_5_19_1
  doi: 10.1007/BF00587695
– volume: 432
  start-page: 1
  year: 2004
  ident: e_1_2_5_13_1
  publication-title: Phys. Status Solidi B
– ident: e_1_2_5_31_1
  doi: 10.1021/jp053800a
– ident: e_1_2_5_4_1
  doi: 10.1021/ja405735d
– ident: e_1_2_5_38_1
  doi: 10.1021/cm500381g
SSID ssj0009606
Score 2.4910073
Snippet This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO3) ferroelectric...
This study demonstrates the first synthesis of MXene‐derived ferroelectric crystals. Specifically, high‐aspect‐ratio potassium niobate (KNbO 3 ) ferroelectric...
This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO ) ferroelectric...
This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1806860
SubjectTerms Coercivity
Crystal growth
Ferroelectric crystals
Ferroelectric materials
Ferroelectricity
hydrothermal synthesis
Materials science
MAX phase
MXenes
MXene‐derived
Niobium carbide
Orthorhombic phase
Polarization
Potassium
Potassium hydroxides
Potassium niobates
single crystal
Title MXene‐Derived Ferroelectric Crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806860
https://www.ncbi.nlm.nih.gov/pubmed/30762903
https://www.proquest.com/docview/2201707943
https://www.proquest.com/docview/2202194326
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqlOqSD61K1L07R5HJtjCPNBHOytJGkK4uik2wR98if4G_0lnqSXbYoI-tZLDs3pyTn5cvsOQhfCV57vJp7DpCIOIV7i8IRRR7qCuiSQ-jSj3m1xS_tDcjPyR0un-HN-iGrCTXuGidfawbmYNhekoTw2vEGtUB9y0IN2vWFLo6K7BX-UhueGbM_zHUZJWLI2uri5Kr7aK32DmqvI1XQ9vS3Ey0rnO04eG_OZaMjXL3yO_9FqG20WuNRu5w1pB62pdBdtLLEV7qHLwQgC48fbexcePKvY7qksm-R5dB6k3cleAGmOp_to2Lu-7_SdIs2CIwGNQBQWYawIoxi6dk4DVwUulTDqg5DMwZA4pr4KhSCeFL5MCE6UDFscMxlTQXRmiQNUSyepOkI2JkIyFhOmFCUCsBAHgBGDpC8CqaiwkFP-5kgWHOQ6FcY4ytmTcaT1jyr9LXRVlX_K2Td-LFkvrRYVXjiNMNbsQJoCz0Ln1WvwH70owlM1mZsyELQJoFgLHebWrj4F8Y9i5oI0Njb7pQ5RuztoV3fHfxE6QetwbZarXL-OarNsrk4B9czEmWnZn8Xg9yk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YPKgH3w8UFROjp0LZbpfukYAEFTgYSLg13e02MRIwPEz05E_wN_pLnN3SIhpjosdud9Kdzs7st69vAM6FqxzXjhyLS0UtSp3ICiLOLGkLZtOy1LcZ9WmLNmt06U3PTU4T6rswMT9EuuCmPcPEa-3gekG6OGcNDUJDHFTy9C0HnLUv67TeZlZ1N2eQ0gDd0O05rsUZ9RLeRpsUF-UXx6VvYHMRu5rBp74BIml2fObkoTCdiIJ8-cLo-C-9NmF9Bk3zlbgvbcGSGmzD2ifCwh24aPUwNr6_vtWw4EmF-boajYZxKp17ma-OnhFs9se70K1fdaoNa5ZpwZIISDAQCy9UlDOCo3vAyrYq20zixA-jcoC2JCFzlScEdaRwZURJpKRXCgiXIRNUJ5fYg8xgOFAHkCdUSM5DypViVCAcChBjhCjpirJUTGTBSv6zL2c05DobRt-PCZSJr_X3U_2zcJnWf4wJOH6smUvM5s8ccewTogmCNAteFs7S1-hCel8kGKjh1NTBuE0RyGZhPzZ3-ikMgYxwG6WJMdovbfArtVYlfTr8i9AprDQ6rabfvG7fHsEqlpvdK9vNQWYymqpjBEETcWK6-QdE7_tE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD98t06gTRp25ZmmbN49gc87Ih4mBvpUlTEEc3dhH0yZ_gb_SXeNJu3aaIoI9Nc2hOT87Jl9t3AM6ko22HhLYllGYWY3Zo-aHgliKSE1ZS5jajOW3R5PUWu2477Zlb_Ak_RLrgZjwjjtfGwXtBWJiShvpBzBtUdM0lB5y0LzFOXNOvq_dTAimDz2O2PduxBGfuhLaR0MK8_Pyw9A1rzkPXeOyprYM_aXVy5OQpPxrKvHr9Quj4H7U2YG0MTHPlpCdtwoKOtmB1hq5wG84bbYyMH2_vVSx41kGupvv9bpJI51HlKv0XhJqdwQ60apcPlbo1zrNgKYQjGIalG2gmOMWx3eclokuEK5z2YUz20ZI04I52pWS2ko4KGQ21cos-FSrgkpnUEruwGHUjvQ85yqQSImBCa84kgiEfEUaAko4sKc1lBqzJb_bUmITc5MLoeAl9MvWM_l6qfwYu0vq9hH7jx5rZidW8sRsOPEoNPZDhwMvAafoaHcjsiviR7o7iOhi1GcLYDOwl1k4_hQGQU0FQmsY2-6UNXrnaKKdPB38ROoHlu2rNu71q3hzCChbHW1fEycLisD_SR4iAhvI47uSfZ-n5_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-Derived+Ferroelectric+Crystals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tu%2C+Shaobo&rft.au=Ming%2C+Fangwang&rft.au=Zhang%2C+Junwei&rft.au=Zhang%2C+Xixiang&rft.date=2019-04-05&rft.eissn=1521-4095&rft.spage=e1806860&rft_id=info:doi/10.1002%2Fadma.201806860&rft_id=info%3Apmid%2F30762903&rft.externalDocID=30762903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon