Near-infrared discrimination of leafless saltcedar in wintertime Landsat TM
To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native species, winter Landsat TM5 data (16 November 2005) were analysed for a reach of the Arkansas River in Colorado, USA. Supporting spectroscopi...
Saved in:
Published in | International journal of remote sensing Vol. 29; no. 12; pp. 3577 - 3588 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
15.06.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native species, winter Landsat TM5 data (16 November 2005) were analysed for a reach of the Arkansas River in Colorado, USA. Supporting spectroscopic analysis confirmed that saltcedar could not easily be discriminated from other riparian vegetation using TM5 data when in-leaf, but bare branches could be easily distinguished due to much lower reflectance than other riparian cover. Use of TM Band 4 (B4) allowed differentiation of wintertime saltcedar into four qualitative density classes judged from high-resolution low-oblique aerial photography: high (76%-100%), medium (51%-75%), low (16%-50%), and none (0%-15%). Spectral overlap was removed from the B4 saltcedar classification using TM Band 5 (B5) thresholds to eliminate low-reflectant wet areas and higher-reflectant multi-year darkened weed canopies. The accuracy of a classification algorithm that used B5 thresholds followed by a B4 density slice was judged against high-resolution aerial photography as providing 98% discrimination of saltcedar cover from other riparian cover and about 90% discrimination of the qualitative density classes. Applying this method to the 2835 km
2
riparian corridor study area, 1298 km
2
(45.78%) was identified as containing saltcedar, with over 43% having medium or greater density. |
---|---|
AbstractList | To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native species, winter Landsat TM5 data (16 November 2005) were analysed for a reach of the Arkansas River in Colorado, USA. Supporting spectroscopic analysis confirmed that saltcedar could not easily be discriminated from other riparian vegetation using TM5 data when in-leaf, but bare branches could be easily distinguished due to much lower reflectance than other riparian cover. Use of TM Band 4 (B4) allowed differentiation of wintertime saltcedar into four qualitative density classes judged from high-resolution low-oblique aerial photography: high (76%-100%), medium (51%-75%), low (16%-50%), and none (0%-15%). Spectral overlap was removed from the B4 saltcedar classification using TM Band 5 (B5) thresholds to eliminate low-reflectant wet areas and higher-reflectant multi-year darkened weed canopies. The accuracy of a classification algorithm that used B5 thresholds followed by a B4 density slice was judged against high-resolution aerial photography as providing 98% discrimination of saltcedar cover from other riparian cover and about 90% discrimination of the qualitative density classes. Applying this method to the 2835 km2 riparian corridor study area, 1298 km2 (45.78%) was identified as containing saltcedar, with over 43% having medium or greater density. To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native species, winter Landsat TM5 data (16 November 2005) were analysed for a reach of the Arkansas River in Colorado, USA. Supporting spectroscopic analysis confirmed that saltcedar could not easily be discriminated from other riparian vegetation using TM5 data when in-leaf, but bare branches could be easily distinguished due to much lower reflectance than other riparian cover. Use of TM Band 4 (B4) allowed differentiation of wintertime saltcedar into four qualitative density classes judged from high-resolution low-oblique aerial photography: high (76%-100%), medium (51%-75%), low (16%-50%), and none (0%-15%). Spectral overlap was removed from the B4 saltcedar classification using TM Band 5 (B5) thresholds to eliminate low-reflectant wet areas and higher-reflectant multi-year darkened weed canopies. The accuracy of a classification algorithm that used B5 thresholds followed by a B4 density slice was judged against high-resolution aerial photography as providing 98% discrimination of saltcedar cover from other riparian cover and about 90% discrimination of the qualitative density classes. Applying this method to the 2835km2 riparian corridor study area, 1298km2 (45.78%) was identified as containing saltcedar, with over 43% having medium or greater density. To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native species, winter Landsat TM5 data (16 November 2005) were analysed for a reach of the Arkansas River in Colorado, USA. Supporting spectroscopic analysis confirmed that saltcedar could not easily be discriminated from other riparian vegetation using TM5 data when in-leaf, but bare branches could be easily distinguished due to much lower reflectance than other riparian cover. Use of TM Band 4 (B4) allowed differentiation of wintertime saltcedar into four qualitative density classes judged from high-resolution low-oblique aerial photography: high (76%-100%), medium (51%-75%), low (16%-50%), and none (0%-15%). Spectral overlap was removed from the B4 saltcedar classification using TM Band 5 (B5) thresholds to eliminate low-reflectant wet areas and higher-reflectant multi-year darkened weed canopies. The accuracy of a classification algorithm that used B5 thresholds followed by a B4 density slice was judged against high-resolution aerial photography as providing 98% discrimination of saltcedar cover from other riparian cover and about 90% discrimination of the qualitative density classes. Applying this method to the 2835 km 2 riparian corridor study area, 1298 km 2 (45.78%) was identified as containing saltcedar, with over 43% having medium or greater density. |
Author | Groeneveld, D. P. Watson, R. P. |
Author_xml | – sequence: 1 givenname: D. P. surname: Groeneveld fullname: Groeneveld, D. P. email: david@hydrobio.org organization: HydroBio Inc., 1220 Cerro Gordo Road – sequence: 2 givenname: R. P. surname: Watson fullname: Watson, R. P. organization: HydroBio Inc., 1220 Cerro Gordo Road |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20374946$$DView record in Pascal Francis |
BookMark | eNqFkT1PwzAQhi0EEqXwA9iywBY4x4mdSCwI8SUKLDBbF8eRjFy72EbQf4-hsFCJernBz3M6ve8e2XbeaUIOKZxQaOEUaM0o5SCACkpBtFtkQhnnZdMB3SaTr_8yA3SX7MX4AgBcNGJC7h40htK4MWDQQzGYqIKZG4fJeFf4sbAaR6tjLCLapPSAoTCueDcu6ZDMXBczdEPEVDzd75OdEW3UBz9zSp6vLp8ubsrZ4_XtxfmsVDVrUzmi6jivNRcVDl1TN03f8IEybEfRA6iqg74S-bVYjZrXNRcDbXTfdX3LGQo2JcervYvgX990THKez9bWotP-LUrGWCsAuo1gRQEa0UIGj35AjAptDsMpE-UiR4FhKStgou5qnjmx4lTwMQY9SmXSd1QpoLGSgvxqQ661kU36x_xd_p9ztnJyPT7M8d0HO8iES-vD74nsP11s1NcsmT4S-wTRdrEO |
CODEN | IJSEDK |
CitedBy_id | crossref_primary_10_1109_JSTARS_2015_2396577 crossref_primary_10_3390_rs9090913 crossref_primary_10_1080_17538947_2012_671379 crossref_primary_10_1080_2150704X_2014_928422 crossref_primary_10_1080_07352689_2011_615689 crossref_primary_10_1016_j_rse_2011_04_002 crossref_primary_10_1016_j_jenvman_2020_110652 crossref_primary_10_3390_rs13050958 crossref_primary_10_1007_s12145_021_00608_3 crossref_primary_10_1080_10106049_2010_551669 crossref_primary_10_3390_rs1030318 crossref_primary_10_3390_s90604869 crossref_primary_10_1080_01431160903130937 crossref_primary_10_1016_j_jag_2014_01_015 crossref_primary_10_1007_s10530_024_03397_0 crossref_primary_10_1088_1742_6596_1575_1_012213 crossref_primary_10_1111_j_1472_4642_2011_00761_x crossref_primary_10_1016_j_rse_2018_05_014 crossref_primary_10_1016_j_ecoinf_2023_102432 crossref_primary_10_3390_agronomy11091809 crossref_primary_10_2747_1548_1603_49_3_450 crossref_primary_10_1109_ACCESS_2020_3045057 crossref_primary_10_3390_rs13234787 crossref_primary_10_1080_01431161003674618 crossref_primary_10_2989_20702620_2018_1512787 |
Cites_doi | 10.2307/4003243 10.1007/s00267-004-0099-5 10.1080/01431160600758543 10.1071/MF9930235 10.1023/A:1020908432489 10.1016/0378-1127(90)90222-W 10.1017/S0043174500056526 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2008 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD FR3 H8D KR7 L7M |
DOI | 10.1080/01431160701711078 |
DatabaseName | CrossRef Pascal-Francis Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 3588 |
ExternalDocumentID | 10317210 20374946 10_1080_01431160701711078 271003 |
GeographicLocations | United States Colorado Arkansas River |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 6TJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDPE ABFIM ABFMO ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ H~9 IPNFZ J.P KYCEM M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UAO UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07I 1TA 4B5 ACTTO ADXEU AEHZU AEZBV AFBWG AFION AGBLW AGVKY AGWUF AI. AIDBO AKHJE AKMBP ALRRR ALXIB BGSSV BWMZZ C0- C5H CYRSC DAOYK DEXXA FETWF IFELN IQODW L8C LJTGL OPCYK TAJZE TAP TASJS UB6 VH1 VOH ZY4 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c438t-fac9664e672ad95455b56d13a8f7b00c290b277778a2fe64467d15eb99b863a73 |
ISSN | 0143-1161 |
IngestDate | Fri Jul 11 01:57:21 EDT 2025 Fri Jul 11 11:30:13 EDT 2025 Mon Jul 21 09:11:51 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Jul 01 02:16:58 EDT 2025 Wed Dec 25 08:59:49 EST 2024 Mon May 13 12:08:31 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Branching Thematic Mapper differentiation density aerial photography Space remote sensing Riparian vegetation Landsat near infrared radiation vegetation Plant leaf North America Spectral data Branch discrimination riparian environment Spectroscopical observation Native species Canopy(vegetation) Reflectance high resolution |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-fac9664e672ad95455b56d13a8f7b00c290b277778a2fe64467d15eb99b863a73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 21005780 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1080_01431160701711078 proquest_miscellaneous_21005780 crossref_primary_10_1080_01431160701711078 proquest_miscellaneous_33387009 pascalfrancis_primary_20374946 informaworld_taylorfrancis_310_1080_01431160701711078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 6/15/2008 |
PublicationDateYYYYMMDD | 2008-06-15 |
PublicationDate_xml | – month: 06 year: 2008 text: 6/15/2008 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2008 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Best R. G. (ref2) 1979 Johnston R. M. (ref7) 1993; 44 Baugh W. M. (ref1) 2006; 27 Ramsey E. W. (ref10) 1997; 13 Everitt J. H. (ref3) 1990; 38 ref4 Hewitt M. J. (ref5) 1990; 33 Ozesmi S. L. (ref9) 2002; 10 McCarthy T. S. (ref8) 1993; 89 Irish R. (ref6) 1999 Shafroth P. B. (ref11) 2005; 35 |
References_xml | – ident: ref4 doi: 10.2307/4003243 – volume: 35 start-page: 231 issue: 3 year: 2005 ident: ref11 publication-title: Environmental Management doi: 10.1007/s00267-004-0099-5 – volume: 27 start-page: 4715 year: 2006 ident: ref1 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600758543 – volume: 44 start-page: 235 issue: 2 year: 1993 ident: ref7 publication-title: Marine and Freshwater Research doi: 10.1071/MF9930235 – volume: 10 start-page: 381 issue: 5 year: 2002 ident: ref9 publication-title: Wetlands Ecology and Management doi: 10.1023/A:1020908432489 – volume: 89 start-page: 432 issue: 9 year: 1993 ident: ref8 publication-title: South African Journal of Science – volume: 33 start-page: 605 year: 1990 ident: ref5 publication-title: Forest Ecology Management doi: 10.1016/0378-1127(90)90222-W – volume-title: Landsat 7 Science Data Users Handbook year: 1999 ident: ref6 – start-page: 499 volume-title: Proceedings of the fifth William T. Pecora memorial symposium on remote sensing year: 1979 ident: ref2 – volume: 13 start-page: 281 issue: 2 year: 1997 ident: ref10 publication-title: Journal of Coastal Research – volume: 38 start-page: 273 issue: 3 year: 1990 ident: ref3 publication-title: Weed Science doi: 10.1017/S0043174500056526 |
SSID | ssj0006757 |
Score | 2.0337996 |
Snippet | To test a hypothesis that leafless riparian canopies enable accurate multi-spectral discrimination of saltcedar (Tamarix ramosissima Ledeb.) from other native... |
SourceID | proquest pascalfrancis crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3577 |
SubjectTerms | Aerial photography Animal, plant and microbial ecology Applied geophysics Biological and medical sciences canopies classification discrimination Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics Landsat Q1 Q2 Q3 Remote sensing Tamarix ramosissima Teledetection and vegetation maps USA, Arkansas R USA, Colorado Vegetation weeds winter |
Title | Near-infrared discrimination of leafless saltcedar in wintertime Landsat TM |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431160701711078 https://www.proquest.com/docview/21005780 https://www.proquest.com/docview/33387009 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4CXiU_RAcMPPFF5SuLEdh4rNlQB7aSRaRMvke042qSSojaTgL-ec2KnTQvl4yVqLSdufb-c7-zf3SH0OgpKykQaE2aYIDGTjCiqGSnBvy5ooRPepF2cTNn4In5_lVytSOxNdEmtjvWPX8aV_I9UoQ3kaqNk_0Gy3UOhAT6DfOEKEobrX8l4CjAl8KBFwyK3AbZtkS5vBc6Mrc0LqmwpZ7U2hSWc2rDthghw88UMP9pAX1kPs8m6kdrfJVzLLbEwIFgzXFrSu1vxLHXn_Ox0amt5njQK7HgVMnY5yj6dNTyCc9_qNxiEJUK1IZYNJLKtWh-97UhKwrBNp-71qdvBcLgJiaNJtwqSJq5qi3Ff26J-W4rcMR_h-aFNgWez-oCjKlarlj-p31jMOophZBPrpDG7i_Yj8CBABe6PxiefL7tlGjylNpbe_QV_5G0Tr28O2zNaeiltLZdWLuF1Ktu52VrSGzsle4AOnIOBRy1aHqI7pnqE7rla99ffH6MPPdTgPmrwvMQeNbhDDb6p8Ao12KEGZ5Mn6OLdafZ2TFxJDaJjKmpSSg3-bWwYj2SRgvWcqIQVIZWi5KCAdZQGCqaLcyGj0oCtzHgRJkalqRKMSk6for1qXplnCCtJA6OUkNzIWAaR0kZHAqzBQEap4XyAAj9nuXb55m3Zk1ke-rS0m9M8QG-6W762yVZ2dQ7WBZHXDU6dGLa75_W3eoCSHbfQHUMd9YTc_TgPsgF65aWeg3q2Z26yMvPbZQ7TAR6RCH7fg1IKa2aQHv5pkOfo_ur1fIH26sWteQkWca2OHLZ_Avytr9w |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQLb8TyaH3ghOTi2IkfR4SoFrq7p63UW2Q7jlixzaJNVrT8esZ5rNgW9tCcncT2PPyNPf4G4D1npZDapFQGqWkqraROeElLjK8LUfhMtbSL05kcn6ffLrKLfsOt7tMqYwxddkQRra-Oxh03o4eUuI-Rky6JzGiR7AXjF30fHmRGqqjngs22nhjBcHddOtJwIrQZTjX_9YmddWmHtTSmS9oaZ6zsSl3c8trtUnT6GPJhEF0Gyo-TTeNO_O8b_I53H-UTeNSjVPKpU6uncC9Uz-CwL5j-_fo5nM3QQij2fx0T2Em829vVB4tyJquSLEMsC1zXpLbLxofCrsmiIr8WbQ7C4jKQSbxjbBsyn76A89Mv889j2tdloD4VuqGl9RgkpUEqbguDECxzmSwSYXWp0Io9N8xxhY-2vAwIuKQqkiw4Y5yWwirxEg6qVRVeAXFWsOCctirY1DLufPBcI6Rglpug1AjYIJXc96TlsXbGMk8GbtObszSCD9tXfnaMHfsas79FnTftNkkv6NvN8-aqGUG25xWx51dHO2q07RyPFEAmlSM4HvQqRxuPBze2CqtNneN0IKzW7P8thBDoeJl5fcfOHcPheD6d5JOvs7M38LBLipE0yd7CQbPehHeIvBp31JrXHzZqH8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCF8qpYHq0PnJBcHDuxnSOCrgptVxxaqbfIdhyxYputNl618OuZyWPFtrCH5uwkjscz_hx_8w0h7wWvpDJ5ylRQhqXKKuakV6yC_XUpS5_pVnbxZKIOz9Jv59l5z81pelol7qGrTiiijdXo3JdlNTDiPqIkXYLCaKj1AtsXc588UJhkiRkcfLIKxICFu2xpVOEEZDMcav7rEWvL0ppoKbIlbQMDVnWVLm4F7XYlGm935VabVsAQCSg_95fR7fvfN-Qd7_yRT8mTHqPST92kekbuhfo5edSXS__x6wU5moB_MOj-AunrFDN7u-pgaGU6r-gsYFHgpqGNnUUfSrug05peTVsGwvQi0GPMMLaRnp68JGfjg9PPh6yvysB8Kk1klfWwRUqD0sKWOQCwzGWqTKQ1lQYf9iLnTmi4jBVVALildJlkweW5M0paLXfIVj2vwytCnZU8OGesDja1XDgfvDAAKLgVedB6RPhglML3kuVYOWNWJIOy6c1RGpEPq1suO72OTY3535YuYvuTpLfz7eZFvI4jkm24RW541e7aLFp1TqAAUJ6qEdkbplUBHo7HNrYO82VTwHAAqDb8_y2klBB2ef76jp3bIw-_fxkXx18nR2_I444Ro1iSvSVbcbEM7wB2RbfbOtcfiLkebQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-infrared+discrimination+of+leafless+saltcedar+in+wintertime+Landsat+TM&rft.jtitle=International+journal+of+remote+sensing&rft.au=GROENEVELD%2C+D.+P&rft.au=WATSON%2C+R.+P&rft.date=2008-06-15&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.volume=29&rft.issue=11-12&rft.spage=3577&rft.epage=3588&rft_id=info:doi/10.1080%2F01431160701711078&rft.externalDBID=n%2Fa&rft.externalDocID=20374946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |