Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces

•Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabli...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in solid state & materials science Vol. 18; no. 4; pp. 253 - 261
Main Authors Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D., Choi, P.-P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing.
AbstractList Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as 'segregation engineering' solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing.
•Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing.
Author Ponge, D.
Sandlöbes, S.
Kuzmina, M.
Choi, P.-P.
Li, Y.
Raabe, D.
Herbig, M.
Tytko, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Raabe
  fullname: Raabe, D.
  email: d.raabe@mpie.de
– sequence: 2
  givenname: M.
  surname: Herbig
  fullname: Herbig, M.
– sequence: 3
  givenname: S.
  surname: Sandlöbes
  fullname: Sandlöbes, S.
– sequence: 4
  givenname: Y.
  surname: Li
  fullname: Li, Y.
– sequence: 5
  givenname: D.
  surname: Tytko
  fullname: Tytko, D.
– sequence: 6
  givenname: M.
  surname: Kuzmina
  fullname: Kuzmina, M.
– sequence: 7
  givenname: D.
  surname: Ponge
  fullname: Ponge, D.
– sequence: 8
  givenname: P.-P.
  surname: Choi
  fullname: Choi, P.-P.
BookMark eNqFkDtPQyEUgBk08fkPHBhdeoX7ANrBxDS-kiYuOiMXDrc0t1CBavrvRevkoMs5y_ed5Hwn6MAHDwhdUFJRQtnVqtIhpXWqakLbirCKkPoAHdOmm05ILdgROklpRQhpGWPH6PU-KudxH7beqLjDCYYIg8oueAx-cB4gOj_gwqwhq3F0GpcZdmmGb_BG5eWH2uEccF4CNpDc4HGwBc8QrdKQztChVWOC8599il7ubp_nD5PF0_3j_GYx0W0j8sROuWqE5tRMSUuFMnVjudCit6rtTd0a2_bQd502fGpUb-ua2950dcObXnQCmlN0ub-7ieFtCynLtUsaxlF5CNskKRMd54QxXtDZHtWxpIpgpXb5--VcYoySEvmVUq7kPqX8SikJkyVlkdtf8ia6dUn3n3a916A0eHcQZdIOvAbjIugsTXB_H_gEW0yWqQ
CitedBy_id crossref_primary_10_1088_1361_651X_ab6ec7
crossref_primary_10_1016_j_jallcom_2021_160522
crossref_primary_10_1016_j_scriptamat_2015_07_040
crossref_primary_10_1016_j_matdes_2018_04_085
crossref_primary_10_1016_j_msea_2016_08_045
crossref_primary_10_1038_s41467_018_03591_4
crossref_primary_10_1016_j_actamat_2022_118307
crossref_primary_10_1016_j_actamat_2023_118947
crossref_primary_10_1016_j_jmst_2022_07_012
crossref_primary_10_1039_D4CE00603H
crossref_primary_10_1007_s11837_015_1644_9
crossref_primary_10_1016_j_actamat_2019_02_005
crossref_primary_10_1016_j_actamat_2022_118545
crossref_primary_10_5006_2433
crossref_primary_10_1038_srep22321
crossref_primary_10_1016_j_actamat_2018_01_037
crossref_primary_10_1016_j_actamat_2019_11_069
crossref_primary_10_1016_j_jallcom_2019_07_106
crossref_primary_10_1016_j_pmatsci_2025_101431
crossref_primary_10_1007_s11661_024_07518_1
crossref_primary_10_1016_j_actamat_2018_07_003
crossref_primary_10_1016_j_msea_2017_11_072
crossref_primary_10_1016_j_msea_2016_01_040
crossref_primary_10_1016_j_actamat_2023_118816
crossref_primary_10_1016_j_commatsci_2022_111604
crossref_primary_10_1016_j_actamat_2019_02_014
crossref_primary_10_1016_j_ijhydene_2022_01_251
crossref_primary_10_1557_jmr_2014_385
crossref_primary_10_1002_adma_201704717
crossref_primary_10_1007_s10853_023_08442_2
crossref_primary_10_1063_5_0237047
crossref_primary_10_1016_j_ceramint_2023_07_210
crossref_primary_10_1016_j_jallcom_2019_152153
crossref_primary_10_1016_j_actamat_2015_02_012
crossref_primary_10_1007_s11669_017_0520_4
crossref_primary_10_1016_j_msea_2020_140261
crossref_primary_10_1002_adem_202201514
crossref_primary_10_2139_ssrn_4388983
crossref_primary_10_1016_j_actamat_2016_12_032
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_1126_science_adq4147
crossref_primary_10_1016_j_jallcom_2020_153725
crossref_primary_10_1088_1361_651X_ad585d
crossref_primary_10_1016_j_matchar_2019_110092
crossref_primary_10_1016_j_jmrt_2022_08_174
crossref_primary_10_1016_j_scriptamat_2020_02_019
crossref_primary_10_1016_j_matlet_2020_128097
crossref_primary_10_1088_2053_1591_ab600f
crossref_primary_10_1016_j_actamat_2017_05_007
crossref_primary_10_1016_j_actamat_2023_118724
crossref_primary_10_1016_j_compositesb_2018_07_050
crossref_primary_10_1016_j_matchar_2020_110343
crossref_primary_10_1016_j_msea_2020_140256
crossref_primary_10_1016_j_mtcomm_2025_111777
crossref_primary_10_1016_j_actamat_2021_117271
crossref_primary_10_3390_ma14154197
crossref_primary_10_1002_adem_202300141
crossref_primary_10_1016_j_scriptamat_2021_114320
crossref_primary_10_1016_j_scriptamat_2021_114321
crossref_primary_10_1016_S1003_6326_20_65271_2
crossref_primary_10_3390_ma16041431
crossref_primary_10_1016_j_pmatsci_2018_05_004
crossref_primary_10_1016_j_jmrt_2023_09_134
crossref_primary_10_1007_s11085_016_9697_x
crossref_primary_10_1016_j_actamat_2023_118958
crossref_primary_10_1016_j_actamat_2021_117147
crossref_primary_10_14723_tmrsj_40_309
crossref_primary_10_1016_j_matchar_2020_110695
crossref_primary_10_1080_08927022_2019_1602868
crossref_primary_10_1016_j_jnucmat_2017_05_027
crossref_primary_10_1016_j_actamat_2022_118411
crossref_primary_10_1016_j_actamat_2021_117260
crossref_primary_10_1016_j_intermet_2024_108534
crossref_primary_10_1016_j_jmrt_2023_03_135
crossref_primary_10_1016_j_msea_2022_144369
crossref_primary_10_3762_bjnano_7_176
crossref_primary_10_1007_s42114_024_01183_z
crossref_primary_10_1002_adma_202402191
crossref_primary_10_1021_acsami_4c12327
crossref_primary_10_1126_science_abh0700
crossref_primary_10_1016_j_jmrt_2020_04_063
crossref_primary_10_1016_j_matchar_2016_12_002
crossref_primary_10_1016_j_actamat_2016_04_058
crossref_primary_10_1103_PhysRevLett_124_106102
crossref_primary_10_1088_2053_1591_ab1db9
crossref_primary_10_1007_s11661_016_3486_7
crossref_primary_10_1016_j_mechmat_2023_104775
crossref_primary_10_1021_jp508144z
crossref_primary_10_1016_j_pnsc_2024_07_016
crossref_primary_10_2320_materia_62_673
crossref_primary_10_1016_j_corsci_2024_112161
crossref_primary_10_1016_j_msea_2020_139326
crossref_primary_10_1016_j_matdes_2017_09_019
crossref_primary_10_1021_acs_nanolett_1c02051
crossref_primary_10_2139_ssrn_4170570
crossref_primary_10_1007_s00339_022_05993_0
crossref_primary_10_1016_j_actamat_2014_09_041
crossref_primary_10_1021_acsnano_2c08768
crossref_primary_10_1063_5_0140793
crossref_primary_10_1103_PhysRevLett_129_046102
crossref_primary_10_1016_j_msea_2019_138726
crossref_primary_10_1016_j_jmrt_2021_01_066
crossref_primary_10_1002_adem_202201712
crossref_primary_10_1016_j_matchar_2022_112495
crossref_primary_10_1021_acsami_0c12250
crossref_primary_10_1016_j_msea_2017_11_046
crossref_primary_10_1016_j_actamat_2018_01_022
crossref_primary_10_1007_s10853_018_03297_4
crossref_primary_10_1016_j_scriptamat_2017_03_004
crossref_primary_10_1088_1757_899X_219_1_012019
crossref_primary_10_1016_j_scriptamat_2018_05_011
crossref_primary_10_1146_annurev_matsci_081619_114055
crossref_primary_10_1002_srin_202300595
crossref_primary_10_1016_j_pmatsci_2021_100798
crossref_primary_10_1016_j_commatsci_2024_113270
crossref_primary_10_1016_j_msea_2024_146933
crossref_primary_10_1016_j_scriptamat_2017_03_017
crossref_primary_10_1007_s10853_021_06064_0
crossref_primary_10_1039_C8NR09782H
crossref_primary_10_1007_s10853_018_3139_x
crossref_primary_10_1007_s10853_024_10417_w
crossref_primary_10_1016_j_euromechsol_2021_104388
crossref_primary_10_1016_j_msea_2020_139225
crossref_primary_10_1016_j_actamat_2018_07_069
crossref_primary_10_1088_1757_899X_219_1_012006
crossref_primary_10_2320_materia_62_658
crossref_primary_10_1016_j_jma_2024_05_017
crossref_primary_10_1016_j_actamat_2023_118878
crossref_primary_10_1016_j_ijplas_2024_104185
crossref_primary_10_1016_j_actamat_2022_118577
crossref_primary_10_1016_j_pmatsci_2016_11_001
crossref_primary_10_1021_acsnano_5b04296
crossref_primary_10_1016_j_commatsci_2019_02_031
crossref_primary_10_1063_1_5040105
crossref_primary_10_1016_j_actamat_2023_119074
crossref_primary_10_1016_j_actamat_2024_120582
crossref_primary_10_1016_j_actamat_2020_01_065
crossref_primary_10_1007_s00269_017_0935_9
crossref_primary_10_1016_j_jallcom_2022_164449
crossref_primary_10_1016_j_ijmachtools_2018_07_004
crossref_primary_10_1016_j_matdes_2018_107574
crossref_primary_10_1080_21663831_2022_2050957
crossref_primary_10_1103_PhysRevMaterials_1_055601
crossref_primary_10_3390_met13081399
crossref_primary_10_2139_ssrn_4067249
crossref_primary_10_3390_met14050501
crossref_primary_10_1016_j_actamat_2021_117213
crossref_primary_10_1016_j_jallcom_2020_158326
crossref_primary_10_1016_j_jmrt_2023_07_232
crossref_primary_10_1016_j_physb_2024_416466
crossref_primary_10_1016_j_scriptamat_2023_115370
crossref_primary_10_1016_j_actamat_2015_04_014
crossref_primary_10_3390_met8080646
crossref_primary_10_5194_ejm_32_675_2020
crossref_primary_10_1016_j_actamat_2019_08_037
crossref_primary_10_1016_j_jmrt_2023_08_048
crossref_primary_10_1063_1_4968013
crossref_primary_10_1016_j_apsusc_2019_04_025
crossref_primary_10_1016_j_actamat_2020_01_055
crossref_primary_10_1016_j_ijhydene_2017_02_214
crossref_primary_10_2355_isijinternational_ISIJINT_2019_100
crossref_primary_10_1016_j_actamat_2017_12_023
crossref_primary_10_1016_j_jmrt_2024_05_238
crossref_primary_10_1038_s41467_024_53349_4
crossref_primary_10_1016_j_actamat_2017_12_020
crossref_primary_10_3390_app9091847
crossref_primary_10_1111_ffe_14074
crossref_primary_10_1016_j_jmst_2023_04_050
crossref_primary_10_1016_j_jmrt_2023_09_078
crossref_primary_10_1016_j_jallcom_2024_173831
crossref_primary_10_1016_j_scriptamat_2019_08_001
crossref_primary_10_1016_j_corsci_2022_110865
crossref_primary_10_1016_j_actamat_2022_117620
crossref_primary_10_1016_j_ijplas_2023_103856
crossref_primary_10_1016_j_commatsci_2016_04_024
crossref_primary_10_1017_S1431927617003944
crossref_primary_10_1557_mrs_2019_69
crossref_primary_10_1016_j_msea_2022_144102
crossref_primary_10_1016_j_msea_2023_144821
crossref_primary_10_1039_C7TA03353B
crossref_primary_10_1007_s44210_022_00002_8
crossref_primary_10_1016_j_matchemphys_2023_127531
crossref_primary_10_1002_srin_202400116
crossref_primary_10_1051_metal_2024081
crossref_primary_10_1111_ggr_12313
crossref_primary_10_1016_j_mtla_2019_100258
crossref_primary_10_1016_j_matchar_2024_114553
crossref_primary_10_1016_j_apsusc_2023_157340
crossref_primary_10_2207_jjws_90_587
crossref_primary_10_1016_j_commatsci_2024_113509
crossref_primary_10_1016_j_vacuum_2023_112036
crossref_primary_10_1016_j_matdes_2015_06_143
crossref_primary_10_1088_1361_651X_aadea3
crossref_primary_10_1016_j_commatsci_2021_110660
crossref_primary_10_1016_j_mtcomm_2024_110326
crossref_primary_10_1103_PhysRevMaterials_3_123602
crossref_primary_10_1016_j_actamat_2020_04_052
crossref_primary_10_1063_5_0127266
crossref_primary_10_1002_adem_201800048
crossref_primary_10_1016_j_scriptamat_2023_115593
crossref_primary_10_4028_www_scientific_net_DDF_381_33
crossref_primary_10_1017_S1431927621012137
crossref_primary_10_1103_PhysRevMaterials_7_123606
crossref_primary_10_1039_C5TA10064J
crossref_primary_10_2139_ssrn_4067253
crossref_primary_10_1016_j_actamat_2023_119081
crossref_primary_10_1016_j_ijrmhm_2023_106125
crossref_primary_10_1016_j_epsl_2023_118273
crossref_primary_10_1016_j_mtcomm_2022_103319
crossref_primary_10_1515_ijmr_2023_0174
crossref_primary_10_1016_j_commatsci_2021_110430
crossref_primary_10_1007_s10853_023_09321_6
crossref_primary_10_1016_j_ijrmhm_2023_106173
crossref_primary_10_1016_j_ijplas_2024_103925
crossref_primary_10_1080_03019233_2021_1898869
crossref_primary_10_1016_j_actamat_2019_01_003
crossref_primary_10_1016_j_jmrt_2025_03_099
crossref_primary_10_1016_j_scriptamat_2018_07_008
crossref_primary_10_1016_j_jmst_2020_02_079
crossref_primary_10_1063_5_0238622
crossref_primary_10_1038_s41598_020_74065_1
crossref_primary_10_1016_j_mtla_2024_102071
crossref_primary_10_1039_C6CP08255F
crossref_primary_10_3390_coatings14070815
crossref_primary_10_1016_j_msea_2023_144875
crossref_primary_10_1016_j_jmst_2023_05_055
crossref_primary_10_1002_cmtd_202500009
crossref_primary_10_1080_09506608_2023_2258664
crossref_primary_10_1016_j_actamat_2024_120037
crossref_primary_10_1016_j_jmrt_2024_08_060
crossref_primary_10_1016_j_matchemphys_2022_127227
crossref_primary_10_2139_ssrn_3991612
crossref_primary_10_1007_s40195_022_01383_w
crossref_primary_10_1088_1361_6668_abc8ce
crossref_primary_10_1063_5_0069107
crossref_primary_10_1016_j_actamat_2016_11_013
crossref_primary_10_3390_met8080577
crossref_primary_10_1016_j_commatsci_2023_112297
crossref_primary_10_1051_matecconf_202032609001
crossref_primary_10_1038_s41467_020_20083_6
crossref_primary_10_1016_j_apsusc_2023_158993
crossref_primary_10_1016_j_corsci_2022_110331
crossref_primary_10_1016_j_msea_2020_140619
crossref_primary_10_1017_S1431927616000696
crossref_primary_10_1002_srin_201800654
crossref_primary_10_1016_j_matchemphys_2020_123977
crossref_primary_10_1016_j_actamat_2019_09_010
crossref_primary_10_1016_j_actamat_2022_117633
crossref_primary_10_1038_s41467_021_26197_9
crossref_primary_10_1557_mrs_2019_72
crossref_primary_10_2351_7_0000112
crossref_primary_10_1016_j_actamat_2021_117354
crossref_primary_10_1016_j_jallcom_2021_159950
crossref_primary_10_1016_j_jmrt_2022_11_155
crossref_primary_10_1051_matecconf_20153301001
crossref_primary_10_1016_j_msea_2022_144554
crossref_primary_10_1016_j_mtla_2025_102346
crossref_primary_10_1002_adem_201801214
crossref_primary_10_1007_s11661_023_07070_4
crossref_primary_10_1080_14786435_2017_1322728
crossref_primary_10_1016_j_actamat_2024_120297
crossref_primary_10_1016_j_scriptamat_2022_115116
crossref_primary_10_1111_jace_17907
crossref_primary_10_3390_met9010010
crossref_primary_10_1063_5_0024014
crossref_primary_10_1016_j_msea_2018_11_077
crossref_primary_10_1021_acs_nanolett_7b01641
crossref_primary_10_1002_advs_202417659
crossref_primary_10_1107_S1600576716000418
crossref_primary_10_1021_jacs_1c11680
crossref_primary_10_1016_j_matchar_2024_114618
crossref_primary_10_1016_j_msea_2022_143475
crossref_primary_10_1007_s10853_020_04605_7
crossref_primary_10_1016_j_actamat_2024_119872
crossref_primary_10_1016_j_matchar_2024_114378
crossref_primary_10_3390_ma11112263
crossref_primary_10_1016_j_proeng_2015_07_310
crossref_primary_10_1016_j_commatsci_2020_109533
crossref_primary_10_1039_D0NR06798A
crossref_primary_10_1080_14786435_2016_1189616
crossref_primary_10_1016_j_actamat_2018_04_013
crossref_primary_10_1016_j_commatsci_2023_112560
crossref_primary_10_1016_j_scriptamat_2023_115631
crossref_primary_10_1063_1_5050558
crossref_primary_10_1016_j_jmst_2021_10_019
crossref_primary_10_22226_2410_3535_2019_2_162_167
crossref_primary_10_1016_j_mtphys_2024_101407
crossref_primary_10_1038_s41524_021_00625_2
crossref_primary_10_1384_jsa_29_33
crossref_primary_10_1016_j_jpcs_2021_110082
crossref_primary_10_2139_ssrn_3971588
crossref_primary_10_1016_j_jmst_2024_07_029
crossref_primary_10_1016_j_actamat_2021_117604
crossref_primary_10_1007_s10853_018_03291_w
crossref_primary_10_1007_s11661_022_06630_4
crossref_primary_10_1016_j_matchar_2021_111026
crossref_primary_10_1038_s41524_024_01260_3
crossref_primary_10_1016_j_apsusc_2020_145254
crossref_primary_10_1016_j_mtcomm_2021_102464
crossref_primary_10_1007_s10853_020_04854_6
crossref_primary_10_1016_j_jallcom_2020_157642
crossref_primary_10_1016_j_msea_2023_146066
crossref_primary_10_1063_5_0098439
crossref_primary_10_1016_j_actamat_2016_08_048
crossref_primary_10_1038_s41467_022_28706_w
crossref_primary_10_1002_smtd_202401650
crossref_primary_10_1016_j_mtadv_2024_100549
crossref_primary_10_1016_j_apsusc_2024_159684
crossref_primary_10_1016_j_corsci_2020_109219
crossref_primary_10_1016_j_actamat_2017_03_032
crossref_primary_10_3390_ma13081848
crossref_primary_10_1016_j_ijhydene_2024_08_232
crossref_primary_10_1016_j_corsci_2024_112638
crossref_primary_10_1016_j_actamat_2020_09_007
crossref_primary_10_1016_j_scriptamat_2022_115038
crossref_primary_10_15407_mom2018_01_044
crossref_primary_10_1016_j_jnucmat_2023_154344
crossref_primary_10_1016_j_matchar_2021_111291
crossref_primary_10_3390_ma17061257
crossref_primary_10_1016_j_jmrt_2023_06_183
crossref_primary_10_1016_j_jmst_2024_01_030
crossref_primary_10_1016_j_ijplas_2023_103679
crossref_primary_10_1016_j_actamat_2018_04_004
crossref_primary_10_1016_j_actamat_2024_119674
crossref_primary_10_1016_j_commatsci_2023_112596
crossref_primary_10_1016_j_matchar_2017_11_047
crossref_primary_10_1002_srin_201600416
crossref_primary_10_1007_s11661_017_4357_6
crossref_primary_10_1002_pssa_201800240
crossref_primary_10_1016_j_actamat_2017_09_039
crossref_primary_10_1039_D0NR07180C
crossref_primary_10_1021_acs_jpclett_1c02189
crossref_primary_10_1016_j_jeurceramsoc_2022_11_074
crossref_primary_10_1007_s11661_019_05520_6
crossref_primary_10_1016_j_jnucmat_2019_06_002
crossref_primary_10_1016_j_jre_2020_07_017
crossref_primary_10_1016_j_jmst_2020_10_069
crossref_primary_10_1016_j_vacuum_2024_113067
crossref_primary_10_1039_D2TA02147A
crossref_primary_10_1088_1361_651X_ab7e39
crossref_primary_10_1007_s11661_020_05947_2
crossref_primary_10_1016_j_actamat_2020_116561
crossref_primary_10_1038_s41529_017_0003_4
crossref_primary_10_1038_s41467_019_14062_9
crossref_primary_10_1107_S205225251600943X
crossref_primary_10_1007_s11837_020_04254_w
crossref_primary_10_1016_j_electacta_2021_139052
crossref_primary_10_1016_j_scriptamat_2023_115715
crossref_primary_10_1038_s41524_020_00456_7
crossref_primary_10_1088_1361_648X_ad4aab
crossref_primary_10_1080_09506608_2022_2153220
crossref_primary_10_1016_j_actamat_2022_117939
crossref_primary_10_1016_j_apsusc_2019_144925
crossref_primary_10_1016_j_actamat_2018_12_040
crossref_primary_10_1016_j_actamat_2019_08_060
crossref_primary_10_1016_j_actamat_2021_117522
crossref_primary_10_1016_j_actamat_2021_116679
crossref_primary_10_1016_j_compositesb_2023_110540
crossref_primary_10_1016_j_scriptamat_2020_113643
crossref_primary_10_1038_srep42547
crossref_primary_10_1016_j_jeurceramsoc_2023_11_002
crossref_primary_10_1103_PhysRevMaterials_4_013602
crossref_primary_10_1016_j_matlet_2023_134770
crossref_primary_10_1038_s41598_018_25140_1
crossref_primary_10_1016_j_actamat_2020_08_022
crossref_primary_10_1016_j_ultramic_2015_02_003
crossref_primary_10_1016_j_msea_2024_147135
crossref_primary_10_1016_j_scriptamat_2022_115063
crossref_primary_10_1016_j_mssp_2024_108579
crossref_primary_10_1007_s11837_024_06640_0
crossref_primary_10_1016_j_mtla_2022_101564
crossref_primary_10_3390_ma17030578
crossref_primary_10_1016_j_jnucmat_2020_152531
crossref_primary_10_1007_s11661_022_06684_4
crossref_primary_10_1016_j_actamat_2015_05_004
crossref_primary_10_1126_science_aab2633
crossref_primary_10_1016_j_msea_2025_147787
crossref_primary_10_1016_j_jallcom_2018_04_197
crossref_primary_10_1016_j_ijplas_2020_102725
crossref_primary_10_1016_j_matchar_2017_11_058
crossref_primary_10_1016_j_scriptamat_2022_115078
crossref_primary_10_1016_j_msea_2022_143865
crossref_primary_10_1016_j_mtsust_2024_100694
crossref_primary_10_1063_1_4974990
crossref_primary_10_1016_j_actamat_2017_09_047
crossref_primary_10_1016_j_surfcoat_2015_10_059
crossref_primary_10_1007_s10853_020_04537_2
crossref_primary_10_1016_j_apsusc_2020_147011
crossref_primary_10_1007_s10853_022_06886_6
crossref_primary_10_1051_matecconf_202032601004
crossref_primary_10_1103_PhysRevLett_122_126102
crossref_primary_10_1016_j_scriptamat_2015_04_009
crossref_primary_10_2139_ssrn_4068140
crossref_primary_10_1016_j_actamat_2024_120568
crossref_primary_10_1016_j_commatsci_2015_04_020
crossref_primary_10_1016_j_actamat_2024_120448
crossref_primary_10_1016_j_jmst_2024_09_031
crossref_primary_10_1016_j_actamat_2020_116595
crossref_primary_10_1016_j_jallcom_2020_154352
crossref_primary_10_1016_j_msea_2015_09_008
crossref_primary_10_1016_j_jmst_2020_10_023
crossref_primary_10_1016_j_jmst_2022_06_043
crossref_primary_10_1007_s11665_022_07701_8
crossref_primary_10_1146_annurev_matsci_081720_123248
crossref_primary_10_1016_j_msea_2023_145382
crossref_primary_10_1016_j_actamat_2021_116922
crossref_primary_10_1103_PhysRevMaterials_7_073606
crossref_primary_10_46813_2022_140_003
crossref_primary_10_1039_D3CP02299D
crossref_primary_10_1007_s10853_017_1764_4
crossref_primary_10_1016_j_actamat_2022_118142
crossref_primary_10_1016_j_corsci_2023_111569
crossref_primary_10_1016_j_actamat_2020_08_056
crossref_primary_10_1016_j_jmst_2017_09_002
crossref_primary_10_1016_j_jallcom_2024_177520
crossref_primary_10_3390_met13030594
crossref_primary_10_1016_j_matdes_2024_112658
crossref_primary_10_1016_j_surfin_2023_103235
crossref_primary_10_1038_s43586_021_00047_w
crossref_primary_10_1103_PhysRevB_107_134112
crossref_primary_10_1007_s12598_022_01976_5
crossref_primary_10_1016_j_net_2017_10_014
crossref_primary_10_1007_s11661_020_06045_z
crossref_primary_10_1038_s41598_018_29632_y
crossref_primary_10_1016_j_compositesb_2024_111570
crossref_primary_10_1002_aenm_202203361
crossref_primary_10_1016_j_actamat_2023_118899
crossref_primary_10_1016_j_actamat_2022_118156
crossref_primary_10_1016_j_matdes_2023_112158
crossref_primary_10_1016_j_jmst_2021_11_005
crossref_primary_10_1016_j_jeurceramsoc_2022_10_070
crossref_primary_10_1016_j_jajp_2024_100254
crossref_primary_10_1016_j_jmrt_2024_11_030
crossref_primary_10_1016_j_actamat_2018_03_039
crossref_primary_10_1016_j_actamat_2016_03_070
crossref_primary_10_2139_ssrn_3967397
crossref_primary_10_1016_j_jmst_2020_10_043
crossref_primary_10_1080_21663831_2024_2354757
crossref_primary_10_1016_j_actamat_2017_02_069
crossref_primary_10_1088_2053_1591_adb2e2
crossref_primary_10_1016_j_jmrt_2023_01_181
crossref_primary_10_1016_j_mattod_2019_11_010
crossref_primary_10_1111_jace_16045
crossref_primary_10_3390_nano14221803
crossref_primary_10_1002_adem_202100977
crossref_primary_10_1016_j_scriptamat_2018_11_041
crossref_primary_10_1016_j_mtla_2021_101293
crossref_primary_10_1038_s41467_021_25778_y
crossref_primary_10_1016_j_scriptamat_2021_113751
crossref_primary_10_1016_j_apsusc_2024_161337
crossref_primary_10_3139_147_110567
crossref_primary_10_1080_17452759_2024_2356733
crossref_primary_10_1016_j_mechmat_2022_104366
crossref_primary_10_1016_j_actamat_2023_119641
crossref_primary_10_1016_j_jmst_2021_11_027
crossref_primary_10_1016_j_actamat_2025_120946
crossref_primary_10_1007_s10853_017_1695_0
crossref_primary_10_1016_j_cclet_2021_12_013
crossref_primary_10_1016_j_actamat_2025_120942
crossref_primary_10_1016_j_jnucmat_2024_155263
crossref_primary_10_1016_j_msea_2024_147757
crossref_primary_10_1016_j_actamat_2022_118180
crossref_primary_10_1016_j_actamat_2024_119955
crossref_primary_10_3390_met11020214
crossref_primary_10_1016_j_actamat_2024_119956
crossref_primary_10_1016_j_scriptamat_2019_12_032
crossref_primary_10_1007_s11661_020_06031_5
crossref_primary_10_1017_S1431927618016112
crossref_primary_10_1557_s43577_022_00378_3
crossref_primary_10_1016_j_msea_2017_12_102
crossref_primary_10_1016_j_jmrt_2023_03_092
crossref_primary_10_1002_adem_201800941
crossref_primary_10_1016_j_actamat_2024_119962
crossref_primary_10_1016_j_matdes_2015_10_047
crossref_primary_10_1016_j_vacuum_2019_03_019
crossref_primary_10_1016_j_ijrmhm_2025_107156
crossref_primary_10_1016_j_jmst_2022_08_026
crossref_primary_10_1038_s41598_024_63801_6
crossref_primary_10_1016_j_actamat_2016_09_048
crossref_primary_10_1016_j_actamat_2019_05_037
crossref_primary_10_3390_met11020345
crossref_primary_10_1016_j_ultramic_2022_113536
crossref_primary_10_1016_j_matchar_2019_04_004
crossref_primary_10_1007_s10853_024_10290_7
crossref_primary_10_1557_mrs_2015_314
crossref_primary_10_1016_S1003_6326_24_66661_6
crossref_primary_10_1016_j_actamat_2024_120705
crossref_primary_10_1080_0371750X_2020_1755365
crossref_primary_10_1016_j_commatsci_2018_02_020
crossref_primary_10_1016_j_msea_2025_147937
crossref_primary_10_1016_j_msea_2022_142923
crossref_primary_10_1007_s10853_022_07934_x
crossref_primary_10_1016_j_jmst_2024_01_005
crossref_primary_10_1016_j_matdes_2017_12_023
crossref_primary_10_1007_s40843_020_1595_2
crossref_primary_10_1557_s43578_020_00030_3
crossref_primary_10_1557_jmr_2018_230
crossref_primary_10_1007_s11837_021_04740_9
crossref_primary_10_1016_j_jallcom_2023_172811
crossref_primary_10_1016_j_jallcom_2024_177229
crossref_primary_10_1016_j_actamat_2021_116822
crossref_primary_10_1080_27660400_2022_2112915
crossref_primary_10_1016_j_ijhydene_2015_08_093
crossref_primary_10_1016_j_matdes_2021_109959
crossref_primary_10_1016_j_actamat_2020_08_074
crossref_primary_10_1016_j_mattod_2021_12_004
crossref_primary_10_1063_10_0023891
crossref_primary_10_1126_sciadv_ads2140
crossref_primary_10_1080_14786435_2025_2467423
crossref_primary_10_1016_j_actamat_2022_118291
crossref_primary_10_1016_j_jmrt_2024_05_096
crossref_primary_10_1016_j_actamat_2014_12_021
crossref_primary_10_1016_j_cossms_2016_05_001
crossref_primary_10_1016_j_actamat_2020_116505
crossref_primary_10_1103_PhysRevApplied_5_054018
crossref_primary_10_1016_j_mtphys_2024_101386
crossref_primary_10_1016_j_jmst_2020_10_014
crossref_primary_10_1016_j_matdes_2021_109848
crossref_primary_10_1557_s43578_021_00459_0
crossref_primary_10_1016_j_actamat_2018_04_046
crossref_primary_10_1016_j_commatsci_2021_111042
crossref_primary_10_1016_j_msea_2023_145035
Cites_doi 10.1016/j.jmps.2012.02.001
10.1016/1359-6454(95)00317-7
10.1016/S1359-6454(03)00219-2
10.1016/j.actamat.2006.11.028
10.1016/0001-6160(62)90092-5
10.1016/j.actamat.2013.04.028
10.1002/jemt.21081
10.1016/0001-6160(57)90044-5
10.1080/01418619008244340
10.1016/S1359-6454(01)00343-3
10.1016/j.scriptamat.2006.03.040
10.1103/PhysRevB.75.064107
10.1016/j.scriptamat.2010.02.021
10.1016/S1359-6454(01)00338-X
10.1016/j.scriptamat.2004.05.042
10.1016/j.actamat.2010.09.042
10.1017/S1431927604040486
10.1016/j.jcrysgro.2003.12.021
10.1103/PhysRevLett.106.246402
10.1080/10408439508243544
10.1016/j.msea.2010.07.062
10.1016/S1359-6454(99)00275-X
10.1016/0036-9748(86)90137-7
10.1016/S1359-6454(99)00026-9
10.1146/annurev.matsci.32.101901.155803
10.1016/j.actamat.2013.05.010
10.1016/j.actamat.2006.01.004
10.1007/BF02646988
10.1016/S1359-6454(99)00277-3
10.1080/09500830701400125
10.1016/S1359-6462(00)00690-4
10.1126/science.1204204
10.1103/PhysRevLett.112.126103
10.1063/1.1141590
10.1016/j.actamat.2009.10.041
10.1016/0965-9773(92)90076-A
10.1557/mrs2010.703
10.1016/S1359-6454(02)00260-4
10.1016/j.scriptamat.2009.02.062
10.1016/j.scriptamat.2012.02.022
10.1038/ncomms1062
10.1016/j.actamat.2009.07.028
10.1007/s11661-002-0203-5
10.1016/j.scriptamat.2011.12.015
10.1016/0036-9748(89)90534-6
10.1080/14786430600726749
10.1080/10408430801907649
10.1016/j.actamat.2011.11.020
10.1007/0-306-47071-3_9
10.1016/0001-6160(57)90109-8
10.1016/j.ultramic.2010.11.014
10.1016/0001-6160(80)90135-2
10.1016/j.actamat.2011.03.022
10.1016/j.actamat.2013.04.030
10.1111/j.1551-2916.2010.03642.x
10.1098/rspa.1965.0158
10.1146/annurev-matsci-070511-155007
10.1111/j.1551-2916.2007.01512.x
10.1016/j.actamat.2013.07.037
10.1088/0953-8984/16/27/003
10.1016/j.actamat.2004.05.031
10.1016/j.actamat.2010.09.023
10.1103/PhysRevB.85.064108
10.1016/j.actamat.2013.10.064
10.1016/S0921-5093(98)00529-2
10.1016/0956-716X(92)90173-C
10.1016/S0921-5093(99)00288-9
10.1016/j.actamat.2007.07.029
10.1016/j.actamat.2012.03.006
10.1016/S1359-6454(99)00397-3
10.2355/isijinternational.47.1527
10.1038/nmat1191
10.1007/BF02586096
10.1016/S1359-6454(03)00184-8
10.1016/j.actamat.2007.03.024
10.1016/0001-6160(83)90083-4
10.1016/j.ijsolstr.2006.07.006
10.1126/science.265.5170.376
10.1016/j.actamat.2013.04.059
10.1016/j.actamat.2011.08.045
10.1103/PhysRevB.79.094112
10.1016/j.ultramic.2009.03.016
10.1007/BF00194704
10.1038/nature10593
10.1016/j.actamat.2007.05.047
10.1021/ja02242a004
10.1016/j.ultramic.2010.11.010
10.1063/1.4795300
10.1111/j.1551-2916.2011.05059.x
10.1007/BF02642850
10.1016/j.scriptamat.2013.01.015
10.1063/1.4764527
10.1063/1.3665723
10.1146/annurev.matsci.32.112001.132041
10.1039/tf9504600199
10.1103/PhysRevLett.88.245701
10.1080/01418610008212082
10.1016/S1359-6454(98)00105-0
10.1016/j.actamat.2013.06.055
10.1016/j.actamat.2007.04.051
10.1016/0036-9748(86)90467-9
10.2109/jcersj2.119.840
10.1016/j.actamat.2005.07.024
10.3139/146.017938
10.1016/j.scriptamat.2008.04.045
10.1126/science.1230081
10.1016/j.actamat.2012.01.045
10.1016/S1369-7021(12)70164-5
10.1016/0039-6028(75)90124-7
10.1126/science.1201596
10.1016/S0921-5093(02)00670-6
10.1016/j.actamat.2014.01.031
10.1098/rspa.1973.0121
10.1016/j.ijplas.2008.09.002
10.2320/matertrans.44.14
10.1016/j.actamat.2013.02.006
10.1088/0953-2048/26/5/055008
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.cossms.2014.06.002
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 261
ExternalDocumentID 10_1016_j_cossms_2014_06_002
S1359028614000394
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c438t-f97a38c71d90418ad23f78c8bfa4bd24df4beb55cd79dabf227fbd52373b858e3
IEDL.DBID .~1
ISSN 1359-0286
IngestDate Fri Jul 11 10:46:18 EDT 2025
Tue Jul 01 01:27:21 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
Fri Feb 23 02:26:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Phase transformation
Segregation
Atom probe tomography
Grain boundary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-f97a38c71d90418ad23f78c8bfa4bd24df4beb55cd79dabf227fbd52373b858e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1685770667
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1685770667
crossref_citationtrail_10_1016_j_cossms_2014_06_002
crossref_primary_10_1016_j_cossms_2014_06_002
elsevier_sciencedirect_doi_10_1016_j_cossms_2014_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Current opinion in solid state & materials science
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boettinger, Warren, Beckermann, Karma (b0550) 2002; 32
Choi, Cojocaru-Miredin, Wuerz, Raabe (b0335) 2012; 110
Pradeep, Herzer, Choi, Raabe (b0605) 2014; 68
Hickson, Hurley, Gibbs, Kelly, Hodgson (b0625) 2002; 33
Hoffman, Lejcek (b0205) 1996; 3
Bamford, Hardiman, Shen, Clark, Wagoner (b0250) 1986; 20
Seah, Hondros (b0075) 1973
Detor, Schuh (b0525) 2007; 55
Furtkamp, Gottstein, Molodov, Semenov, Shvindlerman (b0185) 1998; 46
Raabe, Sandlöbes, Millán, Ponge, Assadi, Herbig (b0290) 2013; 61
Lejček, Hofmann, Paidar (b0070) 2003; 51
Millett, Selvam, Saxena (b0085) 2006; 54
Baram, Chatain, Kaplan (b0300) 2011; 332
Lozano-Perez, Saxey, Yamada, Terachi (b0120) 2010; 62
Ackland, Mendelev, Srolovitz, Han, Barashev (b0510) 2014; 16
Shen, Wagoner, Clark (b0245) 1986; 20
Ma, Dregia, Wang (b0545) 2003; 51
Tytko, Choi, Klöwer, Kostka, Inden, Raabe (b0390) 2012; 60
Hondros, Seah (b0195) 1977; 8A
Wolf, D. Atomic-level geometry of crystalline interfaces, in: Materials interfaces: atomic-level structure and properties, Chapman & Hall, London, 1992.
Molodov (b0170) 2001; vol. 1
Sangid, Sehitoglu, Maier, Niendorf (b0385) 2010; 527
Mrovec, Nguyen-Manh, Elsässer, Gumbsch (b0515) 2014; 106
Raabe, Choi, Li, Kostka, Sauvage, Lecouturier (b0615) 2010; 35
Liu, Kirchheim (b0575) 2004; 51
Cantwell, Tang, Dillon, Luo, Rohrer, Harmer (b0330) 2014; 62
Moody, Gault, Stephenson, Haley, Ringer (b0465) 2009; 109
Singh, Wanderka, Murty, Glatzel, Banhart (b0410) 2011; 59
Gault, Moody, Cairney, Ringer (b0445) 2012; 15
Gottstein, Shvindlerman (b0035) 1999
Sandim, Tytko, Kostka, Choi, Awaji, Watanabe (b0345) 2013; 26
Yu, Wu, Rickman, Chan, Harmer (b0485) 2013; 68
Rollet, Gottstein, Shvindlerman, Molodov (b0025) 2004; 95
Detor, Miller, Schuh (b0585) 2006; 86
Langmuir (b0220) 1918; 40
Krakauer, Hu, Kuo, Mallick, Seki, Seidman (b0435) 1990; 61
Gottstein G, Shvindlerman LS, Molodov DA, Czubayko U. Grain boundary motion in aluminium bicrystals. In: Duxbury PM, Pence TJ (editors). Dynamics of crystal surfaces and interfaces, New York: Plenum Press; 1997. P. 109–23.
Wu, Freeman, Olson (b0065) 1994; 15
Pradeep, Wanderka, Choi, Banhart, Murty, Raabe (b0405) 2013; 61
Liu, Kirchheim (b0225) 2004; 51
Wynblatt, Chatain (b0420) 2006; 37
Lee, Robertson, Birnbaum (b0265) 1990; 62
Wang, Saito, McKenna, Gu, Tsukimoto, Shluger (b0505) 2011; 479
Lejcek (b0650) 2010
Herzig, Divinski (b0135) 2003; 44
Mandal S, Pradeep KG, Zaefferer SD, Raabe D. A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom, Scr Mater, (Available 20.02.14).
Winning, Gottstein, Shvindlerman (b0175) 2002; 50
Yuan, Ponge, Wittig, Choi, Jiminez, Raabe (b0355) 2012; 60
Dillon, Tang, Carter, Harmer (b0320) 2007; 55
Wynblatt, Chatain (b0100) 2006; 37
Chen YZ, Herz A, Li YJ, Borchers C, Choi PP, Raabe D, Kirchheim R. Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite, Acta Mater 2013: 61; 3172–3185.
Sutton, Ballufi (b0010) 1997
Elder, Provatas, Berry, Stefanovic, Grant (b0665) 2007; 75
Randle (b0050) 2004; 52
Nakada, Tsuchiyama, Takaki, Hashizume (b0620) 2007; 47
Watanabe, Tsurekawa (b0045) 1999; 47
Raabe, Ponge, Dmitrieva, Sander (b0295) 2009; 60
Weissmüller, Krauss, Haubold, Birringer, Gleiter (b0565) 1992; 1
Cojocaru-Miredin, Choi, Wuerz, Raabe (b0340) 2012; 101
Tschopp, Solanki, Gao, Sun, Khaleel, Horstemeyer (b0520) 2012; 85
Wang, Li (b0535) 2010; 58
Kirchheim (b0115) 2007; 55
Lejcek, Hoffman (b0210) 2008; 33
Chen (b0540) 2002; 32
Heo TW, Bhattacharyya S, Chen L-Q. A phase field study of strain energy effects on solute-grain boundary interactions. Acta Mater 2011; 59: 7800–7815.
Hoffman (b0200) 1990
Moody, Tang, Gault, Ringer, Cairney (b0455) 2011; 111
Gautam, Ophus, Lancon, Radmilovic, Dahmen (b0655) 2013; 61
Lejček, Hofmann (b0230) 1995; 20
Sauvage, Copreaux, Danoix, Blavette (b0365) 2000; 80
Bieler, Eisenlohr, Roters, Kumar, Mason, Crimp (b0285) 2009; 25
Ma, Roters, Raabe (b0280) 2006; 43
Kirchheim (b0110) 2002; 50
Danoix, Julien, Sauvage, Copreaux (b0360) 1998; 250
Kelly, Larson (b0460) 2012; 42
Chapman, Faulkner (b0235) 1983; 31
Dillon, Harmer (b0315) 2007; 90
Vurpillot, Cerezo, Blavette, Larson (b0470) 2004; 10
Jiang, Faulkner (b0105) 1996; 44
Toji, Matsuda, Herbig, Choi, Raabe (b0440) 2014; 65
Dmitrieva, Ponge, Inden, Millán, Choi, Sietsma (b0145) 2011; 59
Luo (b0640) 2012; 95
Prokoshkina, Esin, Wilde, Divinski (b0395) 2013; 61
Howe (b0020) 1997
Duscher, Chisholm, Alber, Ruhle (b0490) 2004; 3
Livingston, Chalmers (b0240) 1957; 5
Mattissen, Raabe, Heringhaus (b0130) 1999; 47
Wolf D. Atomic-level geometry of crystalline interfaces, Chapman & Hall, London. Mater Interfaces: Atomic-Level Struct Properties, 1992; 1–57.
Abuzaid, Sangid, Carroll, Sehitoglu, Lambros (b0400) 2012; 60
Trelewicz, Schuh (b0560) 2009; 79
Dmitrieva, Ponge, Inden, Millán, Choi, Sietsma (b0415) 2011; 59
Lücke, Detert (b0165) 1957; 5
Li, Choi, Borchers, Chen, Goto, Raabe (b0610) 2011; 111
Hono, Ohnuma, Murayama, Nishida, Yoshie (b0370) 2001; 44
Felfer, Alam, Ringer, Cairney (b0430) 2012; 75
Koyama, Akiyama, Tsuzaki, Raabe (b0155) 2013; 61
Gibbs JW. The Collected Works of J. Willard Gibbs, Vol. 1, Yale University Press, New Haven, CT, 1948.
Millett, Selvam, Saxena (b0090) 2007; 55
Shea (b0060) 1975; 53
Cahn (b0160) 1962; 10
Choi PP, Al-Kassab T, Gärtner F, Kreye H, Kirchheim R. Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe, Mater Sci Eng A 2003: 353; 74–79.
Dillon, Harmer (b0305) 2007; 55
Randle (b0055) 1999; 47
Czubayko, Molodov, Petersen, Gottstein, Shvindlerman (b0180) 1995; 6
McLean (b0005) 1957
Chen, Lv, Wang, Saito, Shibata, Taniguchi (b0500) 2013; 102
Lee, Robertson, Birnbaum (b0255) 1989; 23
Randle (b0015) 1993
Koyama, Akiyama, Sawaguchi, Raabe, Tsuzaki (b0150) 2012; 66
Ueji, Tsuji, Minamino, Koizumi (b0635) 2002; 50
Elder, Katakowski, Haataja, Grant (b0660) 2002; 88
Detor, Miller, Schuh (b0595) 2007; 87
Ma, Roters, Raabe (b0275) 2006; 54
Krauss (b0630) 1999; 273–275
Duarte, Klemm, Klemm, Mayrhofer, Stratmann, Borodin (b0140) 2013; 341
Herbig, Raabe, Li, Choi, Zaefferer, Goto (b0425) 2014; 112
Li, Choi, Borchers, Westerkamp, Goto, Raabe (b0375) 2011; 59
Liu, Kirchheim (b0570) 2004; 264
Araullo-Peters, Gault, Shrestha, Yao, Moody, Ringer (b0450) 2012; 66
Buban, Mizoguchi, Shibata, Abe, Yamamoto, Ikuhara (b0495) 2011; 119
Dillon, Harmer, Rohrer (b0310) 2010; 93
Harmer (b0325) 2011; 332
Thuillier, Danoix, Gouné, Blavette (b0350) 2006; 55
Watanabe, Kitamure, Karashima (b0040) 1980; 28
Lee, Robertson, Birnbaum (b0260) 1990; 21
Defay, Prigogine (b0080) 1950; 46
Ohsaki, Raabe, Hono (b0125) 2009; 57
Darling, Chan, Wong, Semones, Scattergood, Koch (b0580) 2008; 59
Liddicoat, Liao, Zhao, Zhu, Murashkin, Lavernia (b0475) 2010; 63
Hondros (b0095) 1965; 286
Clark, Wagoner, Shen, Lee, Robertson, Birnbaum (b0270) 1992; 26
Farber, Cadel, Menand, Schmitz, Kirchheim (b0590) 2000; 48
Li, Choi, Goto, Borchers, Raabe, Kirchheim (b0380) 2012; 60
Hondros (10.1016/j.cossms.2014.06.002_b0195) 1977; 8A
Li (10.1016/j.cossms.2014.06.002_b0380) 2012; 60
Wu (10.1016/j.cossms.2014.06.002_b0065) 1994; 15
Singh (10.1016/j.cossms.2014.06.002_b0410) 2011; 59
Luo (10.1016/j.cossms.2014.06.002_b0640) 2012; 95
Boettinger (10.1016/j.cossms.2014.06.002_b0550) 2002; 32
Dmitrieva (10.1016/j.cossms.2014.06.002_b0145) 2011; 59
Dmitrieva (10.1016/j.cossms.2014.06.002_b0415) 2011; 59
Watanabe (10.1016/j.cossms.2014.06.002_b0045) 1999; 47
10.1016/j.cossms.2014.06.002_b0190
Duscher (10.1016/j.cossms.2014.06.002_b0490) 2004; 3
Choi (10.1016/j.cossms.2014.06.002_b0335) 2012; 110
Shen (10.1016/j.cossms.2014.06.002_b0245) 1986; 20
Detor (10.1016/j.cossms.2014.06.002_b0525) 2007; 55
Detor (10.1016/j.cossms.2014.06.002_b0595) 2007; 87
Defay (10.1016/j.cossms.2014.06.002_b0080) 1950; 46
Dillon (10.1016/j.cossms.2014.06.002_b0310) 2010; 93
Sandim (10.1016/j.cossms.2014.06.002_b0345) 2013; 26
Raabe (10.1016/j.cossms.2014.06.002_b0615) 2010; 35
Cahn (10.1016/j.cossms.2014.06.002_b0160) 1962; 10
Elder (10.1016/j.cossms.2014.06.002_b0665) 2007; 75
Furtkamp (10.1016/j.cossms.2014.06.002_b0185) 1998; 46
Hickson (10.1016/j.cossms.2014.06.002_b0625) 2002; 33
Kirchheim (10.1016/j.cossms.2014.06.002_b0110) 2002; 50
10.1016/j.cossms.2014.06.002_b0480
Lee (10.1016/j.cossms.2014.06.002_b0255) 1989; 23
Toji (10.1016/j.cossms.2014.06.002_b0440) 2014; 65
Buban (10.1016/j.cossms.2014.06.002_b0495) 2011; 119
Chen (10.1016/j.cossms.2014.06.002_b0540) 2002; 32
Li (10.1016/j.cossms.2014.06.002_b0375) 2011; 59
Li (10.1016/j.cossms.2014.06.002_b0610) 2011; 111
Lee (10.1016/j.cossms.2014.06.002_b0265) 1990; 62
Duarte (10.1016/j.cossms.2014.06.002_b0140) 2013; 341
Liu (10.1016/j.cossms.2014.06.002_b0225) 2004; 51
Liu (10.1016/j.cossms.2014.06.002_b0570) 2004; 264
Mrovec (10.1016/j.cossms.2014.06.002_b0515) 2014; 106
Tytko (10.1016/j.cossms.2014.06.002_b0390) 2012; 60
Ohsaki (10.1016/j.cossms.2014.06.002_b0125) 2009; 57
Felfer (10.1016/j.cossms.2014.06.002_b0430) 2012; 75
Shea (10.1016/j.cossms.2014.06.002_b0060) 1975; 53
Gault (10.1016/j.cossms.2014.06.002_b0445) 2012; 15
Weissmüller (10.1016/j.cossms.2014.06.002_b0565) 1992; 1
Lejcek (10.1016/j.cossms.2014.06.002_b0650) 2010
Sauvage (10.1016/j.cossms.2014.06.002_b0365) 2000; 80
Farber (10.1016/j.cossms.2014.06.002_b0590) 2000; 48
Chapman (10.1016/j.cossms.2014.06.002_b0235) 1983; 31
Millett (10.1016/j.cossms.2014.06.002_b0090) 2007; 55
Molodov (10.1016/j.cossms.2014.06.002_b0170) 2001; vol. 1
Ma (10.1016/j.cossms.2014.06.002_b0275) 2006; 54
Vurpillot (10.1016/j.cossms.2014.06.002_b0470) 2004; 10
Wynblatt (10.1016/j.cossms.2014.06.002_b0420) 2006; 37
Yuan (10.1016/j.cossms.2014.06.002_b0355) 2012; 60
Krakauer (10.1016/j.cossms.2014.06.002_b0435) 1990; 61
Ueji (10.1016/j.cossms.2014.06.002_b0635) 2002; 50
Thuillier (10.1016/j.cossms.2014.06.002_b0350) 2006; 55
Herzig (10.1016/j.cossms.2014.06.002_b0135) 2003; 44
Seah (10.1016/j.cossms.2014.06.002_b0075) 1973
10.1016/j.cossms.2014.06.002_b0645
Randle (10.1016/j.cossms.2014.06.002_b0050) 2004; 52
Hoffman (10.1016/j.cossms.2014.06.002_b0205) 1996; 3
Liddicoat (10.1016/j.cossms.2014.06.002_b0475) 2010; 63
Ma (10.1016/j.cossms.2014.06.002_b0545) 2003; 51
Lücke (10.1016/j.cossms.2014.06.002_b0165) 1957; 5
Baram (10.1016/j.cossms.2014.06.002_b0300) 2011; 332
Abuzaid (10.1016/j.cossms.2014.06.002_b0400) 2012; 60
Moody (10.1016/j.cossms.2014.06.002_b0455) 2011; 111
Pradeep (10.1016/j.cossms.2014.06.002_b0605) 2014; 68
Bamford (10.1016/j.cossms.2014.06.002_b0250) 1986; 20
Araullo-Peters (10.1016/j.cossms.2014.06.002_b0450) 2012; 66
Wang (10.1016/j.cossms.2014.06.002_b0505) 2011; 479
10.1016/j.cossms.2014.06.002_b0530
Jiang (10.1016/j.cossms.2014.06.002_b0105) 1996; 44
Wynblatt (10.1016/j.cossms.2014.06.002_b0100) 2006; 37
Czubayko (10.1016/j.cossms.2014.06.002_b0180) 1995; 6
10.1016/j.cossms.2014.06.002_b0030
Trelewicz (10.1016/j.cossms.2014.06.002_b0560) 2009; 79
Dillon (10.1016/j.cossms.2014.06.002_b0320) 2007; 55
Ackland (10.1016/j.cossms.2014.06.002_b0510) 2014; 16
Bieler (10.1016/j.cossms.2014.06.002_b0285) 2009; 25
Lejček (10.1016/j.cossms.2014.06.002_b0070) 2003; 51
Langmuir (10.1016/j.cossms.2014.06.002_b0220) 1918; 40
Dillon (10.1016/j.cossms.2014.06.002_b0305) 2007; 55
Millett (10.1016/j.cossms.2014.06.002_b0085) 2006; 54
Rollet (10.1016/j.cossms.2014.06.002_b0025) 2004; 95
Kirchheim (10.1016/j.cossms.2014.06.002_b0115) 2007; 55
Liu (10.1016/j.cossms.2014.06.002_b0575) 2004; 51
Watanabe (10.1016/j.cossms.2014.06.002_b0040) 1980; 28
Koyama (10.1016/j.cossms.2014.06.002_b0155) 2013; 61
Herbig (10.1016/j.cossms.2014.06.002_b0425) 2014; 112
Ma (10.1016/j.cossms.2014.06.002_b0280) 2006; 43
Danoix (10.1016/j.cossms.2014.06.002_b0360) 1998; 250
Dillon (10.1016/j.cossms.2014.06.002_b0315) 2007; 90
Nakada (10.1016/j.cossms.2014.06.002_b0620) 2007; 47
Hondros (10.1016/j.cossms.2014.06.002_b0095) 1965; 286
Sangid (10.1016/j.cossms.2014.06.002_b0385) 2010; 527
Winning (10.1016/j.cossms.2014.06.002_b0175) 2002; 50
McLean (10.1016/j.cossms.2014.06.002_b0005) 1957
10.1016/j.cossms.2014.06.002_b0555
Lejček (10.1016/j.cossms.2014.06.002_b0230) 1995; 20
Moody (10.1016/j.cossms.2014.06.002_b0465) 2009; 109
Howe (10.1016/j.cossms.2014.06.002_b0020) 1997
Raabe (10.1016/j.cossms.2014.06.002_b0290) 2013; 61
Randle (10.1016/j.cossms.2014.06.002_b0015) 1993
Gottstein (10.1016/j.cossms.2014.06.002_b0035) 1999
Cojocaru-Miredin (10.1016/j.cossms.2014.06.002_b0340) 2012; 101
Wang (10.1016/j.cossms.2014.06.002_b0535) 2010; 58
Clark (10.1016/j.cossms.2014.06.002_b0270) 1992; 26
Mattissen (10.1016/j.cossms.2014.06.002_b0130) 1999; 47
Raabe (10.1016/j.cossms.2014.06.002_b0295) 2009; 60
Lejcek (10.1016/j.cossms.2014.06.002_b0210) 2008; 33
Livingston (10.1016/j.cossms.2014.06.002_b0240) 1957; 5
Cantwell (10.1016/j.cossms.2014.06.002_b0330) 2014; 62
Kelly (10.1016/j.cossms.2014.06.002_b0460) 2012; 42
Tschopp (10.1016/j.cossms.2014.06.002_b0520) 2012; 85
10.1016/j.cossms.2014.06.002_b0600
Randle (10.1016/j.cossms.2014.06.002_b0055) 1999; 47
Koyama (10.1016/j.cossms.2014.06.002_b0150) 2012; 66
Yu (10.1016/j.cossms.2014.06.002_b0485) 2013; 68
Hono (10.1016/j.cossms.2014.06.002_b0370) 2001; 44
Lee (10.1016/j.cossms.2014.06.002_b0260) 1990; 21
Elder (10.1016/j.cossms.2014.06.002_b0660) 2002; 88
Gautam (10.1016/j.cossms.2014.06.002_b0655) 2013; 61
Sutton (10.1016/j.cossms.2014.06.002_b0010) 1997
Detor (10.1016/j.cossms.2014.06.002_b0585) 2006; 86
Harmer (10.1016/j.cossms.2014.06.002_b0325) 2011; 332
Prokoshkina (10.1016/j.cossms.2014.06.002_b0395) 2013; 61
Pradeep (10.1016/j.cossms.2014.06.002_b0405) 2013; 61
Krauss (10.1016/j.cossms.2014.06.002_b0630) 1999; 273–275
Lozano-Perez (10.1016/j.cossms.2014.06.002_b0120) 2010; 62
Chen (10.1016/j.cossms.2014.06.002_b0500) 2013; 102
Darling (10.1016/j.cossms.2014.06.002_b0580) 2008; 59
10.1016/j.cossms.2014.06.002_b0215
Hoffman (10.1016/j.cossms.2014.06.002_b0200) 1990
References_xml – volume: 47
  start-page: 1627
  year: 1999
  end-page: 1634
  ident: b0130
  article-title: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite
  publication-title: Acta Mater
– volume: 273–275
  start-page: 40
  year: 1999
  end-page: 57
  ident: b0630
  article-title: Martensite in steel: strength and structure
  publication-title: Mater Sc Eng A
– volume: 37
  start-page: 2595
  year: 2006
  end-page: 2620
  ident: b0420
  article-title: Anisotropy of segregation at grain boundaries and surfaces
  publication-title: Metall Mater Trans A
– volume: 527
  start-page: 7115
  year: 2010
  end-page: 7125
  ident: b0385
  article-title: Grain boundary characterization and energetics of superalloys
  publication-title: Mater Sci Eng A
– volume: 60
  start-page: 1731
  year: 2012
  end-page: 1740
  ident: b0390
  article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700
  publication-title: Acta Mater
– volume: 93
  start-page: 1796
  year: 2010
  end-page: 1802
  ident: b0310
  article-title: The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions
  publication-title: J Am Ceram Soc
– volume: 54
  start-page: 2181
  year: 2006
  end-page: 2194
  ident: b0275
  article-title: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations
  publication-title: Acta Mater
– volume: 55
  start-page: 1071
  year: 2006
  end-page: 1074
  ident: b0350
  article-title: Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn
  publication-title: Scr Mater
– volume: 61
  start-page: 4607
  year: 2013
  end-page: 4618
  ident: b0155
  article-title: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging
  publication-title: Acta Mater
– volume: 61
  start-page: 4696
  year: 2013
  end-page: 4706
  ident: b0405
  article-title: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography
  publication-title: Acta Mater
– reference: Heo TW, Bhattacharyya S, Chen L-Q. A phase field study of strain energy effects on solute-grain boundary interactions. Acta Mater 2011; 59: 7800–7815.
– volume: 51
  start-page: 521
  year: 2004
  end-page: 525
  ident: b0575
  article-title: Grain boundary saturation and grain growth
  publication-title: Scr Mater
– volume: 111
  start-page: 493
  year: 2011
  end-page: 499
  ident: b0455
  article-title: Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium
  publication-title: Ultramicroscopy
– volume: 16
  start-page: S2629
  year: 2014
  end-page: S2642
  ident: b0510
  article-title: Development of an interatomic potential for phosphorus impurities in alpha-iron
  publication-title: J Phys Condens Mater
– volume: 264
  start-page: 385
  year: 2004
  end-page: 391
  ident: b0570
  article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation
  publication-title: J Cryst Growth
– volume: 44
  start-page: 1857
  year: 1996
  end-page: 1864
  ident: b0105
  article-title: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys – I. The model
  publication-title: Acta Mater
– volume: 5
  start-page: 628
  year: 1957
  end-page: 637
  ident: b0165
  article-title: A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities
  publication-title: Acta Metall
– volume: 95
  start-page: 226
  year: 2004
  end-page: 229
  ident: b0025
  article-title: Grain boundary mobility – a brief review
  publication-title: Z Metallkd
– volume: 51
  start-page: 3687
  year: 2003
  end-page: 3700
  ident: b0545
  article-title: Segregation transition and drag force at grain boundaries
  publication-title: Acta Mater
– volume: 110
  start-page: 124513
  year: 2012
  ident: b0335
  article-title: Comparative atom probe study of Cu(In, Ga)Se(2) thin-film solar cells deposited on soda-lime glass and mild steel substrates
  publication-title: J Appl Phys
– volume: 15
  start-page: 378
  year: 2012
  end-page: 386
  ident: b0445
  article-title: Atom probe crystallography
  publication-title: Mater Today
– volume: 62
  start-page: 1
  year: 2014
  end-page: 48
  ident: b0330
  article-title: Grain boundary complexions
  publication-title: Acta Mater
– volume: 31
  start-page: 677
  year: 1983
  end-page: 689
  ident: b0235
  article-title: Computer modelling of grain boundary segregation
  publication-title: Acta Metall
– volume: 47
  start-page: 4187
  year: 1999
  end-page: 4196
  ident: b0055
  article-title: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials
  publication-title: Acta Mater
– volume: 59
  start-page: 530
  year: 2008
  end-page: 533
  ident: b0580
  article-title: Grain-size stabilization in nanocrystalline FeZr alloys
  publication-title: Scr Mater
– volume: 60
  start-page: 4005
  year: 2012
  end-page: 4016
  ident: b0380
  article-title: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire
  publication-title: Acta Mater
– volume: 57
  start-page: 5254
  year: 2009
  end-page: 5263
  ident: b0125
  article-title: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and tomographic atom probe
  publication-title: Acta Mater
– volume: 37
  start-page: 2595
  year: 2006
  end-page: 2620
  ident: b0100
  article-title: Anisotropy of segregation at grain boundaries and surfaces
  publication-title: Metall Mater Trans A
– volume: 51
  start-page: 521
  year: 2004
  end-page: 525
  ident: b0225
  article-title: Grain boundary saturation and grain growth
  publication-title: Scr Mater
– volume: 44
  start-page: 977
  year: 2001
  end-page: 983
  ident: b0370
  article-title: Cementite decomposition in heavily drawn pearlite steel wire
  publication-title: Scr Mater
– volume: 50
  start-page: 413
  year: 2002
  end-page: 419
  ident: b0110
  article-title: Grain coarsening inhibited by solute segregation
  publication-title: Acta Mater
– volume: 332
  start-page: 182
  year: 2011
  end-page: 183
  ident: b0325
  article-title: The phase behavior of interfaces
  publication-title: Science
– year: 1957
  ident: b0005
  article-title: Grain boundaries in metals
– volume: 66
  start-page: 459
  year: 2012
  end-page: 462
  ident: b0150
  article-title: Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel
  publication-title: Scr Mater
– volume: 48
  start-page: 789
  year: 2000
  end-page: 796
  ident: b0590
  article-title: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP)
  publication-title: Acta Mater
– volume: 28
  start-page: 455
  year: 1980
  end-page: 463
  ident: b0040
  article-title: Grain boundary hardening and segregation in alpha Iron-Tin alloy
  publication-title: Acta Metall
– volume: 33
  start-page: 1019
  year: 2002
  end-page: 1026
  ident: b0625
  article-title: The production of ultrafine ferrite in low-carbon steel by strain-induced transformation
  publication-title: Metall Mater Trans A
– year: 1997
  ident: b0010
  article-title: Interfaces in crystalline materials
– volume: 54
  start-page: 297
  year: 2006
  end-page: 303
  ident: b0085
  article-title: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants
  publication-title: Acta Mater
– volume: 61
  start-page: 3390
  year: 1990
  end-page: 3398
  ident: b0435
  article-title: A system for systematically preparing atomprobe fieldion microscope specimens for the study of internal interfaces
  publication-title: Rev Sci Instrum
– year: 1993
  ident: b0015
  article-title: The measurement of grain boundary geometry
– volume: 35
  start-page: 982
  year: 2010
  end-page: 991
  ident: b0615
  article-title: Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials
  publication-title: MRS Bull
– volume: 95
  start-page: 2358
  year: 2012
  ident: b0640
  article-title: Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions
  publication-title: Am Ceram Soc
– volume: 10
  start-page: 384
  year: 2004
  end-page: 390
  ident: b0470
  article-title: Modeling image distortions in 3DAP
  publication-title: Microsc Microanal
– volume: 286
  start-page: 479
  year: 1965
  end-page: 498
  ident: b0095
  article-title: The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron
  publication-title: Proc R Soc London A
– volume: 90
  start-page: 996
  year: 2007
  end-page: 998
  ident: b0315
  article-title: Direct observation of multilayer adsorption on alumina grain boundaries
  publication-title: J Am Ceram Soc
– volume: 66
  start-page: 907
  year: 2012
  end-page: 910
  ident: b0450
  article-title: Atom probe crystallography: atomic-scale 3-D orientation mapping
  publication-title: Scr Mater
– volume: 109
  start-page: 815
  year: 2009
  end-page: 824
  ident: b0465
  article-title: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques
  publication-title: Ultramicroscopy
– volume: 62
  start-page: 131
  year: 1990
  end-page: 153
  ident: b0265
  article-title: TEM in situ deformation study of the interaction of lattice dislocation with grain boundaries in metals
  publication-title: Philos Magn A
– volume: 25
  start-page: 1655
  year: 2009
  end-page: 1683
  ident: b0285
  article-title: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals
  publication-title: Int J Plasticity
– volume: 59
  start-page: 182
  year: 2011
  end-page: 190
  ident: b0410
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
– volume: 62
  start-page: 855
  year: 2010
  end-page: 858
  ident: b0120
  article-title: Atom-probe tomography characterization of the oxidation of stainless steel
  publication-title: Scr Mater
– volume: 111
  start-page: 628
  year: 2011
  end-page: 632
  ident: b0610
  article-title: Atom probe tomography characterization of heavily cold drawn pearlitic steel wire
  publication-title: Ultramicroscopy
– volume: 75
  start-page: 064107
  year: 2007
  ident: b0665
  article-title: Phase-field crystal modeling and classical density functional theory of freezing
  publication-title: Phys Rev B
– reference: Chen YZ, Herz A, Li YJ, Borchers C, Choi PP, Raabe D, Kirchheim R. Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite, Acta Mater 2013: 61; 3172–3185.
– volume: 59
  start-page: 364
  year: 2011
  end-page: 374
  ident: b0145
  article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation
  publication-title: Acta Mater
– volume: 44
  start-page: 14
  year: 2003
  end-page: 27
  ident: b0135
  article-title: Grain boundary diffusion in metals: recent developments
  publication-title: Mater Trans
– volume: 50
  start-page: 353
  year: 2002
  end-page: 363
  ident: b0175
  article-title: On the mechanisms of grain boundary migration
  publication-title: Acta Mater
– volume: 5
  start-page: 322
  year: 1957
  end-page: 327
  ident: b0240
  article-title: Multiple slip in bicrystal deformation
  publication-title: Acta Metall
– volume: 51
  start-page: 3951
  year: 2003
  end-page: 3963
  ident: b0070
  article-title: Segregation based classification of [100] tilt grain boundaries in α-iron and its consequences for grain boundary engineering
  publication-title: Acta Mater
– volume: 60
  start-page: 1141
  year: 2009
  end-page: 1144
  ident: b0295
  article-title: Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility
  publication-title: Scr Mater
– volume: 85
  start-page: 064108
  year: 2012
  ident: b0520
  article-title: Probing grain boundary sink strength at the nanoscale: energetics and length scales of vacancy and interstitial absorption by grain boundaries in alpha-Fe
  publication-title: Phys Rev B
– reference: Wolf D. Atomic-level geometry of crystalline interfaces, Chapman & Hall, London. Mater Interfaces: Atomic-Level Struct Properties, 1992; 1–57.
– volume: 341
  start-page: 372
  year: 2013
  end-page: 376
  ident: b0140
  article-title: Element-resolved corrosion analysis of stainless-type glass-forming steels
  publication-title: Science
– volume: 20
  start-page: 1
  year: 1995
  end-page: 85
  ident: b0230
  article-title: Thermodynamics and structural aspects of grain boundary segregation
  publication-title: Crit Rev Solid State
– volume: 112
  start-page: 126103
  year: 2014
  ident: b0425
  article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material
  publication-title: Phys Rev Lett
– volume: vol. 1
  start-page: 21
  year: 2001
  end-page: 38
  ident: b0170
  publication-title: Grain boundary character – a key factor for grain boundary control. Recrystallization and grain growth
– volume: 26
  start-page: 203
  year: 1992
  end-page: 206
  ident: b0270
  article-title: On the criteria for slip transmission across interfaces in polycrystals
  publication-title: Script Metall Mater
– volume: 46
  start-page: 4103
  year: 1998
  end-page: 4110
  ident: b0185
  article-title: Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries
  publication-title: Acta Mater
– volume: 59
  start-page: 364
  year: 2011
  end-page: 374
  ident: b0415
  article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation
  publication-title: Acta Mater
– volume: 43
  start-page: 7287
  year: 2006
  end-page: 7303
  ident: b0280
  article-title: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations
  publication-title: Int J Solids Struct
– volume: 53
  start-page: 168
  year: 1975
  end-page: 212
  ident: b0060
  article-title: Interface adsorption, embrittlement and fracture in metallurgy: a review
  publication-title: Surf Sci
– volume: 55
  start-page: 6208
  year: 2007
  end-page: 6218
  ident: b0320
  article-title: Complexion: a new concept for kinetic engineering in materials science
  publication-title: Acta Mater
– reference: Choi PP, Al-Kassab T, Gärtner F, Kreye H, Kirchheim R. Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe, Mater Sci Eng A 2003: 353; 74–79.
– volume: 50
  start-page: 4177
  year: 2002
  end-page: 4189
  ident: b0635
  article-title: Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite
  publication-title: Acta Mater
– reference: Gibbs JW. The Collected Works of J. Willard Gibbs, Vol. 1, Yale University Press, New Haven, CT, 1948.
– volume: 86
  start-page: 4459
  year: 2006
  end-page: 4475
  ident: b0585
  article-title: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography
  publication-title: Philos Magn
– volume: 6
  start-page: 947
  year: 1995
  end-page: 952
  ident: b0180
  article-title: An X-ray device for continuous tracking of moving interfaces in crystalline solids
  publication-title: Mater Sci Technol
– reference: Gottstein G, Shvindlerman LS, Molodov DA, Czubayko U. Grain boundary motion in aluminium bicrystals. In: Duxbury PM, Pence TJ (editors). Dynamics of crystal surfaces and interfaces, New York: Plenum Press; 1997. P. 109–23.
– volume: 60
  start-page: 2790
  year: 2012
  end-page: 2804
  ident: b0355
  article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2 GPa Fe–Cr–C steel
  publication-title: Acta Mater
– volume: 61
  start-page: 6132
  year: 2013
  end-page: 6152
  ident: b0290
  article-title: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite
  publication-title: Acta Mater
– volume: 88
  start-page: 245701
  year: 2002
  ident: b0660
  article-title: Modeling elasticity in crystal growth
  publication-title: Phys Rev Lett
– volume: 250
  start-page: 8
  year: 1998
  end-page: 13
  ident: b0360
  article-title: Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe
  publication-title: J Mater Sci Eng A
– volume: 3
  start-page: 621
  year: 2004
  end-page: 626
  ident: b0490
  article-title: Bismuth-induced embrittlement of copper grain boundaries
  publication-title: Nat Mater
– volume: 47
  start-page: 4171
  year: 1999
  end-page: 4185
  ident: b0045
  article-title: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering
  publication-title: Acta Mater
– volume: 47
  start-page: 1527
  year: 2007
  end-page: 1532
  ident: b0620
  article-title: Variant selection of reversed austenite in lath martensite
  publication-title: ISIJ Int
– volume: 106
  start-page: 246402
  year: 2014
  ident: b0515
  article-title: Magnetic bond-order potential for iron
  publication-title: Phys Rev Lett
– volume: 23
  start-page: 799
  year: 1989
  end-page: 803
  ident: b0255
  article-title: Prediction of slip transfer mechanisms across grain boundaries
  publication-title: Scr Metall
– volume: 75
  start-page: 484
  year: 2012
  end-page: 491
  ident: b0430
  article-title: A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces
  publication-title: Microsc Res Techniq
– reference: Wolf, D. Atomic-level geometry of crystalline interfaces, in: Materials interfaces: atomic-level structure and properties, Chapman & Hall, London, 1992.
– year: 2010
  ident: b0650
  article-title: Grain boundary segregation in metals
– volume: 80
  start-page: 781
  year: 2000
  end-page: 796
  ident: b0365
  article-title: Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels
  publication-title: Philos Magn A
– year: 1999
  ident: b0035
  article-title: Grain boundary migration in metals – thermodynamics, kinetics
– volume: 33
  start-page: 133
  year: 2008
  end-page: 163
  ident: b0210
  article-title: Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction
  publication-title: Crit Rev Solid State
– volume: 79
  start-page: 094112
  year: 2009
  ident: b0560
  article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys
  publication-title: Phys Rev B
– volume: 3
  start-page: 241
  year: 1996
  end-page: 267
  ident: b0205
  article-title: Solute segregation at grain boundaries
  publication-title: Interface Sci
– volume: 10
  start-page: 789
  year: 1962
  end-page: 798
  ident: b0160
  article-title: The impurity-drag effect in grain boundary motion
  publication-title: Acta Metall
– volume: 21
  start-page: 2437
  year: 1990
  end-page: 2447
  ident: b0260
  article-title: An in situ transmission electron microscopy deformation study of the slip transfer mechanisms in metals
  publication-title: Metall Trans A
– volume: 26
  start-page: 055008
  year: 2013
  ident: b0345
  article-title: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography
  publication-title: Supercond Sci Technol
– volume: 20
  start-page: 921
  year: 1986
  end-page: 926
  ident: b0245
  article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel
  publication-title: Scr Metall
– volume: 55
  start-page: 5247
  year: 2007
  end-page: 5254
  ident: b0305
  article-title: Multiple grain boundary transitions in ceramics: a case study of alumina
  publication-title: Acta Mater
– volume: 65
  start-page: 215
  year: 2014
  end-page: 228
  ident: b0440
  article-title: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy
  publication-title: Acta Mater
– start-page: 107
  year: 1990
  end-page: 1134
  ident: b0200
  article-title: Segregation of grain boundaries
  publication-title: Surface segregation phenomena
– volume: 59
  start-page: 3965
  year: 2011
  end-page: 3977
  ident: b0375
  article-title: Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite
  publication-title: Acta Mater
– volume: 55
  start-page: 5129
  year: 2007
  end-page: 5138
  ident: b0115
  article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I: Theoretical background
  publication-title: Acta Mater
– volume: 8A
  start-page: 1363
  year: 1977
  end-page: 1371
  ident: b0195
  article-title: The theory of grain boundary segregation in terms of surface adsorption analogues
  publication-title: Metall Trans
– volume: 68
  start-page: 703
  year: 2013
  end-page: 706
  ident: b0485
  article-title: Atomic-resolution observation of Hf-doped alumina grain boundaries
  publication-title: Scr Mater
– volume: 61
  start-page: 5188
  year: 2013
  end-page: 5197
  ident: b0395
  article-title: Grain boundary width, energy and self-diffusion in nickel: effect of material purity
  publication-title: Acta Mater
– volume: 40
  start-page: 1361
  year: 1918
  end-page: 1368
  ident: b0220
  article-title: The adsorption of gases on plane surfaces of glass mica and platinum
  publication-title: J Am Chem Soc
– start-page: 191
  year: 1973
  end-page: 212
  ident: b0075
  article-title: Grain boundary segregation
  publication-title: Proc R Soc London. Ser A, Math a, Phys Sci
– volume: 479
  start-page: 380
  year: 2011
  end-page: 383
  ident: b0505
  article-title: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries
  publication-title: Nat Mater
– year: 1997
  ident: b0020
  article-title: Interfaces in materials: atomic structure, thermodynamic and kinetics of solid–vapor, solid–liquid and solid–solid interfaces
– volume: 46
  start-page: 199
  year: 1950
  end-page: 204
  ident: b0080
  article-title: Surface tension of regular solutions
  publication-title: T Faraday Soc
– volume: 60
  start-page: 1201
  year: 2012
  end-page: 1220
  ident: b0400
  article-title: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X
  publication-title: J Mech Phys Solids
– reference: Mandal S, Pradeep KG, Zaefferer SD, Raabe D. A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom, Scr Mater, (Available 20.02.14).
– volume: 32
  start-page: 113
  year: 2002
  end-page: 140
  ident: b0540
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu Rev Mater Res
– volume: 102
  start-page: 091607
  year: 2013
  ident: b0500
  article-title: Oxygen segregation at coherent grain boundaries of cubic boron nitride
  publication-title: Appl Phys Lett
– volume: 119
  start-page: 840
  year: 2011
  end-page: 844
  ident: b0495
  article-title: Zr segregation and associated Al vacancies in alumina grain boundaries
  publication-title: J Ceram Soc Jpn
– volume: 68
  start-page: 295
  year: 2014
  end-page: 309
  ident: b0605
  article-title: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing
  publication-title: Acta Mater
– volume: 332
  start-page: 206
  year: 2011
  end-page: 209
  ident: b0300
  article-title: Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics
  publication-title: Science
– volume: 63
  start-page: 1
  year: 2010
  end-page: 7
  ident: b0475
  article-title: Nanostructural hierarchy increases the strength of aluminium alloys
  publication-title: Nat Commun
– volume: 55
  start-page: 2329
  year: 2007
  end-page: 2336
  ident: b0090
  article-title: Stabilizing nanocrystalline materials with dopants
  publication-title: Acta Mater
– volume: 1
  start-page: 439
  year: 1992
  end-page: 447
  ident: b0565
  article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys
  publication-title: Nanostruct Mater
– volume: 52
  start-page: 4067
  year: 2004
  end-page: 4081
  ident: b0050
  article-title: Twinning-related grain boundary engineering
  publication-title: Acta Mater
– volume: 61
  start-page: 5078
  year: 2013
  end-page: 5086
  ident: b0655
  article-title: Atomic structure characterization of an incommensurate grain boundary
  publication-title: Acta Mater
– volume: 42
  start-page: 1
  year: 2012
  end-page: 31
  ident: b0460
  article-title: Atom probe tomography
  publication-title: Annu Rev Mater Res
– volume: 58
  start-page: 1212
  year: 2010
  end-page: 1235
  ident: b0535
  article-title: Phase field modeling of defects and deformation
  publication-title: Acta Mater
– volume: 55
  start-page: 4221
  year: 2007
  end-page: 4232
  ident: b0525
  article-title: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system
  publication-title: Acta Mater
– volume: 32
  start-page: 163
  year: 2002
  end-page: 194
  ident: b0550
  article-title: Phase-field simulation of solidification
  publication-title: Annu Rev Mater Res
– volume: 101
  start-page: 181603
  year: 2012
  ident: b0340
  article-title: Exploring the p-n junction region in Cu(In, Ga)Se-2 thin-film solar cells at the nanometer-scale
  publication-title: Appl Phys Lett
– volume: 15
  start-page: 376
  year: 1994
  end-page: 380
  ident: b0065
  article-title: First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion
  publication-title: Science
– volume: 20
  start-page: 253
  year: 1986
  end-page: 258
  ident: b0250
  article-title: Micromechanism of slip propagation through a high angle boundary in alpha brass
  publication-title: Scr Metall
– volume: 87
  start-page: 581
  year: 2007
  end-page: 587
  ident: b0595
  article-title: Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography
  publication-title: Philos Magn Lett
– volume: 60
  start-page: 1201
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0400
  article-title: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2012.02.001
– volume: 44
  start-page: 1857
  year: 1996
  ident: 10.1016/j.cossms.2014.06.002_b0105
  article-title: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys – I. The model
  publication-title: Acta Mater
  doi: 10.1016/1359-6454(95)00317-7
– volume: 51
  start-page: 3951
  year: 2003
  ident: 10.1016/j.cossms.2014.06.002_b0070
  article-title: Segregation based classification of [100] tilt grain boundaries in α-iron and its consequences for grain boundary engineering
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(03)00219-2
– volume: 55
  start-page: 2329
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0090
  article-title: Stabilizing nanocrystalline materials with dopants
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.11.028
– volume: 10
  start-page: 789
  year: 1962
  ident: 10.1016/j.cossms.2014.06.002_b0160
  article-title: The impurity-drag effect in grain boundary motion
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(62)90092-5
– volume: 61
  start-page: 5078
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0655
  article-title: Atomic structure characterization of an incommensurate grain boundary
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.04.028
– volume: 75
  start-page: 484
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0430
  article-title: A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces
  publication-title: Microsc Res Techniq
  doi: 10.1002/jemt.21081
– volume: 5
  start-page: 322
  year: 1957
  ident: 10.1016/j.cossms.2014.06.002_b0240
  article-title: Multiple slip in bicrystal deformation
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(57)90044-5
– volume: 62
  start-page: 131
  year: 1990
  ident: 10.1016/j.cossms.2014.06.002_b0265
  article-title: TEM in situ deformation study of the interaction of lattice dislocation with grain boundaries in metals
  publication-title: Philos Magn A
  doi: 10.1080/01418619008244340
– volume: 50
  start-page: 353
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0175
  article-title: On the mechanisms of grain boundary migration
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00343-3
– volume: 55
  start-page: 1071
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0350
  article-title: Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2006.03.040
– volume: 75
  start-page: 064107
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0665
  article-title: Phase-field crystal modeling and classical density functional theory of freezing
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.75.064107
– volume: 62
  start-page: 855
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0120
  article-title: Atom-probe tomography characterization of the oxidation of stainless steel
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2010.02.021
– volume: 50
  start-page: 413
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0110
  article-title: Grain coarsening inhibited by solute segregation
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00338-X
– volume: 51
  start-page: 521
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0575
  article-title: Grain boundary saturation and grain growth
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2004.05.042
– year: 1997
  ident: 10.1016/j.cossms.2014.06.002_b0010
– volume: 59
  start-page: 364
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0145
  article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.042
– volume: 10
  start-page: 384
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0470
  article-title: Modeling image distortions in 3DAP
  publication-title: Microsc Microanal
  doi: 10.1017/S1431927604040486
– volume: 264
  start-page: 385
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0570
  article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation
  publication-title: J Cryst Growth
  doi: 10.1016/j.jcrysgro.2003.12.021
– volume: 106
  start-page: 246402
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0515
  article-title: Magnetic bond-order potential for iron
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.246402
– volume: 20
  start-page: 1
  year: 1995
  ident: 10.1016/j.cossms.2014.06.002_b0230
  article-title: Thermodynamics and structural aspects of grain boundary segregation
  publication-title: Crit Rev Solid State
  doi: 10.1080/10408439508243544
– volume: 527
  start-page: 7115
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0385
  article-title: Grain boundary characterization and energetics of superalloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.07.062
– year: 1997
  ident: 10.1016/j.cossms.2014.06.002_b0020
– volume: 47
  start-page: 4171
  year: 1999
  ident: 10.1016/j.cossms.2014.06.002_b0045
  article-title: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00275-X
– volume: 20
  start-page: 253
  year: 1986
  ident: 10.1016/j.cossms.2014.06.002_b0250
  article-title: Micromechanism of slip propagation through a high angle boundary in alpha brass
  publication-title: Scr Metall
  doi: 10.1016/0036-9748(86)90137-7
– volume: 47
  start-page: 1627
  year: 1999
  ident: 10.1016/j.cossms.2014.06.002_b0130
  article-title: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00026-9
– volume: 32
  start-page: 163
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0550
  article-title: Phase-field simulation of solidification
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev.matsci.32.101901.155803
– volume: 61
  start-page: 5188
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0395
  article-title: Grain boundary width, energy and self-diffusion in nickel: effect of material purity
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.05.010
– volume: 54
  start-page: 2181
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0275
  article-title: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.01.004
– volume: 21
  start-page: 2437
  year: 1990
  ident: 10.1016/j.cossms.2014.06.002_b0260
  article-title: An in situ transmission electron microscopy deformation study of the slip transfer mechanisms in metals
  publication-title: Metall Trans A
  doi: 10.1007/BF02646988
– volume: 47
  start-page: 4187
  year: 1999
  ident: 10.1016/j.cossms.2014.06.002_b0055
  article-title: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00277-3
– volume: 87
  start-page: 581
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0595
  article-title: Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography
  publication-title: Philos Magn Lett
  doi: 10.1080/09500830701400125
– volume: 44
  start-page: 977
  year: 2001
  ident: 10.1016/j.cossms.2014.06.002_b0370
  article-title: Cementite decomposition in heavily drawn pearlite steel wire
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(00)00690-4
– volume: 332
  start-page: 182
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0325
  article-title: The phase behavior of interfaces
  publication-title: Science
  doi: 10.1126/science.1204204
– volume: 112
  start-page: 126103
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0425
  article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.112.126103
– volume: 61
  start-page: 3390
  year: 1990
  ident: 10.1016/j.cossms.2014.06.002_b0435
  article-title: A system for systematically preparing atomprobe fieldion microscope specimens for the study of internal interfaces
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1141590
– volume: 58
  start-page: 1212
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0535
  article-title: Phase field modeling of defects and deformation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.10.041
– volume: 1
  start-page: 439
  year: 1992
  ident: 10.1016/j.cossms.2014.06.002_b0565
  article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys
  publication-title: Nanostruct Mater
  doi: 10.1016/0965-9773(92)90076-A
– year: 1993
  ident: 10.1016/j.cossms.2014.06.002_b0015
– volume: 35
  start-page: 982
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0615
  article-title: Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials
  publication-title: MRS Bull
  doi: 10.1557/mrs2010.703
– volume: 50
  start-page: 4177
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0635
  article-title: Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00260-4
– volume: 60
  start-page: 1141
  year: 2009
  ident: 10.1016/j.cossms.2014.06.002_b0295
  article-title: Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2009.02.062
– volume: 66
  start-page: 907
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0450
  article-title: Atom probe crystallography: atomic-scale 3-D orientation mapping
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2012.02.022
– volume: 63
  start-page: 1
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0475
  article-title: Nanostructural hierarchy increases the strength of aluminium alloys
  publication-title: Nat Commun
  doi: 10.1038/ncomms1062
– volume: 57
  start-page: 5254
  year: 2009
  ident: 10.1016/j.cossms.2014.06.002_b0125
  article-title: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and tomographic atom probe
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.07.028
– volume: 33
  start-page: 1019
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0625
  article-title: The production of ultrafine ferrite in low-carbon steel by strain-induced transformation
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-002-0203-5
– volume: 66
  start-page: 459
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0150
  article-title: Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2011.12.015
– volume: 23
  start-page: 799
  year: 1989
  ident: 10.1016/j.cossms.2014.06.002_b0255
  article-title: Prediction of slip transfer mechanisms across grain boundaries
  publication-title: Scr Metall
  doi: 10.1016/0036-9748(89)90534-6
– ident: 10.1016/j.cossms.2014.06.002_b0215
– volume: 86
  start-page: 4459
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0585
  article-title: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography
  publication-title: Philos Magn
  doi: 10.1080/14786430600726749
– volume: 33
  start-page: 133
  year: 2008
  ident: 10.1016/j.cossms.2014.06.002_b0210
  article-title: Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction
  publication-title: Crit Rev Solid State
  doi: 10.1080/10408430801907649
– volume: 60
  start-page: 1731
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0390
  article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.11.020
– ident: 10.1016/j.cossms.2014.06.002_b0190
  doi: 10.1007/0-306-47071-3_9
– volume: 5
  start-page: 628
  year: 1957
  ident: 10.1016/j.cossms.2014.06.002_b0165
  article-title: A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(57)90109-8
– volume: 111
  start-page: 493
  issue: 2011
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0455
  article-title: Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.11.014
– volume: 28
  start-page: 455
  year: 1980
  ident: 10.1016/j.cossms.2014.06.002_b0040
  article-title: Grain boundary hardening and segregation in alpha Iron-Tin alloy
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(80)90135-2
– volume: 59
  start-page: 3965
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0375
  article-title: Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.03.022
– volume: 59
  start-page: 364
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0415
  article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.042
– ident: 10.1016/j.cossms.2014.06.002_b0645
– volume: 61
  start-page: 4607
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0155
  article-title: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.04.030
– volume: 93
  start-page: 1796
  year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0310
  article-title: The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1551-2916.2010.03642.x
– volume: 286
  start-page: 479
  year: 1965
  ident: 10.1016/j.cossms.2014.06.002_b0095
  article-title: The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron
  publication-title: Proc R Soc London A
  doi: 10.1098/rspa.1965.0158
– volume: 42
  start-page: 1
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0460
  article-title: Atom probe tomography
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev-matsci-070511-155007
– volume: 90
  start-page: 996
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0315
  article-title: Direct observation of multilayer adsorption on alumina grain boundaries
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1551-2916.2007.01512.x
– volume: 62
  start-page: 1
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0330
  article-title: Grain boundary complexions
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.07.037
– volume: 16
  start-page: S2629
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0510
  article-title: Development of an interatomic potential for phosphorus impurities in alpha-iron
  publication-title: J Phys Condens Mater
  doi: 10.1088/0953-8984/16/27/003
– volume: 52
  start-page: 4067
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0050
  article-title: Twinning-related grain boundary engineering
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.05.031
– volume: 59
  start-page: 182
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0410
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.023
– volume: 85
  start-page: 064108
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0520
  article-title: Probing grain boundary sink strength at the nanoscale: energetics and length scales of vacancy and interstitial absorption by grain boundaries in alpha-Fe
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.85.064108
– volume: 65
  start-page: 215
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0440
  article-title: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.10.064
– volume: 250
  start-page: 8
  year: 1998
  ident: 10.1016/j.cossms.2014.06.002_b0360
  article-title: Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe
  publication-title: J Mater Sci Eng A
  doi: 10.1016/S0921-5093(98)00529-2
– volume: 26
  start-page: 203
  year: 1992
  ident: 10.1016/j.cossms.2014.06.002_b0270
  article-title: On the criteria for slip transmission across interfaces in polycrystals
  publication-title: Script Metall Mater
  doi: 10.1016/0956-716X(92)90173-C
– volume: 273–275
  start-page: 40
  year: 1999
  ident: 10.1016/j.cossms.2014.06.002_b0630
  article-title: Martensite in steel: strength and structure
  publication-title: Mater Sc Eng A
  doi: 10.1016/S0921-5093(99)00288-9
– volume: 55
  start-page: 6208
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0320
  article-title: Complexion: a new concept for kinetic engineering in materials science
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.07.029
– volume: 60
  start-page: 4005
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0380
  article-title: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.03.006
– volume: 48
  start-page: 789
  year: 2000
  ident: 10.1016/j.cossms.2014.06.002_b0590
  article-title: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP)
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00397-3
– volume: 47
  start-page: 1527
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0620
  article-title: Variant selection of reversed austenite in lath martensite
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.47.1527
– volume: 3
  start-page: 621
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0490
  article-title: Bismuth-induced embrittlement of copper grain boundaries
  publication-title: Nat Mater
  doi: 10.1038/nmat1191
– volume: 37
  start-page: 2595
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0420
  article-title: Anisotropy of segregation at grain boundaries and surfaces
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02586096
– volume: 51
  start-page: 3687
  year: 2003
  ident: 10.1016/j.cossms.2014.06.002_b0545
  article-title: Segregation transition and drag force at grain boundaries
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(03)00184-8
– volume: 55
  start-page: 4221
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0525
  article-title: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.03.024
– volume: 37
  start-page: 2595
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0100
  article-title: Anisotropy of segregation at grain boundaries and surfaces
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02586096
– volume: 31
  start-page: 677
  year: 1983
  ident: 10.1016/j.cossms.2014.06.002_b0235
  article-title: Computer modelling of grain boundary segregation
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(83)90083-4
– volume: 43
  start-page: 7287
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0280
  article-title: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.07.006
– volume: 15
  start-page: 376
  year: 1994
  ident: 10.1016/j.cossms.2014.06.002_b0065
  article-title: First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion
  publication-title: Science
  doi: 10.1126/science.265.5170.376
– volume: 61
  start-page: 4696
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0405
  article-title: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.04.059
– ident: 10.1016/j.cossms.2014.06.002_b0555
  doi: 10.1016/j.actamat.2011.08.045
– volume: 79
  start-page: 094112
  year: 2009
  ident: 10.1016/j.cossms.2014.06.002_b0560
  article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.79.094112
– volume: 109
  start-page: 815
  year: 2009
  ident: 10.1016/j.cossms.2014.06.002_b0465
  article-title: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2009.03.016
– volume: 3
  start-page: 241
  year: 1996
  ident: 10.1016/j.cossms.2014.06.002_b0205
  article-title: Solute segregation at grain boundaries
  publication-title: Interface Sci
  doi: 10.1007/BF00194704
– volume: 479
  start-page: 380
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0505
  article-title: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries
  publication-title: Nat Mater
  doi: 10.1038/nature10593
– volume: 55
  start-page: 5129
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0115
  article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I: Theoretical background
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.05.047
– volume: 40
  start-page: 1361
  year: 1918
  ident: 10.1016/j.cossms.2014.06.002_b0220
  article-title: The adsorption of gases on plane surfaces of glass mica and platinum
  publication-title: J Am Chem Soc
  doi: 10.1021/ja02242a004
– volume: 111
  start-page: 628
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0610
  article-title: Atom probe tomography characterization of heavily cold drawn pearlitic steel wire
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.11.010
– volume: 51
  start-page: 521
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0225
  article-title: Grain boundary saturation and grain growth
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2004.05.042
– volume: 102
  start-page: 091607
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0500
  article-title: Oxygen segregation at coherent grain boundaries of cubic boron nitride
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4795300
– volume: 95
  start-page: 2358
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0640
  article-title: Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions
  publication-title: Am Ceram Soc
  doi: 10.1111/j.1551-2916.2011.05059.x
– volume: 8A
  start-page: 1363
  year: 1977
  ident: 10.1016/j.cossms.2014.06.002_b0195
  article-title: The theory of grain boundary segregation in terms of surface adsorption analogues
  publication-title: Metall Trans
  doi: 10.1007/BF02642850
– volume: 68
  start-page: 703
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0485
  article-title: Atomic-resolution observation of Hf-doped alumina grain boundaries
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2013.01.015
– volume: 101
  start-page: 181603
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0340
  article-title: Exploring the p-n junction region in Cu(In, Ga)Se-2 thin-film solar cells at the nanometer-scale
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4764527
– year: 1957
  ident: 10.1016/j.cossms.2014.06.002_b0005
– volume: 110
  start-page: 124513
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0335
  article-title: Comparative atom probe study of Cu(In, Ga)Se(2) thin-film solar cells deposited on soda-lime glass and mild steel substrates
  publication-title: J Appl Phys
  doi: 10.1063/1.3665723
– ident: 10.1016/j.cossms.2014.06.002_b0480
– volume: 32
  start-page: 113
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0540
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev.matsci.32.112001.132041
– volume: 46
  start-page: 199
  year: 1950
  ident: 10.1016/j.cossms.2014.06.002_b0080
  article-title: Surface tension of regular solutions
  publication-title: T Faraday Soc
  doi: 10.1039/tf9504600199
– volume: 88
  start-page: 245701
  year: 2002
  ident: 10.1016/j.cossms.2014.06.002_b0660
  article-title: Modeling elasticity in crystal growth
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.88.245701
– volume: 80
  start-page: 781
  year: 2000
  ident: 10.1016/j.cossms.2014.06.002_b0365
  article-title: Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels
  publication-title: Philos Magn A
  doi: 10.1080/01418610008212082
– volume: 46
  start-page: 4103
  year: 1998
  ident: 10.1016/j.cossms.2014.06.002_b0185
  article-title: Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(98)00105-0
– volume: 61
  start-page: 6132
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0290
  article-title: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.06.055
– volume: 55
  start-page: 5247
  year: 2007
  ident: 10.1016/j.cossms.2014.06.002_b0305
  article-title: Multiple grain boundary transitions in ceramics: a case study of alumina
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.04.051
– start-page: 107
  year: 1990
  ident: 10.1016/j.cossms.2014.06.002_b0200
  article-title: Segregation of grain boundaries
– volume: 20
  start-page: 921
  year: 1986
  ident: 10.1016/j.cossms.2014.06.002_b0245
  article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel
  publication-title: Scr Metall
  doi: 10.1016/0036-9748(86)90467-9
– volume: 119
  start-page: 840
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0495
  article-title: Zr segregation and associated Al vacancies in alumina grain boundaries
  publication-title: J Ceram Soc Jpn
  doi: 10.2109/jcersj2.119.840
– volume: 54
  start-page: 297
  year: 2006
  ident: 10.1016/j.cossms.2014.06.002_b0085
  article-title: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.07.024
– volume: 95
  start-page: 226
  year: 2004
  ident: 10.1016/j.cossms.2014.06.002_b0025
  article-title: Grain boundary mobility – a brief review
  publication-title: Z Metallkd
  doi: 10.3139/146.017938
– volume: 59
  start-page: 530
  year: 2008
  ident: 10.1016/j.cossms.2014.06.002_b0580
  article-title: Grain-size stabilization in nanocrystalline FeZr alloys
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2008.04.045
– volume: 341
  start-page: 372
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0140
  article-title: Element-resolved corrosion analysis of stainless-type glass-forming steels
  publication-title: Science
  doi: 10.1126/science.1230081
– volume: 60
  start-page: 2790
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0355
  article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2 GPa Fe–Cr–C steel
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.01.045
– volume: 15
  start-page: 378
  year: 2012
  ident: 10.1016/j.cossms.2014.06.002_b0445
  article-title: Atom probe crystallography
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(12)70164-5
– ident: 10.1016/j.cossms.2014.06.002_b0030
– volume: vol. 1
  start-page: 21
  year: 2001
  ident: 10.1016/j.cossms.2014.06.002_b0170
– volume: 53
  start-page: 168
  year: 1975
  ident: 10.1016/j.cossms.2014.06.002_b0060
  article-title: Interface adsorption, embrittlement and fracture in metallurgy: a review
  publication-title: Surf Sci
  doi: 10.1016/0039-6028(75)90124-7
– volume: 332
  start-page: 206
  year: 2011
  ident: 10.1016/j.cossms.2014.06.002_b0300
  article-title: Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics
  publication-title: Science
  doi: 10.1126/science.1201596
– ident: 10.1016/j.cossms.2014.06.002_b0600
  doi: 10.1016/S0921-5093(02)00670-6
– year: 2010
  ident: 10.1016/j.cossms.2014.06.002_b0650
– volume: 68
  start-page: 295
  year: 2014
  ident: 10.1016/j.cossms.2014.06.002_b0605
  article-title: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.01.031
– start-page: 191
  year: 1973
  ident: 10.1016/j.cossms.2014.06.002_b0075
  article-title: Grain boundary segregation
  publication-title: Proc R Soc London. Ser A, Math a, Phys Sci
  doi: 10.1098/rspa.1973.0121
– volume: 6
  start-page: 947
  year: 1995
  ident: 10.1016/j.cossms.2014.06.002_b0180
  article-title: An X-ray device for continuous tracking of moving interfaces in crystalline solids
  publication-title: Mater Sci Technol
– year: 1999
  ident: 10.1016/j.cossms.2014.06.002_b0035
– volume: 25
  start-page: 1655
  year: 2009
  ident: 10.1016/j.cossms.2014.06.002_b0285
  article-title: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2008.09.002
– volume: 44
  start-page: 14
  year: 2003
  ident: 10.1016/j.cossms.2014.06.002_b0135
  article-title: Grain boundary diffusion in metals: recent developments
  publication-title: Mater Trans
  doi: 10.2320/matertrans.44.14
– ident: 10.1016/j.cossms.2014.06.002_b0530
  doi: 10.1016/j.actamat.2013.02.006
– volume: 26
  start-page: 055008
  year: 2013
  ident: 10.1016/j.cossms.2014.06.002_b0345
  article-title: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography
  publication-title: Supercond Sci Technol
  doi: 10.1088/0953-2048/26/5/055008
SSID ssj0004666
Score 2.6042655
SecondaryResourceType review_article
Snippet •Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain...
Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms Alloys
Atom probe tomography
Coefficients
Cohesion
Decoration
Grain boundaries
Grain boundary
Heat treatment
Materials science
Phase transformation
Precipitates
Segregation
Segregations
Title Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces
URI https://dx.doi.org/10.1016/j.cossms.2014.06.002
https://www.proquest.com/docview/1685770667
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iCO2DVNtStUqEvqZnNrOXbN-OQz0_KkUr-Jbms1zRO7k7kXvp324mu6tWCoJPy-5OlmWSnZns_OY3hHxRVvpCWmBcyMiAc8dMKASDboDdKKWNEeudv592BxdwdFleLpB-WwuDsMrG9tc2PVvr5kqn0WbnZjjsnHORqUeSf8kVpsgJCiBxlX_9y5_URuZ8JQozlG7L5zLGyyVHdI2k3Rwyi2fzc-U_7umZoc7eZ_8dWWnCRtqr32yVLITRGnn7hExwjSxnMKebvie_DrDvA7W5Y9JkTqchbap_5ymg4XEITTLXIQXfV0NHMf8-n36jPYo9iu_MnM7GNAWH1GeIBx1HiswSk4gQrg_kYn_vZ3_Amk4KzIFQMxYraYRykvtqF7gyvhBRKqdsNGB9AT6CDbYsnZeVNzYWhYzWpz2qFFaVKoiPZHE0HoVPhFYeIoCJQQQLlS9VFI4LFQrbNZDurRPRKlC7hmYcu11c6RZP9kfXateodp1hdcU6YQ-jbmqajRfkZTs3-p_lopMneGHkTjuVOn1JmB4xozC-nWreVaWUCPrdePXTN8kbPKsRgp_J4mxyG7ZS1DKz23lZbpOlXv_s5AceD48Hp_e37PDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6lqarCAUEBUV41Elcr9Xo29nKLKkJK21xIpN6Mn1WqNqmSVCj_Htu7S0uFVInr2rNaje2Z8c433wB8lka4QhikjItAkTFLtS84xb7HwyCECSHVO5-N-6Mpfj8vzztw1NbCJFhlY_trm56tdfOk12izdzOb9X4wnqlHon_JFaa4BduJnarswvbg-GQ0vlcemVOWaT5NAm0FXYZ52eiLrhNvN8NM5Nn8X_mHh3pgq7MDGj6HZ03kSAb1x72Ajp_vwdN7fIJ7sJPxnHb1En5-S60fiMlNk5YbsvLxXn2RV4H4OxES51z7GH9fzSxJKfjN6gsZkNSm-JfekPWCxPiQuIzyIItAErnEMiQU1yuYDr9Ojka0aaZALXK5pqESmksrmKsOkUntCh6EtNIEjcYV6AIab8rSOlE5bUJRiGBcvKYKbmQpPX8N3fli7t8AqRwGRB089wYrV8rALePSF6avMY7tA28VqGzDNJ4aXlypFlJ2qWq1q6R2lZF1xT7QP1I3NdPGI_NFuzbqrx2jojN4RPJTu5QqHqaUIdFzv7hdKdaXpRAJ9_v2v99-ALujydmpOj0en7yDJ2mkBgy-h-56ees_xCBmbT42m_Q3ZtHx7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+segregation+engineering+in+metallic+alloys%3A+A+pathway+to+the+design+of+interfaces&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Raabe%2C+D.&rft.au=Herbig%2C+M.&rft.au=Sandl%C3%B6bes%2C+S.&rft.au=Li%2C+Y.&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-0286&rft.volume=18&rft.issue=4&rft.spage=253&rft.epage=261&rft_id=info:doi/10.1016%2Fj.cossms.2014.06.002&rft.externalDocID=S1359028614000394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon