Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces
•Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabli...
Saved in:
Published in | Current opinion in solid state & materials science Vol. 18; no. 4; pp. 253 - 261 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties.
Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing. |
---|---|
AbstractList | Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as 'segregation engineering' solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing. •Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties. Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing. |
Author | Ponge, D. Sandlöbes, S. Kuzmina, M. Choi, P.-P. Li, Y. Raabe, D. Herbig, M. Tytko, D. |
Author_xml | – sequence: 1 givenname: D. surname: Raabe fullname: Raabe, D. email: d.raabe@mpie.de – sequence: 2 givenname: M. surname: Herbig fullname: Herbig, M. – sequence: 3 givenname: S. surname: Sandlöbes fullname: Sandlöbes, S. – sequence: 4 givenname: Y. surname: Li fullname: Li, Y. – sequence: 5 givenname: D. surname: Tytko fullname: Tytko, D. – sequence: 6 givenname: M. surname: Kuzmina fullname: Kuzmina, M. – sequence: 7 givenname: D. surname: Ponge fullname: Ponge, D. – sequence: 8 givenname: P.-P. surname: Choi fullname: Choi, P.-P. |
BookMark | eNqFkDtPQyEUgBk08fkPHBhdeoX7ANrBxDS-kiYuOiMXDrc0t1CBavrvRevkoMs5y_ed5Hwn6MAHDwhdUFJRQtnVqtIhpXWqakLbirCKkPoAHdOmm05ILdgROklpRQhpGWPH6PU-KudxH7beqLjDCYYIg8oueAx-cB4gOj_gwqwhq3F0GpcZdmmGb_BG5eWH2uEccF4CNpDc4HGwBc8QrdKQztChVWOC8599il7ubp_nD5PF0_3j_GYx0W0j8sROuWqE5tRMSUuFMnVjudCit6rtTd0a2_bQd502fGpUb-ua2950dcObXnQCmlN0ub-7ieFtCynLtUsaxlF5CNskKRMd54QxXtDZHtWxpIpgpXb5--VcYoySEvmVUq7kPqX8SikJkyVlkdtf8ia6dUn3n3a916A0eHcQZdIOvAbjIugsTXB_H_gEW0yWqQ |
CitedBy_id | crossref_primary_10_1088_1361_651X_ab6ec7 crossref_primary_10_1016_j_jallcom_2021_160522 crossref_primary_10_1016_j_scriptamat_2015_07_040 crossref_primary_10_1016_j_matdes_2018_04_085 crossref_primary_10_1016_j_msea_2016_08_045 crossref_primary_10_1038_s41467_018_03591_4 crossref_primary_10_1016_j_actamat_2022_118307 crossref_primary_10_1016_j_actamat_2023_118947 crossref_primary_10_1016_j_jmst_2022_07_012 crossref_primary_10_1039_D4CE00603H crossref_primary_10_1007_s11837_015_1644_9 crossref_primary_10_1016_j_actamat_2019_02_005 crossref_primary_10_1016_j_actamat_2022_118545 crossref_primary_10_5006_2433 crossref_primary_10_1038_srep22321 crossref_primary_10_1016_j_actamat_2018_01_037 crossref_primary_10_1016_j_actamat_2019_11_069 crossref_primary_10_1016_j_jallcom_2019_07_106 crossref_primary_10_1016_j_pmatsci_2025_101431 crossref_primary_10_1007_s11661_024_07518_1 crossref_primary_10_1016_j_actamat_2018_07_003 crossref_primary_10_1016_j_msea_2017_11_072 crossref_primary_10_1016_j_msea_2016_01_040 crossref_primary_10_1016_j_actamat_2023_118816 crossref_primary_10_1016_j_commatsci_2022_111604 crossref_primary_10_1016_j_actamat_2019_02_014 crossref_primary_10_1016_j_ijhydene_2022_01_251 crossref_primary_10_1557_jmr_2014_385 crossref_primary_10_1002_adma_201704717 crossref_primary_10_1007_s10853_023_08442_2 crossref_primary_10_1063_5_0237047 crossref_primary_10_1016_j_ceramint_2023_07_210 crossref_primary_10_1016_j_jallcom_2019_152153 crossref_primary_10_1016_j_actamat_2015_02_012 crossref_primary_10_1007_s11669_017_0520_4 crossref_primary_10_1016_j_msea_2020_140261 crossref_primary_10_1002_adem_202201514 crossref_primary_10_2139_ssrn_4388983 crossref_primary_10_1016_j_actamat_2016_12_032 crossref_primary_10_1038_s43588_023_00412_7 crossref_primary_10_1126_science_adq4147 crossref_primary_10_1016_j_jallcom_2020_153725 crossref_primary_10_1088_1361_651X_ad585d crossref_primary_10_1016_j_matchar_2019_110092 crossref_primary_10_1016_j_jmrt_2022_08_174 crossref_primary_10_1016_j_scriptamat_2020_02_019 crossref_primary_10_1016_j_matlet_2020_128097 crossref_primary_10_1088_2053_1591_ab600f crossref_primary_10_1016_j_actamat_2017_05_007 crossref_primary_10_1016_j_actamat_2023_118724 crossref_primary_10_1016_j_compositesb_2018_07_050 crossref_primary_10_1016_j_matchar_2020_110343 crossref_primary_10_1016_j_msea_2020_140256 crossref_primary_10_1016_j_mtcomm_2025_111777 crossref_primary_10_1016_j_actamat_2021_117271 crossref_primary_10_3390_ma14154197 crossref_primary_10_1002_adem_202300141 crossref_primary_10_1016_j_scriptamat_2021_114320 crossref_primary_10_1016_j_scriptamat_2021_114321 crossref_primary_10_1016_S1003_6326_20_65271_2 crossref_primary_10_3390_ma16041431 crossref_primary_10_1016_j_pmatsci_2018_05_004 crossref_primary_10_1016_j_jmrt_2023_09_134 crossref_primary_10_1007_s11085_016_9697_x crossref_primary_10_1016_j_actamat_2023_118958 crossref_primary_10_1016_j_actamat_2021_117147 crossref_primary_10_14723_tmrsj_40_309 crossref_primary_10_1016_j_matchar_2020_110695 crossref_primary_10_1080_08927022_2019_1602868 crossref_primary_10_1016_j_jnucmat_2017_05_027 crossref_primary_10_1016_j_actamat_2022_118411 crossref_primary_10_1016_j_actamat_2021_117260 crossref_primary_10_1016_j_intermet_2024_108534 crossref_primary_10_1016_j_jmrt_2023_03_135 crossref_primary_10_1016_j_msea_2022_144369 crossref_primary_10_3762_bjnano_7_176 crossref_primary_10_1007_s42114_024_01183_z crossref_primary_10_1002_adma_202402191 crossref_primary_10_1021_acsami_4c12327 crossref_primary_10_1126_science_abh0700 crossref_primary_10_1016_j_jmrt_2020_04_063 crossref_primary_10_1016_j_matchar_2016_12_002 crossref_primary_10_1016_j_actamat_2016_04_058 crossref_primary_10_1103_PhysRevLett_124_106102 crossref_primary_10_1088_2053_1591_ab1db9 crossref_primary_10_1007_s11661_016_3486_7 crossref_primary_10_1016_j_mechmat_2023_104775 crossref_primary_10_1021_jp508144z crossref_primary_10_1016_j_pnsc_2024_07_016 crossref_primary_10_2320_materia_62_673 crossref_primary_10_1016_j_corsci_2024_112161 crossref_primary_10_1016_j_msea_2020_139326 crossref_primary_10_1016_j_matdes_2017_09_019 crossref_primary_10_1021_acs_nanolett_1c02051 crossref_primary_10_2139_ssrn_4170570 crossref_primary_10_1007_s00339_022_05993_0 crossref_primary_10_1016_j_actamat_2014_09_041 crossref_primary_10_1021_acsnano_2c08768 crossref_primary_10_1063_5_0140793 crossref_primary_10_1103_PhysRevLett_129_046102 crossref_primary_10_1016_j_msea_2019_138726 crossref_primary_10_1016_j_jmrt_2021_01_066 crossref_primary_10_1002_adem_202201712 crossref_primary_10_1016_j_matchar_2022_112495 crossref_primary_10_1021_acsami_0c12250 crossref_primary_10_1016_j_msea_2017_11_046 crossref_primary_10_1016_j_actamat_2018_01_022 crossref_primary_10_1007_s10853_018_03297_4 crossref_primary_10_1016_j_scriptamat_2017_03_004 crossref_primary_10_1088_1757_899X_219_1_012019 crossref_primary_10_1016_j_scriptamat_2018_05_011 crossref_primary_10_1146_annurev_matsci_081619_114055 crossref_primary_10_1002_srin_202300595 crossref_primary_10_1016_j_pmatsci_2021_100798 crossref_primary_10_1016_j_commatsci_2024_113270 crossref_primary_10_1016_j_msea_2024_146933 crossref_primary_10_1016_j_scriptamat_2017_03_017 crossref_primary_10_1007_s10853_021_06064_0 crossref_primary_10_1039_C8NR09782H crossref_primary_10_1007_s10853_018_3139_x crossref_primary_10_1007_s10853_024_10417_w crossref_primary_10_1016_j_euromechsol_2021_104388 crossref_primary_10_1016_j_msea_2020_139225 crossref_primary_10_1016_j_actamat_2018_07_069 crossref_primary_10_1088_1757_899X_219_1_012006 crossref_primary_10_2320_materia_62_658 crossref_primary_10_1016_j_jma_2024_05_017 crossref_primary_10_1016_j_actamat_2023_118878 crossref_primary_10_1016_j_ijplas_2024_104185 crossref_primary_10_1016_j_actamat_2022_118577 crossref_primary_10_1016_j_pmatsci_2016_11_001 crossref_primary_10_1021_acsnano_5b04296 crossref_primary_10_1016_j_commatsci_2019_02_031 crossref_primary_10_1063_1_5040105 crossref_primary_10_1016_j_actamat_2023_119074 crossref_primary_10_1016_j_actamat_2024_120582 crossref_primary_10_1016_j_actamat_2020_01_065 crossref_primary_10_1007_s00269_017_0935_9 crossref_primary_10_1016_j_jallcom_2022_164449 crossref_primary_10_1016_j_ijmachtools_2018_07_004 crossref_primary_10_1016_j_matdes_2018_107574 crossref_primary_10_1080_21663831_2022_2050957 crossref_primary_10_1103_PhysRevMaterials_1_055601 crossref_primary_10_3390_met13081399 crossref_primary_10_2139_ssrn_4067249 crossref_primary_10_3390_met14050501 crossref_primary_10_1016_j_actamat_2021_117213 crossref_primary_10_1016_j_jallcom_2020_158326 crossref_primary_10_1016_j_jmrt_2023_07_232 crossref_primary_10_1016_j_physb_2024_416466 crossref_primary_10_1016_j_scriptamat_2023_115370 crossref_primary_10_1016_j_actamat_2015_04_014 crossref_primary_10_3390_met8080646 crossref_primary_10_5194_ejm_32_675_2020 crossref_primary_10_1016_j_actamat_2019_08_037 crossref_primary_10_1016_j_jmrt_2023_08_048 crossref_primary_10_1063_1_4968013 crossref_primary_10_1016_j_apsusc_2019_04_025 crossref_primary_10_1016_j_actamat_2020_01_055 crossref_primary_10_1016_j_ijhydene_2017_02_214 crossref_primary_10_2355_isijinternational_ISIJINT_2019_100 crossref_primary_10_1016_j_actamat_2017_12_023 crossref_primary_10_1016_j_jmrt_2024_05_238 crossref_primary_10_1038_s41467_024_53349_4 crossref_primary_10_1016_j_actamat_2017_12_020 crossref_primary_10_3390_app9091847 crossref_primary_10_1111_ffe_14074 crossref_primary_10_1016_j_jmst_2023_04_050 crossref_primary_10_1016_j_jmrt_2023_09_078 crossref_primary_10_1016_j_jallcom_2024_173831 crossref_primary_10_1016_j_scriptamat_2019_08_001 crossref_primary_10_1016_j_corsci_2022_110865 crossref_primary_10_1016_j_actamat_2022_117620 crossref_primary_10_1016_j_ijplas_2023_103856 crossref_primary_10_1016_j_commatsci_2016_04_024 crossref_primary_10_1017_S1431927617003944 crossref_primary_10_1557_mrs_2019_69 crossref_primary_10_1016_j_msea_2022_144102 crossref_primary_10_1016_j_msea_2023_144821 crossref_primary_10_1039_C7TA03353B crossref_primary_10_1007_s44210_022_00002_8 crossref_primary_10_1016_j_matchemphys_2023_127531 crossref_primary_10_1002_srin_202400116 crossref_primary_10_1051_metal_2024081 crossref_primary_10_1111_ggr_12313 crossref_primary_10_1016_j_mtla_2019_100258 crossref_primary_10_1016_j_matchar_2024_114553 crossref_primary_10_1016_j_apsusc_2023_157340 crossref_primary_10_2207_jjws_90_587 crossref_primary_10_1016_j_commatsci_2024_113509 crossref_primary_10_1016_j_vacuum_2023_112036 crossref_primary_10_1016_j_matdes_2015_06_143 crossref_primary_10_1088_1361_651X_aadea3 crossref_primary_10_1016_j_commatsci_2021_110660 crossref_primary_10_1016_j_mtcomm_2024_110326 crossref_primary_10_1103_PhysRevMaterials_3_123602 crossref_primary_10_1016_j_actamat_2020_04_052 crossref_primary_10_1063_5_0127266 crossref_primary_10_1002_adem_201800048 crossref_primary_10_1016_j_scriptamat_2023_115593 crossref_primary_10_4028_www_scientific_net_DDF_381_33 crossref_primary_10_1017_S1431927621012137 crossref_primary_10_1103_PhysRevMaterials_7_123606 crossref_primary_10_1039_C5TA10064J crossref_primary_10_2139_ssrn_4067253 crossref_primary_10_1016_j_actamat_2023_119081 crossref_primary_10_1016_j_ijrmhm_2023_106125 crossref_primary_10_1016_j_epsl_2023_118273 crossref_primary_10_1016_j_mtcomm_2022_103319 crossref_primary_10_1515_ijmr_2023_0174 crossref_primary_10_1016_j_commatsci_2021_110430 crossref_primary_10_1007_s10853_023_09321_6 crossref_primary_10_1016_j_ijrmhm_2023_106173 crossref_primary_10_1016_j_ijplas_2024_103925 crossref_primary_10_1080_03019233_2021_1898869 crossref_primary_10_1016_j_actamat_2019_01_003 crossref_primary_10_1016_j_jmrt_2025_03_099 crossref_primary_10_1016_j_scriptamat_2018_07_008 crossref_primary_10_1016_j_jmst_2020_02_079 crossref_primary_10_1063_5_0238622 crossref_primary_10_1038_s41598_020_74065_1 crossref_primary_10_1016_j_mtla_2024_102071 crossref_primary_10_1039_C6CP08255F crossref_primary_10_3390_coatings14070815 crossref_primary_10_1016_j_msea_2023_144875 crossref_primary_10_1016_j_jmst_2023_05_055 crossref_primary_10_1002_cmtd_202500009 crossref_primary_10_1080_09506608_2023_2258664 crossref_primary_10_1016_j_actamat_2024_120037 crossref_primary_10_1016_j_jmrt_2024_08_060 crossref_primary_10_1016_j_matchemphys_2022_127227 crossref_primary_10_2139_ssrn_3991612 crossref_primary_10_1007_s40195_022_01383_w crossref_primary_10_1088_1361_6668_abc8ce crossref_primary_10_1063_5_0069107 crossref_primary_10_1016_j_actamat_2016_11_013 crossref_primary_10_3390_met8080577 crossref_primary_10_1016_j_commatsci_2023_112297 crossref_primary_10_1051_matecconf_202032609001 crossref_primary_10_1038_s41467_020_20083_6 crossref_primary_10_1016_j_apsusc_2023_158993 crossref_primary_10_1016_j_corsci_2022_110331 crossref_primary_10_1016_j_msea_2020_140619 crossref_primary_10_1017_S1431927616000696 crossref_primary_10_1002_srin_201800654 crossref_primary_10_1016_j_matchemphys_2020_123977 crossref_primary_10_1016_j_actamat_2019_09_010 crossref_primary_10_1016_j_actamat_2022_117633 crossref_primary_10_1038_s41467_021_26197_9 crossref_primary_10_1557_mrs_2019_72 crossref_primary_10_2351_7_0000112 crossref_primary_10_1016_j_actamat_2021_117354 crossref_primary_10_1016_j_jallcom_2021_159950 crossref_primary_10_1016_j_jmrt_2022_11_155 crossref_primary_10_1051_matecconf_20153301001 crossref_primary_10_1016_j_msea_2022_144554 crossref_primary_10_1016_j_mtla_2025_102346 crossref_primary_10_1002_adem_201801214 crossref_primary_10_1007_s11661_023_07070_4 crossref_primary_10_1080_14786435_2017_1322728 crossref_primary_10_1016_j_actamat_2024_120297 crossref_primary_10_1016_j_scriptamat_2022_115116 crossref_primary_10_1111_jace_17907 crossref_primary_10_3390_met9010010 crossref_primary_10_1063_5_0024014 crossref_primary_10_1016_j_msea_2018_11_077 crossref_primary_10_1021_acs_nanolett_7b01641 crossref_primary_10_1002_advs_202417659 crossref_primary_10_1107_S1600576716000418 crossref_primary_10_1021_jacs_1c11680 crossref_primary_10_1016_j_matchar_2024_114618 crossref_primary_10_1016_j_msea_2022_143475 crossref_primary_10_1007_s10853_020_04605_7 crossref_primary_10_1016_j_actamat_2024_119872 crossref_primary_10_1016_j_matchar_2024_114378 crossref_primary_10_3390_ma11112263 crossref_primary_10_1016_j_proeng_2015_07_310 crossref_primary_10_1016_j_commatsci_2020_109533 crossref_primary_10_1039_D0NR06798A crossref_primary_10_1080_14786435_2016_1189616 crossref_primary_10_1016_j_actamat_2018_04_013 crossref_primary_10_1016_j_commatsci_2023_112560 crossref_primary_10_1016_j_scriptamat_2023_115631 crossref_primary_10_1063_1_5050558 crossref_primary_10_1016_j_jmst_2021_10_019 crossref_primary_10_22226_2410_3535_2019_2_162_167 crossref_primary_10_1016_j_mtphys_2024_101407 crossref_primary_10_1038_s41524_021_00625_2 crossref_primary_10_1384_jsa_29_33 crossref_primary_10_1016_j_jpcs_2021_110082 crossref_primary_10_2139_ssrn_3971588 crossref_primary_10_1016_j_jmst_2024_07_029 crossref_primary_10_1016_j_actamat_2021_117604 crossref_primary_10_1007_s10853_018_03291_w crossref_primary_10_1007_s11661_022_06630_4 crossref_primary_10_1016_j_matchar_2021_111026 crossref_primary_10_1038_s41524_024_01260_3 crossref_primary_10_1016_j_apsusc_2020_145254 crossref_primary_10_1016_j_mtcomm_2021_102464 crossref_primary_10_1007_s10853_020_04854_6 crossref_primary_10_1016_j_jallcom_2020_157642 crossref_primary_10_1016_j_msea_2023_146066 crossref_primary_10_1063_5_0098439 crossref_primary_10_1016_j_actamat_2016_08_048 crossref_primary_10_1038_s41467_022_28706_w crossref_primary_10_1002_smtd_202401650 crossref_primary_10_1016_j_mtadv_2024_100549 crossref_primary_10_1016_j_apsusc_2024_159684 crossref_primary_10_1016_j_corsci_2020_109219 crossref_primary_10_1016_j_actamat_2017_03_032 crossref_primary_10_3390_ma13081848 crossref_primary_10_1016_j_ijhydene_2024_08_232 crossref_primary_10_1016_j_corsci_2024_112638 crossref_primary_10_1016_j_actamat_2020_09_007 crossref_primary_10_1016_j_scriptamat_2022_115038 crossref_primary_10_15407_mom2018_01_044 crossref_primary_10_1016_j_jnucmat_2023_154344 crossref_primary_10_1016_j_matchar_2021_111291 crossref_primary_10_3390_ma17061257 crossref_primary_10_1016_j_jmrt_2023_06_183 crossref_primary_10_1016_j_jmst_2024_01_030 crossref_primary_10_1016_j_ijplas_2023_103679 crossref_primary_10_1016_j_actamat_2018_04_004 crossref_primary_10_1016_j_actamat_2024_119674 crossref_primary_10_1016_j_commatsci_2023_112596 crossref_primary_10_1016_j_matchar_2017_11_047 crossref_primary_10_1002_srin_201600416 crossref_primary_10_1007_s11661_017_4357_6 crossref_primary_10_1002_pssa_201800240 crossref_primary_10_1016_j_actamat_2017_09_039 crossref_primary_10_1039_D0NR07180C crossref_primary_10_1021_acs_jpclett_1c02189 crossref_primary_10_1016_j_jeurceramsoc_2022_11_074 crossref_primary_10_1007_s11661_019_05520_6 crossref_primary_10_1016_j_jnucmat_2019_06_002 crossref_primary_10_1016_j_jre_2020_07_017 crossref_primary_10_1016_j_jmst_2020_10_069 crossref_primary_10_1016_j_vacuum_2024_113067 crossref_primary_10_1039_D2TA02147A crossref_primary_10_1088_1361_651X_ab7e39 crossref_primary_10_1007_s11661_020_05947_2 crossref_primary_10_1016_j_actamat_2020_116561 crossref_primary_10_1038_s41529_017_0003_4 crossref_primary_10_1038_s41467_019_14062_9 crossref_primary_10_1107_S205225251600943X crossref_primary_10_1007_s11837_020_04254_w crossref_primary_10_1016_j_electacta_2021_139052 crossref_primary_10_1016_j_scriptamat_2023_115715 crossref_primary_10_1038_s41524_020_00456_7 crossref_primary_10_1088_1361_648X_ad4aab crossref_primary_10_1080_09506608_2022_2153220 crossref_primary_10_1016_j_actamat_2022_117939 crossref_primary_10_1016_j_apsusc_2019_144925 crossref_primary_10_1016_j_actamat_2018_12_040 crossref_primary_10_1016_j_actamat_2019_08_060 crossref_primary_10_1016_j_actamat_2021_117522 crossref_primary_10_1016_j_actamat_2021_116679 crossref_primary_10_1016_j_compositesb_2023_110540 crossref_primary_10_1016_j_scriptamat_2020_113643 crossref_primary_10_1038_srep42547 crossref_primary_10_1016_j_jeurceramsoc_2023_11_002 crossref_primary_10_1103_PhysRevMaterials_4_013602 crossref_primary_10_1016_j_matlet_2023_134770 crossref_primary_10_1038_s41598_018_25140_1 crossref_primary_10_1016_j_actamat_2020_08_022 crossref_primary_10_1016_j_ultramic_2015_02_003 crossref_primary_10_1016_j_msea_2024_147135 crossref_primary_10_1016_j_scriptamat_2022_115063 crossref_primary_10_1016_j_mssp_2024_108579 crossref_primary_10_1007_s11837_024_06640_0 crossref_primary_10_1016_j_mtla_2022_101564 crossref_primary_10_3390_ma17030578 crossref_primary_10_1016_j_jnucmat_2020_152531 crossref_primary_10_1007_s11661_022_06684_4 crossref_primary_10_1016_j_actamat_2015_05_004 crossref_primary_10_1126_science_aab2633 crossref_primary_10_1016_j_msea_2025_147787 crossref_primary_10_1016_j_jallcom_2018_04_197 crossref_primary_10_1016_j_ijplas_2020_102725 crossref_primary_10_1016_j_matchar_2017_11_058 crossref_primary_10_1016_j_scriptamat_2022_115078 crossref_primary_10_1016_j_msea_2022_143865 crossref_primary_10_1016_j_mtsust_2024_100694 crossref_primary_10_1063_1_4974990 crossref_primary_10_1016_j_actamat_2017_09_047 crossref_primary_10_1016_j_surfcoat_2015_10_059 crossref_primary_10_1007_s10853_020_04537_2 crossref_primary_10_1016_j_apsusc_2020_147011 crossref_primary_10_1007_s10853_022_06886_6 crossref_primary_10_1051_matecconf_202032601004 crossref_primary_10_1103_PhysRevLett_122_126102 crossref_primary_10_1016_j_scriptamat_2015_04_009 crossref_primary_10_2139_ssrn_4068140 crossref_primary_10_1016_j_actamat_2024_120568 crossref_primary_10_1016_j_commatsci_2015_04_020 crossref_primary_10_1016_j_actamat_2024_120448 crossref_primary_10_1016_j_jmst_2024_09_031 crossref_primary_10_1016_j_actamat_2020_116595 crossref_primary_10_1016_j_jallcom_2020_154352 crossref_primary_10_1016_j_msea_2015_09_008 crossref_primary_10_1016_j_jmst_2020_10_023 crossref_primary_10_1016_j_jmst_2022_06_043 crossref_primary_10_1007_s11665_022_07701_8 crossref_primary_10_1146_annurev_matsci_081720_123248 crossref_primary_10_1016_j_msea_2023_145382 crossref_primary_10_1016_j_actamat_2021_116922 crossref_primary_10_1103_PhysRevMaterials_7_073606 crossref_primary_10_46813_2022_140_003 crossref_primary_10_1039_D3CP02299D crossref_primary_10_1007_s10853_017_1764_4 crossref_primary_10_1016_j_actamat_2022_118142 crossref_primary_10_1016_j_corsci_2023_111569 crossref_primary_10_1016_j_actamat_2020_08_056 crossref_primary_10_1016_j_jmst_2017_09_002 crossref_primary_10_1016_j_jallcom_2024_177520 crossref_primary_10_3390_met13030594 crossref_primary_10_1016_j_matdes_2024_112658 crossref_primary_10_1016_j_surfin_2023_103235 crossref_primary_10_1038_s43586_021_00047_w crossref_primary_10_1103_PhysRevB_107_134112 crossref_primary_10_1007_s12598_022_01976_5 crossref_primary_10_1016_j_net_2017_10_014 crossref_primary_10_1007_s11661_020_06045_z crossref_primary_10_1038_s41598_018_29632_y crossref_primary_10_1016_j_compositesb_2024_111570 crossref_primary_10_1002_aenm_202203361 crossref_primary_10_1016_j_actamat_2023_118899 crossref_primary_10_1016_j_actamat_2022_118156 crossref_primary_10_1016_j_matdes_2023_112158 crossref_primary_10_1016_j_jmst_2021_11_005 crossref_primary_10_1016_j_jeurceramsoc_2022_10_070 crossref_primary_10_1016_j_jajp_2024_100254 crossref_primary_10_1016_j_jmrt_2024_11_030 crossref_primary_10_1016_j_actamat_2018_03_039 crossref_primary_10_1016_j_actamat_2016_03_070 crossref_primary_10_2139_ssrn_3967397 crossref_primary_10_1016_j_jmst_2020_10_043 crossref_primary_10_1080_21663831_2024_2354757 crossref_primary_10_1016_j_actamat_2017_02_069 crossref_primary_10_1088_2053_1591_adb2e2 crossref_primary_10_1016_j_jmrt_2023_01_181 crossref_primary_10_1016_j_mattod_2019_11_010 crossref_primary_10_1111_jace_16045 crossref_primary_10_3390_nano14221803 crossref_primary_10_1002_adem_202100977 crossref_primary_10_1016_j_scriptamat_2018_11_041 crossref_primary_10_1016_j_mtla_2021_101293 crossref_primary_10_1038_s41467_021_25778_y crossref_primary_10_1016_j_scriptamat_2021_113751 crossref_primary_10_1016_j_apsusc_2024_161337 crossref_primary_10_3139_147_110567 crossref_primary_10_1080_17452759_2024_2356733 crossref_primary_10_1016_j_mechmat_2022_104366 crossref_primary_10_1016_j_actamat_2023_119641 crossref_primary_10_1016_j_jmst_2021_11_027 crossref_primary_10_1016_j_actamat_2025_120946 crossref_primary_10_1007_s10853_017_1695_0 crossref_primary_10_1016_j_cclet_2021_12_013 crossref_primary_10_1016_j_actamat_2025_120942 crossref_primary_10_1016_j_jnucmat_2024_155263 crossref_primary_10_1016_j_msea_2024_147757 crossref_primary_10_1016_j_actamat_2022_118180 crossref_primary_10_1016_j_actamat_2024_119955 crossref_primary_10_3390_met11020214 crossref_primary_10_1016_j_actamat_2024_119956 crossref_primary_10_1016_j_scriptamat_2019_12_032 crossref_primary_10_1007_s11661_020_06031_5 crossref_primary_10_1017_S1431927618016112 crossref_primary_10_1557_s43577_022_00378_3 crossref_primary_10_1016_j_msea_2017_12_102 crossref_primary_10_1016_j_jmrt_2023_03_092 crossref_primary_10_1002_adem_201800941 crossref_primary_10_1016_j_actamat_2024_119962 crossref_primary_10_1016_j_matdes_2015_10_047 crossref_primary_10_1016_j_vacuum_2019_03_019 crossref_primary_10_1016_j_ijrmhm_2025_107156 crossref_primary_10_1016_j_jmst_2022_08_026 crossref_primary_10_1038_s41598_024_63801_6 crossref_primary_10_1016_j_actamat_2016_09_048 crossref_primary_10_1016_j_actamat_2019_05_037 crossref_primary_10_3390_met11020345 crossref_primary_10_1016_j_ultramic_2022_113536 crossref_primary_10_1016_j_matchar_2019_04_004 crossref_primary_10_1007_s10853_024_10290_7 crossref_primary_10_1557_mrs_2015_314 crossref_primary_10_1016_S1003_6326_24_66661_6 crossref_primary_10_1016_j_actamat_2024_120705 crossref_primary_10_1080_0371750X_2020_1755365 crossref_primary_10_1016_j_commatsci_2018_02_020 crossref_primary_10_1016_j_msea_2025_147937 crossref_primary_10_1016_j_msea_2022_142923 crossref_primary_10_1007_s10853_022_07934_x crossref_primary_10_1016_j_jmst_2024_01_005 crossref_primary_10_1016_j_matdes_2017_12_023 crossref_primary_10_1007_s40843_020_1595_2 crossref_primary_10_1557_s43578_020_00030_3 crossref_primary_10_1557_jmr_2018_230 crossref_primary_10_1007_s11837_021_04740_9 crossref_primary_10_1016_j_jallcom_2023_172811 crossref_primary_10_1016_j_jallcom_2024_177229 crossref_primary_10_1016_j_actamat_2021_116822 crossref_primary_10_1080_27660400_2022_2112915 crossref_primary_10_1016_j_ijhydene_2015_08_093 crossref_primary_10_1016_j_matdes_2021_109959 crossref_primary_10_1016_j_actamat_2020_08_074 crossref_primary_10_1016_j_mattod_2021_12_004 crossref_primary_10_1063_10_0023891 crossref_primary_10_1126_sciadv_ads2140 crossref_primary_10_1080_14786435_2025_2467423 crossref_primary_10_1016_j_actamat_2022_118291 crossref_primary_10_1016_j_jmrt_2024_05_096 crossref_primary_10_1016_j_actamat_2014_12_021 crossref_primary_10_1016_j_cossms_2016_05_001 crossref_primary_10_1016_j_actamat_2020_116505 crossref_primary_10_1103_PhysRevApplied_5_054018 crossref_primary_10_1016_j_mtphys_2024_101386 crossref_primary_10_1016_j_jmst_2020_10_014 crossref_primary_10_1016_j_matdes_2021_109848 crossref_primary_10_1557_s43578_021_00459_0 crossref_primary_10_1016_j_actamat_2018_04_046 crossref_primary_10_1016_j_commatsci_2021_111042 crossref_primary_10_1016_j_msea_2023_145035 |
Cites_doi | 10.1016/j.jmps.2012.02.001 10.1016/1359-6454(95)00317-7 10.1016/S1359-6454(03)00219-2 10.1016/j.actamat.2006.11.028 10.1016/0001-6160(62)90092-5 10.1016/j.actamat.2013.04.028 10.1002/jemt.21081 10.1016/0001-6160(57)90044-5 10.1080/01418619008244340 10.1016/S1359-6454(01)00343-3 10.1016/j.scriptamat.2006.03.040 10.1103/PhysRevB.75.064107 10.1016/j.scriptamat.2010.02.021 10.1016/S1359-6454(01)00338-X 10.1016/j.scriptamat.2004.05.042 10.1016/j.actamat.2010.09.042 10.1017/S1431927604040486 10.1016/j.jcrysgro.2003.12.021 10.1103/PhysRevLett.106.246402 10.1080/10408439508243544 10.1016/j.msea.2010.07.062 10.1016/S1359-6454(99)00275-X 10.1016/0036-9748(86)90137-7 10.1016/S1359-6454(99)00026-9 10.1146/annurev.matsci.32.101901.155803 10.1016/j.actamat.2013.05.010 10.1016/j.actamat.2006.01.004 10.1007/BF02646988 10.1016/S1359-6454(99)00277-3 10.1080/09500830701400125 10.1016/S1359-6462(00)00690-4 10.1126/science.1204204 10.1103/PhysRevLett.112.126103 10.1063/1.1141590 10.1016/j.actamat.2009.10.041 10.1016/0965-9773(92)90076-A 10.1557/mrs2010.703 10.1016/S1359-6454(02)00260-4 10.1016/j.scriptamat.2009.02.062 10.1016/j.scriptamat.2012.02.022 10.1038/ncomms1062 10.1016/j.actamat.2009.07.028 10.1007/s11661-002-0203-5 10.1016/j.scriptamat.2011.12.015 10.1016/0036-9748(89)90534-6 10.1080/14786430600726749 10.1080/10408430801907649 10.1016/j.actamat.2011.11.020 10.1007/0-306-47071-3_9 10.1016/0001-6160(57)90109-8 10.1016/j.ultramic.2010.11.014 10.1016/0001-6160(80)90135-2 10.1016/j.actamat.2011.03.022 10.1016/j.actamat.2013.04.030 10.1111/j.1551-2916.2010.03642.x 10.1098/rspa.1965.0158 10.1146/annurev-matsci-070511-155007 10.1111/j.1551-2916.2007.01512.x 10.1016/j.actamat.2013.07.037 10.1088/0953-8984/16/27/003 10.1016/j.actamat.2004.05.031 10.1016/j.actamat.2010.09.023 10.1103/PhysRevB.85.064108 10.1016/j.actamat.2013.10.064 10.1016/S0921-5093(98)00529-2 10.1016/0956-716X(92)90173-C 10.1016/S0921-5093(99)00288-9 10.1016/j.actamat.2007.07.029 10.1016/j.actamat.2012.03.006 10.1016/S1359-6454(99)00397-3 10.2355/isijinternational.47.1527 10.1038/nmat1191 10.1007/BF02586096 10.1016/S1359-6454(03)00184-8 10.1016/j.actamat.2007.03.024 10.1016/0001-6160(83)90083-4 10.1016/j.ijsolstr.2006.07.006 10.1126/science.265.5170.376 10.1016/j.actamat.2013.04.059 10.1016/j.actamat.2011.08.045 10.1103/PhysRevB.79.094112 10.1016/j.ultramic.2009.03.016 10.1007/BF00194704 10.1038/nature10593 10.1016/j.actamat.2007.05.047 10.1021/ja02242a004 10.1016/j.ultramic.2010.11.010 10.1063/1.4795300 10.1111/j.1551-2916.2011.05059.x 10.1007/BF02642850 10.1016/j.scriptamat.2013.01.015 10.1063/1.4764527 10.1063/1.3665723 10.1146/annurev.matsci.32.112001.132041 10.1039/tf9504600199 10.1103/PhysRevLett.88.245701 10.1080/01418610008212082 10.1016/S1359-6454(98)00105-0 10.1016/j.actamat.2013.06.055 10.1016/j.actamat.2007.04.051 10.1016/0036-9748(86)90467-9 10.2109/jcersj2.119.840 10.1016/j.actamat.2005.07.024 10.3139/146.017938 10.1016/j.scriptamat.2008.04.045 10.1126/science.1230081 10.1016/j.actamat.2012.01.045 10.1016/S1369-7021(12)70164-5 10.1016/0039-6028(75)90124-7 10.1126/science.1201596 10.1016/S0921-5093(02)00670-6 10.1016/j.actamat.2014.01.031 10.1098/rspa.1973.0121 10.1016/j.ijplas.2008.09.002 10.2320/matertrans.44.14 10.1016/j.actamat.2013.02.006 10.1088/0953-2048/26/5/055008 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.cossms.2014.06.002 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EndPage | 261 |
ExternalDocumentID | 10_1016_j_cossms_2014_06_002 S1359028614000394 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c438t-f97a38c71d90418ad23f78c8bfa4bd24df4beb55cd79dabf227fbd52373b858e3 |
IEDL.DBID | .~1 |
ISSN | 1359-0286 |
IngestDate | Fri Jul 11 10:46:18 EDT 2025 Tue Jul 01 01:27:21 EDT 2025 Thu Apr 24 22:53:52 EDT 2025 Fri Feb 23 02:26:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Phase transformation Segregation Atom probe tomography Grain boundary |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-f97a38c71d90418ad23f78c8bfa4bd24df4beb55cd79dabf227fbd52373b858e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1685770667 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1685770667 crossref_citationtrail_10_1016_j_cossms_2014_06_002 crossref_primary_10_1016_j_cossms_2014_06_002 elsevier_sciencedirect_doi_10_1016_j_cossms_2014_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Current opinion in solid state & materials science |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Boettinger, Warren, Beckermann, Karma (b0550) 2002; 32 Choi, Cojocaru-Miredin, Wuerz, Raabe (b0335) 2012; 110 Pradeep, Herzer, Choi, Raabe (b0605) 2014; 68 Hickson, Hurley, Gibbs, Kelly, Hodgson (b0625) 2002; 33 Hoffman, Lejcek (b0205) 1996; 3 Bamford, Hardiman, Shen, Clark, Wagoner (b0250) 1986; 20 Seah, Hondros (b0075) 1973 Detor, Schuh (b0525) 2007; 55 Furtkamp, Gottstein, Molodov, Semenov, Shvindlerman (b0185) 1998; 46 Raabe, Sandlöbes, Millán, Ponge, Assadi, Herbig (b0290) 2013; 61 Lejček, Hofmann, Paidar (b0070) 2003; 51 Millett, Selvam, Saxena (b0085) 2006; 54 Baram, Chatain, Kaplan (b0300) 2011; 332 Lozano-Perez, Saxey, Yamada, Terachi (b0120) 2010; 62 Ackland, Mendelev, Srolovitz, Han, Barashev (b0510) 2014; 16 Shen, Wagoner, Clark (b0245) 1986; 20 Ma, Dregia, Wang (b0545) 2003; 51 Tytko, Choi, Klöwer, Kostka, Inden, Raabe (b0390) 2012; 60 Hondros, Seah (b0195) 1977; 8A Wolf, D. Atomic-level geometry of crystalline interfaces, in: Materials interfaces: atomic-level structure and properties, Chapman & Hall, London, 1992. Molodov (b0170) 2001; vol. 1 Sangid, Sehitoglu, Maier, Niendorf (b0385) 2010; 527 Mrovec, Nguyen-Manh, Elsässer, Gumbsch (b0515) 2014; 106 Raabe, Choi, Li, Kostka, Sauvage, Lecouturier (b0615) 2010; 35 Liu, Kirchheim (b0575) 2004; 51 Cantwell, Tang, Dillon, Luo, Rohrer, Harmer (b0330) 2014; 62 Moody, Gault, Stephenson, Haley, Ringer (b0465) 2009; 109 Singh, Wanderka, Murty, Glatzel, Banhart (b0410) 2011; 59 Gault, Moody, Cairney, Ringer (b0445) 2012; 15 Gottstein, Shvindlerman (b0035) 1999 Sandim, Tytko, Kostka, Choi, Awaji, Watanabe (b0345) 2013; 26 Yu, Wu, Rickman, Chan, Harmer (b0485) 2013; 68 Rollet, Gottstein, Shvindlerman, Molodov (b0025) 2004; 95 Detor, Miller, Schuh (b0585) 2006; 86 Langmuir (b0220) 1918; 40 Krakauer, Hu, Kuo, Mallick, Seki, Seidman (b0435) 1990; 61 Gottstein G, Shvindlerman LS, Molodov DA, Czubayko U. Grain boundary motion in aluminium bicrystals. In: Duxbury PM, Pence TJ (editors). Dynamics of crystal surfaces and interfaces, New York: Plenum Press; 1997. P. 109–23. Wu, Freeman, Olson (b0065) 1994; 15 Pradeep, Wanderka, Choi, Banhart, Murty, Raabe (b0405) 2013; 61 Liu, Kirchheim (b0225) 2004; 51 Wynblatt, Chatain (b0420) 2006; 37 Lee, Robertson, Birnbaum (b0265) 1990; 62 Wang, Saito, McKenna, Gu, Tsukimoto, Shluger (b0505) 2011; 479 Lejcek (b0650) 2010 Herzig, Divinski (b0135) 2003; 44 Mandal S, Pradeep KG, Zaefferer SD, Raabe D. A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom, Scr Mater, (Available 20.02.14). Winning, Gottstein, Shvindlerman (b0175) 2002; 50 Yuan, Ponge, Wittig, Choi, Jiminez, Raabe (b0355) 2012; 60 Dillon, Tang, Carter, Harmer (b0320) 2007; 55 Wynblatt, Chatain (b0100) 2006; 37 Chen YZ, Herz A, Li YJ, Borchers C, Choi PP, Raabe D, Kirchheim R. Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite, Acta Mater 2013: 61; 3172–3185. Sutton, Ballufi (b0010) 1997 Elder, Provatas, Berry, Stefanovic, Grant (b0665) 2007; 75 Randle (b0050) 2004; 52 Nakada, Tsuchiyama, Takaki, Hashizume (b0620) 2007; 47 Watanabe, Tsurekawa (b0045) 1999; 47 Raabe, Ponge, Dmitrieva, Sander (b0295) 2009; 60 Weissmüller, Krauss, Haubold, Birringer, Gleiter (b0565) 1992; 1 Cojocaru-Miredin, Choi, Wuerz, Raabe (b0340) 2012; 101 Tschopp, Solanki, Gao, Sun, Khaleel, Horstemeyer (b0520) 2012; 85 Wang, Li (b0535) 2010; 58 Kirchheim (b0115) 2007; 55 Lejcek, Hoffman (b0210) 2008; 33 Chen (b0540) 2002; 32 Heo TW, Bhattacharyya S, Chen L-Q. A phase field study of strain energy effects on solute-grain boundary interactions. Acta Mater 2011; 59: 7800–7815. Hoffman (b0200) 1990 Moody, Tang, Gault, Ringer, Cairney (b0455) 2011; 111 Gautam, Ophus, Lancon, Radmilovic, Dahmen (b0655) 2013; 61 Lejček, Hofmann (b0230) 1995; 20 Sauvage, Copreaux, Danoix, Blavette (b0365) 2000; 80 Bieler, Eisenlohr, Roters, Kumar, Mason, Crimp (b0285) 2009; 25 Ma, Roters, Raabe (b0280) 2006; 43 Kirchheim (b0110) 2002; 50 Danoix, Julien, Sauvage, Copreaux (b0360) 1998; 250 Kelly, Larson (b0460) 2012; 42 Chapman, Faulkner (b0235) 1983; 31 Dillon, Harmer (b0315) 2007; 90 Vurpillot, Cerezo, Blavette, Larson (b0470) 2004; 10 Jiang, Faulkner (b0105) 1996; 44 Toji, Matsuda, Herbig, Choi, Raabe (b0440) 2014; 65 Dmitrieva, Ponge, Inden, Millán, Choi, Sietsma (b0145) 2011; 59 Luo (b0640) 2012; 95 Prokoshkina, Esin, Wilde, Divinski (b0395) 2013; 61 Howe (b0020) 1997 Duscher, Chisholm, Alber, Ruhle (b0490) 2004; 3 Livingston, Chalmers (b0240) 1957; 5 Mattissen, Raabe, Heringhaus (b0130) 1999; 47 Wolf D. Atomic-level geometry of crystalline interfaces, Chapman & Hall, London. Mater Interfaces: Atomic-Level Struct Properties, 1992; 1–57. Abuzaid, Sangid, Carroll, Sehitoglu, Lambros (b0400) 2012; 60 Trelewicz, Schuh (b0560) 2009; 79 Dmitrieva, Ponge, Inden, Millán, Choi, Sietsma (b0415) 2011; 59 Lücke, Detert (b0165) 1957; 5 Li, Choi, Borchers, Chen, Goto, Raabe (b0610) 2011; 111 Hono, Ohnuma, Murayama, Nishida, Yoshie (b0370) 2001; 44 Felfer, Alam, Ringer, Cairney (b0430) 2012; 75 Koyama, Akiyama, Tsuzaki, Raabe (b0155) 2013; 61 Gibbs JW. The Collected Works of J. Willard Gibbs, Vol. 1, Yale University Press, New Haven, CT, 1948. Millett, Selvam, Saxena (b0090) 2007; 55 Shea (b0060) 1975; 53 Cahn (b0160) 1962; 10 Choi PP, Al-Kassab T, Gärtner F, Kreye H, Kirchheim R. Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe, Mater Sci Eng A 2003: 353; 74–79. Dillon, Harmer (b0305) 2007; 55 Randle (b0055) 1999; 47 Czubayko, Molodov, Petersen, Gottstein, Shvindlerman (b0180) 1995; 6 McLean (b0005) 1957 Chen, Lv, Wang, Saito, Shibata, Taniguchi (b0500) 2013; 102 Lee, Robertson, Birnbaum (b0255) 1989; 23 Randle (b0015) 1993 Koyama, Akiyama, Sawaguchi, Raabe, Tsuzaki (b0150) 2012; 66 Ueji, Tsuji, Minamino, Koizumi (b0635) 2002; 50 Elder, Katakowski, Haataja, Grant (b0660) 2002; 88 Detor, Miller, Schuh (b0595) 2007; 87 Ma, Roters, Raabe (b0275) 2006; 54 Krauss (b0630) 1999; 273–275 Duarte, Klemm, Klemm, Mayrhofer, Stratmann, Borodin (b0140) 2013; 341 Herbig, Raabe, Li, Choi, Zaefferer, Goto (b0425) 2014; 112 Li, Choi, Borchers, Westerkamp, Goto, Raabe (b0375) 2011; 59 Liu, Kirchheim (b0570) 2004; 264 Araullo-Peters, Gault, Shrestha, Yao, Moody, Ringer (b0450) 2012; 66 Buban, Mizoguchi, Shibata, Abe, Yamamoto, Ikuhara (b0495) 2011; 119 Dillon, Harmer, Rohrer (b0310) 2010; 93 Harmer (b0325) 2011; 332 Thuillier, Danoix, Gouné, Blavette (b0350) 2006; 55 Watanabe, Kitamure, Karashima (b0040) 1980; 28 Lee, Robertson, Birnbaum (b0260) 1990; 21 Defay, Prigogine (b0080) 1950; 46 Ohsaki, Raabe, Hono (b0125) 2009; 57 Darling, Chan, Wong, Semones, Scattergood, Koch (b0580) 2008; 59 Liddicoat, Liao, Zhao, Zhu, Murashkin, Lavernia (b0475) 2010; 63 Hondros (b0095) 1965; 286 Clark, Wagoner, Shen, Lee, Robertson, Birnbaum (b0270) 1992; 26 Farber, Cadel, Menand, Schmitz, Kirchheim (b0590) 2000; 48 Li, Choi, Goto, Borchers, Raabe, Kirchheim (b0380) 2012; 60 Hondros (10.1016/j.cossms.2014.06.002_b0195) 1977; 8A Li (10.1016/j.cossms.2014.06.002_b0380) 2012; 60 Wu (10.1016/j.cossms.2014.06.002_b0065) 1994; 15 Singh (10.1016/j.cossms.2014.06.002_b0410) 2011; 59 Luo (10.1016/j.cossms.2014.06.002_b0640) 2012; 95 Boettinger (10.1016/j.cossms.2014.06.002_b0550) 2002; 32 Dmitrieva (10.1016/j.cossms.2014.06.002_b0145) 2011; 59 Dmitrieva (10.1016/j.cossms.2014.06.002_b0415) 2011; 59 Watanabe (10.1016/j.cossms.2014.06.002_b0045) 1999; 47 10.1016/j.cossms.2014.06.002_b0190 Duscher (10.1016/j.cossms.2014.06.002_b0490) 2004; 3 Choi (10.1016/j.cossms.2014.06.002_b0335) 2012; 110 Shen (10.1016/j.cossms.2014.06.002_b0245) 1986; 20 Detor (10.1016/j.cossms.2014.06.002_b0525) 2007; 55 Detor (10.1016/j.cossms.2014.06.002_b0595) 2007; 87 Defay (10.1016/j.cossms.2014.06.002_b0080) 1950; 46 Dillon (10.1016/j.cossms.2014.06.002_b0310) 2010; 93 Sandim (10.1016/j.cossms.2014.06.002_b0345) 2013; 26 Raabe (10.1016/j.cossms.2014.06.002_b0615) 2010; 35 Cahn (10.1016/j.cossms.2014.06.002_b0160) 1962; 10 Elder (10.1016/j.cossms.2014.06.002_b0665) 2007; 75 Furtkamp (10.1016/j.cossms.2014.06.002_b0185) 1998; 46 Hickson (10.1016/j.cossms.2014.06.002_b0625) 2002; 33 Kirchheim (10.1016/j.cossms.2014.06.002_b0110) 2002; 50 10.1016/j.cossms.2014.06.002_b0480 Lee (10.1016/j.cossms.2014.06.002_b0255) 1989; 23 Toji (10.1016/j.cossms.2014.06.002_b0440) 2014; 65 Buban (10.1016/j.cossms.2014.06.002_b0495) 2011; 119 Chen (10.1016/j.cossms.2014.06.002_b0540) 2002; 32 Li (10.1016/j.cossms.2014.06.002_b0375) 2011; 59 Li (10.1016/j.cossms.2014.06.002_b0610) 2011; 111 Lee (10.1016/j.cossms.2014.06.002_b0265) 1990; 62 Duarte (10.1016/j.cossms.2014.06.002_b0140) 2013; 341 Liu (10.1016/j.cossms.2014.06.002_b0225) 2004; 51 Liu (10.1016/j.cossms.2014.06.002_b0570) 2004; 264 Mrovec (10.1016/j.cossms.2014.06.002_b0515) 2014; 106 Tytko (10.1016/j.cossms.2014.06.002_b0390) 2012; 60 Ohsaki (10.1016/j.cossms.2014.06.002_b0125) 2009; 57 Felfer (10.1016/j.cossms.2014.06.002_b0430) 2012; 75 Shea (10.1016/j.cossms.2014.06.002_b0060) 1975; 53 Gault (10.1016/j.cossms.2014.06.002_b0445) 2012; 15 Weissmüller (10.1016/j.cossms.2014.06.002_b0565) 1992; 1 Lejcek (10.1016/j.cossms.2014.06.002_b0650) 2010 Sauvage (10.1016/j.cossms.2014.06.002_b0365) 2000; 80 Farber (10.1016/j.cossms.2014.06.002_b0590) 2000; 48 Chapman (10.1016/j.cossms.2014.06.002_b0235) 1983; 31 Millett (10.1016/j.cossms.2014.06.002_b0090) 2007; 55 Molodov (10.1016/j.cossms.2014.06.002_b0170) 2001; vol. 1 Ma (10.1016/j.cossms.2014.06.002_b0275) 2006; 54 Vurpillot (10.1016/j.cossms.2014.06.002_b0470) 2004; 10 Wynblatt (10.1016/j.cossms.2014.06.002_b0420) 2006; 37 Yuan (10.1016/j.cossms.2014.06.002_b0355) 2012; 60 Krakauer (10.1016/j.cossms.2014.06.002_b0435) 1990; 61 Ueji (10.1016/j.cossms.2014.06.002_b0635) 2002; 50 Thuillier (10.1016/j.cossms.2014.06.002_b0350) 2006; 55 Herzig (10.1016/j.cossms.2014.06.002_b0135) 2003; 44 Seah (10.1016/j.cossms.2014.06.002_b0075) 1973 10.1016/j.cossms.2014.06.002_b0645 Randle (10.1016/j.cossms.2014.06.002_b0050) 2004; 52 Hoffman (10.1016/j.cossms.2014.06.002_b0205) 1996; 3 Liddicoat (10.1016/j.cossms.2014.06.002_b0475) 2010; 63 Ma (10.1016/j.cossms.2014.06.002_b0545) 2003; 51 Lücke (10.1016/j.cossms.2014.06.002_b0165) 1957; 5 Baram (10.1016/j.cossms.2014.06.002_b0300) 2011; 332 Abuzaid (10.1016/j.cossms.2014.06.002_b0400) 2012; 60 Moody (10.1016/j.cossms.2014.06.002_b0455) 2011; 111 Pradeep (10.1016/j.cossms.2014.06.002_b0605) 2014; 68 Bamford (10.1016/j.cossms.2014.06.002_b0250) 1986; 20 Araullo-Peters (10.1016/j.cossms.2014.06.002_b0450) 2012; 66 Wang (10.1016/j.cossms.2014.06.002_b0505) 2011; 479 10.1016/j.cossms.2014.06.002_b0530 Jiang (10.1016/j.cossms.2014.06.002_b0105) 1996; 44 Wynblatt (10.1016/j.cossms.2014.06.002_b0100) 2006; 37 Czubayko (10.1016/j.cossms.2014.06.002_b0180) 1995; 6 10.1016/j.cossms.2014.06.002_b0030 Trelewicz (10.1016/j.cossms.2014.06.002_b0560) 2009; 79 Dillon (10.1016/j.cossms.2014.06.002_b0320) 2007; 55 Ackland (10.1016/j.cossms.2014.06.002_b0510) 2014; 16 Bieler (10.1016/j.cossms.2014.06.002_b0285) 2009; 25 Lejček (10.1016/j.cossms.2014.06.002_b0070) 2003; 51 Langmuir (10.1016/j.cossms.2014.06.002_b0220) 1918; 40 Dillon (10.1016/j.cossms.2014.06.002_b0305) 2007; 55 Millett (10.1016/j.cossms.2014.06.002_b0085) 2006; 54 Rollet (10.1016/j.cossms.2014.06.002_b0025) 2004; 95 Kirchheim (10.1016/j.cossms.2014.06.002_b0115) 2007; 55 Liu (10.1016/j.cossms.2014.06.002_b0575) 2004; 51 Watanabe (10.1016/j.cossms.2014.06.002_b0040) 1980; 28 Koyama (10.1016/j.cossms.2014.06.002_b0155) 2013; 61 Herbig (10.1016/j.cossms.2014.06.002_b0425) 2014; 112 Ma (10.1016/j.cossms.2014.06.002_b0280) 2006; 43 Danoix (10.1016/j.cossms.2014.06.002_b0360) 1998; 250 Dillon (10.1016/j.cossms.2014.06.002_b0315) 2007; 90 Nakada (10.1016/j.cossms.2014.06.002_b0620) 2007; 47 Hondros (10.1016/j.cossms.2014.06.002_b0095) 1965; 286 Sangid (10.1016/j.cossms.2014.06.002_b0385) 2010; 527 Winning (10.1016/j.cossms.2014.06.002_b0175) 2002; 50 McLean (10.1016/j.cossms.2014.06.002_b0005) 1957 10.1016/j.cossms.2014.06.002_b0555 Lejček (10.1016/j.cossms.2014.06.002_b0230) 1995; 20 Moody (10.1016/j.cossms.2014.06.002_b0465) 2009; 109 Howe (10.1016/j.cossms.2014.06.002_b0020) 1997 Raabe (10.1016/j.cossms.2014.06.002_b0290) 2013; 61 Randle (10.1016/j.cossms.2014.06.002_b0015) 1993 Gottstein (10.1016/j.cossms.2014.06.002_b0035) 1999 Cojocaru-Miredin (10.1016/j.cossms.2014.06.002_b0340) 2012; 101 Wang (10.1016/j.cossms.2014.06.002_b0535) 2010; 58 Clark (10.1016/j.cossms.2014.06.002_b0270) 1992; 26 Mattissen (10.1016/j.cossms.2014.06.002_b0130) 1999; 47 Raabe (10.1016/j.cossms.2014.06.002_b0295) 2009; 60 Lejcek (10.1016/j.cossms.2014.06.002_b0210) 2008; 33 Livingston (10.1016/j.cossms.2014.06.002_b0240) 1957; 5 Cantwell (10.1016/j.cossms.2014.06.002_b0330) 2014; 62 Kelly (10.1016/j.cossms.2014.06.002_b0460) 2012; 42 Tschopp (10.1016/j.cossms.2014.06.002_b0520) 2012; 85 10.1016/j.cossms.2014.06.002_b0600 Randle (10.1016/j.cossms.2014.06.002_b0055) 1999; 47 Koyama (10.1016/j.cossms.2014.06.002_b0150) 2012; 66 Yu (10.1016/j.cossms.2014.06.002_b0485) 2013; 68 Hono (10.1016/j.cossms.2014.06.002_b0370) 2001; 44 Lee (10.1016/j.cossms.2014.06.002_b0260) 1990; 21 Elder (10.1016/j.cossms.2014.06.002_b0660) 2002; 88 Gautam (10.1016/j.cossms.2014.06.002_b0655) 2013; 61 Sutton (10.1016/j.cossms.2014.06.002_b0010) 1997 Detor (10.1016/j.cossms.2014.06.002_b0585) 2006; 86 Harmer (10.1016/j.cossms.2014.06.002_b0325) 2011; 332 Prokoshkina (10.1016/j.cossms.2014.06.002_b0395) 2013; 61 Pradeep (10.1016/j.cossms.2014.06.002_b0405) 2013; 61 Krauss (10.1016/j.cossms.2014.06.002_b0630) 1999; 273–275 Lozano-Perez (10.1016/j.cossms.2014.06.002_b0120) 2010; 62 Chen (10.1016/j.cossms.2014.06.002_b0500) 2013; 102 Darling (10.1016/j.cossms.2014.06.002_b0580) 2008; 59 10.1016/j.cossms.2014.06.002_b0215 Hoffman (10.1016/j.cossms.2014.06.002_b0200) 1990 |
References_xml | – volume: 47 start-page: 1627 year: 1999 end-page: 1634 ident: b0130 article-title: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite publication-title: Acta Mater – volume: 273–275 start-page: 40 year: 1999 end-page: 57 ident: b0630 article-title: Martensite in steel: strength and structure publication-title: Mater Sc Eng A – volume: 37 start-page: 2595 year: 2006 end-page: 2620 ident: b0420 article-title: Anisotropy of segregation at grain boundaries and surfaces publication-title: Metall Mater Trans A – volume: 527 start-page: 7115 year: 2010 end-page: 7125 ident: b0385 article-title: Grain boundary characterization and energetics of superalloys publication-title: Mater Sci Eng A – volume: 60 start-page: 1731 year: 2012 end-page: 1740 ident: b0390 article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700 publication-title: Acta Mater – volume: 93 start-page: 1796 year: 2010 end-page: 1802 ident: b0310 article-title: The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions publication-title: J Am Ceram Soc – volume: 54 start-page: 2181 year: 2006 end-page: 2194 ident: b0275 article-title: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations publication-title: Acta Mater – volume: 55 start-page: 1071 year: 2006 end-page: 1074 ident: b0350 article-title: Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn publication-title: Scr Mater – volume: 61 start-page: 4607 year: 2013 end-page: 4618 ident: b0155 article-title: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging publication-title: Acta Mater – volume: 61 start-page: 4696 year: 2013 end-page: 4706 ident: b0405 article-title: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography publication-title: Acta Mater – reference: Heo TW, Bhattacharyya S, Chen L-Q. A phase field study of strain energy effects on solute-grain boundary interactions. Acta Mater 2011; 59: 7800–7815. – volume: 51 start-page: 521 year: 2004 end-page: 525 ident: b0575 article-title: Grain boundary saturation and grain growth publication-title: Scr Mater – volume: 111 start-page: 493 year: 2011 end-page: 499 ident: b0455 article-title: Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium publication-title: Ultramicroscopy – volume: 16 start-page: S2629 year: 2014 end-page: S2642 ident: b0510 article-title: Development of an interatomic potential for phosphorus impurities in alpha-iron publication-title: J Phys Condens Mater – volume: 264 start-page: 385 year: 2004 end-page: 391 ident: b0570 article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation publication-title: J Cryst Growth – volume: 44 start-page: 1857 year: 1996 end-page: 1864 ident: b0105 article-title: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys – I. The model publication-title: Acta Mater – volume: 5 start-page: 628 year: 1957 end-page: 637 ident: b0165 article-title: A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities publication-title: Acta Metall – volume: 95 start-page: 226 year: 2004 end-page: 229 ident: b0025 article-title: Grain boundary mobility – a brief review publication-title: Z Metallkd – volume: 51 start-page: 3687 year: 2003 end-page: 3700 ident: b0545 article-title: Segregation transition and drag force at grain boundaries publication-title: Acta Mater – volume: 110 start-page: 124513 year: 2012 ident: b0335 article-title: Comparative atom probe study of Cu(In, Ga)Se(2) thin-film solar cells deposited on soda-lime glass and mild steel substrates publication-title: J Appl Phys – volume: 15 start-page: 378 year: 2012 end-page: 386 ident: b0445 article-title: Atom probe crystallography publication-title: Mater Today – volume: 62 start-page: 1 year: 2014 end-page: 48 ident: b0330 article-title: Grain boundary complexions publication-title: Acta Mater – volume: 31 start-page: 677 year: 1983 end-page: 689 ident: b0235 article-title: Computer modelling of grain boundary segregation publication-title: Acta Metall – volume: 47 start-page: 4187 year: 1999 end-page: 4196 ident: b0055 article-title: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials publication-title: Acta Mater – volume: 59 start-page: 530 year: 2008 end-page: 533 ident: b0580 article-title: Grain-size stabilization in nanocrystalline FeZr alloys publication-title: Scr Mater – volume: 60 start-page: 4005 year: 2012 end-page: 4016 ident: b0380 article-title: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire publication-title: Acta Mater – volume: 57 start-page: 5254 year: 2009 end-page: 5263 ident: b0125 article-title: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and tomographic atom probe publication-title: Acta Mater – volume: 37 start-page: 2595 year: 2006 end-page: 2620 ident: b0100 article-title: Anisotropy of segregation at grain boundaries and surfaces publication-title: Metall Mater Trans A – volume: 51 start-page: 521 year: 2004 end-page: 525 ident: b0225 article-title: Grain boundary saturation and grain growth publication-title: Scr Mater – volume: 44 start-page: 977 year: 2001 end-page: 983 ident: b0370 article-title: Cementite decomposition in heavily drawn pearlite steel wire publication-title: Scr Mater – volume: 50 start-page: 413 year: 2002 end-page: 419 ident: b0110 article-title: Grain coarsening inhibited by solute segregation publication-title: Acta Mater – volume: 332 start-page: 182 year: 2011 end-page: 183 ident: b0325 article-title: The phase behavior of interfaces publication-title: Science – year: 1957 ident: b0005 article-title: Grain boundaries in metals – volume: 66 start-page: 459 year: 2012 end-page: 462 ident: b0150 article-title: Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel publication-title: Scr Mater – volume: 48 start-page: 789 year: 2000 end-page: 796 ident: b0590 article-title: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP) publication-title: Acta Mater – volume: 28 start-page: 455 year: 1980 end-page: 463 ident: b0040 article-title: Grain boundary hardening and segregation in alpha Iron-Tin alloy publication-title: Acta Metall – volume: 33 start-page: 1019 year: 2002 end-page: 1026 ident: b0625 article-title: The production of ultrafine ferrite in low-carbon steel by strain-induced transformation publication-title: Metall Mater Trans A – year: 1997 ident: b0010 article-title: Interfaces in crystalline materials – volume: 54 start-page: 297 year: 2006 end-page: 303 ident: b0085 article-title: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants publication-title: Acta Mater – volume: 61 start-page: 3390 year: 1990 end-page: 3398 ident: b0435 article-title: A system for systematically preparing atomprobe fieldion microscope specimens for the study of internal interfaces publication-title: Rev Sci Instrum – year: 1993 ident: b0015 article-title: The measurement of grain boundary geometry – volume: 35 start-page: 982 year: 2010 end-page: 991 ident: b0615 article-title: Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials publication-title: MRS Bull – volume: 95 start-page: 2358 year: 2012 ident: b0640 article-title: Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions publication-title: Am Ceram Soc – volume: 10 start-page: 384 year: 2004 end-page: 390 ident: b0470 article-title: Modeling image distortions in 3DAP publication-title: Microsc Microanal – volume: 286 start-page: 479 year: 1965 end-page: 498 ident: b0095 article-title: The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron publication-title: Proc R Soc London A – volume: 90 start-page: 996 year: 2007 end-page: 998 ident: b0315 article-title: Direct observation of multilayer adsorption on alumina grain boundaries publication-title: J Am Ceram Soc – volume: 66 start-page: 907 year: 2012 end-page: 910 ident: b0450 article-title: Atom probe crystallography: atomic-scale 3-D orientation mapping publication-title: Scr Mater – volume: 109 start-page: 815 year: 2009 end-page: 824 ident: b0465 article-title: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques publication-title: Ultramicroscopy – volume: 62 start-page: 131 year: 1990 end-page: 153 ident: b0265 article-title: TEM in situ deformation study of the interaction of lattice dislocation with grain boundaries in metals publication-title: Philos Magn A – volume: 25 start-page: 1655 year: 2009 end-page: 1683 ident: b0285 article-title: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals publication-title: Int J Plasticity – volume: 59 start-page: 182 year: 2011 end-page: 190 ident: b0410 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater – volume: 62 start-page: 855 year: 2010 end-page: 858 ident: b0120 article-title: Atom-probe tomography characterization of the oxidation of stainless steel publication-title: Scr Mater – volume: 111 start-page: 628 year: 2011 end-page: 632 ident: b0610 article-title: Atom probe tomography characterization of heavily cold drawn pearlitic steel wire publication-title: Ultramicroscopy – volume: 75 start-page: 064107 year: 2007 ident: b0665 article-title: Phase-field crystal modeling and classical density functional theory of freezing publication-title: Phys Rev B – reference: Chen YZ, Herz A, Li YJ, Borchers C, Choi PP, Raabe D, Kirchheim R. Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite, Acta Mater 2013: 61; 3172–3185. – volume: 59 start-page: 364 year: 2011 end-page: 374 ident: b0145 article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation publication-title: Acta Mater – volume: 44 start-page: 14 year: 2003 end-page: 27 ident: b0135 article-title: Grain boundary diffusion in metals: recent developments publication-title: Mater Trans – volume: 50 start-page: 353 year: 2002 end-page: 363 ident: b0175 article-title: On the mechanisms of grain boundary migration publication-title: Acta Mater – volume: 5 start-page: 322 year: 1957 end-page: 327 ident: b0240 article-title: Multiple slip in bicrystal deformation publication-title: Acta Metall – volume: 51 start-page: 3951 year: 2003 end-page: 3963 ident: b0070 article-title: Segregation based classification of [100] tilt grain boundaries in α-iron and its consequences for grain boundary engineering publication-title: Acta Mater – volume: 60 start-page: 1141 year: 2009 end-page: 1144 ident: b0295 article-title: Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility publication-title: Scr Mater – volume: 85 start-page: 064108 year: 2012 ident: b0520 article-title: Probing grain boundary sink strength at the nanoscale: energetics and length scales of vacancy and interstitial absorption by grain boundaries in alpha-Fe publication-title: Phys Rev B – reference: Wolf D. Atomic-level geometry of crystalline interfaces, Chapman & Hall, London. Mater Interfaces: Atomic-Level Struct Properties, 1992; 1–57. – volume: 341 start-page: 372 year: 2013 end-page: 376 ident: b0140 article-title: Element-resolved corrosion analysis of stainless-type glass-forming steels publication-title: Science – volume: 20 start-page: 1 year: 1995 end-page: 85 ident: b0230 article-title: Thermodynamics and structural aspects of grain boundary segregation publication-title: Crit Rev Solid State – volume: 112 start-page: 126103 year: 2014 ident: b0425 article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material publication-title: Phys Rev Lett – volume: vol. 1 start-page: 21 year: 2001 end-page: 38 ident: b0170 publication-title: Grain boundary character – a key factor for grain boundary control. Recrystallization and grain growth – volume: 26 start-page: 203 year: 1992 end-page: 206 ident: b0270 article-title: On the criteria for slip transmission across interfaces in polycrystals publication-title: Script Metall Mater – volume: 46 start-page: 4103 year: 1998 end-page: 4110 ident: b0185 article-title: Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries publication-title: Acta Mater – volume: 59 start-page: 364 year: 2011 end-page: 374 ident: b0415 article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation publication-title: Acta Mater – volume: 43 start-page: 7287 year: 2006 end-page: 7303 ident: b0280 article-title: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations publication-title: Int J Solids Struct – volume: 53 start-page: 168 year: 1975 end-page: 212 ident: b0060 article-title: Interface adsorption, embrittlement and fracture in metallurgy: a review publication-title: Surf Sci – volume: 55 start-page: 6208 year: 2007 end-page: 6218 ident: b0320 article-title: Complexion: a new concept for kinetic engineering in materials science publication-title: Acta Mater – reference: Choi PP, Al-Kassab T, Gärtner F, Kreye H, Kirchheim R. Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe, Mater Sci Eng A 2003: 353; 74–79. – volume: 50 start-page: 4177 year: 2002 end-page: 4189 ident: b0635 article-title: Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite publication-title: Acta Mater – reference: Gibbs JW. The Collected Works of J. Willard Gibbs, Vol. 1, Yale University Press, New Haven, CT, 1948. – volume: 86 start-page: 4459 year: 2006 end-page: 4475 ident: b0585 article-title: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography publication-title: Philos Magn – volume: 6 start-page: 947 year: 1995 end-page: 952 ident: b0180 article-title: An X-ray device for continuous tracking of moving interfaces in crystalline solids publication-title: Mater Sci Technol – reference: Gottstein G, Shvindlerman LS, Molodov DA, Czubayko U. Grain boundary motion in aluminium bicrystals. In: Duxbury PM, Pence TJ (editors). Dynamics of crystal surfaces and interfaces, New York: Plenum Press; 1997. P. 109–23. – volume: 60 start-page: 2790 year: 2012 end-page: 2804 ident: b0355 article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2 GPa Fe–Cr–C steel publication-title: Acta Mater – volume: 61 start-page: 6132 year: 2013 end-page: 6152 ident: b0290 article-title: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite publication-title: Acta Mater – volume: 88 start-page: 245701 year: 2002 ident: b0660 article-title: Modeling elasticity in crystal growth publication-title: Phys Rev Lett – volume: 250 start-page: 8 year: 1998 end-page: 13 ident: b0360 article-title: Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe publication-title: J Mater Sci Eng A – volume: 3 start-page: 621 year: 2004 end-page: 626 ident: b0490 article-title: Bismuth-induced embrittlement of copper grain boundaries publication-title: Nat Mater – volume: 47 start-page: 4171 year: 1999 end-page: 4185 ident: b0045 article-title: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering publication-title: Acta Mater – volume: 47 start-page: 1527 year: 2007 end-page: 1532 ident: b0620 article-title: Variant selection of reversed austenite in lath martensite publication-title: ISIJ Int – volume: 106 start-page: 246402 year: 2014 ident: b0515 article-title: Magnetic bond-order potential for iron publication-title: Phys Rev Lett – volume: 23 start-page: 799 year: 1989 end-page: 803 ident: b0255 article-title: Prediction of slip transfer mechanisms across grain boundaries publication-title: Scr Metall – volume: 75 start-page: 484 year: 2012 end-page: 491 ident: b0430 article-title: A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces publication-title: Microsc Res Techniq – reference: Wolf, D. Atomic-level geometry of crystalline interfaces, in: Materials interfaces: atomic-level structure and properties, Chapman & Hall, London, 1992. – year: 2010 ident: b0650 article-title: Grain boundary segregation in metals – volume: 80 start-page: 781 year: 2000 end-page: 796 ident: b0365 article-title: Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels publication-title: Philos Magn A – year: 1999 ident: b0035 article-title: Grain boundary migration in metals – thermodynamics, kinetics – volume: 33 start-page: 133 year: 2008 end-page: 163 ident: b0210 article-title: Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction publication-title: Crit Rev Solid State – volume: 79 start-page: 094112 year: 2009 ident: b0560 article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys publication-title: Phys Rev B – volume: 3 start-page: 241 year: 1996 end-page: 267 ident: b0205 article-title: Solute segregation at grain boundaries publication-title: Interface Sci – volume: 10 start-page: 789 year: 1962 end-page: 798 ident: b0160 article-title: The impurity-drag effect in grain boundary motion publication-title: Acta Metall – volume: 21 start-page: 2437 year: 1990 end-page: 2447 ident: b0260 article-title: An in situ transmission electron microscopy deformation study of the slip transfer mechanisms in metals publication-title: Metall Trans A – volume: 26 start-page: 055008 year: 2013 ident: b0345 article-title: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography publication-title: Supercond Sci Technol – volume: 20 start-page: 921 year: 1986 end-page: 926 ident: b0245 article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel publication-title: Scr Metall – volume: 55 start-page: 5247 year: 2007 end-page: 5254 ident: b0305 article-title: Multiple grain boundary transitions in ceramics: a case study of alumina publication-title: Acta Mater – volume: 65 start-page: 215 year: 2014 end-page: 228 ident: b0440 article-title: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy publication-title: Acta Mater – start-page: 107 year: 1990 end-page: 1134 ident: b0200 article-title: Segregation of grain boundaries publication-title: Surface segregation phenomena – volume: 59 start-page: 3965 year: 2011 end-page: 3977 ident: b0375 article-title: Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite publication-title: Acta Mater – volume: 55 start-page: 5129 year: 2007 end-page: 5138 ident: b0115 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I: Theoretical background publication-title: Acta Mater – volume: 8A start-page: 1363 year: 1977 end-page: 1371 ident: b0195 article-title: The theory of grain boundary segregation in terms of surface adsorption analogues publication-title: Metall Trans – volume: 68 start-page: 703 year: 2013 end-page: 706 ident: b0485 article-title: Atomic-resolution observation of Hf-doped alumina grain boundaries publication-title: Scr Mater – volume: 61 start-page: 5188 year: 2013 end-page: 5197 ident: b0395 article-title: Grain boundary width, energy and self-diffusion in nickel: effect of material purity publication-title: Acta Mater – volume: 40 start-page: 1361 year: 1918 end-page: 1368 ident: b0220 article-title: The adsorption of gases on plane surfaces of glass mica and platinum publication-title: J Am Chem Soc – start-page: 191 year: 1973 end-page: 212 ident: b0075 article-title: Grain boundary segregation publication-title: Proc R Soc London. Ser A, Math a, Phys Sci – volume: 479 start-page: 380 year: 2011 end-page: 383 ident: b0505 article-title: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries publication-title: Nat Mater – year: 1997 ident: b0020 article-title: Interfaces in materials: atomic structure, thermodynamic and kinetics of solid–vapor, solid–liquid and solid–solid interfaces – volume: 46 start-page: 199 year: 1950 end-page: 204 ident: b0080 article-title: Surface tension of regular solutions publication-title: T Faraday Soc – volume: 60 start-page: 1201 year: 2012 end-page: 1220 ident: b0400 article-title: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X publication-title: J Mech Phys Solids – reference: Mandal S, Pradeep KG, Zaefferer SD, Raabe D. A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom, Scr Mater, (Available 20.02.14). – volume: 32 start-page: 113 year: 2002 end-page: 140 ident: b0540 article-title: Phase-field models for microstructure evolution publication-title: Annu Rev Mater Res – volume: 102 start-page: 091607 year: 2013 ident: b0500 article-title: Oxygen segregation at coherent grain boundaries of cubic boron nitride publication-title: Appl Phys Lett – volume: 119 start-page: 840 year: 2011 end-page: 844 ident: b0495 article-title: Zr segregation and associated Al vacancies in alumina grain boundaries publication-title: J Ceram Soc Jpn – volume: 68 start-page: 295 year: 2014 end-page: 309 ident: b0605 article-title: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing publication-title: Acta Mater – volume: 332 start-page: 206 year: 2011 end-page: 209 ident: b0300 article-title: Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics publication-title: Science – volume: 63 start-page: 1 year: 2010 end-page: 7 ident: b0475 article-title: Nanostructural hierarchy increases the strength of aluminium alloys publication-title: Nat Commun – volume: 55 start-page: 2329 year: 2007 end-page: 2336 ident: b0090 article-title: Stabilizing nanocrystalline materials with dopants publication-title: Acta Mater – volume: 1 start-page: 439 year: 1992 end-page: 447 ident: b0565 article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys publication-title: Nanostruct Mater – volume: 52 start-page: 4067 year: 2004 end-page: 4081 ident: b0050 article-title: Twinning-related grain boundary engineering publication-title: Acta Mater – volume: 61 start-page: 5078 year: 2013 end-page: 5086 ident: b0655 article-title: Atomic structure characterization of an incommensurate grain boundary publication-title: Acta Mater – volume: 42 start-page: 1 year: 2012 end-page: 31 ident: b0460 article-title: Atom probe tomography publication-title: Annu Rev Mater Res – volume: 58 start-page: 1212 year: 2010 end-page: 1235 ident: b0535 article-title: Phase field modeling of defects and deformation publication-title: Acta Mater – volume: 55 start-page: 4221 year: 2007 end-page: 4232 ident: b0525 article-title: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system publication-title: Acta Mater – volume: 32 start-page: 163 year: 2002 end-page: 194 ident: b0550 article-title: Phase-field simulation of solidification publication-title: Annu Rev Mater Res – volume: 101 start-page: 181603 year: 2012 ident: b0340 article-title: Exploring the p-n junction region in Cu(In, Ga)Se-2 thin-film solar cells at the nanometer-scale publication-title: Appl Phys Lett – volume: 15 start-page: 376 year: 1994 end-page: 380 ident: b0065 article-title: First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion publication-title: Science – volume: 20 start-page: 253 year: 1986 end-page: 258 ident: b0250 article-title: Micromechanism of slip propagation through a high angle boundary in alpha brass publication-title: Scr Metall – volume: 87 start-page: 581 year: 2007 end-page: 587 ident: b0595 article-title: Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography publication-title: Philos Magn Lett – volume: 60 start-page: 1201 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0400 article-title: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2012.02.001 – volume: 44 start-page: 1857 year: 1996 ident: 10.1016/j.cossms.2014.06.002_b0105 article-title: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys – I. The model publication-title: Acta Mater doi: 10.1016/1359-6454(95)00317-7 – volume: 51 start-page: 3951 year: 2003 ident: 10.1016/j.cossms.2014.06.002_b0070 article-title: Segregation based classification of [100] tilt grain boundaries in α-iron and its consequences for grain boundary engineering publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00219-2 – volume: 55 start-page: 2329 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0090 article-title: Stabilizing nanocrystalline materials with dopants publication-title: Acta Mater doi: 10.1016/j.actamat.2006.11.028 – volume: 10 start-page: 789 year: 1962 ident: 10.1016/j.cossms.2014.06.002_b0160 article-title: The impurity-drag effect in grain boundary motion publication-title: Acta Metall doi: 10.1016/0001-6160(62)90092-5 – volume: 61 start-page: 5078 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0655 article-title: Atomic structure characterization of an incommensurate grain boundary publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.028 – volume: 75 start-page: 484 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0430 article-title: A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces publication-title: Microsc Res Techniq doi: 10.1002/jemt.21081 – volume: 5 start-page: 322 year: 1957 ident: 10.1016/j.cossms.2014.06.002_b0240 article-title: Multiple slip in bicrystal deformation publication-title: Acta Metall doi: 10.1016/0001-6160(57)90044-5 – volume: 62 start-page: 131 year: 1990 ident: 10.1016/j.cossms.2014.06.002_b0265 article-title: TEM in situ deformation study of the interaction of lattice dislocation with grain boundaries in metals publication-title: Philos Magn A doi: 10.1080/01418619008244340 – volume: 50 start-page: 353 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0175 article-title: On the mechanisms of grain boundary migration publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00343-3 – volume: 55 start-page: 1071 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0350 article-title: Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn publication-title: Scr Mater doi: 10.1016/j.scriptamat.2006.03.040 – volume: 75 start-page: 064107 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0665 article-title: Phase-field crystal modeling and classical density functional theory of freezing publication-title: Phys Rev B doi: 10.1103/PhysRevB.75.064107 – volume: 62 start-page: 855 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0120 article-title: Atom-probe tomography characterization of the oxidation of stainless steel publication-title: Scr Mater doi: 10.1016/j.scriptamat.2010.02.021 – volume: 50 start-page: 413 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0110 article-title: Grain coarsening inhibited by solute segregation publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00338-X – volume: 51 start-page: 521 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0575 article-title: Grain boundary saturation and grain growth publication-title: Scr Mater doi: 10.1016/j.scriptamat.2004.05.042 – year: 1997 ident: 10.1016/j.cossms.2014.06.002_b0010 – volume: 59 start-page: 364 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0145 article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation publication-title: Acta Mater doi: 10.1016/j.actamat.2010.09.042 – volume: 10 start-page: 384 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0470 article-title: Modeling image distortions in 3DAP publication-title: Microsc Microanal doi: 10.1017/S1431927604040486 – volume: 264 start-page: 385 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0570 article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation publication-title: J Cryst Growth doi: 10.1016/j.jcrysgro.2003.12.021 – volume: 106 start-page: 246402 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0515 article-title: Magnetic bond-order potential for iron publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.106.246402 – volume: 20 start-page: 1 year: 1995 ident: 10.1016/j.cossms.2014.06.002_b0230 article-title: Thermodynamics and structural aspects of grain boundary segregation publication-title: Crit Rev Solid State doi: 10.1080/10408439508243544 – volume: 527 start-page: 7115 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0385 article-title: Grain boundary characterization and energetics of superalloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.07.062 – year: 1997 ident: 10.1016/j.cossms.2014.06.002_b0020 – volume: 47 start-page: 4171 year: 1999 ident: 10.1016/j.cossms.2014.06.002_b0045 article-title: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00275-X – volume: 20 start-page: 253 year: 1986 ident: 10.1016/j.cossms.2014.06.002_b0250 article-title: Micromechanism of slip propagation through a high angle boundary in alpha brass publication-title: Scr Metall doi: 10.1016/0036-9748(86)90137-7 – volume: 47 start-page: 1627 year: 1999 ident: 10.1016/j.cossms.2014.06.002_b0130 article-title: Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00026-9 – volume: 32 start-page: 163 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0550 article-title: Phase-field simulation of solidification publication-title: Annu Rev Mater Res doi: 10.1146/annurev.matsci.32.101901.155803 – volume: 61 start-page: 5188 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0395 article-title: Grain boundary width, energy and self-diffusion in nickel: effect of material purity publication-title: Acta Mater doi: 10.1016/j.actamat.2013.05.010 – volume: 54 start-page: 2181 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0275 article-title: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations publication-title: Acta Mater doi: 10.1016/j.actamat.2006.01.004 – volume: 21 start-page: 2437 year: 1990 ident: 10.1016/j.cossms.2014.06.002_b0260 article-title: An in situ transmission electron microscopy deformation study of the slip transfer mechanisms in metals publication-title: Metall Trans A doi: 10.1007/BF02646988 – volume: 47 start-page: 4187 year: 1999 ident: 10.1016/j.cossms.2014.06.002_b0055 article-title: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00277-3 – volume: 87 start-page: 581 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0595 article-title: Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography publication-title: Philos Magn Lett doi: 10.1080/09500830701400125 – volume: 44 start-page: 977 year: 2001 ident: 10.1016/j.cossms.2014.06.002_b0370 article-title: Cementite decomposition in heavily drawn pearlite steel wire publication-title: Scr Mater doi: 10.1016/S1359-6462(00)00690-4 – volume: 332 start-page: 182 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0325 article-title: The phase behavior of interfaces publication-title: Science doi: 10.1126/science.1204204 – volume: 112 start-page: 126103 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0425 article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.126103 – volume: 61 start-page: 3390 year: 1990 ident: 10.1016/j.cossms.2014.06.002_b0435 article-title: A system for systematically preparing atomprobe fieldion microscope specimens for the study of internal interfaces publication-title: Rev Sci Instrum doi: 10.1063/1.1141590 – volume: 58 start-page: 1212 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0535 article-title: Phase field modeling of defects and deformation publication-title: Acta Mater doi: 10.1016/j.actamat.2009.10.041 – volume: 1 start-page: 439 year: 1992 ident: 10.1016/j.cossms.2014.06.002_b0565 article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys publication-title: Nanostruct Mater doi: 10.1016/0965-9773(92)90076-A – year: 1993 ident: 10.1016/j.cossms.2014.06.002_b0015 – volume: 35 start-page: 982 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0615 article-title: Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials publication-title: MRS Bull doi: 10.1557/mrs2010.703 – volume: 50 start-page: 4177 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0635 article-title: Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00260-4 – volume: 60 start-page: 1141 year: 2009 ident: 10.1016/j.cossms.2014.06.002_b0295 article-title: Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility publication-title: Scr Mater doi: 10.1016/j.scriptamat.2009.02.062 – volume: 66 start-page: 907 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0450 article-title: Atom probe crystallography: atomic-scale 3-D orientation mapping publication-title: Scr Mater doi: 10.1016/j.scriptamat.2012.02.022 – volume: 63 start-page: 1 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0475 article-title: Nanostructural hierarchy increases the strength of aluminium alloys publication-title: Nat Commun doi: 10.1038/ncomms1062 – volume: 57 start-page: 5254 year: 2009 ident: 10.1016/j.cossms.2014.06.002_b0125 article-title: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and tomographic atom probe publication-title: Acta Mater doi: 10.1016/j.actamat.2009.07.028 – volume: 33 start-page: 1019 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0625 article-title: The production of ultrafine ferrite in low-carbon steel by strain-induced transformation publication-title: Metall Mater Trans A doi: 10.1007/s11661-002-0203-5 – volume: 66 start-page: 459 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0150 article-title: Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel publication-title: Scr Mater doi: 10.1016/j.scriptamat.2011.12.015 – volume: 23 start-page: 799 year: 1989 ident: 10.1016/j.cossms.2014.06.002_b0255 article-title: Prediction of slip transfer mechanisms across grain boundaries publication-title: Scr Metall doi: 10.1016/0036-9748(89)90534-6 – ident: 10.1016/j.cossms.2014.06.002_b0215 – volume: 86 start-page: 4459 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0585 article-title: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography publication-title: Philos Magn doi: 10.1080/14786430600726749 – volume: 33 start-page: 133 year: 2008 ident: 10.1016/j.cossms.2014.06.002_b0210 article-title: Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction publication-title: Crit Rev Solid State doi: 10.1080/10408430801907649 – volume: 60 start-page: 1731 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0390 article-title: Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography publication-title: Acta Mater doi: 10.1016/j.actamat.2011.11.020 – ident: 10.1016/j.cossms.2014.06.002_b0190 doi: 10.1007/0-306-47071-3_9 – volume: 5 start-page: 628 year: 1957 ident: 10.1016/j.cossms.2014.06.002_b0165 article-title: A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities publication-title: Acta Metall doi: 10.1016/0001-6160(57)90109-8 – volume: 111 start-page: 493 issue: 2011 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0455 article-title: Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.11.014 – volume: 28 start-page: 455 year: 1980 ident: 10.1016/j.cossms.2014.06.002_b0040 article-title: Grain boundary hardening and segregation in alpha Iron-Tin alloy publication-title: Acta Metall doi: 10.1016/0001-6160(80)90135-2 – volume: 59 start-page: 3965 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0375 article-title: Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite publication-title: Acta Mater doi: 10.1016/j.actamat.2011.03.022 – volume: 59 start-page: 364 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0415 article-title: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation publication-title: Acta Mater doi: 10.1016/j.actamat.2010.09.042 – ident: 10.1016/j.cossms.2014.06.002_b0645 – volume: 61 start-page: 4607 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0155 article-title: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.030 – volume: 93 start-page: 1796 year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0310 article-title: The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2010.03642.x – volume: 286 start-page: 479 year: 1965 ident: 10.1016/j.cossms.2014.06.002_b0095 article-title: The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron publication-title: Proc R Soc London A doi: 10.1098/rspa.1965.0158 – volume: 42 start-page: 1 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0460 article-title: Atom probe tomography publication-title: Annu Rev Mater Res doi: 10.1146/annurev-matsci-070511-155007 – volume: 90 start-page: 996 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0315 article-title: Direct observation of multilayer adsorption on alumina grain boundaries publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2007.01512.x – volume: 62 start-page: 1 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0330 article-title: Grain boundary complexions publication-title: Acta Mater doi: 10.1016/j.actamat.2013.07.037 – volume: 16 start-page: S2629 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0510 article-title: Development of an interatomic potential for phosphorus impurities in alpha-iron publication-title: J Phys Condens Mater doi: 10.1088/0953-8984/16/27/003 – volume: 52 start-page: 4067 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0050 article-title: Twinning-related grain boundary engineering publication-title: Acta Mater doi: 10.1016/j.actamat.2004.05.031 – volume: 59 start-page: 182 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0410 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2010.09.023 – volume: 85 start-page: 064108 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0520 article-title: Probing grain boundary sink strength at the nanoscale: energetics and length scales of vacancy and interstitial absorption by grain boundaries in alpha-Fe publication-title: Phys Rev B doi: 10.1103/PhysRevB.85.064108 – volume: 65 start-page: 215 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0440 article-title: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy publication-title: Acta Mater doi: 10.1016/j.actamat.2013.10.064 – volume: 250 start-page: 8 year: 1998 ident: 10.1016/j.cossms.2014.06.002_b0360 article-title: Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe publication-title: J Mater Sci Eng A doi: 10.1016/S0921-5093(98)00529-2 – volume: 26 start-page: 203 year: 1992 ident: 10.1016/j.cossms.2014.06.002_b0270 article-title: On the criteria for slip transmission across interfaces in polycrystals publication-title: Script Metall Mater doi: 10.1016/0956-716X(92)90173-C – volume: 273–275 start-page: 40 year: 1999 ident: 10.1016/j.cossms.2014.06.002_b0630 article-title: Martensite in steel: strength and structure publication-title: Mater Sc Eng A doi: 10.1016/S0921-5093(99)00288-9 – volume: 55 start-page: 6208 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0320 article-title: Complexion: a new concept for kinetic engineering in materials science publication-title: Acta Mater doi: 10.1016/j.actamat.2007.07.029 – volume: 60 start-page: 4005 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0380 article-title: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire publication-title: Acta Mater doi: 10.1016/j.actamat.2012.03.006 – volume: 48 start-page: 789 year: 2000 ident: 10.1016/j.cossms.2014.06.002_b0590 article-title: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP) publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00397-3 – volume: 47 start-page: 1527 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0620 article-title: Variant selection of reversed austenite in lath martensite publication-title: ISIJ Int doi: 10.2355/isijinternational.47.1527 – volume: 3 start-page: 621 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0490 article-title: Bismuth-induced embrittlement of copper grain boundaries publication-title: Nat Mater doi: 10.1038/nmat1191 – volume: 37 start-page: 2595 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0420 article-title: Anisotropy of segregation at grain boundaries and surfaces publication-title: Metall Mater Trans A doi: 10.1007/BF02586096 – volume: 51 start-page: 3687 year: 2003 ident: 10.1016/j.cossms.2014.06.002_b0545 article-title: Segregation transition and drag force at grain boundaries publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00184-8 – volume: 55 start-page: 4221 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0525 article-title: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system publication-title: Acta Mater doi: 10.1016/j.actamat.2007.03.024 – volume: 37 start-page: 2595 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0100 article-title: Anisotropy of segregation at grain boundaries and surfaces publication-title: Metall Mater Trans A doi: 10.1007/BF02586096 – volume: 31 start-page: 677 year: 1983 ident: 10.1016/j.cossms.2014.06.002_b0235 article-title: Computer modelling of grain boundary segregation publication-title: Acta Metall doi: 10.1016/0001-6160(83)90083-4 – volume: 43 start-page: 7287 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0280 article-title: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.07.006 – volume: 15 start-page: 376 year: 1994 ident: 10.1016/j.cossms.2014.06.002_b0065 article-title: First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion publication-title: Science doi: 10.1126/science.265.5170.376 – volume: 61 start-page: 4696 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0405 article-title: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.059 – ident: 10.1016/j.cossms.2014.06.002_b0555 doi: 10.1016/j.actamat.2011.08.045 – volume: 79 start-page: 094112 year: 2009 ident: 10.1016/j.cossms.2014.06.002_b0560 article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.094112 – volume: 109 start-page: 815 year: 2009 ident: 10.1016/j.cossms.2014.06.002_b0465 article-title: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.03.016 – volume: 3 start-page: 241 year: 1996 ident: 10.1016/j.cossms.2014.06.002_b0205 article-title: Solute segregation at grain boundaries publication-title: Interface Sci doi: 10.1007/BF00194704 – volume: 479 start-page: 380 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0505 article-title: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries publication-title: Nat Mater doi: 10.1038/nature10593 – volume: 55 start-page: 5129 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0115 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I: Theoretical background publication-title: Acta Mater doi: 10.1016/j.actamat.2007.05.047 – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.cossms.2014.06.002_b0220 article-title: The adsorption of gases on plane surfaces of glass mica and platinum publication-title: J Am Chem Soc doi: 10.1021/ja02242a004 – volume: 111 start-page: 628 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0610 article-title: Atom probe tomography characterization of heavily cold drawn pearlitic steel wire publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.11.010 – volume: 51 start-page: 521 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0225 article-title: Grain boundary saturation and grain growth publication-title: Scr Mater doi: 10.1016/j.scriptamat.2004.05.042 – volume: 102 start-page: 091607 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0500 article-title: Oxygen segregation at coherent grain boundaries of cubic boron nitride publication-title: Appl Phys Lett doi: 10.1063/1.4795300 – volume: 95 start-page: 2358 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0640 article-title: Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions publication-title: Am Ceram Soc doi: 10.1111/j.1551-2916.2011.05059.x – volume: 8A start-page: 1363 year: 1977 ident: 10.1016/j.cossms.2014.06.002_b0195 article-title: The theory of grain boundary segregation in terms of surface adsorption analogues publication-title: Metall Trans doi: 10.1007/BF02642850 – volume: 68 start-page: 703 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0485 article-title: Atomic-resolution observation of Hf-doped alumina grain boundaries publication-title: Scr Mater doi: 10.1016/j.scriptamat.2013.01.015 – volume: 101 start-page: 181603 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0340 article-title: Exploring the p-n junction region in Cu(In, Ga)Se-2 thin-film solar cells at the nanometer-scale publication-title: Appl Phys Lett doi: 10.1063/1.4764527 – year: 1957 ident: 10.1016/j.cossms.2014.06.002_b0005 – volume: 110 start-page: 124513 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0335 article-title: Comparative atom probe study of Cu(In, Ga)Se(2) thin-film solar cells deposited on soda-lime glass and mild steel substrates publication-title: J Appl Phys doi: 10.1063/1.3665723 – ident: 10.1016/j.cossms.2014.06.002_b0480 – volume: 32 start-page: 113 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0540 article-title: Phase-field models for microstructure evolution publication-title: Annu Rev Mater Res doi: 10.1146/annurev.matsci.32.112001.132041 – volume: 46 start-page: 199 year: 1950 ident: 10.1016/j.cossms.2014.06.002_b0080 article-title: Surface tension of regular solutions publication-title: T Faraday Soc doi: 10.1039/tf9504600199 – volume: 88 start-page: 245701 year: 2002 ident: 10.1016/j.cossms.2014.06.002_b0660 article-title: Modeling elasticity in crystal growth publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.88.245701 – volume: 80 start-page: 781 year: 2000 ident: 10.1016/j.cossms.2014.06.002_b0365 article-title: Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels publication-title: Philos Magn A doi: 10.1080/01418610008212082 – volume: 46 start-page: 4103 year: 1998 ident: 10.1016/j.cossms.2014.06.002_b0185 article-title: Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries publication-title: Acta Mater doi: 10.1016/S1359-6454(98)00105-0 – volume: 61 start-page: 6132 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0290 article-title: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite publication-title: Acta Mater doi: 10.1016/j.actamat.2013.06.055 – volume: 55 start-page: 5247 year: 2007 ident: 10.1016/j.cossms.2014.06.002_b0305 article-title: Multiple grain boundary transitions in ceramics: a case study of alumina publication-title: Acta Mater doi: 10.1016/j.actamat.2007.04.051 – start-page: 107 year: 1990 ident: 10.1016/j.cossms.2014.06.002_b0200 article-title: Segregation of grain boundaries – volume: 20 start-page: 921 year: 1986 ident: 10.1016/j.cossms.2014.06.002_b0245 article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel publication-title: Scr Metall doi: 10.1016/0036-9748(86)90467-9 – volume: 119 start-page: 840 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0495 article-title: Zr segregation and associated Al vacancies in alumina grain boundaries publication-title: J Ceram Soc Jpn doi: 10.2109/jcersj2.119.840 – volume: 54 start-page: 297 year: 2006 ident: 10.1016/j.cossms.2014.06.002_b0085 article-title: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants publication-title: Acta Mater doi: 10.1016/j.actamat.2005.07.024 – volume: 95 start-page: 226 year: 2004 ident: 10.1016/j.cossms.2014.06.002_b0025 article-title: Grain boundary mobility – a brief review publication-title: Z Metallkd doi: 10.3139/146.017938 – volume: 59 start-page: 530 year: 2008 ident: 10.1016/j.cossms.2014.06.002_b0580 article-title: Grain-size stabilization in nanocrystalline FeZr alloys publication-title: Scr Mater doi: 10.1016/j.scriptamat.2008.04.045 – volume: 341 start-page: 372 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0140 article-title: Element-resolved corrosion analysis of stainless-type glass-forming steels publication-title: Science doi: 10.1126/science.1230081 – volume: 60 start-page: 2790 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0355 article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2 GPa Fe–Cr–C steel publication-title: Acta Mater doi: 10.1016/j.actamat.2012.01.045 – volume: 15 start-page: 378 year: 2012 ident: 10.1016/j.cossms.2014.06.002_b0445 article-title: Atom probe crystallography publication-title: Mater Today doi: 10.1016/S1369-7021(12)70164-5 – ident: 10.1016/j.cossms.2014.06.002_b0030 – volume: vol. 1 start-page: 21 year: 2001 ident: 10.1016/j.cossms.2014.06.002_b0170 – volume: 53 start-page: 168 year: 1975 ident: 10.1016/j.cossms.2014.06.002_b0060 article-title: Interface adsorption, embrittlement and fracture in metallurgy: a review publication-title: Surf Sci doi: 10.1016/0039-6028(75)90124-7 – volume: 332 start-page: 206 year: 2011 ident: 10.1016/j.cossms.2014.06.002_b0300 article-title: Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics publication-title: Science doi: 10.1126/science.1201596 – ident: 10.1016/j.cossms.2014.06.002_b0600 doi: 10.1016/S0921-5093(02)00670-6 – year: 2010 ident: 10.1016/j.cossms.2014.06.002_b0650 – volume: 68 start-page: 295 year: 2014 ident: 10.1016/j.cossms.2014.06.002_b0605 article-title: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing publication-title: Acta Mater doi: 10.1016/j.actamat.2014.01.031 – start-page: 191 year: 1973 ident: 10.1016/j.cossms.2014.06.002_b0075 article-title: Grain boundary segregation publication-title: Proc R Soc London. Ser A, Math a, Phys Sci doi: 10.1098/rspa.1973.0121 – volume: 6 start-page: 947 year: 1995 ident: 10.1016/j.cossms.2014.06.002_b0180 article-title: An X-ray device for continuous tracking of moving interfaces in crystalline solids publication-title: Mater Sci Technol – year: 1999 ident: 10.1016/j.cossms.2014.06.002_b0035 – volume: 25 start-page: 1655 year: 2009 ident: 10.1016/j.cossms.2014.06.002_b0285 article-title: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2008.09.002 – volume: 44 start-page: 14 year: 2003 ident: 10.1016/j.cossms.2014.06.002_b0135 article-title: Grain boundary diffusion in metals: recent developments publication-title: Mater Trans doi: 10.2320/matertrans.44.14 – ident: 10.1016/j.cossms.2014.06.002_b0530 doi: 10.1016/j.actamat.2013.02.006 – volume: 26 start-page: 055008 year: 2013 ident: 10.1016/j.cossms.2014.06.002_b0345 article-title: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography publication-title: Supercond Sci Technol doi: 10.1088/0953-2048/26/5/055008 |
SSID | ssj0004666 |
Score | 2.6042655 |
SecondaryResourceType | review_article |
Snippet | •Segregation engineering: grain boundary manipulation by solute decoration.•A concept to manipulate grain boundary structure, composition and properties.
Grain... Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 253 |
SubjectTerms | Alloys Atom probe tomography Coefficients Cohesion Decoration Grain boundaries Grain boundary Heat treatment Materials science Phase transformation Precipitates Segregation Segregations |
Title | Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces |
URI | https://dx.doi.org/10.1016/j.cossms.2014.06.002 https://www.proquest.com/docview/1685770667 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iCO2DVNtStUqEvqZnNrOXbN-OQz0_KkUr-Jbms1zRO7k7kXvp324mu6tWCoJPy-5OlmWSnZns_OY3hHxRVvpCWmBcyMiAc8dMKASDboDdKKWNEeudv592BxdwdFleLpB-WwuDsMrG9tc2PVvr5kqn0WbnZjjsnHORqUeSf8kVpsgJCiBxlX_9y5_URuZ8JQozlG7L5zLGyyVHdI2k3Rwyi2fzc-U_7umZoc7eZ_8dWWnCRtqr32yVLITRGnn7hExwjSxnMKebvie_DrDvA7W5Y9JkTqchbap_5ymg4XEITTLXIQXfV0NHMf8-n36jPYo9iu_MnM7GNAWH1GeIBx1HiswSk4gQrg_kYn_vZ3_Amk4KzIFQMxYraYRykvtqF7gyvhBRKqdsNGB9AT6CDbYsnZeVNzYWhYzWpz2qFFaVKoiPZHE0HoVPhFYeIoCJQQQLlS9VFI4LFQrbNZDurRPRKlC7hmYcu11c6RZP9kfXateodp1hdcU6YQ-jbmqajRfkZTs3-p_lopMneGHkTjuVOn1JmB4xozC-nWreVaWUCPrdePXTN8kbPKsRgp_J4mxyG7ZS1DKz23lZbpOlXv_s5AceD48Hp_e37PDQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6lqarCAUEBUV41Elcr9Xo29nKLKkJK21xIpN6Mn1WqNqmSVCj_Htu7S0uFVInr2rNaje2Z8c433wB8lka4QhikjItAkTFLtS84xb7HwyCECSHVO5-N-6Mpfj8vzztw1NbCJFhlY_trm56tdfOk12izdzOb9X4wnqlHon_JFaa4BduJnarswvbg-GQ0vlcemVOWaT5NAm0FXYZ52eiLrhNvN8NM5Nn8X_mHh3pgq7MDGj6HZ03kSAb1x72Ajp_vwdN7fIJ7sJPxnHb1En5-S60fiMlNk5YbsvLxXn2RV4H4OxES51z7GH9fzSxJKfjN6gsZkNSm-JfekPWCxPiQuIzyIItAErnEMiQU1yuYDr9Ojka0aaZALXK5pqESmksrmKsOkUntCh6EtNIEjcYV6AIab8rSOlE5bUJRiGBcvKYKbmQpPX8N3fli7t8AqRwGRB089wYrV8rALePSF6avMY7tA28VqGzDNJ4aXlypFlJ2qWq1q6R2lZF1xT7QP1I3NdPGI_NFuzbqrx2jojN4RPJTu5QqHqaUIdFzv7hdKdaXpRAJ9_v2v99-ALujydmpOj0en7yDJ2mkBgy-h-56ees_xCBmbT42m_Q3ZtHx7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+segregation+engineering+in+metallic+alloys%3A+A+pathway+to+the+design+of+interfaces&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Raabe%2C+D.&rft.au=Herbig%2C+M.&rft.au=Sandl%C3%B6bes%2C+S.&rft.au=Li%2C+Y.&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-0286&rft.volume=18&rft.issue=4&rft.spage=253&rft.epage=261&rft_id=info:doi/10.1016%2Fj.cossms.2014.06.002&rft.externalDocID=S1359028614000394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon |