Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature

Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the stor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of food microbiology Vol. 345; p. 109152
Main Authors Chen, Bowen, Huang, Jiaming, Liu, Yang, Liu, Haiquan, Zhao, Yong, Wang, Jing Jing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 02.05.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-1605
1879-3460
1879-3460
DOI10.1016/j.ijfoodmicro.2021.109152

Cover

Loading…
Abstract Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry. •The curcumin-mediated PDI efficiently inactivated the V. parahaemolyticus on oysters.•The PDI inhibited the recovery of survival injured cells on oysters.•The PDI suppressed the increase of pH and reduced the production of TVB-N.•The PDI maintained the integrity of muscle fibers and retarded the lipid oxidation.•The PDI decreased the loss of water and the texture softening of oysters.
AbstractList Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry. •The curcumin-mediated PDI efficiently inactivated the V. parahaemolyticus on oysters.•The PDI inhibited the recovery of survival injured cells on oysters.•The PDI suppressed the increase of pH and reduced the production of TVB-N.•The PDI maintained the integrity of muscle fibers and retarded the lipid oxidation.•The PDI decreased the loss of water and the texture softening of oysters.
Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.
Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log₁₀ CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.
Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.
Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.
ArticleNumber 109152
Author Zhao, Yong
Liu, Haiquan
Liu, Yang
Chen, Bowen
Huang, Jiaming
Wang, Jing Jing
Author_xml – sequence: 1
  givenname: Bowen
  surname: Chen
  fullname: Chen, Bowen
  organization: Department of Food Science, Foshan University, Foshan 528000, China
– sequence: 2
  givenname: Jiaming
  surname: Huang
  fullname: Huang, Jiaming
  organization: College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Department of Food Science, Foshan University, Foshan 528000, China
– sequence: 4
  givenname: Haiquan
  surname: Liu
  fullname: Liu, Haiquan
  organization: College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
– sequence: 5
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  organization: College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
– sequence: 6
  givenname: Jing Jing
  surname: Wang
  fullname: Wang, Jing Jing
  email: w_j2010@126.com
  organization: Department of Food Science, Foshan University, Foshan 528000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33725529$$D View this record in MEDLINE/PubMed
BookMark eNqNks9q3DAQxkVJaTZpX6Go9NKLt_pjee1TKUvSFgK9hF6FLI-z49rSRpJT_DZ91GqzCZScFgQC8fu-Gc18F-TMeQeEfOBszRmvPg9rHHrvuwlt8GvBBM_vDVfiFVnxetMUsqzYGVllti54xdQ5uYhxYIwpKdkbci7lRiglmhX5e9X3YFOkvqdpB9TOwc4TumKCDk2Cju53PvlucSZXo-iMTfhgEnpH8zlI7mczYloODtb731nil5ggRPoH047-wjagp3sTzM7A5McloZ0j7eaA7o7G5IO5A2oS7TD3EsAlmmDaQzBpDvCWvO7NGOHd031Jbq-vbrffi5uf335sv94UtpR1KnpWV0ooC6xStt60qqz6VjLLmrqtuVEV7yWvjYKyti3vlRSyznPrOtFW1pTyknw62u6Dv58hJj1htDCOxoGfoxZKlJIx3mxOQJkQnJWiyejHF-jg5-DyPw6GnAtWlTJT75-ouc1j1_uAkwmLft5SBr4cgbzuGAP02mJ63EEKBkfNmT7kQg_6v1zoQy70MRfZoXnh8FzkFO32qIU8_geEoKNFcDYHJOTo6M7jCS7_AHtw3KY
CitedBy_id crossref_primary_10_1016_j_ultsonch_2024_106931
crossref_primary_10_2139_ssrn_4088701
crossref_primary_10_1016_j_foodchem_2021_130146
crossref_primary_10_1016_j_gaost_2024_10_003
crossref_primary_10_1016_j_foodchem_2022_132127
crossref_primary_10_1016_j_foodchem_2021_131795
crossref_primary_10_1016_j_foodchem_2022_134388
crossref_primary_10_1016_j_fbp_2024_10_013
crossref_primary_10_1016_j_foodchem_2023_138198
crossref_primary_10_1016_j_ijfoodmicro_2025_111089
crossref_primary_10_1016_j_lwt_2021_112288
crossref_primary_10_1016_j_foodcont_2024_110441
crossref_primary_10_1016_j_lwt_2021_111999
crossref_primary_10_1016_j_ultsonch_2023_106389
crossref_primary_10_1016_j_foodchem_2022_132159
crossref_primary_10_1016_j_ifset_2023_103410
crossref_primary_10_1016_j_crfs_2022_100421
crossref_primary_10_1016_j_foodhyd_2025_111361
crossref_primary_10_1016_j_foodres_2023_112722
crossref_primary_10_1111_1541_4337_13215
crossref_primary_10_1111_1541_4337_13290
crossref_primary_10_1016_j_jfp_2023_100157
crossref_primary_10_3390_foods13233980
crossref_primary_10_1016_j_cofs_2022_100927
crossref_primary_10_1016_j_ijfoodmicro_2024_110866
crossref_primary_10_1016_j_foodchem_2021_129974
crossref_primary_10_1016_j_ijbiomac_2025_142376
crossref_primary_10_1007_s12161_021_02168_0
crossref_primary_10_1016_j_lwt_2023_114613
crossref_primary_10_1016_j_lwt_2021_111462
crossref_primary_10_1016_j_lwt_2021_112832
crossref_primary_10_1016_j_lwt_2021_112958
crossref_primary_10_1016_j_foodchem_2024_138685
crossref_primary_10_1111_ijfs_16065
crossref_primary_10_1016_j_foodres_2023_113325
crossref_primary_10_1016_j_ijfoodmicro_2023_110539
crossref_primary_10_1021_acs_jafc_4c03885
crossref_primary_10_1016_j_foodres_2024_114492
crossref_primary_10_1016_j_aquaculture_2024_741882
crossref_primary_10_1016_j_jphotochem_2023_115120
crossref_primary_10_1016_j_lwt_2023_115261
crossref_primary_10_1016_j_foodcont_2023_110118
crossref_primary_10_1021_acs_jafc_2c08340
crossref_primary_10_1016_j_jphotochem_2022_114104
crossref_primary_10_1016_j_pdpdt_2022_103173
crossref_primary_10_1016_j_fpsl_2024_101354
crossref_primary_10_1016_j_foodres_2021_110847
crossref_primary_10_3390_antiox11030459
crossref_primary_10_3390_foods11172701
crossref_primary_10_1016_j_foodcont_2022_108986
crossref_primary_10_1007_s43630_021_00057_3
crossref_primary_10_3390_microorganisms10040802
crossref_primary_10_1016_j_foodchem_2022_132178
crossref_primary_10_3390_foods10112587
crossref_primary_10_1016_j_ijfoodmicro_2022_109816
crossref_primary_10_3389_fnut_2021_676500
crossref_primary_10_1071_MA22017
crossref_primary_10_1016_j_foodhyd_2024_110191
crossref_primary_10_1016_j_fpsl_2022_100972
crossref_primary_10_1080_10408398_2024_2399294
crossref_primary_10_1021_acs_biomac_1c00165
crossref_primary_10_1016_j_fm_2023_104453
crossref_primary_10_1016_j_pdpdt_2025_104483
crossref_primary_10_3390_molecules27207136
Cites_doi 10.4315/0362-028X-63.10.1381
10.1016/j.seppur.2019.115968
10.1021/jf4019933
10.1111/1541-4337.12043
10.1016/j.ijfoodmicro.2014.03.016
10.1111/1541-4337.12557
10.1016/j.foodcont.2017.08.017
10.1016/j.foodcont.2016.11.013
10.1007/s12161-014-9853-3
10.1111/j.1365-2621.2004.tb09924.x
10.1016/j.fpsl.2019.100388
10.1007/s40003-014-0117-7
10.1111/1541-4337.12418
10.1016/j.foodcont.2013.09.050
10.1016/j.foodchem.2005.07.022
10.1016/j.foodchem.2007.10.057
10.1016/j.foodcont.2017.06.040
10.15585/mmwr.ss6710a1
10.1016/j.foodres.2011.07.041
10.1016/j.foodres.2016.07.012
10.1111/jfpp.14585
10.1111/j.1365-2621.2002.tb10652.x
10.1016/j.foodres.2012.12.046
10.1016/j.foodchem.2010.04.033
10.1016/j.lwt.2008.11.003
10.1016/j.lwt.2019.108360
10.1080/07373937.2017.1359839
10.1016/j.foodchem.2020.128265
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright Elsevier BV May 2, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV May 2, 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.ijfoodmicro.2021.109152
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Genetics Abstracts
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Biology
EISSN 1879-3460
ExternalDocumentID 33725529
10_1016_j_ijfoodmicro_2021_109152
S0168160521001112
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFO
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFCTW
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LUGTX
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSI
SSZ
T5K
UBH
Z5R
~G-
~KM
29J
3EH
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AJUYK
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMG
HVGLF
HZ~
R2-
RIG
SEW
SIN
SSH
VH1
WUQ
XPP
Y6R
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QL
7QO
7QR
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c438t-f086525ce065c87b546fb30c098b81a561f318a5e48cb1f53238021dd2b6ca43
IEDL.DBID .~1
ISSN 0168-1605
1879-3460
IngestDate Mon Jul 21 10:03:22 EDT 2025
Fri Jul 11 03:19:24 EDT 2025
Fri Jul 25 02:09:13 EDT 2025
Mon Jul 21 05:38:55 EDT 2025
Tue Jul 01 01:58:09 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Fri Feb 23 02:46:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photodynamic inactivation (PDI)
Vibrio parahaemolyticus
Magnetic resonance imaging (MRI)
Malondialdehyde (MDA)
Storage quality
Oysters
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-f086525ce065c87b546fb30c098b81a561f318a5e48cb1f53238021dd2b6ca43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33725529
PQID 2521120643
PQPubID 105385
ParticipantIDs proquest_miscellaneous_2524300197
proquest_miscellaneous_2502210429
proquest_journals_2521120643
pubmed_primary_33725529
crossref_citationtrail_10_1016_j_ijfoodmicro_2021_109152
crossref_primary_10_1016_j_ijfoodmicro_2021_109152
elsevier_sciencedirect_doi_10_1016_j_ijfoodmicro_2021_109152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-02
PublicationDateYYYYMMDD 2021-05-02
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-02
  day: 02
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle International journal of food microbiology
PublicationTitleAlternate Int J Food Microbiol
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Swer, Chauhan, Mukhim, Bashir, Kumar (bb0150) 2019; 114
Cheng, Zhang, Yao, Wang, Song, Wang, Wang, Tan (bb0020) 2018; 36
Xuan, Fan, Ling, Hu, Liu, Chen, Ye, Ding (bb0180) 2017; 73
Wang, Sun, Jin, Liu, Zhang, Sun, Pan, Zhao (bb0165) 2014; 179
He, Adams, Farkas, Morrissey (bb0060) 2002; 67
Songsaeng, Sophanodora, Kaewsrithong, Ohshima (bb0145) 2010; 123
Fan, Chi, Zhang (bb0040) 2008; 108
Kamble, Singh, Kaur, Rani (bb0085) 2020; 44
Silva-Angulo, Zanini, Rodrigo, Rosenthal, Martinez (bb0135) 2014; 37
Chen, Huang, Li, Zeng, Wang, Liu, Pan, Zhao (bb0010) 2020
Cook (bb0025) 1991
Miao, Walton, Wang, Li, Wang (bb0120) 2019; 22
Chaijan, Benjakul, Visessanguan, Faustman (bb0005) 2006; 99
Josewin, Ghate, Kim, Yuk (bb0080) 2018; 84
U.S. Food and Drug Administration (bb0160) 1997
Lin, Wang, Li, Liao, Pan, Zhao (bb0100) 2013; 61
Peng, Wang, Zeng, Li, Wu, Liu, Wang, Zhao (bb0130) 2021; 341
Accessed: Oct, 9, 2020.
FAO. FAO Fisheries & Aquaculture - Fishery Statistical Collections - Global Aquaculture Production
Cheng, Sun, Han, Zeng (bb0015) 2014; 13
Xiong, Sun, Dai, Han, Zeng, Wang (bb0175) 2015; 8
Ndraha, Wong, Hsiao (bb0125) 2020; 19
Tan, Li, Yu, Wang, Xie (bb0155) 2019; 9
Kim, Adeline Ng, Zwe, Yuk (bb0095) 2017; 82
Dewey-Mattia, Manikonda, Hall, Wise, Crowe (bb0035) 2018; 67
Liu, Li, Cao, Wu, Wang, Xue, Xu, Xue, Tang (bb0105) 2016; 87
Lopez-Caballero, Pe’rez-Mateos, Bonderı’as, Montero (bb0110) 2000; 63
Marcone, Wang, Albabish, Nie, Somnarain, Hill (bb0115) 2013; 51
Soares, Flor Vieira, Fidler, Monteiro Fritz, Di Luccio (bb0140) 2020; 232
Ghate, Zhou, Yuk (bb0050) 2019; 18
Huang, Choe, Min (bb0065) 2004; 69
de Aguiar Saldanha Pinheiro, Tappi, Patrignani, Lanciotti, Romani, Rocculi (bb0030) 2020
Huang, Chen, Li, Zeng, Wang, Liu, Pan, Zhao (bb0070) 2020
Hunter, Linden (bb0075) 1923; 18
Xie, Sun, Pan, Zhao (bb0170) 2012; 47
Haghighi, Yazdanpanah (bb0055) 2020
Kilincceker, Dogan, Kucukoner (bb0090) 2009; 42
Yadav, Sharma, Chikara, Anand, Bansal (bb0185) 2014; 3
Lopez-Caballero (10.1016/j.ijfoodmicro.2021.109152_bb0110) 2000; 63
Xiong (10.1016/j.ijfoodmicro.2021.109152_bb0175) 2015; 8
Dewey-Mattia (10.1016/j.ijfoodmicro.2021.109152_bb0035) 2018; 67
Hunter (10.1016/j.ijfoodmicro.2021.109152_bb0075) 1923; 18
Cook (10.1016/j.ijfoodmicro.2021.109152_bb0025) 1991
Cheng (10.1016/j.ijfoodmicro.2021.109152_bb0015) 2014; 13
Chaijan (10.1016/j.ijfoodmicro.2021.109152_bb0005) 2006; 99
Silva-Angulo (10.1016/j.ijfoodmicro.2021.109152_bb0135) 2014; 37
Ghate (10.1016/j.ijfoodmicro.2021.109152_bb0050) 2019; 18
Marcone (10.1016/j.ijfoodmicro.2021.109152_bb0115) 2013; 51
U.S. Food and Drug Administration (10.1016/j.ijfoodmicro.2021.109152_bb0160) 1997
Huang (10.1016/j.ijfoodmicro.2021.109152_bb0070) 2020
Peng (10.1016/j.ijfoodmicro.2021.109152_bb0130) 2021; 341
Ndraha (10.1016/j.ijfoodmicro.2021.109152_bb0125) 2020; 19
Tan (10.1016/j.ijfoodmicro.2021.109152_bb0155) 2019; 9
Xie (10.1016/j.ijfoodmicro.2021.109152_bb0170) 2012; 47
10.1016/j.ijfoodmicro.2021.109152_bb0045
Liu (10.1016/j.ijfoodmicro.2021.109152_bb0105) 2016; 87
Xuan (10.1016/j.ijfoodmicro.2021.109152_bb0180) 2017; 73
Soares (10.1016/j.ijfoodmicro.2021.109152_bb0140) 2020; 232
Huang (10.1016/j.ijfoodmicro.2021.109152_bb0065) 2004; 69
Yadav (10.1016/j.ijfoodmicro.2021.109152_bb0185) 2014; 3
Songsaeng (10.1016/j.ijfoodmicro.2021.109152_bb0145) 2010; 123
He (10.1016/j.ijfoodmicro.2021.109152_bb0060) 2002; 67
Cheng (10.1016/j.ijfoodmicro.2021.109152_bb0020) 2018; 36
Josewin (10.1016/j.ijfoodmicro.2021.109152_bb0080) 2018; 84
Wang (10.1016/j.ijfoodmicro.2021.109152_bb0165) 2014; 179
Lin (10.1016/j.ijfoodmicro.2021.109152_bb0100) 2013; 61
Kim (10.1016/j.ijfoodmicro.2021.109152_bb0095) 2017; 82
Miao (10.1016/j.ijfoodmicro.2021.109152_bb0120) 2019; 22
de Aguiar Saldanha Pinheiro (10.1016/j.ijfoodmicro.2021.109152_bb0030) 2020
Haghighi (10.1016/j.ijfoodmicro.2021.109152_bb0055) 2020
Kilincceker (10.1016/j.ijfoodmicro.2021.109152_bb0090) 2009; 42
Chen (10.1016/j.ijfoodmicro.2021.109152_bb0010) 2020
Swer (10.1016/j.ijfoodmicro.2021.109152_bb0150) 2019; 114
Fan (10.1016/j.ijfoodmicro.2021.109152_bb0040) 2008; 108
Kamble (10.1016/j.ijfoodmicro.2021.109152_bb0085) 2020; 44
References_xml – volume: 36
  start-page: 630
  year: 2018
  end-page: 636
  ident: bb0020
  article-title: Use of low-field-NMR and MRI to characterize water mobility and distribution in pacific oyster (Crassostrea gigas) during drying process
  publication-title: Dry. Technol.
– volume: 37
  start-page: 336
  year: 2014
  end-page: 342
  ident: bb0135
  article-title: Growth kinetics of Listeria innocua and
  publication-title: Food Control
– start-page: 108
  year: 2020
  ident: bb0070
  publication-title: Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against
– volume: 44
  year: 2020
  ident: bb0085
  article-title: Storage stability and shelf life prediction of multigrain pasta under different packaging material and storage conditions
  publication-title: J. Food Process. Pres.
– volume: 47
  start-page: 331
  year: 2012
  end-page: 336
  ident: bb0170
  article-title: Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp
  publication-title: Food Res. Int.
– volume: 8
  start-page: 380
  year: 2015
  end-page: 391
  ident: bb0175
  article-title: Application of visible hyperspectral imaging for prediction of springiness of fresh chicken meat
  publication-title: Food Anal. Methods
– volume: 3
  start-page: 263
  year: 2014
  end-page: 270
  ident: bb0185
  article-title: Quality characteristics of vegetable-blended wheat–pearl millet composite pasta
  publication-title: Agric. Res.
– volume: 232
  year: 2020
  ident: bb0140
  article-title: Pervaporation as an alternative for adding value to residues of oyster (Crassostrea gigas) processing
  publication-title: Sep. Purif. Technol.
– start-page: 2020
  year: 2020
  ident: bb0055
  publication-title: Chitosan-based coatings incorporated with cinnamon and tea extracts to extend the fish fillets shelf life: validation by FTIR spectroscopy technique. J. Food Quality
– reference: Accessed: Oct, 9, 2020.
– volume: 18
  start-page: 538
  year: 1923
  end-page: 540
  ident: bb0075
  article-title: An investigation of oyster spoilage
  publication-title: Am. Food J.
– volume: 82
  start-page: 305
  year: 2017
  end-page: 315
  ident: bb0095
  article-title: Photodynamic inactivation of
  publication-title: Food Control
– start-page: 19
  year: 1991
  end-page: 39
  ident: bb0025
  article-title: Microbiology of bivalve molluscan shellfish
  publication-title: Microbiology of Marine Food Products
– start-page: 113
  year: 2020
  ident: bb0010
  publication-title: Eradication of planktonic
– volume: 73
  start-page: 1483
  year: 2017
  end-page: 1489
  ident: bb0180
  article-title: Preservation of squid by slightly acidic electrolyzed water ice
  publication-title: Food Control
– year: 2020
  ident: bb0030
  article-title: Effects of Novel Modified Atmosphere Packaging on Lipid Quality and Stability of Sardine (
– volume: 13
  start-page: 52
  year: 2014
  end-page: 61
  ident: bb0015
  article-title: Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 114
  year: 2019
  ident: bb0150
  article-title: Application of anthocyanins extracted from Sohiong (
  publication-title: Lwt-Food Sci. Technol.
– volume: 67
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0035
  article-title: Surveillance for foodborne disease outbreaks - United States, 2009-2015
  publication-title: MMWR Surveill. Summ.
– volume: 51
  start-page: 729
  year: 2013
  end-page: 747
  ident: bb0115
  article-title: Diverse food-based applications of nuclear magnetic resonance (NMR) technology
  publication-title: Food Res. Int.
– volume: 87
  start-page: 204
  year: 2016
  end-page: 210
  ident: bb0105
  article-title: The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality
  publication-title: Food Res. Int.
– volume: 63
  start-page: 1381
  year: 2000
  end-page: 1388
  ident: bb0110
  article-title: Extension of shelf-life of prawns (
  publication-title: J. Food Prot.
– volume: 22
  year: 2019
  ident: bb0120
  article-title: Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters
  publication-title: Food Packag. Shelf Life
– year: 1997
  ident: bb0160
  article-title: Hazard Analysis and Critical Control Point Principles and Application Guidelines
– reference: FAO. FAO Fisheries & Aquaculture - Fishery Statistical Collections - Global Aquaculture Production,
– volume: 341
  year: 2021
  ident: bb0130
  article-title: Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents
  publication-title: Food Chem.
– volume: 18
  start-page: 402
  year: 2019
  end-page: 424
  ident: bb0050
  article-title: Perspectives and trends in the application of photodynamic inactivation for microbiological food safety
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 99
  start-page: 83
  year: 2006
  end-page: 91
  ident: bb0005
  article-title: Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage
  publication-title: Food Chem.
– volume: 108
  start-page: 148
  year: 2008
  end-page: 153
  ident: bb0040
  article-title: The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice
  publication-title: Food Chem.
– volume: 69
  start-page: C726
  year: 2004
  end-page: C732
  ident: bb0065
  article-title: Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen
  publication-title: J. Food Sci.
– volume: 123
  start-page: 286
  year: 2010
  end-page: 290
  ident: bb0145
  article-title: Quality changes in oyster (Crassostrea belcheri) during frozen storage as affected by freezing and antioxidant
  publication-title: Food Chem.
– volume: 67
  start-page: 640
  year: 2002
  end-page: 645
  ident: bb0060
  article-title: Use of high-pressure processing for oyster shucking and shelf-life extension
  publication-title: J. Food Sci.
– volume: 9
  year: 2019
  ident: bb0155
  article-title: Effects of glazing with preservatives on the quality changes of squid during frozen storage
  publication-title: Appl. Sci. l
– volume: 42
  start-page: 868
  year: 2009
  end-page: 873
  ident: bb0090
  article-title: Effect of edible coatings on the quality of frozen fish fillets
  publication-title: Lwt-Food Sci. Technol.
– volume: 84
  start-page: 354
  year: 2018
  end-page: 361
  ident: bb0080
  article-title: Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against
  publication-title: Food Control
– volume: 61
  start-page: 8695
  year: 2013
  end-page: 8702
  ident: bb0100
  article-title: Use of acidic electrolyzed water ice for preserving the quality of shrimp
  publication-title: J. Agric. Food Chem.
– volume: 179
  start-page: 50
  year: 2014
  end-page: 56
  ident: bb0165
  article-title: Fate of
  publication-title: Int. J. Food Microbiol.
– volume: 19
  start-page: 1187
  year: 2020
  end-page: 1217
  ident: bb0125
  article-title: Managing the risk of
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 63
  start-page: 1381
  year: 2000
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0110
  article-title: Extension of shelf-life of prawns (Panaeus japonicus) by vacuum packaging and high-pressure treatment
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-63.10.1381
– volume: 232
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0140
  article-title: Pervaporation as an alternative for adding value to residues of oyster (Crassostrea gigas) processing
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115968
– start-page: 108
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0070
  publication-title: Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control
– volume: 61
  start-page: 8695
  year: 2013
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0100
  article-title: Use of acidic electrolyzed water ice for preserving the quality of shrimp
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf4019933
– volume: 13
  start-page: 52
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0015
  article-title: Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12043
– year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0030
– volume: 179
  start-page: 50
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0165
  article-title: Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.03.016
– volume: 19
  start-page: 1187
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0125
  article-title: Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: a review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12557
– volume: 84
  start-page: 354
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0080
  article-title: Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2017.08.017
– volume: 73
  start-page: 1483
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0180
  article-title: Preservation of squid by slightly acidic electrolyzed water ice
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.11.013
– start-page: 113
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0010
  publication-title: Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control
– year: 1997
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0160
– volume: 8
  start-page: 380
  issue: 2
  year: 2015
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0175
  article-title: Application of visible hyperspectral imaging for prediction of springiness of fresh chicken meat
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-014-9853-3
– ident: 10.1016/j.ijfoodmicro.2021.109152_bb0045
– volume: 69
  start-page: C726
  year: 2004
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0065
  article-title: Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen
  publication-title: J. Food Sci.
  doi: 10.1111/j.1365-2621.2004.tb09924.x
– volume: 18
  start-page: 538
  year: 1923
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0075
  article-title: An investigation of oyster spoilage
  publication-title: Am. Food J.
– volume: 22
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0120
  article-title: Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters
  publication-title: Food Packag. Shelf Life
  doi: 10.1016/j.fpsl.2019.100388
– volume: 3
  start-page: 263
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0185
  article-title: Quality characteristics of vegetable-blended wheat–pearl millet composite pasta
  publication-title: Agric. Res.
  doi: 10.1007/s40003-014-0117-7
– volume: 18
  start-page: 402
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0050
  article-title: Perspectives and trends in the application of photodynamic inactivation for microbiological food safety
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12418
– volume: 37
  start-page: 336
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0135
  article-title: Growth kinetics of Listeria innocua and Listeria monocytogenes under exposure to carvacrol and the occurrence of sublethal damage
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.09.050
– volume: 99
  start-page: 83
  year: 2006
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0005
  article-title: Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.07.022
– volume: 108
  start-page: 148
  year: 2008
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0040
  article-title: The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2007.10.057
– volume: 82
  start-page: 305
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0095
  article-title: Photodynamic inactivation of Salmonella enterica Enteritidis by 405 ± 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2017.06.040
– volume: 67
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0035
  article-title: Surveillance for foodborne disease outbreaks - United States, 2009-2015
  publication-title: MMWR Surveill. Summ.
  doi: 10.15585/mmwr.ss6710a1
– volume: 47
  start-page: 331
  year: 2012
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0170
  article-title: Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2011.07.041
– volume: 87
  start-page: 204
  year: 2016
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0105
  article-title: The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2016.07.012
– volume: 44
  issue: 8
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0085
  article-title: Storage stability and shelf life prediction of multigrain pasta under different packaging material and storage conditions
  publication-title: J. Food Process. Pres.
  doi: 10.1111/jfpp.14585
– start-page: 19
  year: 1991
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0025
  article-title: Microbiology of bivalve molluscan shellfish
– volume: 67
  start-page: 640
  year: 2002
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0060
  article-title: Use of high-pressure processing for oyster shucking and shelf-life extension
  publication-title: J. Food Sci.
  doi: 10.1111/j.1365-2621.2002.tb10652.x
– start-page: 2020
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0055
  publication-title: Chitosan-based coatings incorporated with cinnamon and tea extracts to extend the fish fillets shelf life: validation by FTIR spectroscopy technique. J. Food Quality
– volume: 51
  start-page: 729
  year: 2013
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0115
  article-title: Diverse food-based applications of nuclear magnetic resonance (NMR) technology
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2012.12.046
– volume: 9
  issue: 18
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0155
  article-title: Effects of glazing with preservatives on the quality changes of squid during frozen storage
  publication-title: Appl. Sci. l
– volume: 123
  start-page: 286
  year: 2010
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0145
  article-title: Quality changes in oyster (Crassostrea belcheri) during frozen storage as affected by freezing and antioxidant
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.04.033
– volume: 42
  start-page: 868
  year: 2009
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0090
  article-title: Effect of edible coatings on the quality of frozen fish fillets
  publication-title: Lwt-Food Sci. Technol.
  doi: 10.1016/j.lwt.2008.11.003
– volume: 114
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0150
  article-title: Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing
  publication-title: Lwt-Food Sci. Technol.
  doi: 10.1016/j.lwt.2019.108360
– volume: 36
  start-page: 630
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0020
  article-title: Use of low-field-NMR and MRI to characterize water mobility and distribution in pacific oyster (Crassostrea gigas) during drying process
  publication-title: Dry. Technol.
  doi: 10.1080/07373937.2017.1359839
– volume: 341
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2021.109152_bb0130
  article-title: Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128265
SSID ssj0005330
Score 2.5781794
Snippet Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109152
SubjectTerms Animals
Bacteria
Colony Count, Microbial
color
Cooking
Curcumin
Curcumin - pharmacology
Deactivation
Disinfection - methods
Food industry
food microbiology
Food Microbiology - methods
Food preservation
Food Preservation - methods
Food processing industry
Food Storage - methods
Foodborne Diseases - prevention & control
histology
Inactivation
Light
Light emitting diodes
Lipids
Magnetic resonance imaging (MRI)
Malondialdehyde (MDA)
Muscles
Nitrogen
Ostreidae - microbiology
Oxidation
Oysters
pathogens
Photodynamic inactivation (PDI)
Seafood - microbiology
Storage
Storage quality
Temperature
texture
total volatile basic nitrogen
Vibrio parahaemolyticus
Vibrio parahaemolyticus - drug effects
Title Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature
URI https://dx.doi.org/10.1016/j.ijfoodmicro.2021.109152
https://www.ncbi.nlm.nih.gov/pubmed/33725529
https://www.proquest.com/docview/2521120643
https://www.proquest.com/docview/2502210429
https://www.proquest.com/docview/2524300197
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSj8uJU3bdNskKNCrurEsWzb0EkLCpoVcmpbchCzLxCFrLWvvYS_9Lf2pnbHsbXpICRT24l3JeD2jmSd73huAjxb3XC4tBcdkk3FZGcMLTBtc4SJPi5jYy32V72U6-y6_XCfXW3A6cmGorHKI_SGm99F6-GY63M3poq6n3xCsZFFK5NO-YTrFYSkVefmnn_fKPOK-3wgN5jT6GRz9qfGqbyvvyzmVvuFWUUQkrhQl4qEc9RAG7XPR-Q68HEAkOwnX-Qq2XLMLT0NbyfUuPB_Zxu1r-BXkiVvmK4ZYj9nV0q7mdcN7ygjCTba48Z0vQ2N6VjdEdAiPaRl-aErgXa7pDJYEOkvmSf552TJ6iMt-EGnAM9IQvzFu7u_WpOfRskCAZFR9iTGLmY6NzVg6RoJYg5rzG7g6P7s6nfGhKwO3Ms46XuEmKBGJdQhebKaKRKYVGtUe51mRRQbxWIVxwiROZraIqiRGUIC3tixFkVoj47ew3fjGvQOWG0daNselySuppM2VQzhZWJXa1KmknEA2mkHbQbGcGmfc6bE07Vbfs6AmC-pgwQmIzdRFkO14zKTPo631Xz6oMb08Zvr-6B96CAStFuiekSDcN4Gjzc-4hOm9jGmcX9EYBFIRIYN_jREyJjyuJrAXfG_zx-JY4cZQ5O__7_o_wAs66qs5xT5sd8uVO0DE1RWH_ZI6hCcnF19nl78Bv7cu7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VW0G5IChfWwq4EtdoG8f5krhUFdWWlr2woN4sx3HUVN14tcke9t_wUzsTO1s4FFVCymnjiZKMPfOcnfcG4LPGPZdJSh5gsskCUSkVFJg2ghQXeVJExF7uq3xnyfSn-HYVX-3A6cCFobJKH_tdTO-jtf9l4t_mZFnXkx8IVrIwIfJp3zAd4_AuqVPFI9g9Ob-Yzu4rPaK-5QiND8jgKRzdl3nVN5W15YKq33C3yEPSVwpj_lCaegiG9uno7AU89ziSnbhbfQk7ptmHJ66z5GYf9gbCcfsKfjuF4pbZiiHcY3q90utF3QQ9awQRJ1te286Wrjc9qxviOrgvtQwPMnHUyw1dQZNGZ8ksKUCvWkbfcdkv4g1YRjLi18os7O2GJD1a5jiQjAowMWwx1bGhH0vHSBPLCzq_hvnZ1_npNPCNGQItoqwLKtwHxTzWBvGLztIiFkmFftXHeVZkoUJIVmGoULERmS7CKo4QF-CrLUteJFqJ6A2MGtuYd8ByZUjO5rhUeSVSofPUIKIsdJroxKRxOYZscIPUXrScemfcyqE67Ub-4UFJHpTOg2PgW9OlU-54jNGXwdfyr2koMcM8xvxwmB_Sx4JWcpyhISfoN4aj7WlcxfTXjGqMXdMYxFIhgYN_jeEiIkiejuGtm3vbB4uiFPeGPD_4v_v_BHvT-fdLeXk-u3gPz-hMX9zJD2HUrdbmAwKwrvjoF9gd-48xnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+the+curcumin-mediated+photodynamic+inactivation+on+the+quality+of+cooked+oysters+with+Vibrio+parahaemolyticus+during+storage+at+different+temperature&rft.jtitle=International+journal+of+food+microbiology&rft.au=Chen%2C+Bowen&rft.au=Huang%2C+Jiaming&rft.au=Liu%2C+Yang&rft.au=Liu%2C+Haiquan&rft.date=2021-05-02&rft.issn=0168-1605&rft.volume=345&rft.spage=109152&rft_id=info:doi/10.1016%2Fj.ijfoodmicro.2021.109152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfoodmicro_2021_109152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1605&client=summon