Occurrence of disinfection by-products in swimming pools and the estimated resulting cytotoxicity
Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few st...
Saved in:
Published in | The Science of the total environment Vol. 664; pp. 851 - 864 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.05.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 μg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 μg/L for the haloacetic acids, 56 to 736 μg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies.
[Display omitted]
•64 disinfection by-products (DBPs) investigated in Australian pools•First report of bromochloroacetaldehyde and bromodichloroacetaldehyde in pools•First investigation of N-nitrosamines in a brominated pool•Up to 64% of the total molar DBP concentration consisted of chloral hydrate.•Over 90% of the total calculated chronic cytotoxicity was due to chloral hydrate. |
---|---|
AbstractList | Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 μg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 μg/L for the haloacetic acids, 56 to 736 μg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies.Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 μg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 μg/L for the haloacetic acids, 56 to 736 μg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies. Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 μg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 μg/L for the haloacetic acids, 56 to 736 μg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies. Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 μg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 μg/L for the haloacetic acids, 56 to 736 μg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies. [Display omitted] •64 disinfection by-products (DBPs) investigated in Australian pools•First report of bromochloroacetaldehyde and bromodichloroacetaldehyde in pools•First investigation of N-nitrosamines in a brominated pool•Up to 64% of the total molar DBP concentration consisted of chloral hydrate.•Over 90% of the total calculated chronic cytotoxicity was due to chloral hydrate. |
Author | Allard, Sébastien Carter, Rhys A.A. Croué, Jean-Philippe Joll, Cynthia A. |
Author_xml | – sequence: 1 givenname: Rhys A.A. surname: Carter fullname: Carter, Rhys A.A. – sequence: 2 givenname: Sébastien surname: Allard fullname: Allard, Sébastien – sequence: 3 givenname: Jean-Philippe surname: Croué fullname: Croué, Jean-Philippe – sequence: 4 givenname: Cynthia A. surname: Joll fullname: Joll, Cynthia A. email: C.Joll@curtin.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30769309$$D View this record in MEDLINE/PubMed https://univ-poitiers.hal.science/hal-04437172$$DView record in HAL |
BookMark | eNqFkUFv1DAQhS1URLeFvwA5wiFhbEexc-CwqqBFWqkXOFuOPaFeZe3Fdpbuv8fRtj30sr5Ejr43fm_eFbnwwSMhnyg0FGj3ddsk43LI6A8NA9o3QJuWyTdkRaXoawqsuyArgFbWfdeLS3KV0hbKEZK-I5ccRNdz6FdE3xszx4jeYBXGyrrk_Igmu-Cr4VjvY7Czyalyvkr_3G7n_J9qH8KUKu1tlR-wwpTdTme0VcQ0T3khzLF4C4-ueDy-J29HPSX88PS9Jr9_fP91c1dv7m9_3qw3tWm5zDVaNgLj2BvDbWeMtAPTknc9WuwsbTU3JaAwo4By6xDADNJowftByEF2_Jp8Oc190JPax-IpHlXQTt2tN2r5B23LBRXsQAv7-cSWfH_nkkDtXDI4TdpjmJNijIGUgrfsPEqLyZYDLFM_PqHzsEP7YuJ52wX4dgJMDClFHFVZkF52naN2k6KglnbVVr20q5Z2FVBVwhe9eKV_fuK8cn1SYmng4DAu3FK6dbG0rWxwZ2f8B9Nwxfw |
CitedBy_id | crossref_primary_10_1177_11786302211064432 crossref_primary_10_1016_j_cej_2023_144213 crossref_primary_10_1016_j_jes_2022_05_003 crossref_primary_10_1016_j_ecoenv_2023_114612 crossref_primary_10_1021_acsestwater_4c00612 crossref_primary_10_1016_j_envint_2020_105566 crossref_primary_10_1177_11786302211036520 crossref_primary_10_1016_j_jes_2022_04_049 crossref_primary_10_1016_j_taap_2022_116163 crossref_primary_10_1016_j_jece_2021_106511 crossref_primary_10_3390_molecules26247639 crossref_primary_10_1016_j_jhazmat_2023_131533 crossref_primary_10_1016_j_scitotenv_2020_142100 crossref_primary_10_1016_j_cscee_2024_100853 crossref_primary_10_1080_26896583_2024_2396250 crossref_primary_10_3390_su152015037 crossref_primary_10_1016_j_chemosphere_2021_132731 crossref_primary_10_1038_s41598_020_69426_9 crossref_primary_10_1038_s41370_023_00600_7 crossref_primary_10_1016_j_jes_2022_04_044 crossref_primary_10_1007_s11356_024_32132_4 crossref_primary_10_1021_acs_est_0c06287 crossref_primary_10_1007_s10661_023_11502_4 crossref_primary_10_1016_j_engfailanal_2024_108344 crossref_primary_10_1016_j_jwpe_2025_107359 crossref_primary_10_1021_acs_analchem_9b05269 crossref_primary_10_1021_acsomega_3c00091 crossref_primary_10_29233_sdufeffd_1473548 crossref_primary_10_1080_15275922_2022_2047829 crossref_primary_10_3390_toxics10120759 crossref_primary_10_1016_j_envpol_2024_123536 crossref_primary_10_1016_j_chemosphere_2021_129764 crossref_primary_10_1016_j_scitotenv_2020_143316 crossref_primary_10_1016_j_envint_2020_105726 crossref_primary_10_2139_ssrn_4115344 crossref_primary_10_1016_j_trac_2023_117385 crossref_primary_10_1016_j_scitotenv_2022_157338 crossref_primary_10_1016_j_heliyon_2023_e13673 crossref_primary_10_31083_j_fbl2803048 crossref_primary_10_1016_j_apgeochem_2023_105796 |
Cites_doi | 10.1007/s00216-011-5681-0 10.1080/19443994.2015.1043484 10.1016/j.watres.2014.10.037 10.1016/j.watres.2012.09.008 10.1016/j.watres.2014.01.027 10.1016/j.chemosphere.2012.01.003 10.1016/j.scitotenv.2015.03.044 10.1080/02770900802165980 10.1016/j.jes.2017.04.021 10.1021/es104284h 10.4415/ANN_12_04_06 10.1016/j.jes.2017.06.013 10.1136/oem.59.4.243 10.1007/s11783-014-0712-7 10.1021/es903593w 10.1007/s13530-011-0094-1 10.1289/ehp.1001965 10.1016/j.chroma.2011.02.009 10.1016/j.puhe.2007.06.011 10.1016/j.watres.2014.04.002 10.1021/acs.est.5b02624 10.1016/S0045-6535(03)00156-5 10.1016/j.chroma.2014.06.103 10.1021/es302993u 10.1016/j.chemosphere.2005.10.063 10.2166/wh.2013.156 10.1002/rcm.4360 10.1021/acs.est.5b00841 10.1183/09031936.00024706 10.1016/j.envint.2012.03.009 10.1016/0043-1354(87)90215-6 10.1016/j.mrrev.2007.09.001 10.1016/j.envres.2016.04.011 10.1016/j.microc.2013.09.014 10.1039/C7EW00245A 10.1016/j.dib.2018.05.004 10.1093/aje/kwj364 10.1016/j.jes.2017.07.017 10.1016/j.scitotenv.2015.11.055 10.1002/jssc.200900679 10.1016/j.scitotenv.2017.05.008 10.1016/j.watres.2012.04.012 10.1016/j.scitotenv.2012.11.064 10.1016/j.envres.2016.05.013 10.1016/j.watres.2016.08.064 10.1016/j.scitotenv.2016.06.085 10.1021/es070871+ 10.1021/es00069a014 10.1016/0043-1354(81)90133-0 10.1016/0043-1354(80)90003-2 10.1016/j.chroma.2011.09.048 10.1016/j.watres.2009.04.035 10.1016/j.ijheh.2017.01.005 10.1016/j.envres.2015.04.005 10.1016/S0045-6535(00)00581-6 10.1021/acs.est.6b00808 10.1007/s11783-015-0797-7 10.1080/09603120020019629 10.1007/s11356-015-5967-4 10.1016/j.watres.2012.09.034 10.1016/j.watres.2014.02.034 10.1016/j.envint.2015.12.028 10.1021/es102746u 10.1016/j.ijheh.2010.09.005 10.1021/es702301p |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.scitotenv.2019.01.428 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 864 |
ExternalDocumentID | oai_HAL_hal_04437172v1 30769309 10_1016_j_scitotenv_2019_01_428 S0048969719304723 |
Genre | Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-c438t-ed2f023e9cc3d6cc8db2a8369ede6d14a3c4287cf70d146e00cb8ca739b78b863 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri May 09 12:21:55 EDT 2025 Thu Jul 10 16:43:17 EDT 2025 Fri Jul 11 02:53:26 EDT 2025 Thu Apr 03 06:58:15 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 03:34:48 EDT 2025 Fri Feb 23 02:49:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Swimming pools Spa Chloral hydrate Cytotoxicity N-Nitrosamines DBPs BCDMH |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-ed2f023e9cc3d6cc8db2a8369ede6d14a3c4287cf70d146e00cb8ca739b78b863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6937-4671 |
PMID | 30769309 |
PQID | 2183643001 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_04437172v1 proquest_miscellaneous_2220887342 proquest_miscellaneous_2183643001 pubmed_primary_30769309 crossref_citationtrail_10_1016_j_scitotenv_2019_01_428 crossref_primary_10_1016_j_scitotenv_2019_01_428 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_01_428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-10 |
PublicationDateYYYYMMDD | 2019-05-10 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hansen, Zortea, Piketty, Vega, Andersen (bb0095) 2013; 443 Yeh, Farré, Stalter, Tang, Molendijk, Escher (bb0375) 2014; 59 Chu, Nieuwenhuijsen (bb0030) 2002; 59 Zare Afifi, Blatchley (bb0385) 2016; 105 Kim, Han (bb0145) 2011; 3 Teo, Coleman, Khan (bb0310) 2016; 569–570 Goodman, Hays (bb0070) 2008; 45 Norin, Renberg (bb0220) 1980; 14 Serrano, Silva, Gallego (bb0265) 2014; 1358 Tardif, Catto, Haddad, Rodriguez (bb0295) 2015 Yang, Yang, Li, Jia, Yang (bb0370) 2018; 4 Teo, Coleman, Khan (bb0305) 2016; 23 Lahl, Bätjer, Düszeln, Gabel, Stachel, Thiemann (bb0165) 1981; 15 Jacobs, Spaan, van Rooy, Meliefste, Zaat, Rooyackers, Heederik, van Rooy, Zaat, Rooyackers (bb0105) 2007; 29 Judd, Bullock (bb0110) 2003; 51 Western Australian Department of Health (bb0355) 2013 Plewa, Richardson (bb0230) 2017; 58 Carter, Joll (bb0015) 2017; 58 Kristensen, Klausen, Hansen, Lauritsen (bb0160) 2010; 24 Croue, Reckhow (bb0040) 1989; 23 Dehghani, Farhang, Zarei (bb0050) 2018; 19 Villanueva, Font-Ribera (bb0315) 2012; 48 De La Mare, O'Connor, Wilson (bb0210) 1975; 6 Font-Ribera, Kogevinas, Schmalz, Zwiener, Marco, Grimalt, Liu, Zhang, Mitch, Critelli, Naccarati, Heederik, Spithoven, Arjona, de Bont, Gracia-Lavedan, Villanueva (bb0055) 2016; 149 Jurado-Sánchez, Ballesteros, Gallego (bb0115) 2010; 33 Hansen, Willach, Mosbaek, Andersen (bb0085) 2012; 87 Li, Blatchley (bb0175) 2007; 41 Plewa, Wagner, Mitch (bb0235) 2011; 45 Keuten, Peters, Daanen, De Kreuk, Rietveld, van Dijk (bb0140) 2014; 53 Richardson, Michael, Plewa, Wagner (bb0255) 2015 Kaydos-Daniels, Beach, Shwe, Magri, Bixler (bb0125) 2008; 122 Marco, Lourencetti, Grimalt, Gari, Fernandez, Font-Ribera, Villanueva, Kogevinas (bb0205) 2015; 140 Wang, Garcia, Zhang, Yang, Xie (bb0345) 2014; 8 Zhang, Yang, Wang, Zhao, Wang, Xie (bb0390) 2015; 9 Spiliotopoulou, Hansen, Andersen (bb0290) 2015; 520 Wlodyka-Bergier, Bergier (bb0360) 2016; 57 Hansen, Albrechtsen, Andersen (bb0090) 2013; 11 Soltermann, Widler, Canonica, von Gunten (bb0285) 2014; 56 Hansen, Willach, Antoniou, Mosbaek, Albrechtsen, Andersen (bb0080) 2012; 46 Koudjonou, LeBel (bb0155) 2006; 64 Montgomery (bb0215) 1985 Soltermann, Lee, Canonica, von Gunten (bb0280) 2013; 47 Richardson, Plewa, Wagner, Schoeny, DeMarini (bb0245) 2007; 636 Wagner, Plewa (bb0325) 2017; 58 Walse, Mitch (bb0330) 2008; 42 Weaver, Li, Wen, Johnston, Blatchley, Blatchley (bb0350) 2009; 43 Kim, Shim, Lee (bb0150) 2002; 46 Pozzi, Bocchini, Pinelli, Galletti (bb0240) 2011; 1218 Serrano, Silva, Gallego (bb0260) 2011; 1218 Yang, Shang, Shen, Chen, Westerhoff, Peng, Guo (bb0365) 2012; 46 Keuten, Schets, Schijven, Verberk, van Dijk (bb0135) 2012; 46 Cimetiere, De Laat (bb0035) 2014; 112 Villanueva, Cantor, Grimalt, Malats, Silverman, Tardon, Garcia-Closas, Serra, Carrato, Castaño-Vinyals, Marcos, Rothman, Real, Dosemeci, Kogevinas (bb0320) 2007; 165 Wang (bb0335) 2011 Zare Afifi, Blatchley (bb0380) 2015; 68 Manasfi, Coulomb, Boudenne (bb0200) 2017; 220 Benoit, Jackson (bb0010) 1987; 21 Tardif, Catto, Haddad, Simard, Rodriguez (bb0300) 2016; 148 Richardson, DeMarini, Kogevinas, Fernandez, Marco, Lourencetti, Balleste, Heederik, Meliefste, McKague, Marcos, Font-Ribera, Grimalt, Villanueva (bb0250) 2010; 118 Liviac, Wagner, Mitch, Altonji, Plewa (bb0180) 2010; 44 German Institute for Standardization (bb0065) 2012 Daiber, DeMarini, Ravuri, Liberatore, Cuthbertson, Thompson-Klemish, Byer, Schmid, Afifi, Blatchley, Richardson (bb0045) 2016; 50 Fu, Tzing, Chen, Wang, Ding (bb0060) 2012; 402 Allard, Tan, Joll, Von Gunten (bb0005) 2015; 49 Cheema, Manasfi, Kaarsholm, Andersen, Boudenne (bb0025) 2017; 599–600 Hunter, Jiang (bb0100) 2010 Kanan (bb0120) 2010 Smith, Plewa, Lindell, Richardson, Mitch (bb0275) 2010; 44 Hang, Zhang, Gong, Xian (bb0075) 2016; 543 Kelsall, Sim (bb0130) 2001; 11 Lourencetti, Grimalt, Marco, Fernandez, Font-Ribera, Villanueva, Kogevinas (bb0185) 2012; 45 Carter, Linge, Heitz, Liew, Allard, Joll (bb0020) 2015; 42 Manasfi, Storck, Ravier, Demelas, Coulomb, Boudenne (bb0190) 2015; 49 Peng, Saravia, Abbt-Braun, Horn (bb0225) 2015 Sivey, Roberts (bb0270) 2012 Manasfi, De Méo, Coulomb, Di Giorgio, Boudenne (bb0195) 2016; 88 Lee, Jun, Lee, Lee, Eom, Zoh (bb0170) 2010; 213 Plewa (10.1016/j.scitotenv.2019.01.428_bb0230) 2017; 58 Western Australian Department of Health (10.1016/j.scitotenv.2019.01.428_bb0355) 2013 Teo (10.1016/j.scitotenv.2019.01.428_bb0310) 2016; 569–570 Smith (10.1016/j.scitotenv.2019.01.428_bb0275) 2010; 44 Carter (10.1016/j.scitotenv.2019.01.428_bb0020) 2015; 42 Villanueva (10.1016/j.scitotenv.2019.01.428_bb0320) 2007; 165 Tardif (10.1016/j.scitotenv.2019.01.428_bb0295) 2015 Jurado-Sánchez (10.1016/j.scitotenv.2019.01.428_bb0115) 2010; 33 Kim (10.1016/j.scitotenv.2019.01.428_bb0145) 2011; 3 Yeh (10.1016/j.scitotenv.2019.01.428_bb0375) 2014; 59 Kaydos-Daniels (10.1016/j.scitotenv.2019.01.428_bb0125) 2008; 122 Plewa (10.1016/j.scitotenv.2019.01.428_bb0235) 2011; 45 Norin (10.1016/j.scitotenv.2019.01.428_bb0220) 1980; 14 Peng (10.1016/j.scitotenv.2019.01.428_bb0225) 2015 Chu (10.1016/j.scitotenv.2019.01.428_bb0030) 2002; 59 Zare Afifi (10.1016/j.scitotenv.2019.01.428_bb0385) 2016; 105 Wlodyka-Bergier (10.1016/j.scitotenv.2019.01.428_bb0360) 2016; 57 Hansen (10.1016/j.scitotenv.2019.01.428_bb0095) 2013; 443 Judd (10.1016/j.scitotenv.2019.01.428_bb0110) 2003; 51 Croue (10.1016/j.scitotenv.2019.01.428_bb0040) 1989; 23 Sivey (10.1016/j.scitotenv.2019.01.428_bb0270) 2012 Jacobs (10.1016/j.scitotenv.2019.01.428_bb0105) 2007; 29 Allard (10.1016/j.scitotenv.2019.01.428_bb0005) 2015; 49 Zhang (10.1016/j.scitotenv.2019.01.428_bb0390) 2015; 9 Cheema (10.1016/j.scitotenv.2019.01.428_bb0025) 2017; 599–600 Marco (10.1016/j.scitotenv.2019.01.428_bb0205) 2015; 140 Villanueva (10.1016/j.scitotenv.2019.01.428_bb0315) 2012; 48 Soltermann (10.1016/j.scitotenv.2019.01.428_bb0285) 2014; 56 Hunter (10.1016/j.scitotenv.2019.01.428_bb0100) 2010 Serrano (10.1016/j.scitotenv.2019.01.428_bb0265) 2014; 1358 Kim (10.1016/j.scitotenv.2019.01.428_bb0150) 2002; 46 Manasfi (10.1016/j.scitotenv.2019.01.428_bb0190) 2015; 49 Wagner (10.1016/j.scitotenv.2019.01.428_bb0325) 2017; 58 Weaver (10.1016/j.scitotenv.2019.01.428_bb0350) 2009; 43 Yang (10.1016/j.scitotenv.2019.01.428_bb0365) 2012; 46 Hansen (10.1016/j.scitotenv.2019.01.428_bb0080) 2012; 46 Fu (10.1016/j.scitotenv.2019.01.428_bb0060) 2012; 402 Zare Afifi (10.1016/j.scitotenv.2019.01.428_bb0380) 2015; 68 Lourencetti (10.1016/j.scitotenv.2019.01.428_bb0185) 2012; 45 German Institute for Standardization (10.1016/j.scitotenv.2019.01.428_bb0065) 2012 Soltermann (10.1016/j.scitotenv.2019.01.428_bb0280) 2013; 47 Richardson (10.1016/j.scitotenv.2019.01.428_bb0250) 2010; 118 Wang (10.1016/j.scitotenv.2019.01.428_bb0345) 2014; 8 Font-Ribera (10.1016/j.scitotenv.2019.01.428_bb0055) 2016; 149 Kelsall (10.1016/j.scitotenv.2019.01.428_bb0130) 2001; 11 Keuten (10.1016/j.scitotenv.2019.01.428_bb0140) 2014; 53 Benoit (10.1016/j.scitotenv.2019.01.428_bb0010) 1987; 21 Lahl (10.1016/j.scitotenv.2019.01.428_bb0165) 1981; 15 Daiber (10.1016/j.scitotenv.2019.01.428_bb0045) 2016; 50 Dehghani (10.1016/j.scitotenv.2019.01.428_bb0050) 2018; 19 Cimetiere (10.1016/j.scitotenv.2019.01.428_bb0035) 2014; 112 Richardson (10.1016/j.scitotenv.2019.01.428_bb0245) 2007; 636 Carter (10.1016/j.scitotenv.2019.01.428_bb0015) 2017; 58 Hang (10.1016/j.scitotenv.2019.01.428_bb0075) 2016; 543 Kanan (10.1016/j.scitotenv.2019.01.428_bb0120) 2010 Lee (10.1016/j.scitotenv.2019.01.428_bb0170) 2010; 213 Keuten (10.1016/j.scitotenv.2019.01.428_bb0135) 2012; 46 Spiliotopoulou (10.1016/j.scitotenv.2019.01.428_bb0290) 2015; 520 Richardson (10.1016/j.scitotenv.2019.01.428_bb0255) 2015 Teo (10.1016/j.scitotenv.2019.01.428_bb0305) 2016; 23 De La Mare (10.1016/j.scitotenv.2019.01.428_bb0210) 1975; 6 Yang (10.1016/j.scitotenv.2019.01.428_bb0370) 2018; 4 Li (10.1016/j.scitotenv.2019.01.428_bb0175) 2007; 41 Pozzi (10.1016/j.scitotenv.2019.01.428_bb0240) 2011; 1218 Montgomery (10.1016/j.scitotenv.2019.01.428_bb0215) 1985 Manasfi (10.1016/j.scitotenv.2019.01.428_bb0195) 2016; 88 Kristensen (10.1016/j.scitotenv.2019.01.428_bb0160) 2010; 24 Goodman (10.1016/j.scitotenv.2019.01.428_bb0070) 2008; 45 Tardif (10.1016/j.scitotenv.2019.01.428_bb0300) 2016; 148 Walse (10.1016/j.scitotenv.2019.01.428_bb0330) 2008; 42 Koudjonou (10.1016/j.scitotenv.2019.01.428_bb0155) 2006; 64 Serrano (10.1016/j.scitotenv.2019.01.428_bb0260) 2011; 1218 Manasfi (10.1016/j.scitotenv.2019.01.428_bb0200) 2017; 220 Liviac (10.1016/j.scitotenv.2019.01.428_bb0180) 2010; 44 Hansen (10.1016/j.scitotenv.2019.01.428_bb0090) 2013; 11 Hansen (10.1016/j.scitotenv.2019.01.428_bb0085) 2012; 87 Wang (10.1016/j.scitotenv.2019.01.428_bb0335) 2011 |
References_xml | – volume: 599–600 start-page: 910 year: 2017 end-page: 917 ident: bb0025 article-title: Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters publication-title: Sci. Total Environ. – volume: 49 start-page: 11105 year: 2015 end-page: 11114 ident: bb0005 article-title: Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation publication-title: Environ. Sci. Technol. – volume: 1218 start-page: 8295 year: 2011 end-page: 8302 ident: bb0260 article-title: Micro liquid–liquid extraction combined with large-volume injection gas chromatography–mass spectrometry for the determination of haloacetaldehydes in treated water publication-title: J. Chromatogr. A – volume: 15 start-page: 803 year: 1981 end-page: 814 ident: bb0165 article-title: Distribution and balance of volatile halogenated hydrocarbons in the water and air of covered swimming pools using chlorine for water disinfection publication-title: Water Res. – volume: 33 start-page: 610 year: 2010 end-page: 616 ident: bb0115 article-title: Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography publication-title: J. Sep. Sci. – volume: 148 start-page: 411 year: 2016 end-page: 420 ident: bb0300 article-title: Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools publication-title: Environ. Res. – volume: 8 start-page: 820 year: 2014 end-page: 824 ident: bb0345 article-title: Haloacetic acids in swimming pool and spa water in the United States and China publication-title: Front. Environ. Sci. Eng. – volume: 46 start-page: 12832 year: 2012 ident: bb0365 article-title: Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment publication-title: Environ. Sci. Technol. – volume: 443 start-page: 850 year: 2013 end-page: 856 ident: bb0095 article-title: Photolytic removal of DBPs by medium pressure UV in swimming pool water publication-title: Sci. Total Environ. – volume: 105 start-page: 167 year: 2016 end-page: 177 ident: bb0385 article-title: Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool publication-title: Water Res. – volume: 56 start-page: 280 year: 2014 end-page: 291 ident: bb0285 article-title: Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water publication-title: Water Res. – volume: 45 start-page: 4159 year: 2011 end-page: 4165 ident: bb0235 article-title: Comparative mammalian cell cytotoxicity of water concentrates from disinfected recreational pools publication-title: Environ. Sci. Technol. – year: 2010 ident: bb0120 article-title: Occurrence and Formation of Disinfection By-Products in Indoor Swimming Pools Water – volume: 59 start-page: 243 year: 2002 end-page: 247 ident: bb0030 article-title: Distribution and determinants of trihalomethane concentrations in indoor swimming pools publication-title: Occup. Environ. Med. – volume: 149 start-page: 206 year: 2016 end-page: 215 ident: bb0055 article-title: Environmental and personal determinants of the uptake of disinfection by-products during swimming publication-title: Environ. Res. – year: 2011 ident: bb0335 article-title: Body Fluid Analogues and Personal Care Products as Potential DBP Precursors – volume: 4 start-page: 218 year: 2018 end-page: 225 ident: bb0370 article-title: Occurrence and factors affecting the formation of trihalomethanes, haloacetonitriles and halonitromethanes in outdoor swimming pools treated with trichloroisocyanuric acid publication-title: Environ. Sci. Water Res. Technol. – volume: 3 start-page: 168 year: 2011 end-page: 174 ident: bb0145 article-title: Swimmers contribute to additional formation of N-nitrosamines in chlorinated pool water publication-title: Toxicol. Environ. Health Sci. – volume: 213 start-page: 465 year: 2010 end-page: 474 ident: bb0170 article-title: Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods publication-title: Int. J. Hyg. Environ. Health – volume: 64 start-page: 795 year: 2006 end-page: 802 ident: bb0155 article-title: Halogenated acetaldehydes: analysis, stability and fate in drinking water publication-title: Chemosphere – volume: 29 start-page: 690 year: 2007 end-page: 698 ident: bb0105 article-title: Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers publication-title: Eur. Respir. J. – volume: 47 start-page: 79 year: 2013 end-page: 90 ident: bb0280 article-title: Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine publication-title: Water Res. – volume: 42 start-page: 82 year: 2015 end-page: 87 ident: bb0020 article-title: Disinfection by-products: not just an issue for drinking water, but also potentially for swimming pool waters publication-title: Water – volume: 6 year: 1975 ident: bb0210 article-title: The kinetics and mechanisms of additions of olefinic substances part 12, kinetics of addition initiated by chlorine acetate publication-title: J. Chem. Soc., Perkin Trans. 2 – start-page: 848 year: 2010 end-page: 892 ident: bb0100 article-title: Bromine, bromine chloride, BCDMH, and iodine publication-title: White's Handbook of Chlorination and Alternative Disinfectants – volume: 46 start-page: 123 year: 2002 end-page: 130 ident: bb0150 article-title: Formation of disinfection by-products in chlorinated swimming pool water publication-title: Chemosphere – volume: 68 start-page: 771 year: 2015 end-page: 783 ident: bb0380 article-title: Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool publication-title: Water Res. – volume: 49 start-page: 9308 year: 2015 end-page: 9316 ident: bb0190 article-title: Degradation products of benzophenone-3 in chlorinated seawater swimming pools publication-title: Environ. Sci. Technol. – volume: 122 start-page: 195 year: 2008 end-page: 200 ident: bb0125 article-title: Health effects associated with indoor swimming pools: a suspected toxic chloramine exposure publication-title: Public Health – volume: 112 start-page: 34 year: 2014 end-page: 41 ident: bb0035 article-title: Effects of UV-dechloramination of swimming pool water on the formation of disinfection by-products: a lab-scale study publication-title: Microchem. J. – volume: 220 start-page: 591 year: 2017 end-page: 603 ident: bb0200 article-title: Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: an overview publication-title: Int. J. Hyg. Environ. Health – year: 2012 ident: bb0065 article-title: German Standard DIN 19643. Treatment of Water of Swimming Pools and Baths – volume: 543 start-page: 425 year: 2016 end-page: 431 ident: bb0075 article-title: Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water publication-title: Sci. Total Environ. – volume: 11 start-page: 29 year: 2001 end-page: 40 ident: bb0130 article-title: Skin irritation in users of brominated pools publication-title: Int. J. Environ. Health Res. – volume: 45 start-page: 639 year: 2008 end-page: 647 ident: bb0070 article-title: Asthma and swimming: a meta-analysis publication-title: J. Asthma – volume: 58 start-page: 64 year: 2017 end-page: 76 ident: bb0325 article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review publication-title: J. Environ. Sci. – year: 1985 ident: bb0215 article-title: Water Treatment: Principles and Design/Water Treatment: Principles and Design – start-page: 3 year: 2015 end-page: 23 ident: bb0255 article-title: Charting a new path to resolve the adverse health effects of DBPs publication-title: Safe Drinking Water: Benefits and Risks – year: 2015 ident: bb0225 article-title: Occurrence and simulation of trihalomethanes in swimming pool water: a simple prediction method based on DOC and mass balance publication-title: Water Res. – volume: 58 start-page: 19 year: 2017 end-page: 50 ident: bb0015 article-title: Occurrence and formation of disinfection by-products in the swimming pool environment: a critical review publication-title: J. Environ. Sci. – volume: 19 start-page: 326 year: 2018 end-page: 330 ident: bb0050 article-title: Data on the level of haloacetic acids in indoor swimming pools of Iran: a case study of Tehran publication-title: Data Brief. – volume: 59 start-page: 172 year: 2014 end-page: 184 ident: bb0375 article-title: Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water publication-title: Water Res. – volume: 53 start-page: 259 year: 2014 end-page: 270 ident: bb0140 article-title: Quantification of continual anthropogenic pollutants released in swimming pools publication-title: Water Res. – volume: 50 start-page: 6652 year: 2016 end-page: 6662 ident: bb0045 article-title: Progressive increase in disinfection byproducts and mutagenicity from source to tap to swimming pool and spa water: impact of human inputs publication-title: Environ. Sci. Technol. – volume: 21 start-page: 353 year: 1987 end-page: 357 ident: bb0010 article-title: Trihalomethane formation in whirlpool spas publication-title: Water Res. – volume: 42 start-page: 1032 year: 2008 end-page: 1037 ident: bb0330 article-title: Nitrosamine carcinogens also swim in chlorinated pools publication-title: Environ. Sci. Technol. – volume: 165 start-page: 148 year: 2007 end-page: 156 ident: bb0320 article-title: Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools publication-title: Am. J. Epidemiol. – volume: 57 start-page: 1499 year: 2016 end-page: 1507 ident: bb0360 article-title: Impact of UV disinfection on the potential of model organic-nitrogen precursors to form chlorination by-products in swimming pool water publication-title: Desalin. Water Treat. – volume: 46 start-page: 6399 year: 2012 end-page: 6409 ident: bb0080 article-title: Effect of pH on the formation of disinfection byproducts in swimming pool water — is less THM better? publication-title: Water Res. – year: 2015 ident: bb0295 article-title: Studies and Research Projects Assessment of Worker Exposure to Disinfection Byproducts at Indoor Swimming Pools in Québec – volume: 1218 start-page: 1808 year: 2011 end-page: 1814 ident: bb0240 article-title: Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry publication-title: J. Chromatogr. A – volume: 45 start-page: 59 year: 2012 end-page: 67 ident: bb0185 article-title: Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure publication-title: Environ. Int. – volume: 24 start-page: 30 year: 2010 end-page: 34 ident: bb0160 article-title: On-line monitoring of the dynamics of trihalomethane concentrations in a warm public swimming pool using an unsupervised membrane inlet mass spectrometry system with off-site real-time surveillance publication-title: Rapid Commun. Mass Spectrom. – year: 2013 ident: bb0355 article-title: Code of Practice For the Design, Construction, Operation, Management & Maintenance of Aquatic Facilities – volume: 11 start-page: 465 year: 2013 end-page: 472 ident: bb0090 article-title: Optimal pH in chlorinated swimming pools — balancing formation of by-products publication-title: J. Water Health – volume: 569–570 start-page: 469 year: 2016 end-page: 475 ident: bb0310 article-title: Presence and select determinants of organophosphate flame retardants in public swimming pools publication-title: Sci. Total Environ. – volume: 43 start-page: 3308 year: 2009 end-page: 3318 ident: bb0350 article-title: Volatile disinfection by-product analysis from chlorinated indoor swimming pools publication-title: Water Res. – volume: 87 start-page: 241 year: 2012 end-page: 247 ident: bb0085 article-title: Particles in swimming pool filters — does pH determine the DBP formation? publication-title: Chemosphere – volume: 140 start-page: 292 year: 2015 end-page: 299 ident: bb0205 article-title: Influence of physical activity in the intake of trihalomethanes in indoor swimming pools publication-title: Environ. Res. – volume: 58 start-page: 1 year: 2017 ident: bb0230 article-title: Disinfection by-products in drinking water, recycled water and wastewater: formation, detection, toxicity and health effects: preface publication-title: J. Environ. Sci. – year: 2012 ident: bb0270 article-title: Assessing the Reactivity of Free Chlorine Constituents Cl – volume: 9 start-page: 995 year: 2015 end-page: 1003 ident: bb0390 article-title: Concentration levels of disinfection by-products in 14 swimming pools of China publication-title: Front. Environ. Sci. Eng. – volume: 1358 start-page: 232 year: 2014 end-page: 239 ident: bb0265 article-title: Fast and “green” method for the analytical monitoring of haloketones in treated water publication-title: J. Chromatogr. A – volume: 44 start-page: 3527 year: 2010 end-page: 3532 ident: bb0180 article-title: Genotoxicity of water concentrates from recreational pools after various disinfection methods publication-title: Environ. Sci. Technol. – volume: 402 start-page: 2209 year: 2012 end-page: 2216 ident: bb0060 article-title: Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples publication-title: Anal. Bioanal. Chem. – volume: 14 start-page: 1397 year: 1980 end-page: 1402 ident: bb0220 article-title: Determination of trihalomethanes (THM) in water using high efficiency solvent extraction publication-title: Water Res. – volume: 51 start-page: 869 year: 2003 end-page: 879 ident: bb0110 article-title: The fate of chlorine and organic materials in swimming pools publication-title: Chemosphere – volume: 46 start-page: 3682 year: 2012 end-page: 3692 ident: bb0135 article-title: Definition and quantification of initial anthropogenic pollutant release in swimming pools publication-title: Water Res. – volume: 23 start-page: 6972 year: 2016 end-page: 6981 ident: bb0305 article-title: Occurrence and daily variability of pharmaceuticals and personal care products in swimming pools publication-title: Environ. Sci. Pollut. Res. – volume: 520 start-page: 96 year: 2015 end-page: 105 ident: bb0290 article-title: Secondary formation of disinfection by-products by UV treatment of swimming pool water publication-title: Sci. Total Environ. – volume: 48 start-page: 387 year: 2012 end-page: 396 ident: bb0315 article-title: Health impact of disinfection by-products in swimming pools publication-title: Ann. Ist. Super. Sanita – volume: 44 start-page: 8446 year: 2010 end-page: 8452 ident: bb0275 article-title: Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment publication-title: Environ. Sci. Technol. – volume: 23 start-page: 1412 year: 1989 end-page: 1419 ident: bb0040 article-title: Destruction of chlorination byproducts with sulfite publication-title: Environ. Sci. Technol. – volume: 88 start-page: 94 year: 2016 end-page: 102 ident: bb0195 article-title: Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity publication-title: Environ. Int. – volume: 41 start-page: 6732 year: 2007 end-page: 6739 ident: bb0175 article-title: Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools publication-title: Environ. Sci. Technol. – volume: 118 start-page: 1523 year: 2010 end-page: 1530 ident: bb0250 article-title: What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water publication-title: Environ. Health Perspect – volume: 636 start-page: 178 year: 2007 end-page: 242 ident: bb0245 article-title: Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research publication-title: Mutat. Res. Rev. Mutat. Res. – start-page: 3 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0255 article-title: Charting a new path to resolve the adverse health effects of DBPs – volume: 42 start-page: 82 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0020 article-title: Disinfection by-products: not just an issue for drinking water, but also potentially for swimming pool waters publication-title: Water – volume: 402 start-page: 2209 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0060 article-title: Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-5681-0 – volume: 57 start-page: 1499 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0360 article-title: Impact of UV disinfection on the potential of model organic-nitrogen precursors to form chlorination by-products in swimming pool water publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1043484 – volume: 68 start-page: 771 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0380 article-title: Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool publication-title: Water Res. doi: 10.1016/j.watres.2014.10.037 – volume: 46 start-page: 6399 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0080 article-title: Effect of pH on the formation of disinfection byproducts in swimming pool water — is less THM better? publication-title: Water Res. doi: 10.1016/j.watres.2012.09.008 – volume: 53 start-page: 259 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0140 article-title: Quantification of continual anthropogenic pollutants released in swimming pools publication-title: Water Res. doi: 10.1016/j.watres.2014.01.027 – volume: 87 start-page: 241 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0085 article-title: Particles in swimming pool filters — does pH determine the DBP formation? publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.01.003 – year: 2011 ident: 10.1016/j.scitotenv.2019.01.428_bb0335 – volume: 520 start-page: 96 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0290 article-title: Secondary formation of disinfection by-products by UV treatment of swimming pool water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.03.044 – volume: 45 start-page: 639 year: 2008 ident: 10.1016/j.scitotenv.2019.01.428_bb0070 article-title: Asthma and swimming: a meta-analysis publication-title: J. Asthma doi: 10.1080/02770900802165980 – volume: 58 start-page: 64 year: 2017 ident: 10.1016/j.scitotenv.2019.01.428_bb0325 article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.04.021 – volume: 45 start-page: 4159 year: 2011 ident: 10.1016/j.scitotenv.2019.01.428_bb0235 article-title: Comparative mammalian cell cytotoxicity of water concentrates from disinfected recreational pools publication-title: Environ. Sci. Technol. doi: 10.1021/es104284h – volume: 6 year: 1975 ident: 10.1016/j.scitotenv.2019.01.428_bb0210 article-title: The kinetics and mechanisms of additions of olefinic substances part 12, kinetics of addition initiated by chlorine acetate publication-title: J. Chem. Soc., Perkin Trans. 2 – volume: 48 start-page: 387 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0315 article-title: Health impact of disinfection by-products in swimming pools publication-title: Ann. Ist. Super. Sanita doi: 10.4415/ANN_12_04_06 – volume: 58 start-page: 19 year: 2017 ident: 10.1016/j.scitotenv.2019.01.428_bb0015 article-title: Occurrence and formation of disinfection by-products in the swimming pool environment: a critical review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.06.013 – volume: 59 start-page: 243 year: 2002 ident: 10.1016/j.scitotenv.2019.01.428_bb0030 article-title: Distribution and determinants of trihalomethane concentrations in indoor swimming pools publication-title: Occup. Environ. Med. doi: 10.1136/oem.59.4.243 – volume: 8 start-page: 820 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0345 article-title: Haloacetic acids in swimming pool and spa water in the United States and China publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-014-0712-7 – volume: 44 start-page: 3527 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0180 article-title: Genotoxicity of water concentrates from recreational pools after various disinfection methods publication-title: Environ. Sci. Technol. doi: 10.1021/es903593w – volume: 3 start-page: 168 year: 2011 ident: 10.1016/j.scitotenv.2019.01.428_bb0145 article-title: Swimmers contribute to additional formation of N-nitrosamines in chlorinated pool water publication-title: Toxicol. Environ. Health Sci. doi: 10.1007/s13530-011-0094-1 – volume: 118 start-page: 1523 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0250 article-title: What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water publication-title: Environ. Health Perspect doi: 10.1289/ehp.1001965 – year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0120 – volume: 1218 start-page: 1808 year: 2011 ident: 10.1016/j.scitotenv.2019.01.428_bb0240 article-title: Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2011.02.009 – volume: 122 start-page: 195 year: 2008 ident: 10.1016/j.scitotenv.2019.01.428_bb0125 article-title: Health effects associated with indoor swimming pools: a suspected toxic chloramine exposure publication-title: Public Health doi: 10.1016/j.puhe.2007.06.011 – volume: 59 start-page: 172 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0375 article-title: Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water publication-title: Water Res. doi: 10.1016/j.watres.2014.04.002 – volume: 49 start-page: 11105 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0005 article-title: Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02624 – volume: 51 start-page: 869 year: 2003 ident: 10.1016/j.scitotenv.2019.01.428_bb0110 article-title: The fate of chlorine and organic materials in swimming pools publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00156-5 – volume: 1358 start-page: 232 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0265 article-title: Fast and “green” method for the analytical monitoring of haloketones in treated water publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.06.103 – volume: 46 start-page: 12832 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0365 article-title: Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es302993u – volume: 64 start-page: 795 year: 2006 ident: 10.1016/j.scitotenv.2019.01.428_bb0155 article-title: Halogenated acetaldehydes: analysis, stability and fate in drinking water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.10.063 – volume: 11 start-page: 465 year: 2013 ident: 10.1016/j.scitotenv.2019.01.428_bb0090 article-title: Optimal pH in chlorinated swimming pools — balancing formation of by-products publication-title: J. Water Health doi: 10.2166/wh.2013.156 – volume: 24 start-page: 30 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0160 article-title: On-line monitoring of the dynamics of trihalomethane concentrations in a warm public swimming pool using an unsupervised membrane inlet mass spectrometry system with off-site real-time surveillance publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.4360 – volume: 49 start-page: 9308 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0190 article-title: Degradation products of benzophenone-3 in chlorinated seawater swimming pools publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00841 – volume: 29 start-page: 690 year: 2007 ident: 10.1016/j.scitotenv.2019.01.428_bb0105 article-title: Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers publication-title: Eur. Respir. J. doi: 10.1183/09031936.00024706 – volume: 45 start-page: 59 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0185 article-title: Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure publication-title: Environ. Int. doi: 10.1016/j.envint.2012.03.009 – volume: 21 start-page: 353 year: 1987 ident: 10.1016/j.scitotenv.2019.01.428_bb0010 article-title: Trihalomethane formation in whirlpool spas publication-title: Water Res. doi: 10.1016/0043-1354(87)90215-6 – volume: 636 start-page: 178 year: 2007 ident: 10.1016/j.scitotenv.2019.01.428_bb0245 article-title: Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research publication-title: Mutat. Res. Rev. Mutat. Res. doi: 10.1016/j.mrrev.2007.09.001 – volume: 148 start-page: 411 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0300 article-title: Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools publication-title: Environ. Res. doi: 10.1016/j.envres.2016.04.011 – volume: 112 start-page: 34 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0035 article-title: Effects of UV-dechloramination of swimming pool water on the formation of disinfection by-products: a lab-scale study publication-title: Microchem. J. doi: 10.1016/j.microc.2013.09.014 – volume: 4 start-page: 218 year: 2018 ident: 10.1016/j.scitotenv.2019.01.428_bb0370 article-title: Occurrence and factors affecting the formation of trihalomethanes, haloacetonitriles and halonitromethanes in outdoor swimming pools treated with trichloroisocyanuric acid publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C7EW00245A – volume: 19 start-page: 326 year: 2018 ident: 10.1016/j.scitotenv.2019.01.428_bb0050 article-title: Data on the level of haloacetic acids in indoor swimming pools of Iran: a case study of Tehran publication-title: Data Brief. doi: 10.1016/j.dib.2018.05.004 – volume: 165 start-page: 148 year: 2007 ident: 10.1016/j.scitotenv.2019.01.428_bb0320 article-title: Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwj364 – volume: 58 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2019.01.428_bb0230 article-title: Disinfection by-products in drinking water, recycled water and wastewater: formation, detection, toxicity and health effects: preface publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.07.017 – volume: 543 start-page: 425 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0075 article-title: Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.055 – year: 1985 ident: 10.1016/j.scitotenv.2019.01.428_bb0215 – volume: 33 start-page: 610 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0115 article-title: Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography publication-title: J. Sep. Sci. doi: 10.1002/jssc.200900679 – year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0270 – volume: 599–600 start-page: 910 year: 2017 ident: 10.1016/j.scitotenv.2019.01.428_bb0025 article-title: Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.008 – volume: 46 start-page: 3682 year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0135 article-title: Definition and quantification of initial anthropogenic pollutant release in swimming pools publication-title: Water Res. doi: 10.1016/j.watres.2012.04.012 – start-page: 848 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0100 article-title: Bromine, bromine chloride, BCDMH, and iodine – year: 2012 ident: 10.1016/j.scitotenv.2019.01.428_bb0065 – volume: 443 start-page: 850 year: 2013 ident: 10.1016/j.scitotenv.2019.01.428_bb0095 article-title: Photolytic removal of DBPs by medium pressure UV in swimming pool water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.11.064 – volume: 149 start-page: 206 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0055 article-title: Environmental and personal determinants of the uptake of disinfection by-products during swimming publication-title: Environ. Res. doi: 10.1016/j.envres.2016.05.013 – volume: 105 start-page: 167 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0385 article-title: Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool publication-title: Water Res. doi: 10.1016/j.watres.2016.08.064 – volume: 569–570 start-page: 469 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0310 article-title: Presence and select determinants of organophosphate flame retardants in public swimming pools publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.085 – volume: 41 start-page: 6732 year: 2007 ident: 10.1016/j.scitotenv.2019.01.428_bb0175 article-title: Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools publication-title: Environ. Sci. Technol. doi: 10.1021/es070871+ – volume: 23 start-page: 1412 year: 1989 ident: 10.1016/j.scitotenv.2019.01.428_bb0040 article-title: Destruction of chlorination byproducts with sulfite publication-title: Environ. Sci. Technol. doi: 10.1021/es00069a014 – volume: 15 start-page: 803 year: 1981 ident: 10.1016/j.scitotenv.2019.01.428_bb0165 article-title: Distribution and balance of volatile halogenated hydrocarbons in the water and air of covered swimming pools using chlorine for water disinfection publication-title: Water Res. doi: 10.1016/0043-1354(81)90133-0 – volume: 14 start-page: 1397 year: 1980 ident: 10.1016/j.scitotenv.2019.01.428_bb0220 article-title: Determination of trihalomethanes (THM) in water using high efficiency solvent extraction publication-title: Water Res. doi: 10.1016/0043-1354(80)90003-2 – volume: 1218 start-page: 8295 year: 2011 ident: 10.1016/j.scitotenv.2019.01.428_bb0260 article-title: Micro liquid–liquid extraction combined with large-volume injection gas chromatography–mass spectrometry for the determination of haloacetaldehydes in treated water publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2011.09.048 – volume: 43 start-page: 3308 year: 2009 ident: 10.1016/j.scitotenv.2019.01.428_bb0350 article-title: Volatile disinfection by-product analysis from chlorinated indoor swimming pools publication-title: Water Res. doi: 10.1016/j.watres.2009.04.035 – volume: 220 start-page: 591 year: 2017 ident: 10.1016/j.scitotenv.2019.01.428_bb0200 article-title: Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: an overview publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2017.01.005 – volume: 140 start-page: 292 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0205 article-title: Influence of physical activity in the intake of trihalomethanes in indoor swimming pools publication-title: Environ. Res. doi: 10.1016/j.envres.2015.04.005 – volume: 46 start-page: 123 year: 2002 ident: 10.1016/j.scitotenv.2019.01.428_bb0150 article-title: Formation of disinfection by-products in chlorinated swimming pool water publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00581-6 – volume: 50 start-page: 6652 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0045 article-title: Progressive increase in disinfection byproducts and mutagenicity from source to tap to swimming pool and spa water: impact of human inputs publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00808 – volume: 9 start-page: 995 year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0390 article-title: Concentration levels of disinfection by-products in 14 swimming pools of China publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-015-0797-7 – volume: 11 start-page: 29 year: 2001 ident: 10.1016/j.scitotenv.2019.01.428_bb0130 article-title: Skin irritation in users of brominated pools publication-title: Int. J. Environ. Health Res. doi: 10.1080/09603120020019629 – volume: 23 start-page: 6972 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0305 article-title: Occurrence and daily variability of pharmaceuticals and personal care products in swimming pools publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5967-4 – year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0225 article-title: Occurrence and simulation of trihalomethanes in swimming pool water: a simple prediction method based on DOC and mass balance publication-title: Water Res. – year: 2013 ident: 10.1016/j.scitotenv.2019.01.428_bb0355 – volume: 47 start-page: 79 year: 2013 ident: 10.1016/j.scitotenv.2019.01.428_bb0280 article-title: Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine publication-title: Water Res. doi: 10.1016/j.watres.2012.09.034 – year: 2015 ident: 10.1016/j.scitotenv.2019.01.428_bb0295 – volume: 56 start-page: 280 year: 2014 ident: 10.1016/j.scitotenv.2019.01.428_bb0285 article-title: Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water publication-title: Water Res. doi: 10.1016/j.watres.2014.02.034 – volume: 88 start-page: 94 year: 2016 ident: 10.1016/j.scitotenv.2019.01.428_bb0195 article-title: Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity publication-title: Environ. Int. doi: 10.1016/j.envint.2015.12.028 – volume: 44 start-page: 8446 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0275 article-title: Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es102746u – volume: 213 start-page: 465 year: 2010 ident: 10.1016/j.scitotenv.2019.01.428_bb0170 article-title: Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2010.09.005 – volume: 42 start-page: 1032 year: 2008 ident: 10.1016/j.scitotenv.2019.01.428_bb0330 article-title: Nitrosamine carcinogens also swim in chlorinated pools publication-title: Environ. Sci. Technol. doi: 10.1021/es702301p |
SSID | ssj0000781 |
Score | 2.4674432 |
Snippet | Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 851 |
SubjectTerms | Acetamides Australia BCDMH bromination Bromine byproducts Chloral hydrate Chloramines Chlorine Chloroacetates Cytotoxicity DBPs dichloroacetic acid disinfectants Disinfectants - analysis Disinfection Environmental Monitoring Environmental Sciences N-Nitrosamines nitrosamines risk Spa Swimming Pools trichloroacetic acid Trihalomethanes Water Pollutants, Chemical - analysis |
Title | Occurrence of disinfection by-products in swimming pools and the estimated resulting cytotoxicity |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.01.428 https://www.ncbi.nlm.nih.gov/pubmed/30769309 https://www.proquest.com/docview/2183643001 https://www.proquest.com/docview/2220887342 https://univ-poitiers.hal.science/hal-04437172 |
Volume | 664 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKERISQmWhsEArg7iaJrbXsXtbVa0WFnpAVPRmObajBtFk1WwLe-G3dyaPrSoBPXCKbNlx_Jr5HM98Q8i7NNdSTsKE8dzlTKromZFFytIgMpdlaSw83uh-PlazE_nxdHK6QQ4GXxg0q-xlfyfTW2nd5-z1o7m3KEv08ZXaKJMBBEHKQ2T8lDLDVf7-942ZB5LZdLfMsLGh9C0bL3jvsgZseoU2Xgb5OyWGZf-zhrp3hqaSf8OhrT462iKPeyBJp923PiEbsRqRB11oydWIbB_eeLBBsX4LNyPyqPtRRzv_o6fEIc_wRevzR-uChrIZ7LMqmq_YomOEbWhZ0eZneX4Oqo5iXK6GuipQgI8UeToA98ZA4eiO9olQwq-gx_WvEnq-ekZOjg6_HsxYH3eBeSn0ksXAC1Dl0XgvgvJeh5w7LZSJIaqQSic8HrR8kSWQUjFJfK69y4TJM51rJbbJZlVX8QWhBtBgEeEgXDglJ0K6lCtudFDBcF4IPiZqGGvre1JyjI3xww7WZ9_tepIsTpJNUgutj0myrrjoeDnurrI_TKa9tcQsaI-7K7-F6V83haTcs-kni3mJlAIOxfwqHZM3w-qwsEvx6sVVsb5sLAJRwH6ACf5RhnMU-ULCqDzvlta6PZDEGLPSvPyfPrwiDzHFWu7Z12RzeXEZdwBSLfPdds_skvvTD_PZMT7nX77NrwHcgSSN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbarRBICMFCYXkaxDVqYjuOzW1VtUrpdk-t1Jvl2I4Iosmq2T723zOzSbaqBPTAMY4dx6-Zb5KZbwj5mhRKiNSnEStsEQkZXKRFmUSJ55nNsiSUDv_onsxlfia-n6fnW2R_iIVBt8pe9ncyfS2t-5K9fjb3FlWFMb5CaakzgCBIeci3yQ6yU6UjsjM9Os7ndwI5U13iPAFnGxrcc_OCRy8bgKfX6OalkcJTYGb2Pyup7R_oLfk3KLpWSYfPybMeS9Jp97ovyFaox-RRl11yNSa7B3dBbFCtP8XtmDztvtXRLgTpJbFINXy5DvujTUl91Q4uWjUtVtGiI4VtaVXT9qa6uABtRzE1V0tt7SkgSIpUHQB9g6dgvaOLItRwKxhxc1vByFevyNnhwel-HvWpFyInuFpGwbMStHnQznEvnVO-YFZxqYMP0ifCcoe2liuzGK5kiGNXKGczrotMFUryXTKqmzq8IVQDICwD2MKllSLlwiZMMq289JqxkrMJkcNcG9fzkmN6jF9mcED7aTaLZHCRTJwY6H1C4k3DRUfN8XCTb8Nimnu7zIACebjxF1j-TVfIy51PZwbLYiE42MXsOpmQz8PuMHBQ8e-LrUNz1RrEogD_ABb8ow5jKPW5gFl53W2tTX8gjDFtpX77P2P4RB7npyczMzuaH78jT_BOtKaifU9Gy8ur8AEQ1rL42J-g350cJZs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occurrence+of+disinfection+by-products+in+swimming+pools+and+the+estimated+resulting+cytotoxicity&rft.jtitle=The+Science+of+the+total+environment&rft.au=Carter%2C+Rhys+A.A.&rft.au=Allard%2C+S%C3%A9bastien&rft.au=Crou%C3%A9%2C+Jean-Philippe&rft.au=Joll%2C+Cynthia+A.&rft.date=2019-05-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=664&rft.spage=851&rft.epage=864&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.01.428&rft.externalDocID=S0048969719304723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |