Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential
•Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops. The...
Saved in:
Published in | Bioresource technology Vol. 224; pp. 708 - 713 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops.
The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin−1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol−1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol−1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol−1 and 168 to 172kJmol−1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. |
---|---|
AbstractList | The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol . The activation energy (E) values were shown to be ranging from 103 through 233 kJmol . Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol and 168 to 172kJmol , calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. •Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops. The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin−1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol−1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol−1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol−1 and 168 to 172kJmol−1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin⁻¹ using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol⁻¹. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol⁻¹. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol⁻¹ and 168 to 172kJmol⁻¹, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. |
Author | Ye, Guangbin Qadir, Ghulam Al Ayed, Omar S. Arbi Nehdi, Imededdine Ahmad, Muhammad Sajjad Ibrahim, Muhammad Rashid, Umer Luo, Huibo Mehmood, Muhammad Aamer |
Author_xml | – sequence: 1 givenname: Muhammad Sajjad surname: Ahmad fullname: Ahmad, Muhammad Sajjad organization: Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan – sequence: 2 givenname: Muhammad Aamer surname: Mehmood fullname: Mehmood, Muhammad Aamer email: draamer@gcuf.edu.pk organization: Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan – sequence: 3 givenname: Omar S. surname: Al Ayed fullname: Al Ayed, Omar S. organization: Department of Chemical Engineering, Al-Balqa’a Applied University, Amman, Jordan – sequence: 4 givenname: Guangbin surname: Ye fullname: Ye, Guangbin organization: College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People’s Republic of China – sequence: 5 givenname: Huibo surname: Luo fullname: Luo, Huibo organization: College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People’s Republic of China – sequence: 6 givenname: Muhammad surname: Ibrahim fullname: Ibrahim, Muhammad organization: Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan – sequence: 7 givenname: Umer surname: Rashid fullname: Rashid, Umer organization: Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia – sequence: 8 givenname: Imededdine surname: Arbi Nehdi fullname: Arbi Nehdi, Imededdine organization: Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia – sequence: 9 givenname: Ghulam surname: Qadir fullname: Qadir, Ghulam organization: Soil Salinity Research Institute, Pindi Bhattian, Pakistan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27838316$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3DAUha0KBAPlLyAv6SKDH5PEkbpohfpAILWLsrZu7GvGo0w8tT1I-fc4Guiim1nZPvrOvdY5F-RkDCMScs3ZkjPe3G6WvQ8xo1kvRXkXcck69oEsuGplJbq2OSEL1jWsUrVYnZOLlDaMMclbcUbORaukkrxZEPPgR8zeUBhhmBKmcrF0N8UwTLPc4xpeyiYaHP0NEehzhJTozVMMZj0EoNt9weATdYXxOdHyLRwxPk90FzKO2cPwkZw6GBJevZ2X5On7tz93P6vHXz_u774-VmYlVa6wNtJ0FgU4xVuO0PFecAfSWo61YlbUtWMSHDDbOtt0vFYKeyfBtk2HUl6Sm8PcXQx_95iy3vpkcBhgxLBPWpQAOGermh9FuZJdQZt2nnr9hu77LVq9i34LcdLvGRagOQAmhpQiun8IZ3ouS2_0e1l6LmvWS1nF-Pk_o_EZsg9jjuCH4_YvBzuWTF88Rp2Mx9Gg9RFN1jb4YyNeAVGCtZ4 |
CitedBy_id | crossref_primary_10_1016_j_clet_2021_100062 crossref_primary_10_1016_j_cej_2024_149106 crossref_primary_10_1007_s10973_022_11910_7 crossref_primary_10_1007_s13399_021_01843_w crossref_primary_10_1007_s10973_019_08053_7 crossref_primary_10_1007_s10973_017_6398_x crossref_primary_10_1016_j_biortech_2019_122602 crossref_primary_10_1007_s13399_025_06550_4 crossref_primary_10_1016_j_enconman_2019_01_031 crossref_primary_10_1016_j_jaap_2018_05_013 crossref_primary_10_1016_j_jaap_2021_105249 crossref_primary_10_1007_s13399_022_02393_5 crossref_primary_10_2139_ssrn_4011166 crossref_primary_10_5004_dwt_2022_28353 crossref_primary_10_52396_JUSTC_2022_0049 crossref_primary_10_1007_s13399_022_03347_7 crossref_primary_10_1016_j_mset_2021_03_003 crossref_primary_10_1080_1536383X_2020_1759556 crossref_primary_10_1007_s13399_021_01892_1 crossref_primary_10_1016_j_renene_2020_11_012 crossref_primary_10_1021_acsomega_4c03053 crossref_primary_10_1515_ijcre_2017_0184 crossref_primary_10_1016_j_jenvman_2024_120835 crossref_primary_10_1007_s13399_024_06228_3 crossref_primary_10_1016_j_joei_2020_04_019 crossref_primary_10_1016_j_biombioe_2018_12_015 crossref_primary_10_1016_j_energy_2021_122493 crossref_primary_10_1016_j_jmrt_2022_04_032 crossref_primary_10_3390_en15124342 crossref_primary_10_1016_j_csite_2023_103118 crossref_primary_10_1002_cjce_24037 crossref_primary_10_1016_j_scitotenv_2021_148392 crossref_primary_10_1016_j_biortech_2016_12_096 crossref_primary_10_1016_j_biortech_2019_121892 crossref_primary_10_1007_s13399_020_01232_9 crossref_primary_10_2139_ssrn_4157305 crossref_primary_10_1007_s13399_022_03527_5 crossref_primary_10_1016_j_rineng_2022_100426 crossref_primary_10_1016_j_cej_2020_124749 crossref_primary_10_1038_s41598_024_82830_9 crossref_primary_10_1007_s13399_019_00405_5 crossref_primary_10_1016_j_fuel_2022_124976 crossref_primary_10_1007_s13399_021_01575_x crossref_primary_10_3390_ma17081895 crossref_primary_10_1016_j_biteb_2019_100332 crossref_primary_10_1016_j_applthermaleng_2018_12_010 crossref_primary_10_1016_j_jaap_2024_106518 crossref_primary_10_1016_j_wasman_2023_09_037 crossref_primary_10_1016_j_biortech_2018_02_126 crossref_primary_10_1016_j_biortech_2019_122630 crossref_primary_10_1515_cppm_2020_0048 crossref_primary_10_1007_s13399_022_02524_y crossref_primary_10_1007_s13399_024_05657_4 crossref_primary_10_1016_j_biortech_2018_03_043 crossref_primary_10_1016_j_fuel_2019_115926 crossref_primary_10_1016_j_biortech_2018_08_068 crossref_primary_10_1021_acsomega_4c10700 crossref_primary_10_1016_j_biteb_2024_101916 crossref_primary_10_1016_j_biteb_2023_101735 crossref_primary_10_1016_j_psep_2025_01_020 crossref_primary_10_1016_j_jfueco_2022_100073 crossref_primary_10_1016_j_biombioe_2019_01_009 crossref_primary_10_1016_j_biortech_2017_08_162 crossref_primary_10_1016_j_scp_2021_100567 crossref_primary_10_1016_j_ccst_2024_100271 crossref_primary_10_3390_en16093731 crossref_primary_10_3390_su13179642 crossref_primary_10_1080_15567036_2022_2097750 crossref_primary_10_1021_acsomega_1c01249 crossref_primary_10_1016_j_energy_2021_120895 crossref_primary_10_1080_15567036_2019_1662138 crossref_primary_10_1016_j_fuel_2019_116338 crossref_primary_10_3390_ani13233676 crossref_primary_10_1016_j_tca_2023_179519 crossref_primary_10_1016_j_jaap_2023_105972 crossref_primary_10_1007_s13399_025_06670_x crossref_primary_10_1002_ep_14287 crossref_primary_10_1016_j_biortech_2018_09_137 crossref_primary_10_1016_j_biortech_2019_01_106 crossref_primary_10_1016_j_wasman_2019_11_012 crossref_primary_10_1080_1536383X_2021_1881063 crossref_primary_10_1016_j_biortech_2021_126346 crossref_primary_10_1016_j_biteb_2021_100858 crossref_primary_10_1016_j_biortech_2017_03_105 crossref_primary_10_14710_ijred_2022_41531 crossref_primary_10_3390_molecules27217515 crossref_primary_10_1016_j_renene_2023_119337 crossref_primary_10_1016_j_cej_2024_155558 crossref_primary_10_1155_2022_1659855 crossref_primary_10_1016_j_fuel_2020_117172 crossref_primary_10_1007_s13762_021_03416_w crossref_primary_10_1016_j_jclepro_2023_136772 crossref_primary_10_1016_j_jaap_2019_04_018 crossref_primary_10_1007_s13399_021_01664_x crossref_primary_10_1007_s13399_021_01492_z crossref_primary_10_1016_j_biteb_2023_101676 crossref_primary_10_1016_j_biortech_2022_127022 crossref_primary_10_1016_j_enconman_2024_118229 crossref_primary_10_1016_j_biombioe_2024_107238 crossref_primary_10_3390_ma16103667 crossref_primary_10_1016_j_applthermaleng_2019_04_043 crossref_primary_10_1016_j_biortech_2020_123699 crossref_primary_10_1016_j_biortech_2020_124545 crossref_primary_10_1007_s10973_023_12868_w crossref_primary_10_1016_j_biortech_2020_123464 crossref_primary_10_1016_j_indcrop_2023_116638 crossref_primary_10_1016_j_jece_2022_107850 crossref_primary_10_1007_s13399_021_01964_2 crossref_primary_10_1039_D4CY01475H crossref_primary_10_1016_j_renene_2023_02_012 crossref_primary_10_2139_ssrn_3983959 crossref_primary_10_1016_j_energy_2023_126817 crossref_primary_10_1016_j_biortech_2017_11_077 crossref_primary_10_1016_j_jaap_2023_105992 crossref_primary_10_1016_j_renene_2022_12_074 crossref_primary_10_1080_15567036_2020_1779416 crossref_primary_10_1007_s10973_021_11123_4 crossref_primary_10_1016_j_biombioe_2024_107245 crossref_primary_10_1016_j_jclepro_2024_143572 crossref_primary_10_1177_0734242X19896624 crossref_primary_10_1016_j_scp_2024_101685 crossref_primary_10_1016_j_biortech_2017_03_007 crossref_primary_10_1016_j_biteb_2021_100639 crossref_primary_10_1016_j_applthermaleng_2018_03_050 crossref_primary_10_1016_j_algal_2022_102635 crossref_primary_10_1016_j_wasman_2025_02_005 crossref_primary_10_1007_s13399_021_01360_w crossref_primary_10_1016_j_enconman_2021_114590 crossref_primary_10_1016_j_scp_2023_101130 crossref_primary_10_3390_su151612536 crossref_primary_10_1016_j_jaap_2022_105565 crossref_primary_10_1080_15567036_2018_1502846 crossref_primary_10_1007_s10163_019_00891_9 crossref_primary_10_1016_j_biortech_2019_03_147 crossref_primary_10_1016_j_biortech_2020_124529 crossref_primary_10_1016_j_energy_2024_131677 crossref_primary_10_1016_j_enconman_2020_112653 crossref_primary_10_1007_s10973_019_09170_z crossref_primary_10_3390_catal12080840 crossref_primary_10_1016_j_enconman_2018_02_049 crossref_primary_10_1016_j_energy_2022_124678 crossref_primary_10_1021_acsomega_1c05884 crossref_primary_10_5802_crchim_351 crossref_primary_10_2139_ssrn_3966931 crossref_primary_10_1088_1757_899X_1034_1_012082 crossref_primary_10_1007_s12155_024_10811_x crossref_primary_10_1007_s13399_021_01922_y crossref_primary_10_2139_ssrn_4152713 crossref_primary_10_1016_j_apenergy_2021_116933 crossref_primary_10_1016_j_renene_2022_10_042 crossref_primary_10_1007_s40430_022_03993_y crossref_primary_10_1007_s10973_023_12153_w crossref_primary_10_1016_j_renene_2023_119809 crossref_primary_10_1016_j_tsep_2024_102494 crossref_primary_10_1016_j_seta_2021_101632 crossref_primary_10_1016_j_jenvman_2021_113194 crossref_primary_10_1080_17597269_2021_1965760 crossref_primary_10_1016_j_fuel_2019_116263 crossref_primary_10_1016_j_jece_2020_104554 crossref_primary_10_1016_j_psep_2024_06_084 crossref_primary_10_1016_j_tca_2018_02_005 crossref_primary_10_1016_j_energy_2024_133037 crossref_primary_10_1007_s13399_021_01749_7 crossref_primary_10_1016_j_biortech_2018_01_033 crossref_primary_10_1016_j_biortech_2019_121481 crossref_primary_10_1016_j_crcon_2019_08_001 crossref_primary_10_1021_acsomega_4c02366 crossref_primary_10_1007_s10973_018_7392_7 crossref_primary_10_1016_j_psep_2020_10_044 crossref_primary_10_1016_j_biteb_2021_100942 crossref_primary_10_1016_j_jenvman_2021_113854 crossref_primary_10_1080_1536383X_2020_1832994 crossref_primary_10_46481_jnsps_2022_555 crossref_primary_10_1016_j_renene_2020_08_120 crossref_primary_10_1007_s13399_020_00972_y crossref_primary_10_1016_j_enconman_2019_04_076 crossref_primary_10_1007_s12155_019_9964_1 crossref_primary_10_1016_j_joei_2023_101242 crossref_primary_10_1016_j_fuel_2020_117238 crossref_primary_10_1016_j_biortech_2022_127375 crossref_primary_10_1016_j_seta_2023_103150 crossref_primary_10_3390_su14010112 crossref_primary_10_1016_j_biortech_2018_04_011 crossref_primary_10_1016_j_cej_2023_142930 crossref_primary_10_1016_j_tca_2023_179473 crossref_primary_10_1080_15567036_2020_1774684 crossref_primary_10_1016_j_renene_2021_08_099 crossref_primary_10_1016_j_indcrop_2023_117715 crossref_primary_10_1016_j_renene_2023_119039 crossref_primary_10_1016_j_biteb_2020_100558 crossref_primary_10_1177_0734242X241241604 crossref_primary_10_1002_apj_2909 crossref_primary_10_1002_ep_14153 crossref_primary_10_1016_j_biteb_2020_100553 crossref_primary_10_3390_en15186524 crossref_primary_10_1007_s13399_020_00790_2 crossref_primary_10_1002_er_8303 crossref_primary_10_1016_j_biortech_2018_01_054 crossref_primary_10_1016_j_renene_2018_01_076 crossref_primary_10_1016_j_scitotenv_2021_147004 crossref_primary_10_1016_j_jaap_2021_105066 crossref_primary_10_1007_s13399_022_02697_6 crossref_primary_10_1515_ijcre_2020_0140 crossref_primary_10_3390_su11133592 crossref_primary_10_1016_j_renene_2022_03_084 crossref_primary_10_1080_1536383X_2023_2194637 crossref_primary_10_1016_j_rser_2023_113346 crossref_primary_10_1088_1757_899X_736_4_042029 crossref_primary_10_1007_s12155_022_10497_z crossref_primary_10_1021_acsomega_3c04328 crossref_primary_10_2166_ws_2020_193 crossref_primary_10_1002_slct_202104480 crossref_primary_10_1016_j_biombioe_2024_107293 crossref_primary_10_1016_j_jaap_2023_106303 crossref_primary_10_1080_00102202_2024_2343357 crossref_primary_10_1093_ijlct_ctad103 crossref_primary_10_1016_j_applthermaleng_2019_02_026 crossref_primary_10_1016_j_fuel_2021_120349 crossref_primary_10_1016_j_biortech_2021_125891 crossref_primary_10_1016_j_jpowsour_2024_234585 crossref_primary_10_1021_acsomega_2c07428 crossref_primary_10_1016_j_cjche_2022_10_018 crossref_primary_10_1016_j_mset_2018_12_004 crossref_primary_10_1016_j_scp_2024_101822 crossref_primary_10_1016_j_biteb_2018_04_011 crossref_primary_10_1016_j_fuel_2022_127266 crossref_primary_10_1080_00102202_2023_2204521 crossref_primary_10_1016_j_biombioe_2020_105839 crossref_primary_10_1016_j_fuel_2023_127663 crossref_primary_10_1080_15567036_2020_1796848 crossref_primary_10_1007_s10973_019_08289_3 crossref_primary_10_1016_j_psep_2025_106787 crossref_primary_10_1016_j_enconman_2019_05_019 crossref_primary_10_1007_s10973_022_11610_2 crossref_primary_10_1016_j_seta_2022_102072 crossref_primary_10_1016_j_joei_2023_101295 crossref_primary_10_2139_ssrn_4017213 crossref_primary_10_1016_j_energy_2024_130520 crossref_primary_10_1016_j_tca_2023_179500 crossref_primary_10_1007_s13399_024_06470_9 crossref_primary_10_1007_s13196_019_00236_x crossref_primary_10_1016_j_csite_2024_104186 crossref_primary_10_1016_j_biortech_2017_12_029 crossref_primary_10_1016_j_biortech_2018_04_020 crossref_primary_10_1016_j_biortech_2019_121689 crossref_primary_10_1016_j_mset_2023_04_009 crossref_primary_10_1016_j_energy_2024_132391 crossref_primary_10_2139_ssrn_4051413 crossref_primary_10_1016_j_renene_2020_04_025 crossref_primary_10_1016_j_ecmx_2021_100147 crossref_primary_10_1016_j_heliyon_2023_e17236 crossref_primary_10_1016_j_jiec_2023_11_058 crossref_primary_10_2139_ssrn_4000208 crossref_primary_10_1016_j_renene_2022_02_024 crossref_primary_10_1007_s10973_022_11878_4 crossref_primary_10_1007_s12155_020_10101_2 crossref_primary_10_1007_s13399_018_0332_8 crossref_primary_10_1016_j_biortech_2022_127332 crossref_primary_10_1002_ep_13131 crossref_primary_10_1007_s11356_021_15847_6 crossref_primary_10_1016_j_seta_2023_103117 crossref_primary_10_1016_j_biortech_2021_125992 crossref_primary_10_2139_ssrn_4061005 crossref_primary_10_1016_j_biortech_2021_125631 crossref_primary_10_1016_j_ijhydene_2022_05_051 crossref_primary_10_1021_acsomega_1c04717 crossref_primary_10_1007_s13399_022_03656_x crossref_primary_10_1016_j_scitotenv_2022_158979 crossref_primary_10_1016_j_rser_2019_109567 crossref_primary_10_1063_1_5000879 crossref_primary_10_3390_pr12051022 crossref_primary_10_3390_en14154510 crossref_primary_10_1016_j_biombioe_2023_106937 crossref_primary_10_1007_s13399_023_03807_8 crossref_primary_10_1016_j_fuel_2023_127799 crossref_primary_10_1016_j_fuel_2022_126600 crossref_primary_10_1016_j_tsep_2024_102696 crossref_primary_10_1016_j_energy_2021_122112 crossref_primary_10_1007_s10973_022_11711_y crossref_primary_10_1080_15567036_2022_2106326 crossref_primary_10_1016_j_scenv_2024_100089 crossref_primary_10_1002_er_6795 |
Cites_doi | 10.1016/j.fuel.2015.04.016 10.1007/s10973-013-3503-7 10.1016/j.biortech.2009.05.063 10.1016/S0016-2361(98)00156-2 10.1016/j.biombioe.2011.01.011 10.1002/pol.1966.110040504 10.1016/j.rser.2015.10.050 10.1016/j.biortech.2015.03.081 10.1016/j.biortech.2010.03.145 10.1021/ef020260x 10.1016/j.tca.2012.11.003 10.1016/j.fuel.2012.01.005 10.1002/app.1961.070051506 10.1016/j.cherd.2009.10.011 10.1246/bcsj.38.1881 10.1038/201068a0 10.1016/j.biortech.2013.07.086 10.1016/j.biombioe.2014.05.011 10.3144/expresspolymlett.2008.18 10.1007/s10973-005-7149-y 10.1016/j.biortech.2009.06.003 10.1016/j.apenergy.2011.12.056 10.1016/j.fuel.2012.04.015 10.1016/j.biortech.2015.12.055 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2016.10.090 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 713 |
ExternalDocumentID | 27838316 10_1016_j_biortech_2016_10_090 S0960852416315048 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION SSH SSR CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-e5c3c9de2af8171ea91b21fa3dd1e580d255f03afa0d7fd691588ebf3ad769e33 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 |
IngestDate | Wed Jul 02 04:52:40 EDT 2025 Fri Jul 11 10:06:38 EDT 2025 Thu Apr 03 07:03:42 EDT 2025 Tue Jul 01 02:06:43 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Sun Apr 06 06:54:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis Bioenergy Low cost biomass TGA-DSC analyses |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-e5c3c9de2af8171ea91b21fa3dd1e580d255f03afa0d7fd691588ebf3ad769e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27838316 |
PQID | 1839110673 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000110451 proquest_miscellaneous_1839110673 pubmed_primary_27838316 crossref_primary_10_1016_j_biortech_2016_10_090 crossref_citationtrail_10_1016_j_biortech_2016_10_090 elsevier_sciencedirect_doi_10_1016_j_biortech_2016_10_090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 2017-Jan 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vlaev, Georgieva, Genieva (b0125) 2007; 88 Edrisi, Abhilash (b0035) 2016; 54 Xu, Chen (b0135) 2013; 146 Li, Chen, Zhao, Zhang, Wang, Wang, Ye (b0070) 2010; 88 Maia, de Morais (b0075) 2016; 204 Ceylan, Kazan (b0015) 2015; 187 Coats, Redfern (b0020) 1964; 201 Li, Chen, Zhang, Ye, Xing (b0065) 2011; 35 Slopiecka, Bartocci, Fantozzi (b0115) 2012; 97 Mehmood, Ibrahim, Rashid, Nawaz, Ali, Hussain, Gull (b0080) 2016 Li, Chen, Chen, Zhang, Chen, Ye (b0055) 2012; 96 Flynn, Wall (b0040) 1966; 4 Akahira, T., Sunose, T., 1969. Transactions of Joint Convention of Four Electrical Institutes. 246. Doyle, C.D., 1961. Kinetic Analysis of Thermogravimetric Data. V(15): 285–292. Orfao, Antunes, Figueiredo (b0090) 1999; 78 Skevas, Swinton, Hayden (b0110) 2014; 67 Heo, Park, Park, Ryu, Suh, Suh, Yim, Kim (b0045) 2010; 101 Jeguirim, Dorge, Trouve (b0050) 2010; 101 Li, Chen, Yi, Zhang, Ye (b0060) 2010; 101 Turmanova, Genieva, Dimitrova, Vlaev (b0120) 2008; 2 Wu, Mei, Zhang, Liu, Cai (b0130) 2015; 156 Nhuchhen, Salam (b0085) 2012; 99 Braga, Melo, Aquino, Freitas, Melo, Barros, Fontes (b0010) 2014; 115 Sanchez-Jimenez, Perez-Maqueda, Pereon, Criado (b0100) 2013; 552 Daugaard, Brown (b0025) 2003; 17 Ozawa (b0095) 1965; 38 Saqib, Tabbssum, Rashid, Ibrahim, Gill, Mehmood (b0105) 2013; 1 Saqib (10.1016/j.biortech.2016.10.090_b0105) 2013; 1 Slopiecka (10.1016/j.biortech.2016.10.090_b0115) 2012; 97 10.1016/j.biortech.2016.10.090_b0005 Edrisi (10.1016/j.biortech.2016.10.090_b0035) 2016; 54 Nhuchhen (10.1016/j.biortech.2016.10.090_b0085) 2012; 99 Skevas (10.1016/j.biortech.2016.10.090_b0110) 2014; 67 Daugaard (10.1016/j.biortech.2016.10.090_b0025) 2003; 17 Jeguirim (10.1016/j.biortech.2016.10.090_b0050) 2010; 101 Li (10.1016/j.biortech.2016.10.090_b0060) 2010; 101 Sanchez-Jimenez (10.1016/j.biortech.2016.10.090_b0100) 2013; 552 Ceylan (10.1016/j.biortech.2016.10.090_b0015) 2015; 187 Turmanova (10.1016/j.biortech.2016.10.090_b0120) 2008; 2 Heo (10.1016/j.biortech.2016.10.090_b0045) 2010; 101 Ozawa (10.1016/j.biortech.2016.10.090_b0095) 1965; 38 10.1016/j.biortech.2016.10.090_b0030 Li (10.1016/j.biortech.2016.10.090_b0065) 2011; 35 Orfao (10.1016/j.biortech.2016.10.090_b0090) 1999; 78 Coats (10.1016/j.biortech.2016.10.090_b0020) 1964; 201 Li (10.1016/j.biortech.2016.10.090_b0070) 2010; 88 Braga (10.1016/j.biortech.2016.10.090_b0010) 2014; 115 Xu (10.1016/j.biortech.2016.10.090_b0135) 2013; 146 Li (10.1016/j.biortech.2016.10.090_b0055) 2012; 96 Maia (10.1016/j.biortech.2016.10.090_b0075) 2016; 204 Vlaev (10.1016/j.biortech.2016.10.090_b0125) 2007; 88 Mehmood (10.1016/j.biortech.2016.10.090_b0080) 2016 Flynn (10.1016/j.biortech.2016.10.090_b0040) 1966; 4 Wu (10.1016/j.biortech.2016.10.090_b0130) 2015; 156 |
References_xml | – year: 2016 ident: b0080 article-title: Biomass production for bioenergy using marginal lands publication-title: Sustain. Prod. Consump. – volume: 201 start-page: 68 year: 1964 end-page: 69 ident: b0020 article-title: Kinetic parameters from thermogravmetric data publication-title: Nature – volume: 552 start-page: 54 year: 2013 end-page: 59 ident: b0100 article-title: Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis publication-title: Thermochim. Acta – volume: 4 start-page: 323 year: 1966 end-page: 328 ident: b0040 article-title: A quick, direct method for the determination of activation energy from thermogravimetric data publication-title: J. Polym. Sci. B. – reference: Akahira, T., Sunose, T., 1969. Transactions of Joint Convention of Four Electrical Institutes. 246. – volume: 204 start-page: 157 year: 2016 end-page: 163 ident: b0075 article-title: Kinetic parameters of red pepper waste as biomass to solid biofuel publication-title: Bioresour. Technol. – volume: 2 start-page: 133 year: 2008 end-page: 146 ident: b0120 article-title: Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites publication-title: Exp. Polym. Lett. – volume: 35 start-page: 1765 year: 2011 end-page: 1772 ident: b0065 article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae publication-title: Biomass Bioenergy – volume: 97 start-page: 491 year: 2012 end-page: 497 ident: b0115 article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis publication-title: Appl. Energy – volume: 17 start-page: 934 year: 2003 end-page: 939 ident: b0025 article-title: Enthalpy for pyrolysis for several types of biomass publication-title: Energy Fuels – volume: 54 start-page: 1537 year: 2016 end-page: 1551 ident: b0035 article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 7131 year: 2010 end-page: 7136 ident: b0060 article-title: Pyrolytic characteristics and kinetics of two brown algae and sodium alginate publication-title: Bioresour. Technol. – volume: 38 start-page: 1881 year: 1965 end-page: 1886 ident: b0095 article-title: A new method of analyzing thermogravimetric data publication-title: Bull. Chem. Soc. Jpn. – volume: 78 start-page: 349 year: 1999 end-page: 358 ident: b0090 article-title: Pyrolysis kinetics of lignocellulosic materials-three independent reactions model publication-title: Fuel – volume: 146 start-page: 485 year: 2013 end-page: 493 ident: b0135 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. – volume: 88 start-page: 805 year: 2007 end-page: 812 ident: b0125 article-title: Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds publication-title: J. Therm. Anal. Calorim. – volume: 187 start-page: 1 year: 2015 end-page: 5 ident: b0015 article-title: Pyrolysis kinetics and thermal characteristics of microalgae publication-title: Bioresour. Technol. – reference: Doyle, C.D., 1961. Kinetic Analysis of Thermogravimetric Data. V(15): 285–292. – volume: 88 start-page: 647 year: 2010 end-page: 652 ident: b0070 article-title: Evaluation of the pyrolytic and kinetic characteristics of publication-title: Chem. Eng. Res. Des. – volume: 156 start-page: 71 year: 2015 end-page: 80 ident: b0130 article-title: Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste publication-title: Fuel – volume: 96 start-page: 185 year: 2012 end-page: 191 ident: b0055 article-title: Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga ( publication-title: Fuel – volume: 115 start-page: 1915 year: 2014 end-page: 1920 ident: b0010 article-title: Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass publication-title: J. Therm. Anal. Calorim. – volume: 99 start-page: 55 year: 2012 end-page: 63 ident: b0085 article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach publication-title: Fuel – volume: 1 start-page: 155 year: 2013 end-page: 163 ident: b0105 article-title: Marine macro algae publication-title: Asian J. Agri. Biol. – volume: 67 start-page: 252 year: 2014 end-page: 259 ident: b0110 article-title: What type of landowner would supply marginal land for energy crops? publication-title: Biomass Bioenergy – volume: 101 start-page: S91 year: 2010 end-page: S96 ident: b0045 article-title: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed publication-title: Bioresour. Technol. – volume: 101 start-page: 788 year: 2010 end-page: 793 ident: b0050 article-title: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: publication-title: Bioresour. Technol. – volume: 156 start-page: 71 year: 2015 ident: 10.1016/j.biortech.2016.10.090_b0130 article-title: Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste publication-title: Fuel doi: 10.1016/j.fuel.2015.04.016 – volume: 115 start-page: 1915 year: 2014 ident: 10.1016/j.biortech.2016.10.090_b0010 article-title: Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-013-3503-7 – volume: 101 start-page: 788 year: 2010 ident: 10.1016/j.biortech.2016.10.090_b0050 article-title: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.05.063 – volume: 78 start-page: 349 year: 1999 ident: 10.1016/j.biortech.2016.10.090_b0090 article-title: Pyrolysis kinetics of lignocellulosic materials-three independent reactions model publication-title: Fuel doi: 10.1016/S0016-2361(98)00156-2 – volume: 35 start-page: 1765 year: 2011 ident: 10.1016/j.biortech.2016.10.090_b0065 article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.011 – volume: 4 start-page: 323 year: 1966 ident: 10.1016/j.biortech.2016.10.090_b0040 article-title: A quick, direct method for the determination of activation energy from thermogravimetric data publication-title: J. Polym. Sci. B. doi: 10.1002/pol.1966.110040504 – volume: 54 start-page: 1537 year: 2016 ident: 10.1016/j.biortech.2016.10.090_b0035 article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.050 – volume: 187 start-page: 1 year: 2015 ident: 10.1016/j.biortech.2016.10.090_b0015 article-title: Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.081 – volume: 101 start-page: 7131 year: 2010 ident: 10.1016/j.biortech.2016.10.090_b0060 article-title: Pyrolytic characteristics and kinetics of two brown algae and sodium alginate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.03.145 – volume: 17 start-page: 934 year: 2003 ident: 10.1016/j.biortech.2016.10.090_b0025 article-title: Enthalpy for pyrolysis for several types of biomass publication-title: Energy Fuels doi: 10.1021/ef020260x – volume: 552 start-page: 54 year: 2013 ident: 10.1016/j.biortech.2016.10.090_b0100 article-title: Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis publication-title: Thermochim. Acta doi: 10.1016/j.tca.2012.11.003 – volume: 96 start-page: 185 year: 2012 ident: 10.1016/j.biortech.2016.10.090_b0055 article-title: Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus) publication-title: Fuel doi: 10.1016/j.fuel.2012.01.005 – volume: 1 start-page: 155 year: 2013 ident: 10.1016/j.biortech.2016.10.090_b0105 article-title: Marine macro algae Ulva: a potential feed-stock for bio-ethanol and biogas production publication-title: Asian J. Agri. Biol. – ident: 10.1016/j.biortech.2016.10.090_b0030 doi: 10.1002/app.1961.070051506 – volume: 88 start-page: 647 year: 2010 ident: 10.1016/j.biortech.2016.10.090_b0070 article-title: Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2009.10.011 – volume: 38 start-page: 1881 year: 1965 ident: 10.1016/j.biortech.2016.10.090_b0095 article-title: A new method of analyzing thermogravimetric data publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.38.1881 – volume: 201 start-page: 68 year: 1964 ident: 10.1016/j.biortech.2016.10.090_b0020 article-title: Kinetic parameters from thermogravmetric data publication-title: Nature doi: 10.1038/201068a0 – volume: 146 start-page: 485 year: 2013 ident: 10.1016/j.biortech.2016.10.090_b0135 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.086 – volume: 67 start-page: 252 year: 2014 ident: 10.1016/j.biortech.2016.10.090_b0110 article-title: What type of landowner would supply marginal land for energy crops? publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.05.011 – volume: 2 start-page: 133 year: 2008 ident: 10.1016/j.biortech.2016.10.090_b0120 article-title: Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites publication-title: Exp. Polym. Lett. doi: 10.3144/expresspolymlett.2008.18 – volume: 88 start-page: 805 year: 2007 ident: 10.1016/j.biortech.2016.10.090_b0125 article-title: Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-005-7149-y – volume: 101 start-page: S91 year: 2010 ident: 10.1016/j.biortech.2016.10.090_b0045 article-title: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.06.003 – ident: 10.1016/j.biortech.2016.10.090_b0005 – volume: 97 start-page: 491 year: 2012 ident: 10.1016/j.biortech.2016.10.090_b0115 article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.056 – year: 2016 ident: 10.1016/j.biortech.2016.10.090_b0080 article-title: Biomass production for bioenergy using marginal lands publication-title: Sustain. Prod. Consump. – volume: 99 start-page: 55 year: 2012 ident: 10.1016/j.biortech.2016.10.090_b0085 article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach publication-title: Fuel doi: 10.1016/j.fuel.2012.04.015 – volume: 204 start-page: 157 year: 2016 ident: 10.1016/j.biortech.2016.10.090_b0075 article-title: Kinetic parameters of red pepper waste as biomass to solid biofuel publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.055 |
SSID | ssj0003172 |
Score | 2.6300166 |
Snippet | •Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters... The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 708 |
SubjectTerms | activation energy Bioenergy Biofuels Biomass calorimetry Gibbs free energy Heating Kinetics Low cost biomass Models, Theoretical Panicum virgatum Poaceae - chemistry Pyrolysis technology TGA-DSC analyses thermal degradation Thermodynamics Thermogravimetry Urochloa mutica |
Title | Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential |
URI | https://dx.doi.org/10.1016/j.biortech.2016.10.090 https://www.ncbi.nlm.nih.gov/pubmed/27838316 https://www.proquest.com/docview/1839110673 https://www.proquest.com/docview/2000110451 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CemhzCGmappu0QYUemoN3Lcsf8nFZGrYNDYV2ITcztqSwYbtevM4hl_z2zGjtNIWGHHozsgZkzTDzLM28AfhkwtgYGWIg-fg-ppgclIm2QerQJblRWPkeS98v0uks_naZXG7BpK-F4bTKzvdvfLr31t3IqNvN0Wo-H_1k8K2TiBEFoZqYC37jOGMrH979SfOg-OhvEmhywLMfVQlfD8s5Z7T6SwmZDjnLi33zvwPUUwDUB6KzPdjtEKQYbxb5Grbsch92xldNx6Jh9-HlpG_jRm8eMQ6-geqcnklQoCcjsWt6MGJ129SLWx7uq_ZF7cQPbFBcNYSuxecZd9Za1Ch--8PvU0FYV8zbtaBvs758UKzqljOPcHEAs7MvvybToOuzEFSx0m1gk0pVubEROi0zaTGXZSQdKtKiTXRo6LfDhQodhiZzJs1lorUtnUKTpblV6i1sL-ulfQeCwE5OXsOkaMo4KyttZY6EKKswtSrDcgBJv7lF1ZGQcy-MRdFnm10XvVIKVgqPk1IGMHqQW21oOJ6VyHvdFX8ZVEGx4lnZj72yC9IWX6Hg0tY364LxpGTWPfX0nMjjbObtGcDhxlIe1sx9TbSS6dF_rO4YXkWMLfw50HvYbpsb-4GQUVueeNM_gRfjr-fTi3u9Hw8a |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcigcEJTX9gFG4gCH7MZxHs6xWrVa6ENIdKXeoklsV1stm1U2PfTS386MNylFouqBW-R4JMefPfPFngfAZxPGxsgQA8nH9zHZ5KBMtA1Shy7JjcLK11g6PUsn0_j7RXKxAeM-FobdKjvdv9bpXlt3LaNuNkfL2Wz0k8m3TiJmFMRqYv0Ensa0fbmMwfD2j58HGUh_lUC9A-5-L0z4aljO2KXV30rIdMhuXqyc_22hHmKg3hIdvYQXHYUUB-tRvoINu9iG5weXTZdGw27D1riv40Zv7qUcfA3VMT2ToECfjcSu6MGI5U1Tz2-4uQ_bF7UTP7BBcdkQvRZfplxaa16j-OVPv78KIrti1q4EfZv18YNiWbfseoTzNzA9OjwfT4Ku0EJQxUq3gU0qVeXGRui0zKTFXJaRdKgIRpvo0NB_hwsVOgxN5kyay0RrWzqFJktzq9Rb2FzUC_seBLGdnNSGSdGUcVZW2sociVJWYWpVhuUAkn5yi6rLQs7FMOZF7252VfSgFAwKtxMoAxjdyS3XeTgelch77Iq_VlRBxuJR2U892AWhxXcouLD19apgQik57Z56uE_kiTYn7hnAu_VKuRszFzbRSqY7_zG6j7A1OT89KU6-nR3vwrOIiYY_FNqDzba5tvtEk9ryg98GvwHL1xCo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+analyses+and+pyrolytic+behavior+of+Para+grass+%28Urochloa+mutica%29+for+its+bioenergy+potential&rft.jtitle=Bioresource+technology&rft.au=Ahmad%2C+Muhammad+Sajjad&rft.au=Mehmood%2C+Muhammad+Aamer&rft.au=Al+Ayed%2C+Omar+S&rft.au=Ye%2C+Guangbin&rft.date=2017-01-01&rft.eissn=1873-2976&rft.volume=224&rft.spage=708&rft_id=info:doi/10.1016%2Fj.biortech.2016.10.090&rft_id=info%3Apmid%2F27838316&rft.externalDocID=27838316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |