Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential

•Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops. The...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 224; pp. 708 - 713
Main Authors Ahmad, Muhammad Sajjad, Mehmood, Muhammad Aamer, Al Ayed, Omar S., Ye, Guangbin, Luo, Huibo, Ibrahim, Muhammad, Rashid, Umer, Arbi Nehdi, Imededdine, Qadir, Ghulam
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops. The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin−1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol−1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol−1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol−1 and 168 to 172kJmol−1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
AbstractList The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol . The activation energy (E) values were shown to be ranging from 103 through 233 kJmol . Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol and 168 to 172kJmol , calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
•Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters indicate the bioenergy potential of this novel biomass.•The bioenergy potential of the biomass is comparable with established bioenergy crops. The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin−1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol−1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol−1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol−1 and 168 to 172kJmol−1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin⁻¹ using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The high heating value was calculated as 15.04MJmol⁻¹. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol⁻¹. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol⁻¹ and 168 to 172kJmol⁻¹, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
Author Ye, Guangbin
Qadir, Ghulam
Al Ayed, Omar S.
Arbi Nehdi, Imededdine
Ahmad, Muhammad Sajjad
Ibrahim, Muhammad
Rashid, Umer
Luo, Huibo
Mehmood, Muhammad Aamer
Author_xml – sequence: 1
  givenname: Muhammad Sajjad
  surname: Ahmad
  fullname: Ahmad, Muhammad Sajjad
  organization: Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
– sequence: 2
  givenname: Muhammad Aamer
  surname: Mehmood
  fullname: Mehmood, Muhammad Aamer
  email: draamer@gcuf.edu.pk
  organization: Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
– sequence: 3
  givenname: Omar S.
  surname: Al Ayed
  fullname: Al Ayed, Omar S.
  organization: Department of Chemical Engineering, Al-Balqa’a Applied University, Amman, Jordan
– sequence: 4
  givenname: Guangbin
  surname: Ye
  fullname: Ye, Guangbin
  organization: College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People’s Republic of China
– sequence: 5
  givenname: Huibo
  surname: Luo
  fullname: Luo, Huibo
  organization: College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People’s Republic of China
– sequence: 6
  givenname: Muhammad
  surname: Ibrahim
  fullname: Ibrahim, Muhammad
  organization: Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
– sequence: 7
  givenname: Umer
  surname: Rashid
  fullname: Rashid, Umer
  organization: Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
– sequence: 8
  givenname: Imededdine
  surname: Arbi Nehdi
  fullname: Arbi Nehdi, Imededdine
  organization: Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
– sequence: 9
  givenname: Ghulam
  surname: Qadir
  fullname: Qadir, Ghulam
  organization: Soil Salinity Research Institute, Pindi Bhattian, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27838316$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUha0KBAPlLyAv6SKDH5PEkbpohfpAILWLsrZu7GvGo0w8tT1I-fc4Guiim1nZPvrOvdY5F-RkDCMScs3ZkjPe3G6WvQ8xo1kvRXkXcck69oEsuGplJbq2OSEL1jWsUrVYnZOLlDaMMclbcUbORaukkrxZEPPgR8zeUBhhmBKmcrF0N8UwTLPc4xpeyiYaHP0NEehzhJTozVMMZj0EoNt9weATdYXxOdHyLRwxPk90FzKO2cPwkZw6GBJevZ2X5On7tz93P6vHXz_u774-VmYlVa6wNtJ0FgU4xVuO0PFecAfSWo61YlbUtWMSHDDbOtt0vFYKeyfBtk2HUl6Sm8PcXQx_95iy3vpkcBhgxLBPWpQAOGermh9FuZJdQZt2nnr9hu77LVq9i34LcdLvGRagOQAmhpQiun8IZ3ouS2_0e1l6LmvWS1nF-Pk_o_EZsg9jjuCH4_YvBzuWTF88Rp2Mx9Gg9RFN1jb4YyNeAVGCtZ4
CitedBy_id crossref_primary_10_1016_j_clet_2021_100062
crossref_primary_10_1016_j_cej_2024_149106
crossref_primary_10_1007_s10973_022_11910_7
crossref_primary_10_1007_s13399_021_01843_w
crossref_primary_10_1007_s10973_019_08053_7
crossref_primary_10_1007_s10973_017_6398_x
crossref_primary_10_1016_j_biortech_2019_122602
crossref_primary_10_1007_s13399_025_06550_4
crossref_primary_10_1016_j_enconman_2019_01_031
crossref_primary_10_1016_j_jaap_2018_05_013
crossref_primary_10_1016_j_jaap_2021_105249
crossref_primary_10_1007_s13399_022_02393_5
crossref_primary_10_2139_ssrn_4011166
crossref_primary_10_5004_dwt_2022_28353
crossref_primary_10_52396_JUSTC_2022_0049
crossref_primary_10_1007_s13399_022_03347_7
crossref_primary_10_1016_j_mset_2021_03_003
crossref_primary_10_1080_1536383X_2020_1759556
crossref_primary_10_1007_s13399_021_01892_1
crossref_primary_10_1016_j_renene_2020_11_012
crossref_primary_10_1021_acsomega_4c03053
crossref_primary_10_1515_ijcre_2017_0184
crossref_primary_10_1016_j_jenvman_2024_120835
crossref_primary_10_1007_s13399_024_06228_3
crossref_primary_10_1016_j_joei_2020_04_019
crossref_primary_10_1016_j_biombioe_2018_12_015
crossref_primary_10_1016_j_energy_2021_122493
crossref_primary_10_1016_j_jmrt_2022_04_032
crossref_primary_10_3390_en15124342
crossref_primary_10_1016_j_csite_2023_103118
crossref_primary_10_1002_cjce_24037
crossref_primary_10_1016_j_scitotenv_2021_148392
crossref_primary_10_1016_j_biortech_2016_12_096
crossref_primary_10_1016_j_biortech_2019_121892
crossref_primary_10_1007_s13399_020_01232_9
crossref_primary_10_2139_ssrn_4157305
crossref_primary_10_1007_s13399_022_03527_5
crossref_primary_10_1016_j_rineng_2022_100426
crossref_primary_10_1016_j_cej_2020_124749
crossref_primary_10_1038_s41598_024_82830_9
crossref_primary_10_1007_s13399_019_00405_5
crossref_primary_10_1016_j_fuel_2022_124976
crossref_primary_10_1007_s13399_021_01575_x
crossref_primary_10_3390_ma17081895
crossref_primary_10_1016_j_biteb_2019_100332
crossref_primary_10_1016_j_applthermaleng_2018_12_010
crossref_primary_10_1016_j_jaap_2024_106518
crossref_primary_10_1016_j_wasman_2023_09_037
crossref_primary_10_1016_j_biortech_2018_02_126
crossref_primary_10_1016_j_biortech_2019_122630
crossref_primary_10_1515_cppm_2020_0048
crossref_primary_10_1007_s13399_022_02524_y
crossref_primary_10_1007_s13399_024_05657_4
crossref_primary_10_1016_j_biortech_2018_03_043
crossref_primary_10_1016_j_fuel_2019_115926
crossref_primary_10_1016_j_biortech_2018_08_068
crossref_primary_10_1021_acsomega_4c10700
crossref_primary_10_1016_j_biteb_2024_101916
crossref_primary_10_1016_j_biteb_2023_101735
crossref_primary_10_1016_j_psep_2025_01_020
crossref_primary_10_1016_j_jfueco_2022_100073
crossref_primary_10_1016_j_biombioe_2019_01_009
crossref_primary_10_1016_j_biortech_2017_08_162
crossref_primary_10_1016_j_scp_2021_100567
crossref_primary_10_1016_j_ccst_2024_100271
crossref_primary_10_3390_en16093731
crossref_primary_10_3390_su13179642
crossref_primary_10_1080_15567036_2022_2097750
crossref_primary_10_1021_acsomega_1c01249
crossref_primary_10_1016_j_energy_2021_120895
crossref_primary_10_1080_15567036_2019_1662138
crossref_primary_10_1016_j_fuel_2019_116338
crossref_primary_10_3390_ani13233676
crossref_primary_10_1016_j_tca_2023_179519
crossref_primary_10_1016_j_jaap_2023_105972
crossref_primary_10_1007_s13399_025_06670_x
crossref_primary_10_1002_ep_14287
crossref_primary_10_1016_j_biortech_2018_09_137
crossref_primary_10_1016_j_biortech_2019_01_106
crossref_primary_10_1016_j_wasman_2019_11_012
crossref_primary_10_1080_1536383X_2021_1881063
crossref_primary_10_1016_j_biortech_2021_126346
crossref_primary_10_1016_j_biteb_2021_100858
crossref_primary_10_1016_j_biortech_2017_03_105
crossref_primary_10_14710_ijred_2022_41531
crossref_primary_10_3390_molecules27217515
crossref_primary_10_1016_j_renene_2023_119337
crossref_primary_10_1016_j_cej_2024_155558
crossref_primary_10_1155_2022_1659855
crossref_primary_10_1016_j_fuel_2020_117172
crossref_primary_10_1007_s13762_021_03416_w
crossref_primary_10_1016_j_jclepro_2023_136772
crossref_primary_10_1016_j_jaap_2019_04_018
crossref_primary_10_1007_s13399_021_01664_x
crossref_primary_10_1007_s13399_021_01492_z
crossref_primary_10_1016_j_biteb_2023_101676
crossref_primary_10_1016_j_biortech_2022_127022
crossref_primary_10_1016_j_enconman_2024_118229
crossref_primary_10_1016_j_biombioe_2024_107238
crossref_primary_10_3390_ma16103667
crossref_primary_10_1016_j_applthermaleng_2019_04_043
crossref_primary_10_1016_j_biortech_2020_123699
crossref_primary_10_1016_j_biortech_2020_124545
crossref_primary_10_1007_s10973_023_12868_w
crossref_primary_10_1016_j_biortech_2020_123464
crossref_primary_10_1016_j_indcrop_2023_116638
crossref_primary_10_1016_j_jece_2022_107850
crossref_primary_10_1007_s13399_021_01964_2
crossref_primary_10_1039_D4CY01475H
crossref_primary_10_1016_j_renene_2023_02_012
crossref_primary_10_2139_ssrn_3983959
crossref_primary_10_1016_j_energy_2023_126817
crossref_primary_10_1016_j_biortech_2017_11_077
crossref_primary_10_1016_j_jaap_2023_105992
crossref_primary_10_1016_j_renene_2022_12_074
crossref_primary_10_1080_15567036_2020_1779416
crossref_primary_10_1007_s10973_021_11123_4
crossref_primary_10_1016_j_biombioe_2024_107245
crossref_primary_10_1016_j_jclepro_2024_143572
crossref_primary_10_1177_0734242X19896624
crossref_primary_10_1016_j_scp_2024_101685
crossref_primary_10_1016_j_biortech_2017_03_007
crossref_primary_10_1016_j_biteb_2021_100639
crossref_primary_10_1016_j_applthermaleng_2018_03_050
crossref_primary_10_1016_j_algal_2022_102635
crossref_primary_10_1016_j_wasman_2025_02_005
crossref_primary_10_1007_s13399_021_01360_w
crossref_primary_10_1016_j_enconman_2021_114590
crossref_primary_10_1016_j_scp_2023_101130
crossref_primary_10_3390_su151612536
crossref_primary_10_1016_j_jaap_2022_105565
crossref_primary_10_1080_15567036_2018_1502846
crossref_primary_10_1007_s10163_019_00891_9
crossref_primary_10_1016_j_biortech_2019_03_147
crossref_primary_10_1016_j_biortech_2020_124529
crossref_primary_10_1016_j_energy_2024_131677
crossref_primary_10_1016_j_enconman_2020_112653
crossref_primary_10_1007_s10973_019_09170_z
crossref_primary_10_3390_catal12080840
crossref_primary_10_1016_j_enconman_2018_02_049
crossref_primary_10_1016_j_energy_2022_124678
crossref_primary_10_1021_acsomega_1c05884
crossref_primary_10_5802_crchim_351
crossref_primary_10_2139_ssrn_3966931
crossref_primary_10_1088_1757_899X_1034_1_012082
crossref_primary_10_1007_s12155_024_10811_x
crossref_primary_10_1007_s13399_021_01922_y
crossref_primary_10_2139_ssrn_4152713
crossref_primary_10_1016_j_apenergy_2021_116933
crossref_primary_10_1016_j_renene_2022_10_042
crossref_primary_10_1007_s40430_022_03993_y
crossref_primary_10_1007_s10973_023_12153_w
crossref_primary_10_1016_j_renene_2023_119809
crossref_primary_10_1016_j_tsep_2024_102494
crossref_primary_10_1016_j_seta_2021_101632
crossref_primary_10_1016_j_jenvman_2021_113194
crossref_primary_10_1080_17597269_2021_1965760
crossref_primary_10_1016_j_fuel_2019_116263
crossref_primary_10_1016_j_jece_2020_104554
crossref_primary_10_1016_j_psep_2024_06_084
crossref_primary_10_1016_j_tca_2018_02_005
crossref_primary_10_1016_j_energy_2024_133037
crossref_primary_10_1007_s13399_021_01749_7
crossref_primary_10_1016_j_biortech_2018_01_033
crossref_primary_10_1016_j_biortech_2019_121481
crossref_primary_10_1016_j_crcon_2019_08_001
crossref_primary_10_1021_acsomega_4c02366
crossref_primary_10_1007_s10973_018_7392_7
crossref_primary_10_1016_j_psep_2020_10_044
crossref_primary_10_1016_j_biteb_2021_100942
crossref_primary_10_1016_j_jenvman_2021_113854
crossref_primary_10_1080_1536383X_2020_1832994
crossref_primary_10_46481_jnsps_2022_555
crossref_primary_10_1016_j_renene_2020_08_120
crossref_primary_10_1007_s13399_020_00972_y
crossref_primary_10_1016_j_enconman_2019_04_076
crossref_primary_10_1007_s12155_019_9964_1
crossref_primary_10_1016_j_joei_2023_101242
crossref_primary_10_1016_j_fuel_2020_117238
crossref_primary_10_1016_j_biortech_2022_127375
crossref_primary_10_1016_j_seta_2023_103150
crossref_primary_10_3390_su14010112
crossref_primary_10_1016_j_biortech_2018_04_011
crossref_primary_10_1016_j_cej_2023_142930
crossref_primary_10_1016_j_tca_2023_179473
crossref_primary_10_1080_15567036_2020_1774684
crossref_primary_10_1016_j_renene_2021_08_099
crossref_primary_10_1016_j_indcrop_2023_117715
crossref_primary_10_1016_j_renene_2023_119039
crossref_primary_10_1016_j_biteb_2020_100558
crossref_primary_10_1177_0734242X241241604
crossref_primary_10_1002_apj_2909
crossref_primary_10_1002_ep_14153
crossref_primary_10_1016_j_biteb_2020_100553
crossref_primary_10_3390_en15186524
crossref_primary_10_1007_s13399_020_00790_2
crossref_primary_10_1002_er_8303
crossref_primary_10_1016_j_biortech_2018_01_054
crossref_primary_10_1016_j_renene_2018_01_076
crossref_primary_10_1016_j_scitotenv_2021_147004
crossref_primary_10_1016_j_jaap_2021_105066
crossref_primary_10_1007_s13399_022_02697_6
crossref_primary_10_1515_ijcre_2020_0140
crossref_primary_10_3390_su11133592
crossref_primary_10_1016_j_renene_2022_03_084
crossref_primary_10_1080_1536383X_2023_2194637
crossref_primary_10_1016_j_rser_2023_113346
crossref_primary_10_1088_1757_899X_736_4_042029
crossref_primary_10_1007_s12155_022_10497_z
crossref_primary_10_1021_acsomega_3c04328
crossref_primary_10_2166_ws_2020_193
crossref_primary_10_1002_slct_202104480
crossref_primary_10_1016_j_biombioe_2024_107293
crossref_primary_10_1016_j_jaap_2023_106303
crossref_primary_10_1080_00102202_2024_2343357
crossref_primary_10_1093_ijlct_ctad103
crossref_primary_10_1016_j_applthermaleng_2019_02_026
crossref_primary_10_1016_j_fuel_2021_120349
crossref_primary_10_1016_j_biortech_2021_125891
crossref_primary_10_1016_j_jpowsour_2024_234585
crossref_primary_10_1021_acsomega_2c07428
crossref_primary_10_1016_j_cjche_2022_10_018
crossref_primary_10_1016_j_mset_2018_12_004
crossref_primary_10_1016_j_scp_2024_101822
crossref_primary_10_1016_j_biteb_2018_04_011
crossref_primary_10_1016_j_fuel_2022_127266
crossref_primary_10_1080_00102202_2023_2204521
crossref_primary_10_1016_j_biombioe_2020_105839
crossref_primary_10_1016_j_fuel_2023_127663
crossref_primary_10_1080_15567036_2020_1796848
crossref_primary_10_1007_s10973_019_08289_3
crossref_primary_10_1016_j_psep_2025_106787
crossref_primary_10_1016_j_enconman_2019_05_019
crossref_primary_10_1007_s10973_022_11610_2
crossref_primary_10_1016_j_seta_2022_102072
crossref_primary_10_1016_j_joei_2023_101295
crossref_primary_10_2139_ssrn_4017213
crossref_primary_10_1016_j_energy_2024_130520
crossref_primary_10_1016_j_tca_2023_179500
crossref_primary_10_1007_s13399_024_06470_9
crossref_primary_10_1007_s13196_019_00236_x
crossref_primary_10_1016_j_csite_2024_104186
crossref_primary_10_1016_j_biortech_2017_12_029
crossref_primary_10_1016_j_biortech_2018_04_020
crossref_primary_10_1016_j_biortech_2019_121689
crossref_primary_10_1016_j_mset_2023_04_009
crossref_primary_10_1016_j_energy_2024_132391
crossref_primary_10_2139_ssrn_4051413
crossref_primary_10_1016_j_renene_2020_04_025
crossref_primary_10_1016_j_ecmx_2021_100147
crossref_primary_10_1016_j_heliyon_2023_e17236
crossref_primary_10_1016_j_jiec_2023_11_058
crossref_primary_10_2139_ssrn_4000208
crossref_primary_10_1016_j_renene_2022_02_024
crossref_primary_10_1007_s10973_022_11878_4
crossref_primary_10_1007_s12155_020_10101_2
crossref_primary_10_1007_s13399_018_0332_8
crossref_primary_10_1016_j_biortech_2022_127332
crossref_primary_10_1002_ep_13131
crossref_primary_10_1007_s11356_021_15847_6
crossref_primary_10_1016_j_seta_2023_103117
crossref_primary_10_1016_j_biortech_2021_125992
crossref_primary_10_2139_ssrn_4061005
crossref_primary_10_1016_j_biortech_2021_125631
crossref_primary_10_1016_j_ijhydene_2022_05_051
crossref_primary_10_1021_acsomega_1c04717
crossref_primary_10_1007_s13399_022_03656_x
crossref_primary_10_1016_j_scitotenv_2022_158979
crossref_primary_10_1016_j_rser_2019_109567
crossref_primary_10_1063_1_5000879
crossref_primary_10_3390_pr12051022
crossref_primary_10_3390_en14154510
crossref_primary_10_1016_j_biombioe_2023_106937
crossref_primary_10_1007_s13399_023_03807_8
crossref_primary_10_1016_j_fuel_2023_127799
crossref_primary_10_1016_j_fuel_2022_126600
crossref_primary_10_1016_j_tsep_2024_102696
crossref_primary_10_1016_j_energy_2021_122112
crossref_primary_10_1007_s10973_022_11711_y
crossref_primary_10_1080_15567036_2022_2106326
crossref_primary_10_1016_j_scenv_2024_100089
crossref_primary_10_1002_er_6795
Cites_doi 10.1016/j.fuel.2015.04.016
10.1007/s10973-013-3503-7
10.1016/j.biortech.2009.05.063
10.1016/S0016-2361(98)00156-2
10.1016/j.biombioe.2011.01.011
10.1002/pol.1966.110040504
10.1016/j.rser.2015.10.050
10.1016/j.biortech.2015.03.081
10.1016/j.biortech.2010.03.145
10.1021/ef020260x
10.1016/j.tca.2012.11.003
10.1016/j.fuel.2012.01.005
10.1002/app.1961.070051506
10.1016/j.cherd.2009.10.011
10.1246/bcsj.38.1881
10.1038/201068a0
10.1016/j.biortech.2013.07.086
10.1016/j.biombioe.2014.05.011
10.3144/expresspolymlett.2008.18
10.1007/s10973-005-7149-y
10.1016/j.biortech.2009.06.003
10.1016/j.apenergy.2011.12.056
10.1016/j.fuel.2012.04.015
10.1016/j.biortech.2015.12.055
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2016.10.090
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 713
ExternalDocumentID 27838316
10_1016_j_biortech_2016_10_090
S0960852416315048
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
SSH
SSR
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c438t-e5c3c9de2af8171ea91b21fa3dd1e580d255f03afa0d7fd691588ebf3ad769e33
IEDL.DBID .~1
ISSN 0960-8524
IngestDate Wed Jul 02 04:52:40 EDT 2025
Fri Jul 11 10:06:38 EDT 2025
Thu Apr 03 07:03:42 EDT 2025
Tue Jul 01 02:06:43 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Sun Apr 06 06:54:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Bioenergy
Low cost biomass
TGA-DSC analyses
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-e5c3c9de2af8171ea91b21fa3dd1e580d255f03afa0d7fd691588ebf3ad769e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27838316
PQID 1839110673
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000110451
proquest_miscellaneous_1839110673
pubmed_primary_27838316
crossref_primary_10_1016_j_biortech_2016_10_090
crossref_citationtrail_10_1016_j_biortech_2016_10_090
elsevier_sciencedirect_doi_10_1016_j_biortech_2016_10_090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
2017-Jan
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vlaev, Georgieva, Genieva (b0125) 2007; 88
Edrisi, Abhilash (b0035) 2016; 54
Xu, Chen (b0135) 2013; 146
Li, Chen, Zhao, Zhang, Wang, Wang, Ye (b0070) 2010; 88
Maia, de Morais (b0075) 2016; 204
Ceylan, Kazan (b0015) 2015; 187
Coats, Redfern (b0020) 1964; 201
Li, Chen, Zhang, Ye, Xing (b0065) 2011; 35
Slopiecka, Bartocci, Fantozzi (b0115) 2012; 97
Mehmood, Ibrahim, Rashid, Nawaz, Ali, Hussain, Gull (b0080) 2016
Li, Chen, Chen, Zhang, Chen, Ye (b0055) 2012; 96
Flynn, Wall (b0040) 1966; 4
Akahira, T., Sunose, T., 1969. Transactions of Joint Convention of Four Electrical Institutes. 246.
Doyle, C.D., 1961. Kinetic Analysis of Thermogravimetric Data. V(15): 285–292.
Orfao, Antunes, Figueiredo (b0090) 1999; 78
Skevas, Swinton, Hayden (b0110) 2014; 67
Heo, Park, Park, Ryu, Suh, Suh, Yim, Kim (b0045) 2010; 101
Jeguirim, Dorge, Trouve (b0050) 2010; 101
Li, Chen, Yi, Zhang, Ye (b0060) 2010; 101
Turmanova, Genieva, Dimitrova, Vlaev (b0120) 2008; 2
Wu, Mei, Zhang, Liu, Cai (b0130) 2015; 156
Nhuchhen, Salam (b0085) 2012; 99
Braga, Melo, Aquino, Freitas, Melo, Barros, Fontes (b0010) 2014; 115
Sanchez-Jimenez, Perez-Maqueda, Pereon, Criado (b0100) 2013; 552
Daugaard, Brown (b0025) 2003; 17
Ozawa (b0095) 1965; 38
Saqib, Tabbssum, Rashid, Ibrahim, Gill, Mehmood (b0105) 2013; 1
Saqib (10.1016/j.biortech.2016.10.090_b0105) 2013; 1
Slopiecka (10.1016/j.biortech.2016.10.090_b0115) 2012; 97
10.1016/j.biortech.2016.10.090_b0005
Edrisi (10.1016/j.biortech.2016.10.090_b0035) 2016; 54
Nhuchhen (10.1016/j.biortech.2016.10.090_b0085) 2012; 99
Skevas (10.1016/j.biortech.2016.10.090_b0110) 2014; 67
Daugaard (10.1016/j.biortech.2016.10.090_b0025) 2003; 17
Jeguirim (10.1016/j.biortech.2016.10.090_b0050) 2010; 101
Li (10.1016/j.biortech.2016.10.090_b0060) 2010; 101
Sanchez-Jimenez (10.1016/j.biortech.2016.10.090_b0100) 2013; 552
Ceylan (10.1016/j.biortech.2016.10.090_b0015) 2015; 187
Turmanova (10.1016/j.biortech.2016.10.090_b0120) 2008; 2
Heo (10.1016/j.biortech.2016.10.090_b0045) 2010; 101
Ozawa (10.1016/j.biortech.2016.10.090_b0095) 1965; 38
10.1016/j.biortech.2016.10.090_b0030
Li (10.1016/j.biortech.2016.10.090_b0065) 2011; 35
Orfao (10.1016/j.biortech.2016.10.090_b0090) 1999; 78
Coats (10.1016/j.biortech.2016.10.090_b0020) 1964; 201
Li (10.1016/j.biortech.2016.10.090_b0070) 2010; 88
Braga (10.1016/j.biortech.2016.10.090_b0010) 2014; 115
Xu (10.1016/j.biortech.2016.10.090_b0135) 2013; 146
Li (10.1016/j.biortech.2016.10.090_b0055) 2012; 96
Maia (10.1016/j.biortech.2016.10.090_b0075) 2016; 204
Vlaev (10.1016/j.biortech.2016.10.090_b0125) 2007; 88
Mehmood (10.1016/j.biortech.2016.10.090_b0080) 2016
Flynn (10.1016/j.biortech.2016.10.090_b0040) 1966; 4
Wu (10.1016/j.biortech.2016.10.090_b0130) 2015; 156
References_xml – year: 2016
  ident: b0080
  article-title: Biomass production for bioenergy using marginal lands
  publication-title: Sustain. Prod. Consump.
– volume: 201
  start-page: 68
  year: 1964
  end-page: 69
  ident: b0020
  article-title: Kinetic parameters from thermogravmetric data
  publication-title: Nature
– volume: 552
  start-page: 54
  year: 2013
  end-page: 59
  ident: b0100
  article-title: Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis
  publication-title: Thermochim. Acta
– volume: 4
  start-page: 323
  year: 1966
  end-page: 328
  ident: b0040
  article-title: A quick, direct method for the determination of activation energy from thermogravimetric data
  publication-title: J. Polym. Sci. B.
– reference: Akahira, T., Sunose, T., 1969. Transactions of Joint Convention of Four Electrical Institutes. 246.
– volume: 204
  start-page: 157
  year: 2016
  end-page: 163
  ident: b0075
  article-title: Kinetic parameters of red pepper waste as biomass to solid biofuel
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 133
  year: 2008
  end-page: 146
  ident: b0120
  article-title: Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites
  publication-title: Exp. Polym. Lett.
– volume: 35
  start-page: 1765
  year: 2011
  end-page: 1772
  ident: b0065
  article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae
  publication-title: Biomass Bioenergy
– volume: 97
  start-page: 491
  year: 2012
  end-page: 497
  ident: b0115
  article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis
  publication-title: Appl. Energy
– volume: 17
  start-page: 934
  year: 2003
  end-page: 939
  ident: b0025
  article-title: Enthalpy for pyrolysis for several types of biomass
  publication-title: Energy Fuels
– volume: 54
  start-page: 1537
  year: 2016
  end-page: 1551
  ident: b0035
  article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario
  publication-title: Renew. Sustain. Energy Rev.
– volume: 101
  start-page: 7131
  year: 2010
  end-page: 7136
  ident: b0060
  article-title: Pyrolytic characteristics and kinetics of two brown algae and sodium alginate
  publication-title: Bioresour. Technol.
– volume: 38
  start-page: 1881
  year: 1965
  end-page: 1886
  ident: b0095
  article-title: A new method of analyzing thermogravimetric data
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 78
  start-page: 349
  year: 1999
  end-page: 358
  ident: b0090
  article-title: Pyrolysis kinetics of lignocellulosic materials-three independent reactions model
  publication-title: Fuel
– volume: 146
  start-page: 485
  year: 2013
  end-page: 493
  ident: b0135
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
– volume: 88
  start-page: 805
  year: 2007
  end-page: 812
  ident: b0125
  article-title: Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds
  publication-title: J. Therm. Anal. Calorim.
– volume: 187
  start-page: 1
  year: 2015
  end-page: 5
  ident: b0015
  article-title: Pyrolysis kinetics and thermal characteristics of microalgae
  publication-title: Bioresour. Technol.
– reference: Doyle, C.D., 1961. Kinetic Analysis of Thermogravimetric Data. V(15): 285–292.
– volume: 88
  start-page: 647
  year: 2010
  end-page: 652
  ident: b0070
  article-title: Evaluation of the pyrolytic and kinetic characteristics of
  publication-title: Chem. Eng. Res. Des.
– volume: 156
  start-page: 71
  year: 2015
  end-page: 80
  ident: b0130
  article-title: Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste
  publication-title: Fuel
– volume: 96
  start-page: 185
  year: 2012
  end-page: 191
  ident: b0055
  article-title: Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (
  publication-title: Fuel
– volume: 115
  start-page: 1915
  year: 2014
  end-page: 1920
  ident: b0010
  article-title: Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass
  publication-title: J. Therm. Anal. Calorim.
– volume: 99
  start-page: 55
  year: 2012
  end-page: 63
  ident: b0085
  article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach
  publication-title: Fuel
– volume: 1
  start-page: 155
  year: 2013
  end-page: 163
  ident: b0105
  article-title: Marine macro algae
  publication-title: Asian J. Agri. Biol.
– volume: 67
  start-page: 252
  year: 2014
  end-page: 259
  ident: b0110
  article-title: What type of landowner would supply marginal land for energy crops?
  publication-title: Biomass Bioenergy
– volume: 101
  start-page: S91
  year: 2010
  end-page: S96
  ident: b0045
  article-title: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 788
  year: 2010
  end-page: 793
  ident: b0050
  article-title: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere:
  publication-title: Bioresour. Technol.
– volume: 156
  start-page: 71
  year: 2015
  ident: 10.1016/j.biortech.2016.10.090_b0130
  article-title: Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.04.016
– volume: 115
  start-page: 1915
  year: 2014
  ident: 10.1016/j.biortech.2016.10.090_b0010
  article-title: Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-013-3503-7
– volume: 101
  start-page: 788
  year: 2010
  ident: 10.1016/j.biortech.2016.10.090_b0050
  article-title: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.05.063
– volume: 78
  start-page: 349
  year: 1999
  ident: 10.1016/j.biortech.2016.10.090_b0090
  article-title: Pyrolysis kinetics of lignocellulosic materials-three independent reactions model
  publication-title: Fuel
  doi: 10.1016/S0016-2361(98)00156-2
– volume: 35
  start-page: 1765
  year: 2011
  ident: 10.1016/j.biortech.2016.10.090_b0065
  article-title: Pyrolytic characteristics and kinetic studies of three kinds of red algae
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.01.011
– volume: 4
  start-page: 323
  year: 1966
  ident: 10.1016/j.biortech.2016.10.090_b0040
  article-title: A quick, direct method for the determination of activation energy from thermogravimetric data
  publication-title: J. Polym. Sci. B.
  doi: 10.1002/pol.1966.110040504
– volume: 54
  start-page: 1537
  year: 2016
  ident: 10.1016/j.biortech.2016.10.090_b0035
  article-title: Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.050
– volume: 187
  start-page: 1
  year: 2015
  ident: 10.1016/j.biortech.2016.10.090_b0015
  article-title: Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.081
– volume: 101
  start-page: 7131
  year: 2010
  ident: 10.1016/j.biortech.2016.10.090_b0060
  article-title: Pyrolytic characteristics and kinetics of two brown algae and sodium alginate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.03.145
– volume: 17
  start-page: 934
  year: 2003
  ident: 10.1016/j.biortech.2016.10.090_b0025
  article-title: Enthalpy for pyrolysis for several types of biomass
  publication-title: Energy Fuels
  doi: 10.1021/ef020260x
– volume: 552
  start-page: 54
  year: 2013
  ident: 10.1016/j.biortech.2016.10.090_b0100
  article-title: Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2012.11.003
– volume: 96
  start-page: 185
  year: 2012
  ident: 10.1016/j.biortech.2016.10.090_b0055
  article-title: Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.01.005
– volume: 1
  start-page: 155
  year: 2013
  ident: 10.1016/j.biortech.2016.10.090_b0105
  article-title: Marine macro algae Ulva: a potential feed-stock for bio-ethanol and biogas production
  publication-title: Asian J. Agri. Biol.
– ident: 10.1016/j.biortech.2016.10.090_b0030
  doi: 10.1002/app.1961.070051506
– volume: 88
  start-page: 647
  year: 2010
  ident: 10.1016/j.biortech.2016.10.090_b0070
  article-title: Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2009.10.011
– volume: 38
  start-page: 1881
  year: 1965
  ident: 10.1016/j.biortech.2016.10.090_b0095
  article-title: A new method of analyzing thermogravimetric data
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.38.1881
– volume: 201
  start-page: 68
  year: 1964
  ident: 10.1016/j.biortech.2016.10.090_b0020
  article-title: Kinetic parameters from thermogravmetric data
  publication-title: Nature
  doi: 10.1038/201068a0
– volume: 146
  start-page: 485
  year: 2013
  ident: 10.1016/j.biortech.2016.10.090_b0135
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.086
– volume: 67
  start-page: 252
  year: 2014
  ident: 10.1016/j.biortech.2016.10.090_b0110
  article-title: What type of landowner would supply marginal land for energy crops?
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.05.011
– volume: 2
  start-page: 133
  year: 2008
  ident: 10.1016/j.biortech.2016.10.090_b0120
  article-title: Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites
  publication-title: Exp. Polym. Lett.
  doi: 10.3144/expresspolymlett.2008.18
– volume: 88
  start-page: 805
  year: 2007
  ident: 10.1016/j.biortech.2016.10.090_b0125
  article-title: Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-7149-y
– volume: 101
  start-page: S91
  year: 2010
  ident: 10.1016/j.biortech.2016.10.090_b0045
  article-title: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.06.003
– ident: 10.1016/j.biortech.2016.10.090_b0005
– volume: 97
  start-page: 491
  year: 2012
  ident: 10.1016/j.biortech.2016.10.090_b0115
  article-title: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.056
– year: 2016
  ident: 10.1016/j.biortech.2016.10.090_b0080
  article-title: Biomass production for bioenergy using marginal lands
  publication-title: Sustain. Prod. Consump.
– volume: 99
  start-page: 55
  year: 2012
  ident: 10.1016/j.biortech.2016.10.090_b0085
  article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.04.015
– volume: 204
  start-page: 157
  year: 2016
  ident: 10.1016/j.biortech.2016.10.090_b0075
  article-title: Kinetic parameters of red pepper waste as biomass to solid biofuel
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.055
SSID ssj0003172
Score 2.6300166
Snippet •Para grass is a source of low-cost and abundant biomass.•TGA-DSC analyses were performed to understand kinetics of pyrolysis.•Thermodynamics parameters...
The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 708
SubjectTerms activation energy
Bioenergy
Biofuels
Biomass
calorimetry
Gibbs free energy
Heating
Kinetics
Low cost biomass
Models, Theoretical
Panicum virgatum
Poaceae - chemistry
Pyrolysis
technology
TGA-DSC analyses
thermal degradation
Thermodynamics
Thermogravimetry
Urochloa mutica
Title Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential
URI https://dx.doi.org/10.1016/j.biortech.2016.10.090
https://www.ncbi.nlm.nih.gov/pubmed/27838316
https://www.proquest.com/docview/1839110673
https://www.proquest.com/docview/2000110451
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CemhzCGmappu0QYUemoN3Lcsf8nFZGrYNDYV2ITcztqSwYbtevM4hl_z2zGjtNIWGHHozsgZkzTDzLM28AfhkwtgYGWIg-fg-ppgclIm2QerQJblRWPkeS98v0uks_naZXG7BpK-F4bTKzvdvfLr31t3IqNvN0Wo-H_1k8K2TiBEFoZqYC37jOGMrH979SfOg-OhvEmhywLMfVQlfD8s5Z7T6SwmZDjnLi33zvwPUUwDUB6KzPdjtEKQYbxb5Grbsch92xldNx6Jh9-HlpG_jRm8eMQ6-geqcnklQoCcjsWt6MGJ129SLWx7uq_ZF7cQPbFBcNYSuxecZd9Za1Ch--8PvU0FYV8zbtaBvs758UKzqljOPcHEAs7MvvybToOuzEFSx0m1gk0pVubEROi0zaTGXZSQdKtKiTXRo6LfDhQodhiZzJs1lorUtnUKTpblV6i1sL-ulfQeCwE5OXsOkaMo4KyttZY6EKKswtSrDcgBJv7lF1ZGQcy-MRdFnm10XvVIKVgqPk1IGMHqQW21oOJ6VyHvdFX8ZVEGx4lnZj72yC9IWX6Hg0tY364LxpGTWPfX0nMjjbObtGcDhxlIe1sx9TbSS6dF_rO4YXkWMLfw50HvYbpsb-4GQUVueeNM_gRfjr-fTi3u9Hw8a
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcigcEJTX9gFG4gCH7MZxHs6xWrVa6ENIdKXeoklsV1stm1U2PfTS386MNylFouqBW-R4JMefPfPFngfAZxPGxsgQA8nH9zHZ5KBMtA1Shy7JjcLK11g6PUsn0_j7RXKxAeM-FobdKjvdv9bpXlt3LaNuNkfL2Wz0k8m3TiJmFMRqYv0Ensa0fbmMwfD2j58HGUh_lUC9A-5-L0z4aljO2KXV30rIdMhuXqyc_22hHmKg3hIdvYQXHYUUB-tRvoINu9iG5weXTZdGw27D1riv40Zv7qUcfA3VMT2ToECfjcSu6MGI5U1Tz2-4uQ_bF7UTP7BBcdkQvRZfplxaa16j-OVPv78KIrti1q4EfZv18YNiWbfseoTzNzA9OjwfT4Ku0EJQxUq3gU0qVeXGRui0zKTFXJaRdKgIRpvo0NB_hwsVOgxN5kyay0RrWzqFJktzq9Rb2FzUC_seBLGdnNSGSdGUcVZW2sociVJWYWpVhuUAkn5yi6rLQs7FMOZF7252VfSgFAwKtxMoAxjdyS3XeTgelch77Iq_VlRBxuJR2U892AWhxXcouLD19apgQik57Z56uE_kiTYn7hnAu_VKuRszFzbRSqY7_zG6j7A1OT89KU6-nR3vwrOIiYY_FNqDzba5tvtEk9ryg98GvwHL1xCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+analyses+and+pyrolytic+behavior+of+Para+grass+%28Urochloa+mutica%29+for+its+bioenergy+potential&rft.jtitle=Bioresource+technology&rft.au=Ahmad%2C+Muhammad+Sajjad&rft.au=Mehmood%2C+Muhammad+Aamer&rft.au=Al+Ayed%2C+Omar+S&rft.au=Ye%2C+Guangbin&rft.date=2017-01-01&rft.eissn=1873-2976&rft.volume=224&rft.spage=708&rft_id=info:doi/10.1016%2Fj.biortech.2016.10.090&rft_id=info%3Apmid%2F27838316&rft.externalDocID=27838316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon