An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption
•A simple and efficiency method for raising the specific surface area is proposed.•BC-2-650 has a terrific (449.40 mg L−1) adsorption capacity and separates easily.•BC-2-650 showed a stable and fast CIP adsorption as compared to other adsorbents.•Physical adsorption and chemisorption mechanism of ci...
Saved in:
Published in | Bioresource technology Vol. 288; p. 121511 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2019.121511 |
Cover
Loading…
Abstract | •A simple and efficiency method for raising the specific surface area is proposed.•BC-2-650 has a terrific (449.40 mg L−1) adsorption capacity and separates easily.•BC-2-650 showed a stable and fast CIP adsorption as compared to other adsorbents.•Physical adsorption and chemisorption mechanism of ciprofloxacin were illustrated.
In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl2/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m2 g−1). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L−1. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal. |
---|---|
AbstractList | In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl
/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m
g
). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L
. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal. In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl2/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m2 g-1). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L-1. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal.In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl2/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m2 g-1). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L-1. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal. In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl₂/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m² g⁻¹). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L⁻¹. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal. •A simple and efficiency method for raising the specific surface area is proposed.•BC-2-650 has a terrific (449.40 mg L−1) adsorption capacity and separates easily.•BC-2-650 showed a stable and fast CIP adsorption as compared to other adsorbents.•Physical adsorption and chemisorption mechanism of ciprofloxacin were illustrated. In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl2/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m2 g−1). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L−1. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal. |
ArticleNumber | 121511 |
Author | Zhu, Yuan Lin, Tang Zeng, Guangming Long, Huai Hu, Yi He, Wenze Zhang, Mingjuan Zhang, Yi Wang, Yingrong Zhang, Siyu |
Author_xml | – sequence: 1 givenname: Yi surname: Hu fullname: Hu, Yi organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 2 givenname: Yuan surname: Zhu fullname: Zhu, Yuan organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi email: zyi@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 4 givenname: Tang surname: Lin fullname: Lin, Tang organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 5 givenname: Guangming orcidid: 0000-0002-4230-7647 surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 6 givenname: Siyu surname: Zhang fullname: Zhang, Siyu organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 7 givenname: Yingrong surname: Wang fullname: Wang, Yingrong organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 8 givenname: Wenze surname: He fullname: He, Wenze organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 9 givenname: Mingjuan surname: Zhang fullname: Zhang, Mingjuan organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China – sequence: 10 givenname: Huai surname: Long fullname: Long, Huai organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31132594$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctu1DAUtVARnRZ-ofKSzUz9ShwjFlQVFKRKXQAbNpZj3zAeJXawPaPyA3w3HqWzYVNW96Fz7uOcC3QWYgCErijZUELb692m9zEVsNsNI1RtKKMNpS_QinaSr5mS7RlaEdWSddcwcY4uct4RQjiV7BU655Ry1iixQn9uAoZh8NZDKNi4HFNfs3f4q5_2YzEB4j5jY4s_mAIOm-DwZH4GKN7iH-EBuzjXdj3Gbk3CDpI_1HpIccLWTPM2JjyCOUDGQ02tn1McxvhorA_Lurn4GF6jl4MZM7x5ipfo-6eP324_r-8f7r7c3tyvreBdWYOwTSOpJQqYM06oVtZS9GwwrCXCGCVaMlinuO0Ml0RyMILY3sqO9I0c-CV6u8ytZ_zaQy568tnCOC6PasYk7aqWLf8PKKedUFTRCr16gu77CZyek59M-q1PMlfA-wVgU8w5waCtL-b4eEnGj5oSfXRV7_TJVX10VS-uVnr7D_204Vnih4UIVdODh6Tz0WgLziewRbvonxvxF4yWweg |
CitedBy_id | crossref_primary_10_1007_s10661_024_12712_0 crossref_primary_10_1155_2022_5427851 crossref_primary_10_1680_jenge_21_00119 crossref_primary_10_1007_s13399_023_03799_5 crossref_primary_10_1002_adsu_202300340 crossref_primary_10_1016_j_jece_2022_107260 crossref_primary_10_1016_j_cplett_2021_138707 crossref_primary_10_1515_psr_2023_0043 crossref_primary_10_1002_slct_202400805 crossref_primary_10_1016_j_eti_2024_103611 crossref_primary_10_1007_s10904_021_01981_8 crossref_primary_10_1016_j_jclepro_2021_130079 crossref_primary_10_3390_nano12030379 crossref_primary_10_1007_s13399_023_04098_9 crossref_primary_10_1016_j_jhazmat_2024_134784 crossref_primary_10_1016_j_jiec_2020_09_023 crossref_primary_10_5004_dwt_2021_27334 crossref_primary_10_1016_j_jclepro_2022_131165 crossref_primary_10_1007_s11356_023_27908_z crossref_primary_10_1016_j_biortech_2021_125060 crossref_primary_10_1038_s41598_023_46463_8 crossref_primary_10_1016_j_hybadv_2024_100292 crossref_primary_10_1177_0263617420944659 crossref_primary_10_1016_j_rineng_2022_100671 crossref_primary_10_1016_j_chemosphere_2020_127987 crossref_primary_10_1016_j_jhazmat_2021_127435 crossref_primary_10_1016_j_seppur_2021_119201 crossref_primary_10_3390_nano14231933 crossref_primary_10_1016_j_envres_2021_111693 crossref_primary_10_1016_j_jece_2024_112601 crossref_primary_10_1016_j_biombioe_2020_105648 crossref_primary_10_1016_j_envres_2020_110104 crossref_primary_10_1007_s11270_024_06998_6 crossref_primary_10_1016_j_biortech_2022_126924 crossref_primary_10_1016_j_cherd_2022_08_039 crossref_primary_10_1016_j_indcrop_2025_120649 crossref_primary_10_1016_j_scitotenv_2020_142673 crossref_primary_10_1016_j_scitotenv_2022_154648 crossref_primary_10_1007_s11356_023_30713_3 crossref_primary_10_1016_j_jaap_2024_106884 crossref_primary_10_1016_j_jclepro_2020_123924 crossref_primary_10_1016_j_jhazmat_2020_122059 crossref_primary_10_1016_j_jwpe_2022_103006 crossref_primary_10_1007_s10570_020_03192_9 crossref_primary_10_1016_j_jwpe_2022_103089 crossref_primary_10_1007_s10529_021_03132_y crossref_primary_10_1016_j_biortech_2021_125832 crossref_primary_10_1515_ntrev_2022_0055 crossref_primary_10_1016_j_cej_2024_150391 crossref_primary_10_1016_j_envpol_2023_122409 crossref_primary_10_1016_j_jece_2023_110649 crossref_primary_10_1016_j_colsurfb_2024_114475 crossref_primary_10_1007_s13399_021_01593_9 crossref_primary_10_1007_s11356_023_29217_x crossref_primary_10_1016_j_chemosphere_2022_134438 crossref_primary_10_1016_j_jece_2022_107366 crossref_primary_10_1016_j_ces_2024_120907 crossref_primary_10_1016_j_biortech_2020_123092 crossref_primary_10_1007_s13369_021_05585_9 crossref_primary_10_1007_s13399_023_04228_3 crossref_primary_10_1016_j_cplett_2020_137343 crossref_primary_10_1016_j_scitotenv_2024_170723 crossref_primary_10_1016_j_scitotenv_2021_150531 crossref_primary_10_1016_j_chemosphere_2022_133902 crossref_primary_10_3390_molecules27196261 crossref_primary_10_1016_j_jenvman_2023_119187 crossref_primary_10_1016_j_cej_2024_156375 crossref_primary_10_1016_j_rser_2021_111643 crossref_primary_10_3390_molecules26154674 crossref_primary_10_1016_j_envres_2021_112604 crossref_primary_10_5004_dwt_2021_26573 crossref_primary_10_1016_j_jes_2022_10_023 crossref_primary_10_1016_j_molliq_2020_114967 crossref_primary_10_1016_j_cej_2024_156810 crossref_primary_10_1021_acsanm_2c01454 crossref_primary_10_1016_j_heliyon_2022_e10328 crossref_primary_10_1016_j_envpol_2021_116448 crossref_primary_10_1016_j_seppur_2022_121925 crossref_primary_10_3390_w14223761 crossref_primary_10_1016_j_envres_2021_111919 crossref_primary_10_1016_j_envres_2022_113831 crossref_primary_10_1016_j_jece_2022_107914 crossref_primary_10_3389_fenvs_2023_1239754 crossref_primary_10_1007_s11356_022_22828_w crossref_primary_10_1016_j_cej_2023_143296 crossref_primary_10_1016_j_jenvman_2021_113717 crossref_primary_10_1016_j_seppur_2024_126614 crossref_primary_10_1016_j_cherd_2022_09_024 crossref_primary_10_1016_j_molliq_2024_124928 crossref_primary_10_1016_j_microc_2021_106235 crossref_primary_10_3390_app122211544 crossref_primary_10_1016_j_jiec_2024_06_003 crossref_primary_10_3390_w15234169 crossref_primary_10_1016_j_biteb_2025_102071 crossref_primary_10_1016_j_scitotenv_2019_134847 crossref_primary_10_1016_j_biortech_2021_125407 crossref_primary_10_1111_sum_12740 crossref_primary_10_1002_ldr_4620 crossref_primary_10_1002_jctb_7548 crossref_primary_10_1016_j_jwpe_2022_102729 crossref_primary_10_1016_j_indcrop_2024_119873 crossref_primary_10_3390_nano12040702 crossref_primary_10_1016_j_cej_2021_129946 crossref_primary_10_1016_j_envres_2021_111091 crossref_primary_10_1016_j_eti_2020_101242 crossref_primary_10_1016_j_biortech_2022_127384 crossref_primary_10_1016_j_chemosphere_2021_130676 crossref_primary_10_1016_j_biortech_2021_126351 crossref_primary_10_3390_toxics10020077 crossref_primary_10_1007_s12649_025_02894_0 crossref_primary_10_1016_j_jwpe_2021_102286 crossref_primary_10_1016_j_biortech_2020_123614 crossref_primary_10_1016_j_biortech_2019_122413 crossref_primary_10_1016_j_mtsust_2024_100833 crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_1021_acsomega_2c01699 crossref_primary_10_1016_j_jece_2023_110766 crossref_primary_10_1016_j_envpol_2022_120897 crossref_primary_10_1021_acs_langmuir_2c03330 crossref_primary_10_1039_D4NJ01848F crossref_primary_10_3390_molecules28248094 crossref_primary_10_1016_j_micromeso_2022_112300 crossref_primary_10_1007_s42250_023_00698_0 crossref_primary_10_1016_j_scitotenv_2020_141381 crossref_primary_10_1016_j_envpol_2021_117632 crossref_primary_10_1016_j_chemosphere_2023_139891 crossref_primary_10_1016_j_gee_2024_11_008 crossref_primary_10_1007_s42773_020_00055_1 crossref_primary_10_1016_j_jece_2024_113122 crossref_primary_10_1016_j_seppur_2021_120286 crossref_primary_10_1016_j_biortech_2022_128262 crossref_primary_10_1016_j_chemosphere_2024_141640 crossref_primary_10_1002_wer_10930 crossref_primary_10_1016_j_jenvman_2024_121872 crossref_primary_10_1007_s13762_022_04662_2 crossref_primary_10_1016_j_biortech_2020_124539 crossref_primary_10_1016_j_jwpe_2023_104577 crossref_primary_10_1016_j_jwpe_2023_104215 crossref_primary_10_1016_j_jwpe_2023_104573 crossref_primary_10_1016_j_biortech_2021_125238 crossref_primary_10_3390_pr12010199 crossref_primary_10_1080_15226514_2021_1932730 crossref_primary_10_1016_j_ces_2023_119205 crossref_primary_10_1016_j_chemosphere_2022_136258 crossref_primary_10_1080_21655979_2022_2108564 crossref_primary_10_1016_j_colsurfa_2024_135059 crossref_primary_10_1016_j_apsusc_2020_148873 crossref_primary_10_1016_j_mtcomm_2023_107500 crossref_primary_10_1021_acsomega_2c02909 crossref_primary_10_1016_j_molliq_2022_120155 crossref_primary_10_1007_s10904_020_01873_3 crossref_primary_10_1016_j_jclepro_2023_138495 crossref_primary_10_1002_slct_202403986 crossref_primary_10_1016_j_cej_2023_147615 crossref_primary_10_1016_j_jhazmat_2022_128841 crossref_primary_10_1016_j_enmm_2025_101046 crossref_primary_10_1016_j_jhazmat_2020_122026 crossref_primary_10_1016_j_scp_2021_100483 crossref_primary_10_3389_fbioe_2022_961907 crossref_primary_10_1016_j_scp_2021_100522 crossref_primary_10_1002_ep_13923 crossref_primary_10_1007_s44169_023_00030_4 crossref_primary_10_1016_j_envpol_2024_124365 crossref_primary_10_1016_j_cclet_2021_09_029 crossref_primary_10_1016_j_biortech_2020_123564 crossref_primary_10_3390_ma14216710 crossref_primary_10_1016_j_jclepro_2022_134149 crossref_primary_10_1016_j_jece_2021_107017 crossref_primary_10_1016_j_ijbiomac_2024_136855 crossref_primary_10_1016_j_seppur_2023_124732 |
Cites_doi | 10.1039/C5GC00828J 10.1021/acs.chemrev.5b00195 10.1006/jcis.1999.6288 10.1557/JMR.2010.0186 10.1021/es902902c 10.1016/j.scitotenv.2017.03.087 10.1016/j.ultsonch.2016.05.004 10.1016/j.ultsonch.2016.03.004 10.1016/j.chemosphere.2017.12.128 10.1016/j.jcis.2018.12.112 10.1039/C5TA03442F 10.1016/j.apcatb.2018.01.024 10.1016/j.rser.2014.10.074 10.1016/j.biortech.2017.09.156 10.1016/j.desal.2010.06.043 10.1016/j.carbon.2013.03.032 10.1016/j.cej.2017.12.136 10.1016/j.cej.2017.11.048 10.1021/es500531c 10.1021/es803268b 10.1016/j.biortech.2016.04.093 10.1016/j.scitotenv.2018.05.129 10.1016/j.apsusc.2018.11.079 10.1016/j.scitotenv.2015.11.047 10.1016/j.biortech.2017.09.136 10.1016/j.jcis.2016.09.037 10.1016/j.jhazmat.2010.11.066 10.1061/(ASCE)HZ.2153-5515.0000348 10.1016/j.cej.2018.03.064 10.1016/j.cej.2014.08.088 10.1021/es405227u 10.1021/acs.est.5b00729 10.1016/j.biortech.2014.01.120 10.1016/j.molliq.2016.09.005 10.1016/j.watres.2009.12.017 10.1016/j.watres.2014.09.026 10.1016/j.energy.2015.05.101 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2019.121511 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 31132594 10_1016_j_biortech_2019_121511 S0960852419307412 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-e4c5571c09e2dad49675714b2fa2604aa9460fcd93c8a37073ea40cbc780b57f3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 06:36:34 EDT 2025 Fri Jul 11 03:05:39 EDT 2025 Thu Apr 03 07:02:50 EDT 2025 Tue Jul 01 03:18:29 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Fri Feb 23 02:48:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Camphor leaves Magnetic biochar ZnCl2 activation Ciprofloxacin ZnCl activation |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-e4c5571c09e2dad49675714b2fa2604aa9460fcd93c8a37073ea40cbc780b57f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4230-7647 |
PMID | 31132594 |
PQID | 2231849191 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2271812163 proquest_miscellaneous_2231849191 pubmed_primary_31132594 crossref_citationtrail_10_1016_j_biortech_2019_121511 crossref_primary_10_1016_j_biortech_2019_121511 elsevier_sciencedirect_doi_10_1016_j_biortech_2019_121511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Chen, Chen (b0155) 2014; 48 Xiao, Qiu, Jiang, Zhu, Ye, Jiang (b0175) 2013; 59 Hai-Tao, Shuai, Sheng-Yang, Shu-Wen, Fen-Xia, Xiao-Zhi, Sheng-Sen, Ke (b0045) 2019; 362 Zhang, Zhang, Tang, Zeng, Wang, Zhu, Feng, Deng, He (b0190) 2019; 539 Wang, Feng, Ping, Wang, Su, Zhang, Zeng, Xie, Liu, Yang (b0150) 2018; 227 Gani, Kazmi (b0035) 2016; 21 Liu, Jiang, Yu (b0095) 2015; 115 Zhu, Liu, Luo, Qian, Zhang, Chen (b0215) 2014; 48 Kong, Yan, Qu, Yan, Li (b0065) 2015; 3 Zhang, Ying, Pan, Liu, Zhao (b0195) 2015; 49 Oh, Choi, Kim (b0115) 2015; 88 Ning, Yu, Zhao, Wei, Du, Kong, Zhang, Wei (b0110) 2018; 341 Pradhan, Das, Thakur (b0125) 1999; 217 Zhiguo, Xiao-Quan, Jingjing, Bei, Gary (b0210) 2010; 44 Wei, Rong, Jing, Wei (b0165) 2010; 263 Gad-Allah, Ali, Badawy (b0030) 2011; 186 Papageorgiou, Kosma, Lambropoulou (b0120) 2016; 543 Weber, Morris (b0160) 1963; 1 Liangliang, Wei, Lin, Dongqiang (b0085) 2009; 43 Liang, Zhang, Feng, Chai, Huang (b0080) 2018; 344 Bandikari, Qian, Baskaran, Liu, Wu (b0020) 2017; 249 Yang, Wang, Luo, Sun, Xu, Chen, Zhao, Wang, Yao, Wang, Li, Zeng (b0180) 2018; 247 Jamshidi, Ghaedi, Dashtian, Hajati, Bazrafshan (b0060) 2016; 32 Tan, Liu, Gu, Xu, Zeng, Hu, Liu, Wang, Liu, Li (b0140) 2016; 212 Lawrinenko, Laird (b0070) 2015; 17 Ansari, Ghaedi, Taghdiri, Asfaram (b0010) 2016; 33 He, Cheng, Kyzas, Jie (b0055) 2016; 223 Mo, Li, Zhou, Ma, Guo, Wang, Li (b0100) 2019; 469 Zhang, Shao, Bekaroglu, Karanfil (b0200) 2010; 44 Wu, Zhong, Yuan, Wang, Wang, Chen, Zeng, Wu (b0170) 2014; 67 Li, Liu, Zeng, Liu, Hu, Shu, Jiang, Tan, Cai, Yan (b0075) 2017; 485 Bagheri, Afkhami, Noroozi (b0015) 2016; 3 Yu, Jiang, Guan, Ning, Gu, Chen, Zhang, Miao (b0185) 2018; 195 Hadi, Meng, Chao, Lin, Mckay (b0040) 2015; 260 Han, Hu, Li, Cheng (b0050) 2016; 284 Tang, Yu, Pang, Zeng, Deng, Wang, Ren, Ye, Peng, Feng (b0145) 2018; 336 Liu, Xu, Liu, Tan, Zeng, Li, Liang, Zhou, Yan, Cai (b0090) 2017; 592 Afzal, Sun, Liu, Song, Wang, Javed (b0005) 2018; 639 Mohan, Sarswat, Yong, Pittman (b0105) 2014; 160 Zhang, Wen, Hu, Fang, Zhang, Xing, Wang, Zeng (b0205) 2018; 366 Qian, Kumar, Zhang, Bellmer, Huhnke (b0130) 2015; 42 Rufford, Hulicovajurcakova, Zhu, Lu (b0135) 2010; 25 Fang, Wen, Zeng, Jia, Zhang, Peng, Zhang (b0025) 2018; 337 Qian (10.1016/j.biortech.2019.121511_b0130) 2015; 42 Yang (10.1016/j.biortech.2019.121511_b0180) 2018; 247 Jamshidi (10.1016/j.biortech.2019.121511_b0060) 2016; 32 Tan (10.1016/j.biortech.2019.121511_b0140) 2016; 212 Mohan (10.1016/j.biortech.2019.121511_b0105) 2014; 160 Lawrinenko (10.1016/j.biortech.2019.121511_b0070) 2015; 17 He (10.1016/j.biortech.2019.121511_b0055) 2016; 223 Ning (10.1016/j.biortech.2019.121511_b0110) 2018; 341 Zhiguo (10.1016/j.biortech.2019.121511_b0210) 2010; 44 Liu (10.1016/j.biortech.2019.121511_b0090) 2017; 592 Zhu (10.1016/j.biortech.2019.121511_b0215) 2014; 48 Han (10.1016/j.biortech.2019.121511_b0050) 2016; 284 Zhang (10.1016/j.biortech.2019.121511_b0200) 2010; 44 Tang (10.1016/j.biortech.2019.121511_b0145) 2018; 336 Rufford (10.1016/j.biortech.2019.121511_b0135) 2010; 25 Afzal (10.1016/j.biortech.2019.121511_b0005) 2018; 639 Wang (10.1016/j.biortech.2019.121511_b0150) 2018; 227 Zhang (10.1016/j.biortech.2019.121511_b0205) 2018; 366 Hadi (10.1016/j.biortech.2019.121511_b0040) 2015; 260 Hai-Tao (10.1016/j.biortech.2019.121511_b0045) 2019; 362 Papageorgiou (10.1016/j.biortech.2019.121511_b0120) 2016; 543 Wang (10.1016/j.biortech.2019.121511_b0155) 2014; 48 Weber (10.1016/j.biortech.2019.121511_b0160) 1963; 1 Yu (10.1016/j.biortech.2019.121511_b0185) 2018; 195 Xiao (10.1016/j.biortech.2019.121511_b0175) 2013; 59 Fang (10.1016/j.biortech.2019.121511_b0025) 2018; 337 Pradhan (10.1016/j.biortech.2019.121511_b0125) 1999; 217 Wu (10.1016/j.biortech.2019.121511_b0170) 2014; 67 Liu (10.1016/j.biortech.2019.121511_b0095) 2015; 115 Liangliang (10.1016/j.biortech.2019.121511_b0085) 2009; 43 Zhang (10.1016/j.biortech.2019.121511_b0190) 2019; 539 Zhang (10.1016/j.biortech.2019.121511_b0195) 2015; 49 Gani (10.1016/j.biortech.2019.121511_b0035) 2016; 21 Li (10.1016/j.biortech.2019.121511_b0075) 2017; 485 Ansari (10.1016/j.biortech.2019.121511_b0010) 2016; 33 Bagheri (10.1016/j.biortech.2019.121511_b0015) 2016; 3 Bandikari (10.1016/j.biortech.2019.121511_b0020) 2017; 249 Liang (10.1016/j.biortech.2019.121511_b0080) 2018; 344 Mo (10.1016/j.biortech.2019.121511_b0100) 2019; 469 Oh (10.1016/j.biortech.2019.121511_b0115) 2015; 88 Gad-Allah (10.1016/j.biortech.2019.121511_b0030) 2011; 186 Kong (10.1016/j.biortech.2019.121511_b0065) 2015; 3 Wei (10.1016/j.biortech.2019.121511_b0165) 2010; 263 |
References_xml | – volume: 17 start-page: 4628 year: 2015 end-page: 4636 ident: b0070 article-title: Anion exchange capacity of biochar publication-title: Green Chem. – volume: 217 start-page: 137 year: 1999 ident: b0125 article-title: Adsorption of hexavalent chromium from aqueous solution by using activated red mud publication-title: J. Colloid, Interf. Sci. – volume: 48 start-page: 4817 year: 2014 end-page: 4825 ident: b0155 article-title: Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets publication-title: Environ. Sci. Technol. – volume: 469 start-page: 962 year: 2019 end-page: 973 ident: b0100 article-title: Acetone adsorption to (BeO) publication-title: Appl. Surf. Sci. – volume: 1 start-page: 1 year: 1963 end-page: 2 ident: b0160 article-title: Kinetics of adsorption on carbon from solution publication-title: Asce Sanitary Engineering Division Journal. – volume: 44 start-page: 915 year: 2010 end-page: 920 ident: b0210 article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH publication-title: Environ. Sci. Technol. – volume: 32 start-page: 119 year: 2016 end-page: 131 ident: b0060 article-title: Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study publication-title: Ultrason. Sonochem. – volume: 43 start-page: 2322 year: 2009 end-page: 2327 ident: b0085 article-title: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents publication-title: Environ. Sci. Technol – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: b0105 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review publication-title: Bioresource. Technol. – volume: 366 start-page: 210 year: 2018 end-page: 218 ident: b0205 article-title: Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments publication-title: J. Hazard. Mater. – volume: 284 start-page: 1397 year: 2016 end-page: 1405 ident: b0050 article-title: pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water publication-title: Chem. Eng. J. – volume: 227 start-page: 114 year: 2018 end-page: 122 ident: b0150 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C publication-title: App. Catal. B-Environ. – volume: 195 start-page: 632 year: 2018 end-page: 640 ident: b0185 article-title: Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth publication-title: Chemosphere – volume: 362 start-page: 206 year: 2019 end-page: 213 ident: b0045 article-title: β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb publication-title: J. Hazard. Mater. – volume: 344 start-page: 95 year: 2018 end-page: 104 ident: b0080 article-title: ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics publication-title: Chem. Eng. J. – volume: 115 start-page: 12251 year: 2015 ident: b0095 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Che. Rev. – volume: 42 start-page: 1055 year: 2015 end-page: 1064 ident: b0130 article-title: Recent advances in utilization of biochar publication-title: Renew. Sust. Energ. Rev. – volume: 247 start-page: 537 year: 2018 end-page: 544 ident: b0180 article-title: Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge publication-title: Bioresour. Technol. – volume: 33 start-page: 197 year: 2016 end-page: 209 ident: b0010 article-title: Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method publication-title: Ultrason. Sonochem. – volume: 592 start-page: 546 year: 2017 end-page: 553 ident: b0090 article-title: Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water publication-title: Sci. Total Environ – volume: 186 start-page: 751 year: 2011 end-page: 755 ident: b0030 article-title: Photocatalytic oxidation of ciprofloxacin under simulated sunlight publication-title: J. Hazard. Mater. – volume: 44 start-page: 2067 year: 2010 end-page: 2074 ident: b0200 article-title: Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry publication-title: Water. Res. – volume: 212 start-page: 318 year: 2016 end-page: 333 ident: b0140 article-title: Biochar-based nano-composites for the decontamination of wastewater: a review publication-title: Bioresource. Technol. – volume: 263 start-page: 89 year: 2010 end-page: 96 ident: b0165 article-title: Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite publication-title: Desalination. – volume: 25 start-page: 1451 year: 2010 end-page: 1459 ident: b0135 article-title: A comparative study of chemical treatment by FeCl publication-title: J. Mater. Res. – volume: 337 start-page: 532 year: 2018 end-page: 540 ident: b0025 article-title: Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI) publication-title: Chem. Eng. J. – volume: 59 start-page: 372 year: 2013 end-page: 382 ident: b0175 article-title: Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework publication-title: Carbon – volume: 485 start-page: 269 year: 2017 end-page: 279 ident: b0075 article-title: Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism publication-title: J. Colloid, Interf. Sci. – volume: 3 start-page: 15755 year: 2015 end-page: 15763 ident: b0065 article-title: β-cyclodextrin stabilized magnetic Fe publication-title: J. Mater. Chem. A – volume: 539 start-page: 654 year: 2019 end-page: 664 ident: b0190 article-title: Ultrathin Bi publication-title: J. Coll. Interface Sci. – volume: 48 start-page: 5840 year: 2014 end-page: 5848 ident: b0215 article-title: Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption publication-title: Environ. Sci. Technol. – volume: 249 start-page: 354 year: 2017 end-page: 360 ident: b0020 article-title: Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol publication-title: Bioresour. Technol. – volume: 260 start-page: 895 year: 2015 end-page: 906 ident: b0040 article-title: A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment publication-title: Chem. Eng. J. – volume: 67 start-page: 330 year: 2014 end-page: 344 ident: b0170 article-title: Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater publication-title: Water. Res. – volume: 21 start-page: 04016026 year: 2016 ident: b0035 article-title: Contamination of emerging contaminants in indian aquatic sources: first overview of the situation publication-title: J. Hazard. Toxic Radioactive Waste – volume: 88 start-page: 697 year: 2015 end-page: 702 ident: b0115 article-title: Fast pyrolysis of corn stover using ZnCl publication-title: Energy – volume: 336 start-page: 160 year: 2018 end-page: 169 ident: b0145 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. – volume: 223 start-page: 781 year: 2016 end-page: 789 ident: b0055 article-title: Pharmaceuticals pollution of aquaculture and its management in China publication-title: J. Mol. Liq. – volume: 639 start-page: 560 year: 2018 end-page: 569 ident: b0005 article-title: Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads publication-title: Sci. Total Environ. – volume: 543 start-page: 547 year: 2016 end-page: 569 ident: b0120 article-title: Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece publication-title: Sci. Total Environ. – volume: 341 start-page: 289 year: 2018 end-page: 297 ident: b0110 article-title: Ultrafast selective capture of phosphorus from sewage by 3D Fe publication-title: Chem. Eng. J. – volume: 3 start-page: 1 year: 2016 end-page: 18 ident: b0015 article-title: Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review publication-title: Anal. Bioanal. Chem. Res. – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: b0195 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. – volume: 1 start-page: 1 issue: 2 year: 1963 ident: 10.1016/j.biortech.2019.121511_b0160 article-title: Kinetics of adsorption on carbon from solution publication-title: Asce Sanitary Engineering Division Journal. – volume: 17 start-page: 4628 issue: 9 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0070 article-title: Anion exchange capacity of biochar publication-title: Green Chem. doi: 10.1039/C5GC00828J – volume: 115 start-page: 12251 issue: 22 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0095 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Che. Rev. doi: 10.1021/acs.chemrev.5b00195 – volume: 217 start-page: 137 issue: 1 year: 1999 ident: 10.1016/j.biortech.2019.121511_b0125 article-title: Adsorption of hexavalent chromium from aqueous solution by using activated red mud publication-title: J. Colloid, Interf. Sci. doi: 10.1006/jcis.1999.6288 – volume: 25 start-page: 1451 issue: 8 year: 2010 ident: 10.1016/j.biortech.2019.121511_b0135 article-title: A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layercapacitance of carbons from waste biomass publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0186 – volume: 44 start-page: 915 issue: 3 year: 2010 ident: 10.1016/j.biortech.2019.121511_b0210 article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH publication-title: Environ. Sci. Technol. doi: 10.1021/es902902c – volume: 592 start-page: 546 year: 2017 ident: 10.1016/j.biortech.2019.121511_b0090 article-title: Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water publication-title: Sci. Total Environ doi: 10.1016/j.scitotenv.2017.03.087 – volume: 33 start-page: 197 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0010 article-title: Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.05.004 – volume: 32 start-page: 119 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0060 article-title: Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.03.004 – volume: 195 start-page: 632 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0185 article-title: Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.128 – volume: 539 start-page: 654 year: 2019 ident: 10.1016/j.biortech.2019.121511_b0190 article-title: Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation publication-title: J. Coll. Interface Sci. doi: 10.1016/j.jcis.2018.12.112 – volume: 3 start-page: 15755 issue: 30 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0065 article-title: β-cyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II) publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03442F – volume: 362 start-page: 206 issue: 15 year: 2019 ident: 10.1016/j.biortech.2019.121511_b0045 article-title: β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal publication-title: J. Hazard. Mater. – volume: 227 start-page: 114 issue: 5 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0150 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination publication-title: App. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.01.024 – volume: 42 start-page: 1055 issue: 1 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0130 article-title: Recent advances in utilization of biochar publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2014.10.074 – volume: 249 start-page: 354 year: 2017 ident: 10.1016/j.biortech.2019.121511_b0020 article-title: Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.156 – volume: 263 start-page: 89 issue: 1 year: 2010 ident: 10.1016/j.biortech.2019.121511_b0165 article-title: Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite publication-title: Desalination. doi: 10.1016/j.desal.2010.06.043 – volume: 59 start-page: 372 issue: 4 year: 2013 ident: 10.1016/j.biortech.2019.121511_b0175 article-title: Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework publication-title: Carbon doi: 10.1016/j.carbon.2013.03.032 – volume: 337 start-page: 532 issue: 1 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0025 article-title: Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.136 – volume: 341 start-page: 289 issue: 1 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0110 article-title: Ultrafast selective capture of phosphorus from sewage by 3D Fe3O4@ZnO via weak magnetic field enhanced adsorption publication-title: Chem. Eng. J. – volume: 336 start-page: 160 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0145 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.048 – volume: 48 start-page: 5840 issue: 10 year: 2014 ident: 10.1016/j.biortech.2019.121511_b0215 article-title: Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption publication-title: Environ. Sci. Technol. doi: 10.1021/es500531c – volume: 284 start-page: 1397 issue: 15 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0050 article-title: pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water publication-title: Chem. Eng. J. – volume: 43 start-page: 2322 issue: 7 year: 2009 ident: 10.1016/j.biortech.2019.121511_b0085 article-title: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents publication-title: Environ. Sci. Technol doi: 10.1021/es803268b – volume: 212 start-page: 318 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0140 article-title: Biochar-based nano-composites for the decontamination of wastewater: a review publication-title: Bioresource. Technol. doi: 10.1016/j.biortech.2016.04.093 – volume: 639 start-page: 560 issue: 15 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0005 article-title: Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.129 – volume: 469 start-page: 962 issue: 1 year: 2019 ident: 10.1016/j.biortech.2019.121511_b0100 article-title: Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.079 – volume: 543 start-page: 547 issue: Part A year: 2016 ident: 10.1016/j.biortech.2019.121511_b0120 article-title: Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.047 – volume: 247 start-page: 537 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0180 article-title: Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.136 – volume: 485 start-page: 269 issue: 1 year: 2017 ident: 10.1016/j.biortech.2019.121511_b0075 article-title: Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism publication-title: J. Colloid, Interf. Sci. doi: 10.1016/j.jcis.2016.09.037 – volume: 186 start-page: 751 issue: 1 year: 2011 ident: 10.1016/j.biortech.2019.121511_b0030 article-title: Photocatalytic oxidation of ciprofloxacin under simulated sunlight publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.066 – volume: 21 start-page: 04016026 issue: 3 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0035 article-title: Contamination of emerging contaminants in indian aquatic sources: first overview of the situation publication-title: J. Hazard. Toxic Radioactive Waste doi: 10.1061/(ASCE)HZ.2153-5515.0000348 – volume: 366 start-page: 210 issue: 15 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0205 article-title: Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments publication-title: J. Hazard. Mater. – volume: 344 start-page: 95 issue: 15 year: 2018 ident: 10.1016/j.biortech.2019.121511_b0080 article-title: ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.064 – volume: 260 start-page: 895 issue: 260 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0040 article-title: A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.08.088 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0015 article-title: Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review publication-title: Anal. Bioanal. Chem. Res. – volume: 48 start-page: 4817 issue: 9 year: 2014 ident: 10.1016/j.biortech.2019.121511_b0155 article-title: Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets publication-title: Environ. Sci. Technol. doi: 10.1021/es405227u – volume: 49 start-page: 6772 issue: 11 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0195 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 160 start-page: 191 issue: 5 year: 2014 ident: 10.1016/j.biortech.2019.121511_b0105 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review publication-title: Bioresource. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 223 start-page: 781 year: 2016 ident: 10.1016/j.biortech.2019.121511_b0055 article-title: Pharmaceuticals pollution of aquaculture and its management in China publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.09.005 – volume: 44 start-page: 2067 issue: 6 year: 2010 ident: 10.1016/j.biortech.2019.121511_b0200 article-title: Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry publication-title: Water. Res. doi: 10.1016/j.watres.2009.12.017 – volume: 67 start-page: 330 issue: 15 year: 2014 ident: 10.1016/j.biortech.2019.121511_b0170 article-title: Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater publication-title: Water. Res. doi: 10.1016/j.watres.2014.09.026 – volume: 88 start-page: 697 year: 2015 ident: 10.1016/j.biortech.2019.121511_b0115 article-title: Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural publication-title: Energy doi: 10.1016/j.energy.2015.05.101 |
SSID | ssj0003172 |
Score | 2.6491559 |
Snippet | •A simple and efficiency method for raising the specific surface area is proposed.•BC-2-650 has a terrific (449.40 mg L−1) adsorption capacity and separates... In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121511 |
SubjectTerms | adsorbents adsorption biochar camphor Camphor leaves cation exchange Ciprofloxacin electrostatic interactions leaves Magnetic biochar magnetism nanoparticles pollution control porous media surface area temperature zinc oxide ZnCl2 activation |
Title | An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption |
URI | https://dx.doi.org/10.1016/j.biortech.2019.121511 https://www.ncbi.nlm.nih.gov/pubmed/31132594 https://www.proquest.com/docview/2231849191 https://www.proquest.com/docview/2271812163 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcEJTX8qiMxDXdeGMnMbfVimoBUQ6lUsXFcmynSrU4q93tqqce-d3MOEkph9IDN9uxE8cznvkszwPgfZWrYlIalUT3XJH7OjEprxOZFRQvTJgqpnv7epTPT8TnU3m6A7PBF4bMKnvZ38n0KK37lnG_muNl04yPCXyXEjWQykgvkhym6HXI0wdXf8w8UD_GmwTsnFDvG17C5wdVQxat8VKCqxhogfPbFNRtADQqosPH8KhHkGzaTfIJ7PiwBw-nZ6s-iobfg_uzIY0bPrkRcfAp_JoG5mPUCFQ2zLh1u6qw9IEdN2RaaIJvL9aMnB22CEIdM8Gxn-YskKsj-xG-MdcusRn_iNy1mMPXbrFOTirMGuSMdsUW3mz9miEaZrahnOCL9tLYJnSfiyLqGZwcfvw-myd9KobEiqzcJF5YKQtuU-Unzjih8JxRcFFNaoMHImGMEnlaW6cyW5qsQLnhjUhtZYsyrWRRZ89hN7TBvwSGqpLXk1pxJ5FqvFYOC9YraXOfGZ6OQA7rr20fp5zSZSz0YJB2rge6aaKb7ug2gvH1uGUXqePOEWogr_6L5zSqkzvHvhv4QSNB6ZalI5FGvIWnZoXn4H_1KQhZIRYewYuOma7nnHHcNlKJV_8xu9fwgGqdLdwb2N2sLvxbBE-baj_ujn24N_30ZX70G59pGls |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9C5cB2mAb7oIxtnrRr1rixk5hbVQ2VAd0BkNAulmM7KKhzqrZU_AX7u_fsJBUcGIfdHH8kjp_93u_J7wPga5GKbJgrEQX3XJbaMlIxLSOeZD5eGFNFSPd2Pk0nV-zHNb_egnHnC-PNKlve3_D0wK3bmkG7moN5VQ0uPPjOOUogkXi5iHx420enYj3YHp2cTqYbhowiMlwmYP_ID3jgKHz7rai8UWu4l6AixFqg9CkZ9RQGDbLo-DW8akEkGTXz3IUt6_bg5ehm0QbSsHuwM-4yuWHLg6CDb-DPyBEbAkegvCHKLOtFgaUjclF560LlbH23JN7fYY041BDlDPmtbpz3diS_3E9i6jlW4x95jy1i8LVrfPZ-KkQr3Bz1gsysWtslQUBMdOXTgs_qe6Ur13wucKm3cHX8_XI8idpsDJFmSb6KLNOcZ1THwg6NMkygqpFRVgxLhToRU0qwNC61EYnOVZIh67CKxbrQWR4XPCuTd9BztbP7QFBa0nJYCmo4Eo6WwmBBW8F1ahNF4z7wbv2lbkOV-4wZM9nZpN3Kjm7S0002dOvDYDNu3gTreHaE6MgrH207iRLl2bFfuv0gkaD-oqUhkUTIhYqzQFX4X30yD64QDvfhfbOZNnNOKJ4cLtjBf8zuM-xMLs_P5NnJ9PQDvPAtjWncIfRWizv7EbHUqvjUnpW_NVEdDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+adsorbent%3A+Simultaneous+activated+and+magnetic+ZnO+doped+biochar+derived+from+camphor+leaves+for+ciprofloxacin+adsorption&rft.jtitle=Bioresource+technology&rft.au=Hu%2C+Yi&rft.au=Zhu%2C+Yuan&rft.au=Zhang%2C+Yi&rft.au=Lin%2C+Tang&rft.date=2019-09-01&rft.issn=0960-8524&rft.volume=288+p.121511-&rft_id=info:doi/10.1016%2Fj.biortech.2019.121511&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |