Regression analysis of current status data in the presence of a cured subgroup and dependent censoring

This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of dependent censoring. Furthermore, there may exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the f...

Full description

Saved in:
Bibliographic Details
Published inLifetime data analysis Vol. 23; no. 4; pp. 626 - 650
Main Authors Liu, Yeqian, Hu, Tao, Sun, Jianguo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of dependent censoring. Furthermore, there may exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the failure event of interest. For the problem, we develop a sieve maximum likelihood estimation approach with the use of latent variables and Bernstein polynomials. For the determination of the proposed estimators, an EM algorithm is developed and the asymptotic properties of the estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. A motivating application from a tumorigenicity experiment is also provided.
AbstractList This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of dependent censoring. Furthermore, there may exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the failure event of interest. For the problem, we develop a sieve maximum likelihood estimation approach with the use of latent variables and Bernstein polynomials. For the determination of the proposed estimators, an EM algorithm is developed and the asymptotic properties of the estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. A motivating application from a tumorigenicity experiment is also provided.
This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of dependent censoring. Furthermore, there may exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the failure event of interest. For the problem, we develop a sieve maximum likelihood estimation approach with the use of latent variables and Bernstein polynomials. For the determination of the proposed estimators, an EM algorithm is developed and the asymptotic properties of the estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. A motivating application from a tumorigenicity experiment is also provided.This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of dependent censoring. Furthermore, there may exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the failure event of interest. For the problem, we develop a sieve maximum likelihood estimation approach with the use of latent variables and Bernstein polynomials. For the determination of the proposed estimators, an EM algorithm is developed and the asymptotic properties of the estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. A motivating application from a tumorigenicity experiment is also provided.
Author Liu, Yeqian
Hu, Tao
Sun, Jianguo
Author_xml – sequence: 1
  givenname: Yeqian
  surname: Liu
  fullname: Liu, Yeqian
  organization: Department of Mathematical Sciences, Middle Tennessee State University
– sequence: 2
  givenname: Tao
  surname: Hu
  fullname: Hu, Tao
  email: hutaomath@foxmail.com
  organization: School of Mathematical Sciences, Capital Normal University
– sequence: 3
  givenname: Jianguo
  surname: Sun
  fullname: Sun, Jianguo
  organization: Department of Statistics, University of Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27696128$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAURkVJaB7tD-imCLLpxo0efkjLENImECiEdC30uJ568EiOrr1Ifn1lZgIlkK4kwTkX3e87I0cxRSDkC2ffOWPdJXKmVVMx3lZaKlG9fCCnvOlEpUWtj8pdKlZ1qmMn5Axxy4qjW_2RnIiu1S0X6pT0D7DJgDikSG204zMOSFNP_ZIzxJnibOcFabCzpUOk8x-gU-Ehelgxu4IQKC5uk9MylRmBBpgghtX2EDHlIW4-kePejgifD-c5-f3j5vH6trr_9fPu-uq-8rVUcwVSQWCuV9I3oHjobR2CFq5tylP7VtWNE8xa7WSwXEOQTmlbO8e9Fazr5Dn5tp875fS0AM5mN6CHcbQR0oKGK9lIVXZnBb14g27TkksEhdK1aLgoKRXq64Fa3A6CmfKws_nZvCZYgG4P-JwQM_TGDyWzkuec7TAazszaldl3ZUpXZu3KvBSTvzFfh__PEXsHpzVWyP98-l3pLybTp-E
CitedBy_id crossref_primary_10_1080_02331888_2020_1783541
crossref_primary_10_1080_03610918_2022_2118780
crossref_primary_10_1177_09622802221111559
crossref_primary_10_1007_s10985_020_09510_4
crossref_primary_10_1007_s40304_021_00274_3
crossref_primary_10_1002_bimj_202000288
crossref_primary_10_1002_bimj_202000254
crossref_primary_10_1007_s10985_020_09507_z
crossref_primary_10_1007_s10985_021_09515_7
crossref_primary_10_1016_j_spl_2019_108621
crossref_primary_10_1111_biom_13202
crossref_primary_10_1002_pst_2048
crossref_primary_10_1002_sim_8910
crossref_primary_10_1080_00949655_2024_2383987
crossref_primary_10_1007_s00180_024_01528_8
crossref_primary_10_1007_s10651_022_00549_0
crossref_primary_10_1007_s11749_024_00961_7
Cites_doi 10.1006/jmva.2000.1975
10.1198/016214506000000311
10.1002/9781118032985
10.1198/jasa.2009.tm07494
10.1080/01621459.1158113
10.1016/S0167-7152(01)00105-5
10.1111/j.0006-341X.2002.00510.x
10.1093/biomet/92.3.573
10.1080/01621459.1997.10474050
10.1214/aos/1032894452
10.1007/BF00985261
10.1214/aos/1030741085
10.1198/jasa.2009.tm08033
10.1007/978-1-4757-2545-2
10.2307/2529885
10.1002/bimj.201100131
10.1111/j.1467-9469.2005.00415.x
10.2307/2532047
10.1214/aos/1176325486
10.1198/016214505000001122
10.1002/sim.2001
10.1186/2051-1426-1-18
10.1007/978-1-4612-5254-2
10.1080/01621459.1996.10476939
10.1093/biomet/85.2.289
10.1111/j.2517-6161.1982.tb01203.x
10.1002/sim.3715
10.1111/j.1467-9868.2007.00589.x
10.1093/biomet/91.2.331
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Lifetime Data Analysis is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Lifetime Data Analysis is a copyright of Springer, 2017.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
M0C
M0S
M0T
M1P
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s10985-016-9382-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database (Proquest)
PML(ProQuest Medical Library)
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Business Collection (Alumni Edition)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Mathematics
Statistics
EISSN 1572-9249
EndPage 650
ExternalDocumentID 27696128
10_1007_s10985_016_9382_z
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EBU
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0T
M1P
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z81
Z83
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
ABRTQ
K9.
L.-
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c438t-e38ed0bf83c5e81dfa4dd92b655e89c6845b20aa9b3da19ed3b89a4bb1ca20773
IEDL.DBID U2A
ISSN 1380-7870
1572-9249
IngestDate Fri Jul 11 09:39:15 EDT 2025
Sat Aug 23 14:35:02 EDT 2025
Thu Apr 03 06:58:53 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 01:43:34 EDT 2025
Fri Feb 21 02:25:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Interval censoring
Cure rate model
EM algorithm
Bernstein polynomial
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-e38ed0bf83c5e81dfa4dd92b655e89c6845b20aa9b3da19ed3b89a4bb1ca20773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27696128
PQID 1942512276
PQPubID 26261
PageCount 25
ParticipantIDs proquest_miscellaneous_1835389610
proquest_journals_1942512276
pubmed_primary_27696128
crossref_citationtrail_10_1007_s10985_016_9382_z
crossref_primary_10_1007_s10985_016_9382_z
springer_journals_10_1007_s10985_016_9382_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data
PublicationTitle Lifetime data analysis
PublicationTitleAbbrev Lifetime Data Anal
PublicationTitleAlternate Lifetime Data Anal
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MaSCure model with current status dataStat Sin20091923324924878871153.62076
KalbfleischJDPrenticeRLThe statistical analysis of failure time data2002HobokenWiley10.1002/97811180329851012.62104
FinkelsteinDMSchoenfeldDAAnalysis of multiple tumor data from a rodent carcinogenicity experimentBiometrics19894521923099944710.2307/25320470715.62229
FangHLiGSunJMaximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture modelScand J Stat2005325975213680210.1111/j.1467-9469.2005.00415.x1087.62109
OthusMLiYTiwariRA class of semiparametric mixture cure survival models with dependent censoringJ Am Stat Assoc200710412411250275024710.1198/jasa.2009.tm0803306444380
RossiniAJTsiatisAAA semiparametric proportional odds regression model for the analysis of current status dataJ Am Stat Assoc199691713721139573810.1080/01621459.1996.104769390869.62082
LouisTAFinding the observed information matrix when using the EM algorithmJ R Stat Soc Ser B1982402262336762130488.62018
Zhou Q, Tao Hu, Sun J (2016) A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. J Am Stat Assoc. doi:10.1080/01621459.1158113
SunJThe statistical analysis of interval-censored failure time data2006New YorkSpringer1127.62090
ZhangZSunJSunLStatistical analysis of current status data with informative observation timesStat Med20052413991407213456610.1002/sim.2001
LiuHaoShenYuA semiparametric regression cure model for interval censored dataJ Am Stat Assoc200910411681178275024210.1198/jasa.2009.tm0749406444373
ChenCLuTChenMHsuCSemiparametric transformation models for current status data with informative censoringBiom J201254641656296776510.1002/bimj.20110013106089951
HuangJRossiniAJSieve estimation for the proportional odds failure time regression model with interval censoringJ Am Stat Assoc199792960967148212610.1080/01621459.1997.104740500889.62082
HuangXWolfeRA frailty model for informative censoringBiometics200258510520192554810.1111/j.0006-341X.2002.00510.x1210.62129
ShenXOn methods of sieves and penalizationAnn Stat19972525552591160441610.1214/aos/10307410850895.62041
LuWYingZOn semiparametric transformation cure modelsBiometrika200491331343208130510.1093/biomet/91.2.3311079.62115
PollardDConvergence of stochastic processes1984New YorkSpringer10.1007/978-1-4612-5254-20544.60045
BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer1005.62007
ChenTStatistical issues and challenges in immuno-oncologyJ Immunother Cancer201311810.1186/2051-1426-1-18
LinDOakesDYingZAdditive hazards regression with current status dataBiometrika199885289298164911510.1093/biomet/85.2.2890938.62121
FletcherRPractical methods of optimization19872New YorkWiley0905.65002
ChenMTongXSunJA frailty model approach for regression analysis of multivariate current status dataStat Med20092834243426274437210.1002/sim.3715
JewellNPvan der LaanMJGeneralizations of current status data with applicationsLifetime Data Anal1995110110910.1007/BF009852610822.62093
LiYTiwariRGuhaSMixture cure survival models with dependent censoringJ R Stat Soc Series B200769285306232375410.1111/j.1467-9868.2007.00589.x
LamKFXueHA semiparametric regression cure model with current status dataBiometrika200592573586220264710.1093/biomet/92.3.5731152.62336
FarewellVTThe use of mixture models for the analysis of survival data with longterm survivorsBiometrics1982381041104610.2307/2529885
Van der VarrtAWWellnerJAWeak convergence and empirical processes1996New YorkSpringer10.1007/978-1-4757-2545-2
ZengDYinGIbrahimJGSemiparametric transformation models for survival data with a cure fractionJ Am Stat Assoc2006101670684225618210.1198/0162145050000011221119.62381
LorentzGGBernstein polynomials19531TorontoUniversity Toronto Press0051.05001
ChenMIbrahimJSinhaDBayesian inference for multivariate survival data with a cure fractionJ Multivar Anal200280101126188983610.1006/jmva.2000.19751003.62091
HuangJEfficient estimation for the proportional hazard model with interval censoringAnn Stat199624540568139497510.1214/aos/10328944520859.62032
ChangISWenCCWuYJA profile likelihood theory for the correlated gamma-frailty model with current status family dataStat Sin2007171023104624086451133.62021
ChenXFanYTsyrennikovVEfficient estimation of semiparametric multivariate copula modelsJ Am Stat Assoc200610112281240232830910.1198/0162145060000003111120.62312
LiCTaylorJMGJudyPSIdentifiability of cure modelsStat Probab Lett200154389395186138410.1016/S0167-7152(01)00105-50999.62075
Rondeau V, Schaffner E, Corbiere F, Gonzalez J and Pelissier S (2011) Cure frailty models for survival data: application to recurrences for breast cancer and to hospital readmissions for colorectal cancer. Stat Methods Med Res 1–18
ShenXWongWHConvergence rate of sieve estimatesAnn Stat199422580615129253110.1214/aos/11763254860805.62008
NP Jewell (9382_CR15) 1995; 1
JD Kalbfleisch (9382_CR16) 2002
Y Li (9382_CR19) 2007; 69
D Zeng (9382_CR34) 2006; 101
Hao Liu (9382_CR21) 2009; 104
H Fang (9382_CR8) 2005; 32
KF Lam (9382_CR17) 2005; 92
R Fletcher (9382_CR11) 1987
Z Zhang (9382_CR35) 2005; 24
M Chen (9382_CR5) 2009; 28
VT Farewell (9382_CR9) 1982; 38
M Othus (9382_CR26) 2007; 104
M Chen (9382_CR3) 2002; 80
C Chen (9382_CR6) 2012; 54
AW Varrt Van der (9382_CR33) 1996
J Huang (9382_CR13) 1997; 92
9382_CR28
DM Finkelstein (9382_CR10) 1989; 45
X Shen (9382_CR31) 1994; 22
T Chen (9382_CR7) 2013; 1
C Li (9382_CR18) 2001; 54
S Ma (9382_CR25) 2009; 19
D Lin (9382_CR20) 1998; 85
W Lu (9382_CR24) 2004; 91
D Pollard (9382_CR27) 1984
KP Burnham (9382_CR1) 2002
GG Lorentz (9382_CR22) 1953
X Chen (9382_CR4) 2006; 101
J Sun (9382_CR32) 2006
TA Louis (9382_CR23) 1982; 40
IS Chang (9382_CR2) 2007; 17
J Huang (9382_CR12) 1996; 24
AJ Rossini (9382_CR29) 1996; 91
X Shen (9382_CR30) 1997; 25
X Huang (9382_CR14) 2002; 58
9382_CR36
References_xml – reference: Van der VarrtAWWellnerJAWeak convergence and empirical processes1996New YorkSpringer10.1007/978-1-4757-2545-2
– reference: KalbfleischJDPrenticeRLThe statistical analysis of failure time data2002HobokenWiley10.1002/97811180329851012.62104
– reference: FarewellVTThe use of mixture models for the analysis of survival data with longterm survivorsBiometrics1982381041104610.2307/2529885
– reference: ChenTStatistical issues and challenges in immuno-oncologyJ Immunother Cancer201311810.1186/2051-1426-1-18
– reference: Rondeau V, Schaffner E, Corbiere F, Gonzalez J and Pelissier S (2011) Cure frailty models for survival data: application to recurrences for breast cancer and to hospital readmissions for colorectal cancer. Stat Methods Med Res 1–18
– reference: FangHLiGSunJMaximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture modelScand J Stat2005325975213680210.1111/j.1467-9469.2005.00415.x1087.62109
– reference: BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer1005.62007
– reference: ShenXOn methods of sieves and penalizationAnn Stat19972525552591160441610.1214/aos/10307410850895.62041
– reference: HuangJEfficient estimation for the proportional hazard model with interval censoringAnn Stat199624540568139497510.1214/aos/10328944520859.62032
– reference: HuangJRossiniAJSieve estimation for the proportional odds failure time regression model with interval censoringJ Am Stat Assoc199792960967148212610.1080/01621459.1997.104740500889.62082
– reference: ChenXFanYTsyrennikovVEfficient estimation of semiparametric multivariate copula modelsJ Am Stat Assoc200610112281240232830910.1198/0162145060000003111120.62312
– reference: LiCTaylorJMGJudyPSIdentifiability of cure modelsStat Probab Lett200154389395186138410.1016/S0167-7152(01)00105-50999.62075
– reference: MaSCure model with current status dataStat Sin20091923324924878871153.62076
– reference: ChenMIbrahimJSinhaDBayesian inference for multivariate survival data with a cure fractionJ Multivar Anal200280101126188983610.1006/jmva.2000.19751003.62091
– reference: ZhangZSunJSunLStatistical analysis of current status data with informative observation timesStat Med20052413991407213456610.1002/sim.2001
– reference: HuangXWolfeRA frailty model for informative censoringBiometics200258510520192554810.1111/j.0006-341X.2002.00510.x1210.62129
– reference: JewellNPvan der LaanMJGeneralizations of current status data with applicationsLifetime Data Anal1995110110910.1007/BF009852610822.62093
– reference: ChenMTongXSunJA frailty model approach for regression analysis of multivariate current status dataStat Med20092834243426274437210.1002/sim.3715
– reference: LamKFXueHA semiparametric regression cure model with current status dataBiometrika200592573586220264710.1093/biomet/92.3.5731152.62336
– reference: SunJThe statistical analysis of interval-censored failure time data2006New YorkSpringer1127.62090
– reference: ChenCLuTChenMHsuCSemiparametric transformation models for current status data with informative censoringBiom J201254641656296776510.1002/bimj.20110013106089951
– reference: LiYTiwariRGuhaSMixture cure survival models with dependent censoringJ R Stat Soc Series B200769285306232375410.1111/j.1467-9868.2007.00589.x
– reference: ChangISWenCCWuYJA profile likelihood theory for the correlated gamma-frailty model with current status family dataStat Sin2007171023104624086451133.62021
– reference: ZengDYinGIbrahimJGSemiparametric transformation models for survival data with a cure fractionJ Am Stat Assoc2006101670684225618210.1198/0162145050000011221119.62381
– reference: RossiniAJTsiatisAAA semiparametric proportional odds regression model for the analysis of current status dataJ Am Stat Assoc199691713721139573810.1080/01621459.1996.104769390869.62082
– reference: ShenXWongWHConvergence rate of sieve estimatesAnn Stat199422580615129253110.1214/aos/11763254860805.62008
– reference: PollardDConvergence of stochastic processes1984New YorkSpringer10.1007/978-1-4612-5254-20544.60045
– reference: FinkelsteinDMSchoenfeldDAAnalysis of multiple tumor data from a rodent carcinogenicity experimentBiometrics19894521923099944710.2307/25320470715.62229
– reference: LuWYingZOn semiparametric transformation cure modelsBiometrika200491331343208130510.1093/biomet/91.2.3311079.62115
– reference: FletcherRPractical methods of optimization19872New YorkWiley0905.65002
– reference: Zhou Q, Tao Hu, Sun J (2016) A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. J Am Stat Assoc. doi:10.1080/01621459.1158113
– reference: LiuHaoShenYuA semiparametric regression cure model for interval censored dataJ Am Stat Assoc200910411681178275024210.1198/jasa.2009.tm0749406444373
– reference: LinDOakesDYingZAdditive hazards regression with current status dataBiometrika199885289298164911510.1093/biomet/85.2.2890938.62121
– reference: LorentzGGBernstein polynomials19531TorontoUniversity Toronto Press0051.05001
– reference: OthusMLiYTiwariRA class of semiparametric mixture cure survival models with dependent censoringJ Am Stat Assoc200710412411250275024710.1198/jasa.2009.tm0803306444380
– reference: LouisTAFinding the observed information matrix when using the EM algorithmJ R Stat Soc Ser B1982402262336762130488.62018
– volume: 80
  start-page: 101
  year: 2002
  ident: 9382_CR3
  publication-title: J Multivar Anal
  doi: 10.1006/jmva.2000.1975
– volume: 17
  start-page: 1023
  year: 2007
  ident: 9382_CR2
  publication-title: Stat Sin
– volume: 101
  start-page: 1228
  year: 2006
  ident: 9382_CR4
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000311
– volume-title: The statistical analysis of failure time data
  year: 2002
  ident: 9382_CR16
  doi: 10.1002/9781118032985
– volume: 104
  start-page: 1168
  year: 2009
  ident: 9382_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.tm07494
– ident: 9382_CR36
  doi: 10.1080/01621459.1158113
– volume: 54
  start-page: 389
  year: 2001
  ident: 9382_CR18
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(01)00105-5
– volume: 58
  start-page: 510
  year: 2002
  ident: 9382_CR14
  publication-title: Biometics
  doi: 10.1111/j.0006-341X.2002.00510.x
– volume: 92
  start-page: 573
  year: 2005
  ident: 9382_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/92.3.573
– volume: 92
  start-page: 960
  year: 1997
  ident: 9382_CR13
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10474050
– volume: 24
  start-page: 540
  year: 1996
  ident: 9382_CR12
  publication-title: Ann Stat
  doi: 10.1214/aos/1032894452
– volume: 1
  start-page: 101
  year: 1995
  ident: 9382_CR15
  publication-title: Lifetime Data Anal
  doi: 10.1007/BF00985261
– volume: 25
  start-page: 2555
  year: 1997
  ident: 9382_CR30
  publication-title: Ann Stat
  doi: 10.1214/aos/1030741085
– volume: 19
  start-page: 233
  year: 2009
  ident: 9382_CR25
  publication-title: Stat Sin
– volume: 104
  start-page: 1241
  year: 2007
  ident: 9382_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.tm08033
– volume-title: Weak convergence and empirical processes
  year: 1996
  ident: 9382_CR33
  doi: 10.1007/978-1-4757-2545-2
– volume: 38
  start-page: 1041
  year: 1982
  ident: 9382_CR9
  publication-title: Biometrics
  doi: 10.2307/2529885
– volume-title: Practical methods of optimization
  year: 1987
  ident: 9382_CR11
– volume: 54
  start-page: 641
  year: 2012
  ident: 9382_CR6
  publication-title: Biom J
  doi: 10.1002/bimj.201100131
– ident: 9382_CR28
– volume: 32
  start-page: 59
  year: 2005
  ident: 9382_CR8
  publication-title: Scand J Stat
  doi: 10.1111/j.1467-9469.2005.00415.x
– volume-title: Model selection and multimodel inference: a practical information-theoretic approach
  year: 2002
  ident: 9382_CR1
– volume: 45
  start-page: 219
  year: 1989
  ident: 9382_CR10
  publication-title: Biometrics
  doi: 10.2307/2532047
– volume-title: Bernstein polynomials
  year: 1953
  ident: 9382_CR22
– volume: 22
  start-page: 580
  year: 1994
  ident: 9382_CR31
  publication-title: Ann Stat
  doi: 10.1214/aos/1176325486
– volume: 101
  start-page: 670
  year: 2006
  ident: 9382_CR34
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000001122
– volume: 24
  start-page: 1399
  year: 2005
  ident: 9382_CR35
  publication-title: Stat Med
  doi: 10.1002/sim.2001
– volume: 1
  start-page: 18
  year: 2013
  ident: 9382_CR7
  publication-title: J Immunother Cancer
  doi: 10.1186/2051-1426-1-18
– volume-title: Convergence of stochastic processes
  year: 1984
  ident: 9382_CR27
  doi: 10.1007/978-1-4612-5254-2
– volume: 91
  start-page: 713
  year: 1996
  ident: 9382_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476939
– volume-title: The statistical analysis of interval-censored failure time data
  year: 2006
  ident: 9382_CR32
– volume: 85
  start-page: 289
  year: 1998
  ident: 9382_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/85.2.289
– volume: 40
  start-page: 226
  year: 1982
  ident: 9382_CR23
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 28
  start-page: 3424
  year: 2009
  ident: 9382_CR5
  publication-title: Stat Med
  doi: 10.1002/sim.3715
– volume: 69
  start-page: 285
  year: 2007
  ident: 9382_CR19
  publication-title: J R Stat Soc Series B
  doi: 10.1111/j.1467-9868.2007.00589.x
– volume: 91
  start-page: 331
  year: 2004
  ident: 9382_CR24
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.331
SSID ssj0007969
Score 2.2143009
Snippet This paper discusses regression analysis of current status data, a type of failure time data where each study subject is observed only once, in the presence of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 626
SubjectTerms Algorithms
Animals
Asymptotic properties
Chloroprene - toxicity
Computer Simulation
Economic models
Economics
Estimators
Failure analysis
Female
Finance
Health Sciences
Humans
Insurance
Life Tables
Likelihood Functions
Liver Neoplasms, Experimental - chemically induced
Male
Management
Mathematics and Statistics
Maximum likelihood estimation
Medicine
Mice
Models, Statistical
Operations Research/Decision Theory
Polynomials
Quality Control
Rats
Regression Analysis
Reliability
Safety and Risk
Statistics
Statistics for Business
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: ProQuest_Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC5ivMSDaDQ6SZQWPClNZqd7ZnpOIiEhCOYgBvY29KM6CDK7cXYv-fVW9TwSCeY49JOpfnzV9VUVwMfoijyqUEnjFEodF1FaXTiJiFpHOgwrlwiyl9XFlf62LJfjg1s_0iqnMzEd1GHl-Y38hJRtvoqLuvqyvpGcNYqtq2MKjSfwlEOXMaWrXs4KV143KaXdQhlmzdWzVXNwnWsM09Yq2SgCmbf_3ksPwOYDQ2m6f85fwPMROIqvg6Rfwg52-_Ds-xx1td-HPUaOQ-DlVxB_4PXAce2EHSOPiFUUfgjIJNiTaNsLZoiKX52gbsQ6uSJ55GqWK2IQ_dYlxw_qI4gpY-5GeNJ-E3XvNVydn_08vZBjUgXptTIbicpgyF00ypdIYDVaHUJTuKqkz8ZXRpckPmsbp4JdNBiUM43Vzi28LfK6Vgew2606fAvC59YEa8vaOcIhSGp5jirEHLGgMRAzyKdf2vox4jgnvvjd3sVKZim0zDJjKbS3GXyam6yHcBuPVT6e5NSOO69v79ZJBh_mYtozbAixHa62VIdgJwE1Qo4ZvBnkO49GDamgMBl8ngR-r_P_TeXw8akcwV7BcCCRAI9hd_Nni-8IzGzc-7Ri_wK4PvL1
  priority: 102
  providerName: ProQuest
Title Regression analysis of current status data in the presence of a cured subgroup and dependent censoring
URI https://link.springer.com/article/10.1007/s10985-016-9382-z
https://www.ncbi.nlm.nih.gov/pubmed/27696128
https://www.proquest.com/docview/1942512276
https://www.proquest.com/docview/1835389610
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aBNr0UNrtI26TRYWeWgy2JdvycRt2E1oSSujC9mT0GJVC8YZ695Jfn5H8aEqaQC4yRiPJePT4xHwzA_DB6Sxx3Bax1Bxj4VIXK5HpGBGFcLQZFjoQZM-L06X4sspXvR93O7DdB5Nk2KlvOLtV0hPNirjiBAuvdmAv91d3msTLbDZuv2UV8tilXHqqXDmaMv_Xxb-H0S2Eecs6Gg6dxXN41qNFNuvU-wIeYTOBJ4MzcTuBp2dj2FV6e3zWW8onsO9RZBeE-SW4C_zZ8V0bpvooJGztmOmCMzHvVbRtmWeLsl8Nox7ZZXBLMujFlBdEy9qtDk4g1IdlQ_bcDTN0Ew40vlewXMy_H5_GfYKF2AguNzFyiTbRTnKTIwFXp4S1VaaLnF4rU0iRkyqVqjS3Kq3Qci0rJbROjcqSsuSvYbdZN3gAzCRKWqXyUmvCJEhX9AS5dQliRmMgRpAMf7o2ffRxnwTjd_03brJXTu0ZZ1459VUEH8cml13ojfuEDwf11f0qbOu0Eh6-ZWURwfuxmtaPN4qoBtdbkiEISqCNUGQEbzq1j6NRQ6rIZASfhnlwo_O7PuXtg6TfwX7mkULgBx7C7ubPFo8I52z0FHbKVUmlPE59uTiZwt7s5MfXOT0_z8-_XUzDzL8GLJL83w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAcKiivQAEjwQUUkbXzcA4IIaDa0scBtdLegh_jqhLKLmRXFf1R_EZm8iqoorceI9tjy-OxP8ffzAC8DFYmQfk81lZhnIZJiE0qbYyIaRpoM8xtS5A9zKfH6ZdZNluD34MvDNMqhz2x3aj93PE_8rd02eajWBb5-8WPmLNG8evqkEKjWxZ7-OuMrmzNu91PpN9XUu58Pvo4jfusArFLlV7GqDT6xAatXIaE1oJJvS-lzTP6LF2u04zGb0xplTeTEr2yujSptRNnZFIUiuTegJt08CZsUcVsvOAlRdmm0JsozSy9YnxF7Vz1Ss00uTwuFYHa83_PwUvg9tLDbHve7dyBzR6oig_dyroLa1hvwe2DMcprswUbjFS7QM_3IHzFk45TWwvTRzoR8yBcFwBKsOfSqhHMSBWntSAxYtG6PjnkaoYrohfNyraOJiTDiyFD71I4um23VMH7cHwt0_0A1ut5jY9AuMRob0xWWEu4B9GqBJUPCaKkPhAjSIYprVwf4ZwTbXyvLmIzsxYqZrWxFqrzCF6PTRZdeI-rKm8Peqp6S2-qi3UZwYuxmGyUH15MjfMV1SGYS8CQkGoEDzv9jr1RQyqQOoI3g8L_Ev6_oTy-eijP4db06GC_2t893HsCG5KhSEtA3Ib15c8VPiUgtbTP2tUr4Nt1m8sfYgkxiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBakPovUWrbqCviihyW4umwcRsR5aq0XEwnmLe5kVQXKO5hzE_jR_nTO5VSn2rY9hb8nOzu432W9mAJ4EK5OgfBFrqzDOQhpik0kbI2KWBdoMC9sRZI-K_ePs7Tyfb8Dv0ReGaZXjntht1H7h-B_5LhnbfBTLstgNAy3iw97s5fJ7zBmk-KZ1TKfRL5FD_PWTzLf2xcEeyfqplLM3n17vx0OGgdhlSq9iVBp9YoNWLkdCbsFk3lfSFjk9Vq7QWU7fYkxllTdphV5ZXZnM2tQZmZSlon4vweVS5SnrWDmfjL2krLp0eqnSzNgrpxvV3m2v0kyZK-JKEcA9-fdMPAN0z1zSdmff7DpcG0CreNWvshuwgc02XH0_RXxtt2GLUWsf9PkmhI_4pefXNsIMUU_EIgjXB4MS7MW0bgWzU8XXRlA3Ytm5QTnkaoYrohft2nZOJ9SHF2O23pVwZHl3tMFbcHwh030bNptFg3dBuMRob0xeWksYCNGqBJUPCaKkMRAjSMYprd0Q7ZyTbnyrT-M0sxRqZrixFOqTCJ5NTZZ9qI_zKu-McqoHrW_r0zUaweOpmPSVL2FMg4s11SHISyCRUGsEd3r5TqNRQyqQOoLno8D_6vx_r3Lv_Fd5BFdIUep3B0eH92FLMirpuIg7sLn6scYHhKlW9mG3eAV8vmht-QN0XzXB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+analysis+of+current+status+data+in+the+presence+of+a+cured+subgroup+and+dependent+censoring&rft.jtitle=Lifetime+data+analysis&rft.au=Liu%2C+Yeqian&rft.au=Hu%2C+Tao&rft.au=Sun%2C+Jianguo&rft.date=2017-10-01&rft.pub=Springer+US&rft.issn=1380-7870&rft.eissn=1572-9249&rft.volume=23&rft.issue=4&rft.spage=626&rft.epage=650&rft_id=info:doi/10.1007%2Fs10985-016-9382-z&rft.externalDocID=10_1007_s10985_016_9382_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon