Global investigation of impacts of PET methods on simulating crop-water relations for maize
•We simulate crop-water relations for maize on a global scale.•We compare uncertainties derived from different PET methods on the relations.•Uncertainties are significant, especially for crop water use and productivity.•Water availability plays an important role in the uncertainties.•A proper choice...
Saved in:
Published in | Agricultural and forest meteorology Vol. 221; pp. 164 - 175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We simulate crop-water relations for maize on a global scale.•We compare uncertainties derived from different PET methods on the relations.•Uncertainties are significant, especially for crop water use and productivity.•Water availability plays an important role in the uncertainties.•A proper choice of PET methods is quite important for crop growth simulation.
Crop models are commonly used to investigate crop-water relations over different spatial scales. Estimating potential evapotranspiration (PET) is a basis for this investigation. Most crop models have built-in PET estimation methods. Using different methods can lead to very different PET estimates; but little is known about the sensitivity of large-scale crop model predictions on the choice of the PET estimation methods. In the work reported here, we used PEPIC, a grid-based EPIC (Environmental Policy Integrated Climate) model with a Python environment, to investigate the impacts of five different PET methods on estimated crop-water relations for maize on a global scale at a resolution of 30arcmin. Results show that the estimated PET varied largely among different PET methods for the same climate zones, leading to uncertainties in estimating crop-water relations. Uncertainties in water-related variables such as growing season evapotranspiration (GSET) and irrigation water requirement were more relevant than uncertainties in crop yields. Water availability played an important role in the uncertainties. All PET methods showed similar performance with respect to simulations of GSET for rainfed maize cultivation in low-rainfall regions, while there were large differences for regions with high rainfall. For irrigated agriculture, the estimated irrigation water requirement varied widely among the five PET methods, with a factor of 2 between the smallest and the largest estimates. Overall, using the Priestley-Taylor method led to lowest yield but highest GSET estimates. The Baier-Robertson and Hargreaves methods produced rather high GSET estimates for tropical and humid regions. The Penman-Monteith method gave the best yield estimates, compared to agricultural statistics. The results highlight the importance of considering the uncertainties resulting from the selection of PET estimation methods in investigating crop-water relations, particularly in predicting impacts of future climate change and in formulating appropriate water management strategies. |
---|---|
AbstractList | •We simulate crop-water relations for maize on a global scale.•We compare uncertainties derived from different PET methods on the relations.•Uncertainties are significant, especially for crop water use and productivity.•Water availability plays an important role in the uncertainties.•A proper choice of PET methods is quite important for crop growth simulation.
Crop models are commonly used to investigate crop-water relations over different spatial scales. Estimating potential evapotranspiration (PET) is a basis for this investigation. Most crop models have built-in PET estimation methods. Using different methods can lead to very different PET estimates; but little is known about the sensitivity of large-scale crop model predictions on the choice of the PET estimation methods. In the work reported here, we used PEPIC, a grid-based EPIC (Environmental Policy Integrated Climate) model with a Python environment, to investigate the impacts of five different PET methods on estimated crop-water relations for maize on a global scale at a resolution of 30arcmin. Results show that the estimated PET varied largely among different PET methods for the same climate zones, leading to uncertainties in estimating crop-water relations. Uncertainties in water-related variables such as growing season evapotranspiration (GSET) and irrigation water requirement were more relevant than uncertainties in crop yields. Water availability played an important role in the uncertainties. All PET methods showed similar performance with respect to simulations of GSET for rainfed maize cultivation in low-rainfall regions, while there were large differences for regions with high rainfall. For irrigated agriculture, the estimated irrigation water requirement varied widely among the five PET methods, with a factor of 2 between the smallest and the largest estimates. Overall, using the Priestley-Taylor method led to lowest yield but highest GSET estimates. The Baier-Robertson and Hargreaves methods produced rather high GSET estimates for tropical and humid regions. The Penman-Monteith method gave the best yield estimates, compared to agricultural statistics. The results highlight the importance of considering the uncertainties resulting from the selection of PET estimation methods in investigating crop-water relations, particularly in predicting impacts of future climate change and in formulating appropriate water management strategies. Crop models are commonly used to investigate crop-water relations over different spatial scales. Estimating potential evapotranspiration (PET) is a basis for this investigation. Most crop models have built-in PET estimation methods. Using different methods can lead to very different PET estimates; but little is known about the sensitivity of large-scale crop model predictions on the choice of the PET estimation methods. In the work reported here, we used PEPIC, a grid-based EPIC (Environmental Policy Integrated Climate) model with a Python environment, to investigate the impacts of five different PET methods on estimated crop-water relations for maize on a global scale at a resolution of 30arcmin. Results show that the estimated PET varied largely among different PET methods for the same climate zones, leading to uncertainties in estimating crop-water relations. Uncertainties in water-related variables such as growing season evapotranspiration (GSET) and irrigation water requirement were more relevant than uncertainties in crop yields. Water availability played an important role in the uncertainties. All PET methods showed similar performance with respect to simulations of GSET for rainfed maize cultivation in low-rainfall regions, while there were large differences for regions with high rainfall. For irrigated agriculture, the estimated irrigation water requirement varied widely among the five PET methods, with a factor of 2 between the smallest and the largest estimates. Overall, using the Priestley-Taylor method led to lowest yield but highest GSET estimates. The Baier-Robertson and Hargreaves methods produced rather high GSET estimates for tropical and humid regions. The Penman-Monteith method gave the best yield estimates, compared to agricultural statistics. The results highlight the importance of considering the uncertainties resulting from the selection of PET estimation methods in investigating crop-water relations, particularly in predicting impacts of future climate change and in formulating appropriate water management strategies. |
Author | Folberth, Christian Luo, Qunying Yang, Hong Liu, Wenfeng Wang, Xiuying Schulin, Rainer |
Author_xml | – sequence: 1 givenname: Wenfeng surname: Liu fullname: Liu, Wenfeng email: wenfeng.liu@eawag.ch, wfliu2012@gmail.com organization: Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland – sequence: 2 givenname: Hong surname: Yang fullname: Yang, Hong organization: Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland – sequence: 3 givenname: Christian surname: Folberth fullname: Folberth, Christian organization: International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Schlossplatz 1, A-2361 Laxenburg, Austria – sequence: 4 givenname: Xiuying surname: Wang fullname: Wang, Xiuying organization: Blackland Research and Extension Center, Temple, TX 76502, USA – sequence: 5 givenname: Qunying surname: Luo fullname: Luo, Qunying organization: Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Po Box 123, Broadway 2007, NSW, Australia – sequence: 6 givenname: Rainer surname: Schulin fullname: Schulin, Rainer organization: ETH Zürich, Institute of Terrestrial Ecosystems, Universitätstr. 16, CH-8092 Zürich, Switzerland |
BookMark | eNqFkMFPwyAUxomZidv0bxhHL61Au1GOyzKnyRJN3E4eCKWvk6UtFboZ_eul1nj1xIP3-x7f-yZo1NgGEJpRElNCF3fHWB1caV0NXczCQ0xYTCi_QGOa8SRiLCUjNA6NLKKCJVdo4v2REMo4F2P0uqlsripsmjP4zhxUZ2yDbYlN3Srd-b58Xu9wmP5mi3BtsDf1qQpcc8Da2Tb6UB047KD60XocvOBamS-4Rpelqjzc_J5TtL9f71YP0fZp87habiOdJlkXFQUIpdLgWQsBihWUpqXOinxBqRB6ngPk6TwtlBCEUhCLROeEZ3MBIk-VYskU3Q5zW2ffT2ENWRuvoapUA_bkJeUiJMFTRgLKBzQ4995BKVtnauU-JSWyj1Me5V-cso9TEiaDtaCcDcpS2R4xXu5feiBEmRFORCCWAwFh17MBJ7020GgojAPdycKaf3_5BsUJjxs |
CitedBy_id | crossref_primary_10_5194_esd_11_113_2020 crossref_primary_10_5194_essd_10_951_2018 crossref_primary_10_3389_fenvs_2019_00050 crossref_primary_10_1029_2023EF003773 crossref_primary_10_1016_j_eja_2016_08_006 crossref_primary_10_1016_j_agwat_2022_107839 crossref_primary_10_1016_j_resconrec_2018_04_020 crossref_primary_10_1016_j_eja_2017_10_012 crossref_primary_10_1088_1748_9326_aacb37 crossref_primary_10_3390_cli7100124 crossref_primary_10_5194_gmd_13_2315_2020 crossref_primary_10_5194_hess_26_923_2022 crossref_primary_10_1093_pcp_pcx141 crossref_primary_10_5194_gmd_13_3995_2020 crossref_primary_10_1007_s00376_023_2234_3 crossref_primary_10_3390_su9071172 crossref_primary_10_1126_sciadv_adi9325 crossref_primary_10_1029_2018EF001130 crossref_primary_10_1007_s12571_021_01228_x crossref_primary_10_1088_1748_9326_abd8fc crossref_primary_10_1021_acs_est_0c03978 crossref_primary_10_1371_journal_pone_0198748 crossref_primary_10_5194_hess_25_1133_2021 crossref_primary_10_1038_s41558_021_01104_8 crossref_primary_10_5194_gmd_10_1403_2017 crossref_primary_10_2166_nh_2019_060 crossref_primary_10_1029_2017GB005849 crossref_primary_10_3390_w10020148 crossref_primary_10_2166_nh_2016_021 crossref_primary_10_3389_fsufs_2023_1023169 crossref_primary_10_1002_wat2_1320 crossref_primary_10_3390_rs15123197 crossref_primary_10_1016_j_scitotenv_2018_03_306 crossref_primary_10_1002_joc_5205 crossref_primary_10_1016_j_crm_2021_100311 crossref_primary_10_1016_j_agrformet_2020_107932 crossref_primary_10_1088_1748_9326_aac4bb crossref_primary_10_1073_pnas_1919049117 crossref_primary_10_1016_j_jclepro_2017_01_072 crossref_primary_10_1021_acs_est_8b03610 crossref_primary_10_5194_esd_15_429_2024 crossref_primary_10_1038_s41597_019_0023_8 crossref_primary_10_1111_gcb_15868 crossref_primary_10_1038_s43247_023_00941_z crossref_primary_10_1016_j_catena_2016_06_015 crossref_primary_10_1029_2020WR028570 crossref_primary_10_3389_feart_2023_1283171 crossref_primary_10_1016_j_scitotenv_2016_08_093 crossref_primary_10_1016_j_scitotenv_2018_01_090 crossref_primary_10_3390_su10010201 crossref_primary_10_5194_gmd_16_3275_2023 crossref_primary_10_1016_j_jhydrol_2022_128999 crossref_primary_10_1371_journal_pone_0221862 crossref_primary_10_1029_2020EF001616 |
Cites_doi | 10.13031/2013.28665 10.1111/gcb.12520 10.1002/2014WR015638 10.1061/(ASCE)0733-9437(2007)133:1(38) 10.1016/j.agrformet.2012.09.011 10.1016/j.agsy.2013.05.008 10.13031/2013.30578 10.1098/rspa.1948.0037 10.1016/j.ecolmodel.2013.10.026 10.1016/j.agrformet.2013.03.001 10.1029/WR008i005p01204 10.13031/2013.32748 10.1016/S0304-3800(03)00146-7 10.3844/ajessp.2009.698.705 10.5194/hess-15-1577-2011 10.2134/agronj2004.1243 10.1016/j.agee.2012.01.026 10.1016/j.agsy.2006.11.019 10.1073/pnas.1222474110 10.4141/cjps65-051 10.1088/1748-9326/9/4/044004 10.1016/j.gloplacha.2014.08.010 10.1016/j.jhydrol.2009.07.031 10.5194/hess-15-1641-2011 10.1016/j.agsy.2013.04.002 10.5194/gmd-8-261-2015 10.13031/2013.26773 10.1016/j.eja.2011.05.001 10.1016/S1161-0301(02)00107-7 10.1061/(ASCE)0733-9437(2003)129:1(53) 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.13031/2013.18153 10.1371/journal.pone.0057750 10.5194/hess-11-1633-2007 10.1016/j.agwat.2014.05.017 10.1029/2007WR006051 10.1016/j.envsoft.2008.08.004 10.5194/esd-4-219-2013 10.1002/joc.1181 10.1073/pnas.1222463110 10.4141/S97-063 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7ST 7TG 7U6 7UA C1K KL. |
DOI | 10.1016/j.agrformet.2016.02.017 |
DatabaseName | AGRIS CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1873-2240 |
EndPage | 175 |
ExternalDocumentID | 10_1016_j_agrformet_2016_02_017 US201600180709 S0168192316301800 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AALCJ AAQXK ABEFU ABFNM ABPIF ABPTK ABXDB ADMUD ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SEW WUQ 0SF AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 7ST 7TG 7U6 7UA C1K KL. |
ID | FETCH-LOGICAL-c438t-dde9aa4017c99ea2d114fc8db61199c5beeb454da99011e963cb07859e9b4aa23 |
IEDL.DBID | AIKHN |
ISSN | 0168-1923 |
IngestDate | Sat Oct 05 06:14:10 EDT 2024 Thu Sep 26 17:08:51 EDT 2024 Wed Dec 27 19:14:07 EST 2023 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CWU PSE APT EPIC Maize ET Crop-water relations AET PEPIC ASE Modelling uncertainties PPT Global scale GSET PHU CWP PET |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-dde9aa4017c99ea2d114fc8db61199c5beeb454da99011e963cb07859e9b4aa23 |
Notes | http://dx.doi.org/10.1016/j.agrformet.2016.02.017 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1798737420 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1798737420 crossref_primary_10_1016_j_agrformet_2016_02_017 fao_agris_US201600180709 elsevier_sciencedirect_doi_10_1016_j_agrformet_2016_02_017 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Agricultural and forest meteorology |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Balkovič (bib0025) 2014; 122 Williams, Jones, Dyke (bib0270) 1984; 27 Yoder, Odhiambo, Wright (bib0290) 2005; 21 Liu, Williams, Zehnder, Yang (bib0140) 2007; 94 Weedon (bib0265) 2014; 50 Jones (bib0120) 2003; 18 Hargreaves, Samani (bib0105) 1985; 1 FAO (bib0070) 2007 Saghravani, ari Mustapha, Ibrahim, Randjbaran (bib0230) 2009; 5 Williams (bib0275) 1995 Folberth (bib0090) 2014; 9 Folberth, Yang, Gaiser, Abbaspour, Schulin (bib0085) 2013; 119 Chapagain, A.K., Hoekstra, A.Y., 2004. Water footprints of nations. Research Report Series No. 16. UNESCO-IHE, Delft. Mitchell, Jones (bib0165) 2005; 25 Hargreaves, Allen (bib0100) 2003; 129 Leonard, Knisel, Still (bib0135) 1987; 30 Batjes, N.H., 2006. ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (version 1.1), ISRIC—World Soil Infromation, Wageningen. Elliott (bib0055) 2014; 111 Elliott (bib0060) 2015; 8 Parton (bib0180) 1994 Liu, Zehnder, Yang (bib0145) 2009; 45 Trajkovic (bib0255) 2007; 133 Bassu (bib0030) 2014; 20 Roloff, Jong, Zentner, Campbell, Benson (bib0210) 1998; 78 Sau, Boote, Bostick, Jones, Minguez (bib0235) 2004; 96 Folberth, Gaiser, Abbaspour, Schulin, Yang (bib0080) 2012; 151 Knisel, W.G., 1980. CREAMS: a field-scale model for chemicals, runoff and erosion from agricultural management systems. Conservation Research Report No. 26, Washington D.C. Hempel, Frieler, Warszawski, Schewe, Piontek (bib0110) 2013; 4 Portmann, Siebert, Doll (bib0195) 2010 Mekonnen, Hoekstra (bib0160) 2011; 15 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome. Xiong (bib0280) 2014; 273 Benson, Potter, Bogusch, Goss, Williams (bib0040) 1992; 47 Liu (bib0155) 2009; 24 Rosenzweig (bib0215) 2013; 170 Fader (bib0075) 2011; 15 Penman (bib0190) 1948; 193 Ritchie (bib0205) 1972; 8 Yin (bib0285) 2014; 144 Balkovič (bib0020) 2013; 120 Siebert, Döll (bib0245) 2010; 384 Monteith (bib0170) 1965; 19 FAO (bib0065) 1995 Doorenbos (bib0050) 1977; 24 Palosuo (bib0175) 2011; 35 Liu (bib0150) 2013; 8 Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manual of Practice No. 70. ASCE, New York. Peel, Finlayson, McMahon (bib0185) 2007; 11 Anothai, Soler, Green, Trout, Hoogenboom (bib0010) 2013; 176 Baier, Robertson (bib0015) 1965; 45 Gassman, P.W. et al., 2005. Historical development and applications of the EPIC and APEX Models Iowa State University, Center for Agricultural and Rural Development. Working Paper 05-WP 397, Ames, Iowa. Priestley, Taylor (bib0200) 1972; 100 Rosenzweig (bib0220) 2014; 111 Wang, Dickinson (bib0260) 2012 Sacks, Deryng, Foley, Ramankutty (bib0225) 2010; 19 Kiniry, Williams, Gassman, Debaeke (bib0125) 1992; 35 Tan, Shibasaki (bib0250) 2003; 168 Shiklomanov (bib0240) 2003 Folberth (10.1016/j.agrformet.2016.02.017_bib0080) 2012; 151 Ritchie (10.1016/j.agrformet.2016.02.017_bib0205) 1972; 8 Hempel (10.1016/j.agrformet.2016.02.017_bib0110) 2013; 4 Fader (10.1016/j.agrformet.2016.02.017_bib0075) 2011; 15 Jones (10.1016/j.agrformet.2016.02.017_bib0120) 2003; 18 Williams (10.1016/j.agrformet.2016.02.017_bib0275) 1995 Liu (10.1016/j.agrformet.2016.02.017_bib0145) 2009; 45 Yoder (10.1016/j.agrformet.2016.02.017_bib0290) 2005; 21 Monteith (10.1016/j.agrformet.2016.02.017_bib0170) 1965; 19 FAO (10.1016/j.agrformet.2016.02.017_bib0065) 1995 Rosenzweig (10.1016/j.agrformet.2016.02.017_bib0215) 2013; 170 Weedon (10.1016/j.agrformet.2016.02.017_bib0265) 2014; 50 Liu (10.1016/j.agrformet.2016.02.017_bib0155) 2009; 24 Palosuo (10.1016/j.agrformet.2016.02.017_bib0175) 2011; 35 Kiniry (10.1016/j.agrformet.2016.02.017_bib0125) 1992; 35 Williams (10.1016/j.agrformet.2016.02.017_bib0270) 1984; 27 Elliott (10.1016/j.agrformet.2016.02.017_bib0055) 2014; 111 Sau (10.1016/j.agrformet.2016.02.017_bib0235) 2004; 96 Folberth (10.1016/j.agrformet.2016.02.017_bib0085) 2013; 119 Balkovič (10.1016/j.agrformet.2016.02.017_bib0020) 2013; 120 Saghravani (10.1016/j.agrformet.2016.02.017_bib0230) 2009; 5 Mekonnen (10.1016/j.agrformet.2016.02.017_bib0160) 2011; 15 10.1016/j.agrformet.2016.02.017_bib0035 Penman (10.1016/j.agrformet.2016.02.017_bib0190) 1948; 193 10.1016/j.agrformet.2016.02.017_bib0115 FAO (10.1016/j.agrformet.2016.02.017_bib0070) 2007 Leonard (10.1016/j.agrformet.2016.02.017_bib0135) 1987; 30 Roloff (10.1016/j.agrformet.2016.02.017_bib0210) 1998; 78 Elliott (10.1016/j.agrformet.2016.02.017_bib0060) 2015; 8 Priestley (10.1016/j.agrformet.2016.02.017_bib0200) 1972; 100 Tan (10.1016/j.agrformet.2016.02.017_bib0250) 2003; 168 Hargreaves (10.1016/j.agrformet.2016.02.017_bib0105) 1985; 1 Liu (10.1016/j.agrformet.2016.02.017_bib0150) 2013; 8 Doorenbos (10.1016/j.agrformet.2016.02.017_bib0050) 1977; 24 Portmann (10.1016/j.agrformet.2016.02.017_bib0195) 2010 Baier (10.1016/j.agrformet.2016.02.017_bib0015) 1965; 45 10.1016/j.agrformet.2016.02.017_bib0095 Siebert (10.1016/j.agrformet.2016.02.017_bib0245) 2010; 384 Parton (10.1016/j.agrformet.2016.02.017_bib0180) 1994 Xiong (10.1016/j.agrformet.2016.02.017_bib0280) 2014; 273 10.1016/j.agrformet.2016.02.017_bib0005 10.1016/j.agrformet.2016.02.017_bib0045 Hargreaves (10.1016/j.agrformet.2016.02.017_bib0100) 2003; 129 Anothai (10.1016/j.agrformet.2016.02.017_bib0010) 2013; 176 Balkovič (10.1016/j.agrformet.2016.02.017_bib0025) 2014; 122 Shiklomanov (10.1016/j.agrformet.2016.02.017_bib0240) 2003 Benson (10.1016/j.agrformet.2016.02.017_bib0040) 1992; 47 Rosenzweig (10.1016/j.agrformet.2016.02.017_bib0220) 2014; 111 Sacks (10.1016/j.agrformet.2016.02.017_bib0225) 2010; 19 Yin (10.1016/j.agrformet.2016.02.017_bib0285) 2014; 144 Mitchell (10.1016/j.agrformet.2016.02.017_bib0165) 2005; 25 Folberth (10.1016/j.agrformet.2016.02.017_bib0090) 2014; 9 Trajkovic (10.1016/j.agrformet.2016.02.017_bib0255) 2007; 133 Bassu (10.1016/j.agrformet.2016.02.017_bib0030) 2014; 20 Peel (10.1016/j.agrformet.2016.02.017_bib0185) 2007; 11 10.1016/j.agrformet.2016.02.017_bib0130 Liu (10.1016/j.agrformet.2016.02.017_bib0140) 2007; 94 Wang (10.1016/j.agrformet.2016.02.017_bib0260) 2012 |
References_xml | – volume: 18 start-page: 235 year: 2003 end-page: 265 ident: bib0120 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. contributor: fullname: Jones – volume: 21 start-page: 197 year: 2005 end-page: 202 ident: bib0290 article-title: Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States publication-title: Appl. Eng. Agric. contributor: fullname: Wright – volume: 119 start-page: 22 year: 2013 end-page: 34 ident: bib0085 article-title: Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa publication-title: Agric. Syst. contributor: fullname: Schulin – volume: 20 start-page: 2301 year: 2014 end-page: 2320 ident: bib0030 article-title: How do various maize crop models vary in their responses to climate change factors? publication-title: Global Change Biol. contributor: fullname: Bassu – year: 1995 ident: bib0275 article-title: The EPIC model publication-title: Computer Models of Watershed Hydrology contributor: fullname: Williams – volume: 1 start-page: 96 year: 1985 end-page: 99 ident: bib0105 article-title: Reference crop evapotranspiration from temperature publication-title: Appl. Eng. Agric. contributor: fullname: Samani – volume: 9 start-page: 044004 year: 2014 ident: bib0090 article-title: Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change publication-title: Environ. Res. Lett. contributor: fullname: Folberth – volume: 133 start-page: 38 year: 2007 end-page: 42 ident: bib0255 article-title: Hargreaves versus Penman–Monteith under humid conditions publication-title: J .Irrig. Drain. Eng. contributor: fullname: Trajkovic – volume: 15 start-page: 1641 year: 2011 end-page: 1660 ident: bib0075 article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Fader – volume: 111 start-page: 3268 year: 2014 end-page: 3273 ident: bib0220 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Rosenzweig – volume: 11 start-page: 1633 year: 2007 end-page: 1644 ident: bib0185 article-title: Updated world map of the Köppen–Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: McMahon – volume: 96 start-page: 1243 year: 2004 end-page: 1257 ident: bib0235 article-title: Testing and improving evapotranspiration and soil water balance of the DSSAT crop models publication-title: Agron. J. contributor: fullname: Minguez – volume: 19 start-page: 607 year: 2010 end-page: 620 ident: bib0225 article-title: Crop planting dates: an analysis of global patterns publication-title: Global Change Biol. contributor: fullname: Ramankutty – volume: 15 start-page: 1577 year: 2011 end-page: 1600 ident: bib0160 article-title: The green, blue and grey water footprint of crops and derived crop products publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Hoekstra – start-page: 50 year: 2012 ident: bib0260 article-title: A review of global terrestrial evapotranspiration: observation, modeling climatology, and climatic variability publication-title: Rev. Geophys. contributor: fullname: Dickinson – volume: 100 start-page: 81 year: 1972 end-page: 92 ident: bib0200 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. contributor: fullname: Taylor – volume: 111 start-page: 3239 year: 2014 end-page: 3244 ident: bib0055 article-title: Constraints and potentials of future irrigation water availability on agricultural production under climate change publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Elliott – start-page: 147 year: 1994 end-page: 167 ident: bib0180 article-title: A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management publication-title: Soil Sci. Soc. Am. Inc., Minneap. Minn. U. S. A. contributor: fullname: Parton – volume: 78 start-page: 541 year: 1998 end-page: 549 ident: bib0210 article-title: Estimating spring wheat yield variability with EPIC publication-title: Can. J. Soil Sci. contributor: fullname: Benson – volume: 170 start-page: 166 year: 2013 end-page: 182 ident: bib0215 article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies publication-title: Agric. For. Meteorol. contributor: fullname: Rosenzweig – volume: 35 start-page: 801 year: 1992 end-page: 810 ident: bib0125 article-title: A general, process-oriented model for two competing plant species publication-title: Trans. ASABE contributor: fullname: Debaeke – volume: 4 start-page: 219 year: 2013 end-page: 236 ident: bib0110 article-title: A trend-preserving bias correction – the ISI-MIP approach publication-title: Earth Syst. Dyn. contributor: fullname: Piontek – volume: 168 start-page: 357 year: 2003 end-page: 370 ident: bib0250 article-title: Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration publication-title: Ecol. Modell. contributor: fullname: Shibasaki – volume: 129 start-page: 53 year: 2003 end-page: 63 ident: bib0100 article-title: History and evaluation of Hargreaves evapotranspiration equation publication-title: J. Irrig. Drain. Eng. contributor: fullname: Allen – year: 2003 ident: bib0240 article-title: World Water Resources at the Beginning of the 21st Century contributor: fullname: Shiklomanov – volume: 25 start-page: 693 year: 2005 end-page: 712 ident: bib0165 article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids publication-title: Int. J. Climatol. contributor: fullname: Jones – volume: 193 start-page: 120 year: 1948 end-page: 145 ident: bib0190 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. Lond. Ser. A contributor: fullname: Penman – year: 1995 ident: bib0065 article-title: Digital Soil Map of the World Map contributor: fullname: FAO – start-page: 24 year: 2010 ident: bib0195 article-title: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling publication-title: Global Biogeochem. Cycles contributor: fullname: Doll – year: 2007 ident: bib0070 article-title: FertiSTAT— Fertilizer Use Statistics contributor: fullname: FAO – volume: 30 start-page: 1403 year: 1987 end-page: 1418 ident: bib0135 article-title: GLEAMS: groundwater loading effects of agricultural management systems publication-title: Trans. ASABE contributor: fullname: Still – volume: 19 start-page: 205 year: 1965 end-page: 234 ident: bib0170 article-title: Evaporation and environment publication-title: Symp. Soc. Exp. Biol. contributor: fullname: Monteith – volume: 50 start-page: 7505 year: 2014 end-page: 7514 ident: bib0265 article-title: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data publication-title: Water Resour. Res. contributor: fullname: Weedon – volume: 45 year: 2009 ident: bib0145 article-title: Global consumptive water use for crop production: the importance of green water and virtual water publication-title: Water Resour. Res. contributor: fullname: Yang – volume: 8 start-page: 1204 year: 1972 end-page: 1213 ident: bib0205 article-title: Model for predicting evaporation from a row crop with incomplete cover publication-title: Water Resour. Res. contributor: fullname: Ritchie – volume: 144 start-page: 107 year: 2014 end-page: 119 ident: bib0285 article-title: GEPIC-V-R model: a GIS-based tool for regional crop drought risk assessment publication-title: Agric. Water Manage. contributor: fullname: Yin – volume: 8 start-page: e57750 year: 2013 ident: bib0150 article-title: A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use publication-title: PLoS One contributor: fullname: Liu – volume: 24 start-page: 411 year: 2009 end-page: 422 ident: bib0155 article-title: A GIS-based tool for modelling large-scale crop-water relations publication-title: Environ. Modell. Software contributor: fullname: Liu – volume: 273 start-page: 128 year: 2014 end-page: 139 ident: bib0280 article-title: A calibration procedure to improve global rice yield simulations with EPIC publication-title: Ecol. Modell. contributor: fullname: Xiong – volume: 45 start-page: 276 year: 1965 end-page: 284 ident: bib0015 article-title: Estimation of latent evaporation from simple weather observations publication-title: Can. J. Plant Sci. contributor: fullname: Robertson – volume: 27 start-page: 129 year: 1984 end-page: 144 ident: bib0270 article-title: A modeling approach to determining the relationship between erosion and soil productivity publication-title: Trans. ASABE contributor: fullname: Dyke – volume: 176 start-page: 64 year: 2013 end-page: 76 ident: bib0010 article-title: Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions publication-title: Agric. For. Meteorol. contributor: fullname: Hoogenboom – volume: 120 start-page: 61 year: 2013 end-page: 75 ident: bib0020 article-title: Pan-European crop modelling with EPIC: implementation, up-scaling and regional crop yield validation publication-title: Agrofor. Syst. contributor: fullname: Balkovič – volume: 5 start-page: 698 year: 2009 ident: bib0230 article-title: Comparison of daily and monthly results of three evapotranspiration models in tropical zone: a case study publication-title: Am. J. Environ. Sci. contributor: fullname: Randjbaran – volume: 122 start-page: 107 year: 2014 end-page: 121 ident: bib0025 article-title: Global wheat production potentials and management flexibility under the representative concentration pathways publication-title: Global Planet. C contributor: fullname: Balkovič – volume: 94 start-page: 478 year: 2007 end-page: 493 ident: bib0140 article-title: GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale publication-title: Agric. Syst. contributor: fullname: Yang – volume: 47 start-page: 334 year: 1992 end-page: 337 ident: bib0040 article-title: Nitrogen leaching sensitivity to evapotranspiration and soil water storage estimates in EPIC publication-title: J. Soil Water Conserv. contributor: fullname: Williams – volume: 24 start-page: 15 year: 1977 end-page: 29 ident: bib0050 article-title: Guidelines for predicting crop water requirements publication-title: FAO Irrig. Drain. Pap. contributor: fullname: Doorenbos – volume: 384 start-page: 198 year: 2010 end-page: 217 ident: bib0245 article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation publication-title: J. Hydrol. contributor: fullname: Döll – volume: 151 start-page: 21 year: 2012 end-page: 33 ident: bib0080 article-title: Regionalization of a large-scale crop growth model for sub-Saharan Africa: model setup, evaluation, and estimation of maize yields publication-title: Agric. Ecosyst. Environ. contributor: fullname: Yang – volume: 35 start-page: 103 year: 2011 end-page: 114 ident: bib0175 article-title: Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models publication-title: Eur. J. Agron. contributor: fullname: Palosuo – volume: 8 start-page: 261 year: 2015 end-page: 277 ident: bib0060 article-title: The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1.0) publication-title: Geosci. Model Dev. contributor: fullname: Elliott – volume: 35 start-page: 801 issue: 3 year: 1992 ident: 10.1016/j.agrformet.2016.02.017_bib0125 article-title: A general, process-oriented model for two competing plant species publication-title: Trans. ASABE doi: 10.13031/2013.28665 contributor: fullname: Kiniry – start-page: 24 year: 2010 ident: 10.1016/j.agrformet.2016.02.017_bib0195 article-title: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling publication-title: Global Biogeochem. Cycles contributor: fullname: Portmann – start-page: 147 year: 1994 ident: 10.1016/j.agrformet.2016.02.017_bib0180 article-title: A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management publication-title: Soil Sci. Soc. Am. Inc., Minneap. Minn. U. S. A. contributor: fullname: Parton – volume: 20 start-page: 2301 issue: 7 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0030 article-title: How do various maize crop models vary in their responses to climate change factors? publication-title: Global Change Biol. doi: 10.1111/gcb.12520 contributor: fullname: Bassu – volume: 50 start-page: 7505 issue: 9 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0265 article-title: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data publication-title: Water Resour. Res. doi: 10.1002/2014WR015638 contributor: fullname: Weedon – ident: 10.1016/j.agrformet.2016.02.017_bib0095 – volume: 133 start-page: 38 issue: 1 year: 2007 ident: 10.1016/j.agrformet.2016.02.017_bib0255 article-title: Hargreaves versus Penman–Monteith under humid conditions publication-title: J .Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:1(38) contributor: fullname: Trajkovic – volume: 170 start-page: 166 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0215 article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.09.011 contributor: fullname: Rosenzweig – volume: 120 start-page: 61 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0020 article-title: Pan-European crop modelling with EPIC: implementation, up-scaling and regional crop yield validation publication-title: Agrofor. Syst. doi: 10.1016/j.agsy.2013.05.008 contributor: fullname: Balkovič – volume: 47 start-page: 334 issue: 4 year: 1992 ident: 10.1016/j.agrformet.2016.02.017_bib0040 article-title: Nitrogen leaching sensitivity to evapotranspiration and soil water storage estimates in EPIC publication-title: J. Soil Water Conserv. contributor: fullname: Benson – volume: 19 start-page: 205 year: 1965 ident: 10.1016/j.agrformet.2016.02.017_bib0170 article-title: Evaporation and environment publication-title: Symp. Soc. Exp. Biol. contributor: fullname: Monteith – volume: 30 start-page: 1403 issue: 5 year: 1987 ident: 10.1016/j.agrformet.2016.02.017_bib0135 article-title: GLEAMS: groundwater loading effects of agricultural management systems publication-title: Trans. ASABE doi: 10.13031/2013.30578 contributor: fullname: Leonard – volume: 193 start-page: 120 issue: 1032 year: 1948 ident: 10.1016/j.agrformet.2016.02.017_bib0190 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1948.0037 contributor: fullname: Penman – volume: 273 start-page: 128 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0280 article-title: A calibration procedure to improve global rice yield simulations with EPIC publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2013.10.026 contributor: fullname: Xiong – volume: 176 start-page: 64 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0010 article-title: Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.03.001 contributor: fullname: Anothai – volume: 8 start-page: 1204 issue: 5 year: 1972 ident: 10.1016/j.agrformet.2016.02.017_bib0205 article-title: Model for predicting evaporation from a row crop with incomplete cover publication-title: Water Resour. Res. doi: 10.1029/WR008i005p01204 contributor: fullname: Ritchie – volume: 27 start-page: 129 issue: 1 year: 1984 ident: 10.1016/j.agrformet.2016.02.017_bib0270 article-title: A modeling approach to determining the relationship between erosion and soil productivity publication-title: Trans. ASABE doi: 10.13031/2013.32748 contributor: fullname: Williams – ident: 10.1016/j.agrformet.2016.02.017_bib0130 – volume: 168 start-page: 357 issue: 3 year: 2003 ident: 10.1016/j.agrformet.2016.02.017_bib0250 article-title: Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration publication-title: Ecol. Modell. doi: 10.1016/S0304-3800(03)00146-7 contributor: fullname: Tan – volume: 24 start-page: 15 year: 1977 ident: 10.1016/j.agrformet.2016.02.017_bib0050 article-title: Guidelines for predicting crop water requirements publication-title: FAO Irrig. Drain. Pap. contributor: fullname: Doorenbos – ident: 10.1016/j.agrformet.2016.02.017_bib0005 – volume: 5 start-page: 698 issue: 6 year: 2009 ident: 10.1016/j.agrformet.2016.02.017_bib0230 article-title: Comparison of daily and monthly results of three evapotranspiration models in tropical zone: a case study publication-title: Am. J. Environ. Sci. doi: 10.3844/ajessp.2009.698.705 contributor: fullname: Saghravani – volume: 15 start-page: 1577 issue: 5 year: 2011 ident: 10.1016/j.agrformet.2016.02.017_bib0160 article-title: The green, blue and grey water footprint of crops and derived crop products publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1577-2011 contributor: fullname: Mekonnen – volume: 96 start-page: 1243 issue: 5 year: 2004 ident: 10.1016/j.agrformet.2016.02.017_bib0235 article-title: Testing and improving evapotranspiration and soil water balance of the DSSAT crop models publication-title: Agron. J. doi: 10.2134/agronj2004.1243 contributor: fullname: Sau – volume: 151 start-page: 21 year: 2012 ident: 10.1016/j.agrformet.2016.02.017_bib0080 article-title: Regionalization of a large-scale crop growth model for sub-Saharan Africa: model setup, evaluation, and estimation of maize yields publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2012.01.026 contributor: fullname: Folberth – volume: 94 start-page: 478 issue: 2 year: 2007 ident: 10.1016/j.agrformet.2016.02.017_bib0140 article-title: GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale publication-title: Agric. Syst. doi: 10.1016/j.agsy.2006.11.019 contributor: fullname: Liu – volume: 111 start-page: 3239 issue: 9 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0055 article-title: Constraints and potentials of future irrigation water availability on agricultural production under climate change publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1222474110 contributor: fullname: Elliott – year: 1995 ident: 10.1016/j.agrformet.2016.02.017_bib0065 contributor: fullname: FAO – volume: 45 start-page: 276 issue: 3 year: 1965 ident: 10.1016/j.agrformet.2016.02.017_bib0015 article-title: Estimation of latent evaporation from simple weather observations publication-title: Can. J. Plant Sci. doi: 10.4141/cjps65-051 contributor: fullname: Baier – volume: 9 start-page: 044004 issue: 4 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0090 article-title: Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/4/044004 contributor: fullname: Folberth – volume: 122 start-page: 107 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0025 article-title: Global wheat production potentials and management flexibility under the representative concentration pathways publication-title: Global Planet. C doi: 10.1016/j.gloplacha.2014.08.010 contributor: fullname: Balkovič – ident: 10.1016/j.agrformet.2016.02.017_bib0045 – volume: 384 start-page: 198 issue: 3–4 year: 2010 ident: 10.1016/j.agrformet.2016.02.017_bib0245 article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.031 contributor: fullname: Siebert – ident: 10.1016/j.agrformet.2016.02.017_bib0115 – volume: 15 start-page: 1641 issue: 5 year: 2011 ident: 10.1016/j.agrformet.2016.02.017_bib0075 article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1641-2011 contributor: fullname: Fader – year: 2003 ident: 10.1016/j.agrformet.2016.02.017_bib0240 contributor: fullname: Shiklomanov – volume: 119 start-page: 22 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0085 article-title: Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa publication-title: Agric. Syst. doi: 10.1016/j.agsy.2013.04.002 contributor: fullname: Folberth – start-page: 50 year: 2012 ident: 10.1016/j.agrformet.2016.02.017_bib0260 article-title: A review of global terrestrial evapotranspiration: observation, modeling climatology, and climatic variability publication-title: Rev. Geophys. contributor: fullname: Wang – volume: 8 start-page: 261 issue: 2 year: 2015 ident: 10.1016/j.agrformet.2016.02.017_bib0060 article-title: The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1.0) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-261-2015 contributor: fullname: Elliott – year: 1995 ident: 10.1016/j.agrformet.2016.02.017_bib0275 article-title: The EPIC model contributor: fullname: Williams – volume: 1 start-page: 96 issue: 2 year: 1985 ident: 10.1016/j.agrformet.2016.02.017_bib0105 article-title: Reference crop evapotranspiration from temperature publication-title: Appl. Eng. Agric. doi: 10.13031/2013.26773 contributor: fullname: Hargreaves – volume: 35 start-page: 103 issue: 3 year: 2011 ident: 10.1016/j.agrformet.2016.02.017_bib0175 article-title: Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2011.05.001 contributor: fullname: Palosuo – volume: 18 start-page: 235 issue: 3-4 year: 2003 ident: 10.1016/j.agrformet.2016.02.017_bib0120 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00107-7 contributor: fullname: Jones – volume: 129 start-page: 53 issue: 1 year: 2003 ident: 10.1016/j.agrformet.2016.02.017_bib0100 article-title: History and evaluation of Hargreaves evapotranspiration equation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2003)129:1(53) contributor: fullname: Hargreaves – ident: 10.1016/j.agrformet.2016.02.017_bib0035 – volume: 100 start-page: 81 issue: 2 year: 1972 ident: 10.1016/j.agrformet.2016.02.017_bib0200 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 contributor: fullname: Priestley – volume: 21 start-page: 197 issue: 2 year: 2005 ident: 10.1016/j.agrformet.2016.02.017_bib0290 article-title: Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States publication-title: Appl. Eng. Agric. doi: 10.13031/2013.18153 contributor: fullname: Yoder – year: 2007 ident: 10.1016/j.agrformet.2016.02.017_bib0070 contributor: fullname: FAO – volume: 19 start-page: 607 issue: 5 year: 2010 ident: 10.1016/j.agrformet.2016.02.017_bib0225 article-title: Crop planting dates: an analysis of global patterns publication-title: Global Change Biol. contributor: fullname: Sacks – volume: 8 start-page: e57750 issue: 2 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0150 article-title: A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use publication-title: PLoS One doi: 10.1371/journal.pone.0057750 contributor: fullname: Liu – volume: 11 start-page: 1633 issue: 5 year: 2007 ident: 10.1016/j.agrformet.2016.02.017_bib0185 article-title: Updated world map of the Köppen–Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1633-2007 contributor: fullname: Peel – volume: 144 start-page: 107 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0285 article-title: GEPIC-V-R model: a GIS-based tool for regional crop drought risk assessment publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2014.05.017 contributor: fullname: Yin – volume: 45 issue: 5 year: 2009 ident: 10.1016/j.agrformet.2016.02.017_bib0145 article-title: Global consumptive water use for crop production: the importance of green water and virtual water publication-title: Water Resour. Res. doi: 10.1029/2007WR006051 contributor: fullname: Liu – volume: 24 start-page: 411 issue: 3 year: 2009 ident: 10.1016/j.agrformet.2016.02.017_bib0155 article-title: A GIS-based tool for modelling large-scale crop-water relations publication-title: Environ. Modell. Software doi: 10.1016/j.envsoft.2008.08.004 contributor: fullname: Liu – volume: 4 start-page: 219 issue: 2 year: 2013 ident: 10.1016/j.agrformet.2016.02.017_bib0110 article-title: A trend-preserving bias correction – the ISI-MIP approach publication-title: Earth Syst. Dyn. doi: 10.5194/esd-4-219-2013 contributor: fullname: Hempel – volume: 25 start-page: 693 issue: 6 year: 2005 ident: 10.1016/j.agrformet.2016.02.017_bib0165 article-title: An improved method of constructing a database of monthly climate observations and associated high-resolution grids publication-title: Int. J. Climatol. doi: 10.1002/joc.1181 contributor: fullname: Mitchell – volume: 111 start-page: 3268 issue: 9 year: 2014 ident: 10.1016/j.agrformet.2016.02.017_bib0220 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1222463110 contributor: fullname: Rosenzweig – volume: 78 start-page: 541 issue: 3 year: 1998 ident: 10.1016/j.agrformet.2016.02.017_bib0210 article-title: Estimating spring wheat yield variability with EPIC publication-title: Can. J. Soil Sci. doi: 10.4141/S97-063 contributor: fullname: Roloff |
SSID | ssj0012779 |
Score | 2.441016 |
Snippet | •We simulate crop-water relations for maize on a global scale.•We compare uncertainties derived from different PET methods on the relations.•Uncertainties are... Crop models are commonly used to investigate crop-water relations over different spatial scales. Estimating potential evapotranspiration (PET) is a basis for... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 164 |
SubjectTerms | AET agricultural statistics APT ASE climate change corn crop models crop yield Crop-water relations CWP CWU environmental policy EPIC evapotranspiration Global scale growing season GSET humid zones irrigated farming irrigation water Maize Modelling uncertainties PEPIC PET PHU PPT prediction PSE Python rain uncertainty water management water requirement Zea mays |
Title | Global investigation of impacts of PET methods on simulating crop-water relations for maize |
URI | https://dx.doi.org/10.1016/j.agrformet.2016.02.017 https://search.proquest.com/docview/1798737420 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH606aU9jK4_aNY1aDB6UxNL8g_tFkJKttEyaAOFHoRsS8FlsYuTMuihf3ufZLujdNDDbpZlYVlP-vTJevoewNcIgTfV2lCDw4GK3ERU6zimIbdMJNKGmd89v7iMZnPx4ya82YBJdxbGuVW22N9gukfr9s6wbc3hfVEMr5CsJJ6fRNypUOG6fQunI5b0YGv8_efs8mUzgcWN5B4-T12BV25eeuH9843zqwwir9_pg5f9c5LatLp6A9p-JjrfhQ8thSTjppYfYcOUe7AzXtStjIbZg_4FcuGq9r_MySmZ_C6QmPrUPtw2Mv-k-KuwUZWksqQ5MLlyl7-m16SJLY3JkqyKpY_yVS6Ii_hF_yBBrUnd-dER_DSy1MWjOYD5-fR6MqNtiAWaCZ6sKYKb1BrXWHEmpdEsx-WRzZI8jYJAyixM0ZIiFLl222eBwdGapUgqQmlkKrRm_BB6ZVWaIyCMWSt0wm2UR8KyNGWc8yywItbYGUTch1HXpuq-UdJQnYvZnXoxg3JmUCOmsE59-Na1vXrVKRTi_fuFj9BaLq9YqfmVy3ERCBHiZB--dCZUOJrcFokuTfWwUk6-LeaxYKNP__PuY9h2qcYx8jP01vWDOUHysk4HsHn2FAzaLvoM1CPwAA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4xeGB7QAw2UWDMkxBvVhvb-WHeqgpUBq0m0UpIe7CcxK6CRoLSIiT-es5OwoSYxMPe4jhWHJ_v_Dl3_g7gOELDm2ptqEF1oCI3EdU6jmnILROJtGHmveeTaTSei5834c0ajLqzMC6ssrX9jU331rq9029Hs39fFP1rBCuJxycRdyxUuG_fQDQgUTs3hheX4-mLM4HFDeUePk9dg1dhXnrh4_ONi6sMIs_f6ZOX_XOR-mB19cZo-5XofBu2WghJhk0vP8OaKXfg03BRtzQaZgd6E8TCVe1_mZMTMvpTIDD1pV343dD8k-Ivw0ZVksqS5sDk0l3-OpuRJrc0FkuyLO58lq9yQVzGL_qIALUmdRdHR_DTyJ0unswXmJ-fzUZj2qZYoJngyYqicZNa4x4rzqQ0muW4PbJZkqdREEiZhSlKUoQi1859FhjU1ixFUBFKI1OhNeNfYb2sSrMHhDFrhU64jfJIWJamjHOeBVbEGieDiHsw6MZU3TdMGqoLMbtVL2JQTgxqwBT2qQen3dirV5NCob1_v_EeSsvVFUs1v3Y1LgMhmjjZgx-dCBVqk3OR6NJUD0vl6NtiHgs22P-fd3-HzfFscqWuLqaXB_DR1TRBkoewvqofzDcEMqv0qJ2oz6MI8fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+investigation+of+impacts+of+PET+methods+on+simulating+crop-water+relations+for+maize&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Liu%2C+Wenfeng&rft.au=Yang%2C+Hong&rft.au=Folberth%2C+Christian&rft.au=Wang%2C+Xiuying&rft.date=2016-05-01&rft.issn=0168-1923&rft.volume=221&rft.spage=164&rft.epage=175&rft_id=info:doi/10.1016%2Fj.agrformet.2016.02.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |