High genus surface parameterization using the Euclidean Ricci flow method

The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus,...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 17784 - 28
Main Author Wang, Yuan-guang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.
AbstractList The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.
Abstract The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.
The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.
ArticleNumber 17784
Author Wang, Yuan-guang
Author_xml – sequence: 1
  givenname: Yuan-guang
  surname: Wang
  fullname: Wang, Yuan-guang
  email: allenwangyuanguang@126.com
  organization: Beijing Electro-Mechanical Engineering Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40404765$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYNUbK39Ai5kwI2b0fyfZCmltQ8KgrTrkElu5uUxb_JMZhD99M3r1CouTBYJl985NzfnNTqZ0gQIvSX4I8FMfSqcCK1aTEWrO05JK16gM4q5aCmj9OSv-ym6KGWH6xJUc6JfoVOO6-6kOEObmzhsmwGmpTRlycE6aA422z3MkOMvO8c0NUuJ09DMW2iuFjdGD3ZqvkXnYhPG9KOp7Db5N-hlsGOBi6fzHN1fX91d3rS3X79sLj_fto4zNbeeiaBskI71OPiu030vArZKdcQHS5lTnjIcHAbKnZe905Rayzz0TBIZBDtHm9XXJ7szhxz3Nv80yUbzWEh5MDbP0Y1goDphyznzXHPhlYLOKk6UllC7QFe9Pqxeh5y-L1Bms4_FwTjaCdJSDKNYaiW1xhV9_w-6S0ue6qRHqusIlfpo-O6JWvo9-Ofn_f7wCtAVcDmVkiE8IwSbY7BmDdbUYM1jsOYoYquoVHgaIP_p_R_VA5NHo4c
Cites_doi 10.1109/CVPRW.2008.4563053
10.1145/1128888.1128904
10.1016/j.cma.2019.07.023
10.1016/j.gmod.2006.03.004
10.1016/j.cma.2017.04.012
10.1109/TVCG.2008.57
10.4310/jdg/1214441375
10.4310/jdg/1214436922
10.1137/141001986
10.1016/j.cad.2012.07.015
10.1016/j.cma.2021.114146
10.1109/TPAMI.2016.2567398
10.1145/3414685.3417839
10.1090/conm/071/954419
10.4310/jdg/1080835659
10.1515/9781400874538
10.2140/gt.2015.19.2155
10.4310/CIS.2009.v9.n2.a2
10.1016/j.cad.2008.01.008
10.1109/TVCG.2008.103
10.1007/978-0-387-21607-2
10.1007/978-1-4614-8781-4
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-97421-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 28
ExternalDocumentID oai_doaj_org_article_e2300a443d4945d88e7a841896e8d2e7
40404765
10_1038_s41598_025_97421_5
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c438t-d35f8af6c3b0fd779bb5f0a8871dfa23c8d230fc0e24cd6bc922aa3deb3616f53
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:05 EDT 2025
Fri Jul 11 17:20:18 EDT 2025
Wed Aug 13 08:37:29 EDT 2025
Mon May 26 01:57:52 EDT 2025
Sun Jul 06 05:09:08 EDT 2025
Fri May 23 01:11:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Surface parameterization
Conformal parameterization
High genus surface
The Euclidean Ricci flow
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-d35f8af6c3b0fd779bb5f0a8871dfa23c8d230fc0e24cd6bc922aa3deb3616f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3207712697?pq-origsite=%requestingapplication%
PMID 40404765
PQID 3207712697
PQPubID 2041939
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_e2300a443d4945d88e7a841896e8d2e7
proquest_miscellaneous_3206986990
proquest_journals_3207712697
pubmed_primary_40404765
crossref_primary_10_1038_s41598_025_97421_5
springer_journals_10_1038_s41598_025_97421_5
PublicationCentury 2000
PublicationDate 2025-05-22
PublicationDateYYYYMMDD 2025-05-22
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References X-F Gu (97421_CR7) 2008; 40
97421_CR13
97421_CR10
R Shi (97421_CR11) 2017; 39
Z Su (97421_CR28) 2015
M Jin (97421_CR12) 2009; 15
97421_CR30
N Sharp (97421_CR33) 2020; 39
L Ahlfors (97421_CR20) 1960
N Lei (97421_CR1) 2017; 321
M Armstrong (97421_CR23) 2000
L Ahlfors (97421_CR21) 1973
R Hamilton (97421_CR2) 1982; 17
X-P Zheng (97421_CR24) 2021; 387
F Luo (97421_CR16) 2008
T Gamelin (97421_CR27) 2001
W Thurston (97421_CR17) 1997
I Bronshtein (97421_CR25) 2007
97421_CR3
X-F Gu (97421_CR8) 2008
J Sun (97421_CR19) 2015; 8
M Jin (97421_CR15) 2008; 14
W Zeng (97421_CR18) 2013
A Bobenko (97421_CR29) 2015; 19
B Rodin (97421_CR22) 1987; 26
B Chow (97421_CR5) 2003; 63
X-F Gu (97421_CR6) 2009; 9
R Hamilton (97421_CR4) 1988; 71
M Jin (97421_CR9) 2018
W Chen (97421_CR31) 2019; 356
M Jin (97421_CR32) 2013; 45
J Ratcliffe (97421_CR14) 2006
X-F Gu (97421_CR26) 2006; 68
References_xml – ident: 97421_CR13
  doi: 10.1109/CVPRW.2008.4563053
– volume-title: Conformal Geometry Computational Algorithms and Engineering Applications
  year: 2018
  ident: 97421_CR9
– ident: 97421_CR10
  doi: 10.1145/1128888.1128904
– volume: 356
  start-page: 652
  year: 2019
  ident: 97421_CR31
  publication-title: Comput. Methods Appl. Mech. Eng
  doi: 10.1016/j.cma.2019.07.023
– volume: 68
  start-page: 237
  year: 2006
  ident: 97421_CR26
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2006.03.004
– ident: 97421_CR30
– volume: 321
  start-page: 406
  year: 2017
  ident: 97421_CR1
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.04.012
– ident: 97421_CR3
– volume-title: Optimal Mass Transport and Its Applications
  year: 2015
  ident: 97421_CR28
– volume: 14
  start-page: 1030
  year: 2008
  ident: 97421_CR15
  publication-title: IEEE Trans. Visual Comput. Graph.
  doi: 10.1109/TVCG.2008.57
– volume: 26
  start-page: 349
  issue: 2
  year: 1987
  ident: 97421_CR22
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214441375
– volume: 17
  start-page: 255
  year: 1982
  ident: 97421_CR2
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214436922
– volume: 8
  start-page: 1421
  year: 2015
  ident: 97421_CR19
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/141001986
– volume: 45
  start-page: 113
  year: 2013
  ident: 97421_CR32
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2012.07.015
– volume: 387
  start-page: 114
  year: 2021
  ident: 97421_CR24
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114146
– volume: 39
  start-page: 965
  year: 2017
  ident: 97421_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2567398
– volume-title: Foundations of Hyperbolic Manifolds
  year: 2006
  ident: 97421_CR14
– volume-title: Computational Conformal Geometry
  year: 2008
  ident: 97421_CR8
– volume-title: Conformal Invariants: Topics in Geometric Function Theory
  year: 1973
  ident: 97421_CR21
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  ident: 97421_CR33
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3414685.3417839
– volume: 71
  start-page: 237
  year: 1988
  ident: 97421_CR4
  publication-title: Math. General Relativity
  doi: 10.1090/conm/071/954419
– volume: 63
  start-page: 97
  year: 2003
  ident: 97421_CR5
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1080835659
– volume-title: Riemann Surfaces
  year: 1960
  ident: 97421_CR20
  doi: 10.1515/9781400874538
– volume: 19
  start-page: 2155
  year: 2015
  ident: 97421_CR29
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2015.19.2155
– volume: 9
  start-page: 163
  year: 2009
  ident: 97421_CR6
  publication-title: Commun. Inf. Syst.
  doi: 10.4310/CIS.2009.v9.n2.a2
– volume: 40
  start-page: 676
  year: 2008
  ident: 97421_CR7
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2008.01.008
– volume-title: Handbook of Mathematics
  year: 2007
  ident: 97421_CR25
– volume: 15
  start-page: 504
  year: 2009
  ident: 97421_CR12
  publication-title: IEEE Trans. Visual Comput. Graph.
  doi: 10.1109/TVCG.2008.103
– volume-title: Complex Analysis
  year: 2001
  ident: 97421_CR27
  doi: 10.1007/978-0-387-21607-2
– volume-title: Basic Topology
  year: 2000
  ident: 97421_CR23
– volume-title: Ricci Flow for Shape Analysis and Surface Registration: Theories, Algorithms, and Applications
  year: 2013
  ident: 97421_CR18
  doi: 10.1007/978-1-4614-8781-4
– volume-title: The Geometry and Topology of 3-Manifolds
  year: 1997
  ident: 97421_CR17
– volume-title: Variational Principles for Discrete Surfaces. Advanced Lectures In Mathematics
  year: 2008
  ident: 97421_CR16
SSID ssj0000529419
Score 2.448246
Snippet The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the...
Abstract The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers....
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 17784
SubjectTerms 639/705/1041
639/705/1042
639/705/117
Conformal parameterization
Euclidean space
Flow
High genus surface
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Surface parameterization
The Euclidean Ricci flow
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FEHoRa6uutSWF3nQwk69JjlYUW2gPpYK3kMlLZEFnxd1B_O99mcxuLVp66WUOM2F4-f1e8l7I-yDkcwADaPehshofkgOrPNrRymiwAQBQyXLu8Pcf-vxCfrtUl09afeWYsFIeuAB3FNFHZl5KAdJKBcbExhtZG6ujAR6HPHK0eU8OU6WqN7eytmOWDBPmaI6WKmeToRzoQvO6Un9YoqFg_0te5rMb0sHwnG2SjdFjpMdF0jfkVey2yHrpIfnwlnzNkRoU1aCf03l_l3yINNfzvslxLmOSJc3R7VcUfT162ofrKUTf0Z_TEKY0Xc_uaWkj_Y5cnJ3-Ojmvxv4IVZDCLCoQKhmfdBAtS9A0tm1VYh63jRqS5yIgQIKlwCKXAXQbLOfeC8Dzs651UmKbrHWzLu4SKiwIzlKK2gQZG-GVtq2RYLzlAXmekIMlVu62lMFww_W1MK4g6xBZNyDr1IR8yXCuRuYS1sMLJNaNxLp_ETsh-0sy3Liu5g6FbJqaa4ufP60-44rI1xy-i7N-GKOt0WhmJ2SnkLiSROKeJRuNEh4uWf39879PaO9_TOg9ec2z-jFVcb5P1hZ3ffyAHs2i_Tgo7yNale8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0CqtkLgg2gLdtiAj9VYiEr9iHxfUqqxUDtBKvVmOx65WarPV7kaIv2fsJIsQ5dBLDvHEmsyMPWPPi5ATDxpQ70NhFD4Eg7JwqEcLrcB4AEAhS7nDl9_UxbWY3cibLcLGXJgctJ9LWuZteowO-7RCRZOSwXAatIBZVchnZCeVakfZ3plOZz9mm5uV5LsSlRkyZEquH_n4Ly2Ui_U_ZmH-4x3NSuf8FXk5WIt02uO3S7ZCu0ee9_0jf-2TrylKg6IIdCu66pbR-UBTLe_7FOMyJFjSFNl-S9HOo2edv5tDcC39Pvd-TuPd4iftW0i_JtfnZ1dfLoqhN0LhBdfrAriM2kXleVNGqGvTNDKWDreMCqJj3GvAw0X0ZWDCg2q8Ycw5Dnh2VpWKkr8h2-2iDQeEcgOclTEGpb0INXdSmUYL0M4wjzyekNORVvahL4Fhs-uaa9tT1iJlbaaslRPyOZFzA5nKV-cXi-WtHdhpA-JWOiE4CCMkaB1qp0WljQqId6gn5Hhkhh3W1MoiknVdMWVw-MNmGFdDcnG4Niy6DKOMVqhiJ-Rtz8QNJgL3K1ErxPDjyNU_k___hw6fBn5EXrAkaKUsGDsm2-tlF96h3bJu3g-C-hv0Sea_
  priority: 102
  providerName: Springer Nature
Title High genus surface parameterization using the Euclidean Ricci flow method
URI https://link.springer.com/article/10.1038/s41598-025-97421-5
https://www.ncbi.nlm.nih.gov/pubmed/40404765
https://www.proquest.com/docview/3207712697
https://www.proquest.com/docview/3206986990
https://doaj.org/article/e2300a443d4945d88e7a841896e8d2e7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOgdgi_it6vnEsE3LdcmaT6eZG_Z41zwkNODfQtpJjkWzvbcbhH_vZO2u4f48dJCG8p0ZjIzmU9C3nrQgHofMiPxIhjkmUM9mmkJxgMAMlmqHf50Ls8uxXJVrkaHWzumVe5kYi-oofHJR37MWa5UwaRRH26-Z2lqVIqujiM07pLD1LoscbVaqb2PJUWxRGHGWpmc6-MW9VWqKUNo0JBmRVb-po_6tv1_szX_iJP26uf0IXkw2o10NhD6EbkT6sfk3jBJ8ucT8jHla1Bkhq6lbbeJzgeaunp_S9kuY6klTTnuVxQtPrro_PUagqvpxdr7NY3XzQ86DJN-Si5PF1_nZ9k4JSHzguttBryM2kXpeZVHUMpUVRlzh8KjgOgY9xrwmBF9HpjwICtvGHOOA56iZSFjyZ-Rg7qpwwtCuQFEc4xBai-C4q6UptICtDPMI7Un5N0OV_ZmaIZh-yA213bArEXM2h6ztpyQk4TO_crUyLp_0Gyu7LgvbEDYcicEB2FECVoH5bQotJEB4Q5qQo52xLDj7mrtLS9MyJv9a9wXKdjh6tB0_RpptERlOyHPByLuIREouYSSCOH7HVVvP_7vH3r5f1hekfssMVZeZowdkYPtpguv0WLZVtOeLafkcDZbflni_WRx_vkCn87lfNp7AX4B0lzshA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLsLBYwEJ4ia2I4fB4R4tNqljwNqpb0Zx2NXK5Xdstmo6p_iNzLOYyvE49ZLDokVjWe-8Yw9Mx5CXnnQgHYfMiPxIRjkmUM7mmkJxgMAgizVDh8eyfGJ-DItpxvk51ALk9IqhzWxXahh4dMZ-Q5nuVIFk0a9P_-Rpa5RKbo6tNDoYLEfLi9wy1a_m3xG-b5mbG_3-NM467sKZF5wvcqAl1G7KD2v8ghKmaoqY-5Q2QqIjnGvAd3y6PPAhAdZecOYcxxw1ykLGVOXCFzyb6DhzdNmT03V-kwnRc1EYfranJzrnRrtY6phw9mj486KrPzN_rVtAv7m2_4Rl23N3d5dcqf3U-mHDlj3yEaY3yc3u86Vlw_IJOWHUARfU9O6WUbnA023iH9P2TV9aSdNOfWnFD1Mutv4sxkEN6dfZ97PaDxbXNCuefVDcnIt_HtENueLedgilBtAscYYpPYiKO5KaSotQDvDPKJrRN4MvLLn3eUbtg2ac207zlrkrG05a8sR-ZjYuR6ZLs5uXyyWp7bXQxuQttwJwUEYUYLWQTktCm1kQLqDGpHtQRi21-baXmFvRF6uP6MepuCKm4dF046RRks07iPyuBPimhKBK6VQEil8O0j16uf_ntCT_9PygtwaHx8e2IPJ0f5TcpslkOVlxtg22Vwtm_AMvaVV9byFKCXfrlsnfgHBsiZq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYwEJ4g2sR0_DghRuqsuhVVVUak34_hRrVSSsrtR1b_Gr2Ocx1aIx62XHJIomsx887BnxoPQK-ukA7_vUsXhwojLUgN-NJXcKeucA5DF3uEvc75_zD6dFCdb6OfQCxPLKgeb2BpqV9u4Rz6mJBMiJ1yJcejLIg73pu_Pf6RxglTMtA7jNDqIHPjLC1i-rd7N9kDWrwmZTr5-3E_7CQOpZVSuU0eLIE3glpZZcEKosixCZkDxchcMoVY6CNGDzTxh1vHSKkKMoQ5WoDznIU6MAPO_LeKqaIS2dyfzw6PNDk_MobFc9Z06GZXjFXjL2NEGvIAwnuRp8Zs3bIcG_C3S_SNL2zq_6R10u49a8YcOZnfRlq_uoRvdHMvL-2gWq0UwQLFZ4VWzDMZ6HM8U_x5rbfpGTxwr7E8xxJt40tizhfOmwkcLaxc4nNUXuBtl_QAdXwsHH6JRVVf-McJUORByCJ5Ly7ygpuCqlMxJo4gFrCXozcArfd4dxaHbFDqVuuOsBs7qlrO6SNBuZOfmzXiMdnujXp7qXiu1B9oywxh1TLHCSemFkSyXinug24sE7QzC0L1ur_QVEhP0cvMYtDKmWkzl66Z9hyvJwdUn6FEnxA0lDOwmExwofDtI9erj__6hJ_-n5QW6CfqgP8_mB0_RLRIxlhUpITtotF42_hmETuvyeY9RjL5dt1r8AnbVLAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+genus+surface+parameterization+using+the+Euclidean+Ricci+flow+method&rft.jtitle=Scientific+reports&rft.date=2025-05-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=17784&rft_id=info:doi/10.1038%2Fs41598-025-97421-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon