High genus surface parameterization using the Euclidean Ricci flow method
The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus,...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 17784 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces. |
---|---|
AbstractList | The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces. Abstract The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces. The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces.The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the other hand, Ricci flow is a powerful tool in geometric analysis for studying low-dimensional topology. Owing to the natural cooperative impetus, Ricci flow has been increasingly employed to parameterize closed surfaces. However, due to the lack of choices when addressing high genus surfaces, engineers must still rely on the mainstream tool of hyperbolic Ricci flow, which is inconsistent with human intuition. Therefore, this disadvantage is a potential barrier for humans in designing textures in the parameter domain. By making a small modification to traditional Euclidean Ricci flow to sacrifice its tessellation capability, we develop a new Euclidean Ricci flow method with special features characterized by its ability to embed the fundamental domain of high genus surfaces in 2-dimensional Euclidean space. Based on this method, the parameter domain is more suitable for exploring the nature of singularity points on high genus surfaces and more suitable for designing the checkerboard textures. Four illustrative examples demonstrated the robust, rigorous features of our method, abandoning dogma and challenging the traditional views that only the hyperbolic Ricci flow can be used to parameterize high genus surfaces. |
ArticleNumber | 17784 |
Author | Wang, Yuan-guang |
Author_xml | – sequence: 1 givenname: Yuan-guang surname: Wang fullname: Wang, Yuan-guang email: allenwangyuanguang@126.com organization: Beijing Electro-Mechanical Engineering Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40404765$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFTEUxYNUbK39Ai5kwI2b0fyfZCmltQ8KgrTrkElu5uUxb_JMZhD99M3r1CouTBYJl985NzfnNTqZ0gQIvSX4I8FMfSqcCK1aTEWrO05JK16gM4q5aCmj9OSv-ym6KGWH6xJUc6JfoVOO6-6kOEObmzhsmwGmpTRlycE6aA422z3MkOMvO8c0NUuJ09DMW2iuFjdGD3ZqvkXnYhPG9KOp7Db5N-hlsGOBi6fzHN1fX91d3rS3X79sLj_fto4zNbeeiaBskI71OPiu030vArZKdcQHS5lTnjIcHAbKnZe905Rayzz0TBIZBDtHm9XXJ7szhxz3Nv80yUbzWEh5MDbP0Y1goDphyznzXHPhlYLOKk6UllC7QFe9Pqxeh5y-L1Bms4_FwTjaCdJSDKNYaiW1xhV9_w-6S0ue6qRHqusIlfpo-O6JWvo9-Ofn_f7wCtAVcDmVkiE8IwSbY7BmDdbUYM1jsOYoYquoVHgaIP_p_R_VA5NHo4c |
Cites_doi | 10.1109/CVPRW.2008.4563053 10.1145/1128888.1128904 10.1016/j.cma.2019.07.023 10.1016/j.gmod.2006.03.004 10.1016/j.cma.2017.04.012 10.1109/TVCG.2008.57 10.4310/jdg/1214441375 10.4310/jdg/1214436922 10.1137/141001986 10.1016/j.cad.2012.07.015 10.1016/j.cma.2021.114146 10.1109/TPAMI.2016.2567398 10.1145/3414685.3417839 10.1090/conm/071/954419 10.4310/jdg/1080835659 10.1515/9781400874538 10.2140/gt.2015.19.2155 10.4310/CIS.2009.v9.n2.a2 10.1016/j.cad.2008.01.008 10.1109/TVCG.2008.103 10.1007/978-0-387-21607-2 10.1007/978-1-4614-8781-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-025-97421-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_e2300a443d4945d88e7a841896e8d2e7 40404765 10_1038_s41598_025_97421_5 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK AARCD K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c438t-d35f8af6c3b0fd779bb5f0a8871dfa23c8d230fc0e24cd6bc922aa3deb3616f53 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:05 EDT 2025 Fri Jul 11 17:20:18 EDT 2025 Wed Aug 13 08:37:29 EDT 2025 Mon May 26 01:57:52 EDT 2025 Sun Jul 06 05:09:08 EDT 2025 Fri May 23 01:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Surface parameterization Conformal parameterization High genus surface The Euclidean Ricci flow |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-d35f8af6c3b0fd779bb5f0a8871dfa23c8d230fc0e24cd6bc922aa3deb3616f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3207712697?pq-origsite=%requestingapplication% |
PMID | 40404765 |
PQID | 3207712697 |
PQPubID | 2041939 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2300a443d4945d88e7a841896e8d2e7 proquest_miscellaneous_3206986990 proquest_journals_3207712697 pubmed_primary_40404765 crossref_primary_10_1038_s41598_025_97421_5 springer_journals_10_1038_s41598_025_97421_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-22 |
PublicationDateYYYYMMDD | 2025-05-22 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | X-F Gu (97421_CR7) 2008; 40 97421_CR13 97421_CR10 R Shi (97421_CR11) 2017; 39 Z Su (97421_CR28) 2015 M Jin (97421_CR12) 2009; 15 97421_CR30 N Sharp (97421_CR33) 2020; 39 L Ahlfors (97421_CR20) 1960 N Lei (97421_CR1) 2017; 321 M Armstrong (97421_CR23) 2000 L Ahlfors (97421_CR21) 1973 R Hamilton (97421_CR2) 1982; 17 X-P Zheng (97421_CR24) 2021; 387 F Luo (97421_CR16) 2008 T Gamelin (97421_CR27) 2001 W Thurston (97421_CR17) 1997 I Bronshtein (97421_CR25) 2007 97421_CR3 X-F Gu (97421_CR8) 2008 J Sun (97421_CR19) 2015; 8 M Jin (97421_CR15) 2008; 14 W Zeng (97421_CR18) 2013 A Bobenko (97421_CR29) 2015; 19 B Rodin (97421_CR22) 1987; 26 B Chow (97421_CR5) 2003; 63 X-F Gu (97421_CR6) 2009; 9 R Hamilton (97421_CR4) 1988; 71 M Jin (97421_CR9) 2018 W Chen (97421_CR31) 2019; 356 M Jin (97421_CR32) 2013; 45 J Ratcliffe (97421_CR14) 2006 X-F Gu (97421_CR26) 2006; 68 |
References_xml | – ident: 97421_CR13 doi: 10.1109/CVPRW.2008.4563053 – volume-title: Conformal Geometry Computational Algorithms and Engineering Applications year: 2018 ident: 97421_CR9 – ident: 97421_CR10 doi: 10.1145/1128888.1128904 – volume: 356 start-page: 652 year: 2019 ident: 97421_CR31 publication-title: Comput. Methods Appl. Mech. Eng doi: 10.1016/j.cma.2019.07.023 – volume: 68 start-page: 237 year: 2006 ident: 97421_CR26 publication-title: Graph. Models doi: 10.1016/j.gmod.2006.03.004 – ident: 97421_CR30 – volume: 321 start-page: 406 year: 2017 ident: 97421_CR1 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.04.012 – ident: 97421_CR3 – volume-title: Optimal Mass Transport and Its Applications year: 2015 ident: 97421_CR28 – volume: 14 start-page: 1030 year: 2008 ident: 97421_CR15 publication-title: IEEE Trans. Visual Comput. Graph. doi: 10.1109/TVCG.2008.57 – volume: 26 start-page: 349 issue: 2 year: 1987 ident: 97421_CR22 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214441375 – volume: 17 start-page: 255 year: 1982 ident: 97421_CR2 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214436922 – volume: 8 start-page: 1421 year: 2015 ident: 97421_CR19 publication-title: SIAM J. Imaging Sci. doi: 10.1137/141001986 – volume: 45 start-page: 113 year: 2013 ident: 97421_CR32 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2012.07.015 – volume: 387 start-page: 114 year: 2021 ident: 97421_CR24 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114146 – volume: 39 start-page: 965 year: 2017 ident: 97421_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2567398 – volume-title: Foundations of Hyperbolic Manifolds year: 2006 ident: 97421_CR14 – volume-title: Computational Conformal Geometry year: 2008 ident: 97421_CR8 – volume-title: Conformal Invariants: Topics in Geometric Function Theory year: 1973 ident: 97421_CR21 – volume: 39 start-page: 1 issue: 6 year: 2020 ident: 97421_CR33 publication-title: ACM Trans. Graph. doi: 10.1145/3414685.3417839 – volume: 71 start-page: 237 year: 1988 ident: 97421_CR4 publication-title: Math. General Relativity doi: 10.1090/conm/071/954419 – volume: 63 start-page: 97 year: 2003 ident: 97421_CR5 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1080835659 – volume-title: Riemann Surfaces year: 1960 ident: 97421_CR20 doi: 10.1515/9781400874538 – volume: 19 start-page: 2155 year: 2015 ident: 97421_CR29 publication-title: Geom. Topol. doi: 10.2140/gt.2015.19.2155 – volume: 9 start-page: 163 year: 2009 ident: 97421_CR6 publication-title: Commun. Inf. Syst. doi: 10.4310/CIS.2009.v9.n2.a2 – volume: 40 start-page: 676 year: 2008 ident: 97421_CR7 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2008.01.008 – volume-title: Handbook of Mathematics year: 2007 ident: 97421_CR25 – volume: 15 start-page: 504 year: 2009 ident: 97421_CR12 publication-title: IEEE Trans. Visual Comput. Graph. doi: 10.1109/TVCG.2008.103 – volume-title: Complex Analysis year: 2001 ident: 97421_CR27 doi: 10.1007/978-0-387-21607-2 – volume-title: Basic Topology year: 2000 ident: 97421_CR23 – volume-title: Ricci Flow for Shape Analysis and Surface Registration: Theories, Algorithms, and Applications year: 2013 ident: 97421_CR18 doi: 10.1007/978-1-4614-8781-4 – volume-title: The Geometry and Topology of 3-Manifolds year: 1997 ident: 97421_CR17 – volume-title: Variational Principles for Discrete Surfaces. Advanced Lectures In Mathematics year: 2008 ident: 97421_CR16 |
SSID | ssj0000529419 |
Score | 2.448246 |
Snippet | The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers. On the... Abstract The parameterization of surfaces, which is related to many frontier problems in mathematics, has long been a challenge for scientists and engineers.... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 17784 |
SubjectTerms | 639/705/1041 639/705/1042 639/705/117 Conformal parameterization Euclidean space Flow High genus surface Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Surface parameterization The Euclidean Ricci flow Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FEHoRa6uutSWF3nQwk69JjlYUW2gPpYK3kMlLZEFnxd1B_O99mcxuLVp66WUOM2F4-f1e8l7I-yDkcwADaPehshofkgOrPNrRymiwAQBQyXLu8Pcf-vxCfrtUl09afeWYsFIeuAB3FNFHZl5KAdJKBcbExhtZG6ujAR6HPHK0eU8OU6WqN7eytmOWDBPmaI6WKmeToRzoQvO6Un9YoqFg_0te5rMb0sHwnG2SjdFjpMdF0jfkVey2yHrpIfnwlnzNkRoU1aCf03l_l3yINNfzvslxLmOSJc3R7VcUfT162ofrKUTf0Z_TEKY0Xc_uaWkj_Y5cnJ3-Ojmvxv4IVZDCLCoQKhmfdBAtS9A0tm1VYh63jRqS5yIgQIKlwCKXAXQbLOfeC8Dzs651UmKbrHWzLu4SKiwIzlKK2gQZG-GVtq2RYLzlAXmekIMlVu62lMFww_W1MK4g6xBZNyDr1IR8yXCuRuYS1sMLJNaNxLp_ETsh-0sy3Liu5g6FbJqaa4ufP60-44rI1xy-i7N-GKOt0WhmJ2SnkLiSROKeJRuNEh4uWf39879PaO9_TOg9ec2z-jFVcb5P1hZ3ffyAHs2i_Tgo7yNale8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0CqtkLgg2gLdtiAj9VYiEr9iHxfUqqxUDtBKvVmOx65WarPV7kaIv2fsJIsQ5dBLDvHEmsyMPWPPi5ATDxpQ70NhFD4Eg7JwqEcLrcB4AEAhS7nDl9_UxbWY3cibLcLGXJgctJ9LWuZteowO-7RCRZOSwXAatIBZVchnZCeVakfZ3plOZz9mm5uV5LsSlRkyZEquH_n4Ly2Ui_U_ZmH-4x3NSuf8FXk5WIt02uO3S7ZCu0ee9_0jf-2TrylKg6IIdCu66pbR-UBTLe_7FOMyJFjSFNl-S9HOo2edv5tDcC39Pvd-TuPd4iftW0i_JtfnZ1dfLoqhN0LhBdfrAriM2kXleVNGqGvTNDKWDreMCqJj3GvAw0X0ZWDCg2q8Ycw5Dnh2VpWKkr8h2-2iDQeEcgOclTEGpb0INXdSmUYL0M4wjzyekNORVvahL4Fhs-uaa9tT1iJlbaaslRPyOZFzA5nKV-cXi-WtHdhpA-JWOiE4CCMkaB1qp0WljQqId6gn5Hhkhh3W1MoiknVdMWVw-MNmGFdDcnG4Niy6DKOMVqhiJ-Rtz8QNJgL3K1ErxPDjyNU_k___hw6fBn5EXrAkaKUsGDsm2-tlF96h3bJu3g-C-hv0Sea_ priority: 102 providerName: Springer Nature |
Title | High genus surface parameterization using the Euclidean Ricci flow method |
URI | https://link.springer.com/article/10.1038/s41598-025-97421-5 https://www.ncbi.nlm.nih.gov/pubmed/40404765 https://www.proquest.com/docview/3207712697 https://www.proquest.com/docview/3206986990 https://doaj.org/article/e2300a443d4945d88e7a841896e8d2e7 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOgdgi_it6vnEsE3LdcmaT6eZG_Z41zwkNODfQtpJjkWzvbcbhH_vZO2u4f48dJCG8p0ZjIzmU9C3nrQgHofMiPxIhjkmUM9mmkJxgMAMlmqHf50Ls8uxXJVrkaHWzumVe5kYi-oofHJR37MWa5UwaRRH26-Z2lqVIqujiM07pLD1LoscbVaqb2PJUWxRGHGWpmc6-MW9VWqKUNo0JBmRVb-po_6tv1_szX_iJP26uf0IXkw2o10NhD6EbkT6sfk3jBJ8ucT8jHla1Bkhq6lbbeJzgeaunp_S9kuY6klTTnuVxQtPrro_PUagqvpxdr7NY3XzQ86DJN-Si5PF1_nZ9k4JSHzguttBryM2kXpeZVHUMpUVRlzh8KjgOgY9xrwmBF9HpjwICtvGHOOA56iZSFjyZ-Rg7qpwwtCuQFEc4xBai-C4q6UptICtDPMI7Un5N0OV_ZmaIZh-yA213bArEXM2h6ztpyQk4TO_crUyLp_0Gyu7LgvbEDYcicEB2FECVoH5bQotJEB4Q5qQo52xLDj7mrtLS9MyJv9a9wXKdjh6tB0_RpptERlOyHPByLuIREouYSSCOH7HVVvP_7vH3r5f1hekfssMVZeZowdkYPtpguv0WLZVtOeLafkcDZbflni_WRx_vkCn87lfNp7AX4B0lzshA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLsLBYwEJ4ia2I4fB4R4tNqljwNqpb0Zx2NXK5Xdstmo6p_iNzLOYyvE49ZLDokVjWe-8Yw9Mx5CXnnQgHYfMiPxIRjkmUM7mmkJxgMAgizVDh8eyfGJ-DItpxvk51ALk9IqhzWxXahh4dMZ-Q5nuVIFk0a9P_-Rpa5RKbo6tNDoYLEfLi9wy1a_m3xG-b5mbG_3-NM467sKZF5wvcqAl1G7KD2v8ghKmaoqY-5Q2QqIjnGvAd3y6PPAhAdZecOYcxxw1ykLGVOXCFzyb6DhzdNmT03V-kwnRc1EYfranJzrnRrtY6phw9mj486KrPzN_rVtAv7m2_4Rl23N3d5dcqf3U-mHDlj3yEaY3yc3u86Vlw_IJOWHUARfU9O6WUbnA023iH9P2TV9aSdNOfWnFD1Mutv4sxkEN6dfZ97PaDxbXNCuefVDcnIt_HtENueLedgilBtAscYYpPYiKO5KaSotQDvDPKJrRN4MvLLn3eUbtg2ac207zlrkrG05a8sR-ZjYuR6ZLs5uXyyWp7bXQxuQttwJwUEYUYLWQTktCm1kQLqDGpHtQRi21-baXmFvRF6uP6MepuCKm4dF046RRks07iPyuBPimhKBK6VQEil8O0j16uf_ntCT_9PygtwaHx8e2IPJ0f5TcpslkOVlxtg22Vwtm_AMvaVV9byFKCXfrlsnfgHBsiZq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYwEJ4g2sR0_DghRuqsuhVVVUak34_hRrVSSsrtR1b_Gr2Ocx1aIx62XHJIomsx887BnxoPQK-ukA7_vUsXhwojLUgN-NJXcKeucA5DF3uEvc75_zD6dFCdb6OfQCxPLKgeb2BpqV9u4Rz6mJBMiJ1yJcejLIg73pu_Pf6RxglTMtA7jNDqIHPjLC1i-rd7N9kDWrwmZTr5-3E_7CQOpZVSuU0eLIE3glpZZcEKosixCZkDxchcMoVY6CNGDzTxh1vHSKkKMoQ5WoDznIU6MAPO_LeKqaIS2dyfzw6PNDk_MobFc9Z06GZXjFXjL2NEGvIAwnuRp8Zs3bIcG_C3S_SNL2zq_6R10u49a8YcOZnfRlq_uoRvdHMvL-2gWq0UwQLFZ4VWzDMZ6HM8U_x5rbfpGTxwr7E8xxJt40tizhfOmwkcLaxc4nNUXuBtl_QAdXwsHH6JRVVf-McJUORByCJ5Ly7ygpuCqlMxJo4gFrCXozcArfd4dxaHbFDqVuuOsBs7qlrO6SNBuZOfmzXiMdnujXp7qXiu1B9oywxh1TLHCSemFkSyXinug24sE7QzC0L1ur_QVEhP0cvMYtDKmWkzl66Z9hyvJwdUn6FEnxA0lDOwmExwofDtI9erj__6hJ_-n5QW6CfqgP8_mB0_RLRIxlhUpITtotF42_hmETuvyeY9RjL5dt1r8AnbVLAU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+genus+surface+parameterization+using+the+Euclidean+Ricci+flow+method&rft.jtitle=Scientific+reports&rft.date=2025-05-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=17784&rft_id=info:doi/10.1038%2Fs41598-025-97421-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |