Prestimulus oscillations predict visual perception performance between and within subjects
In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 37; no. 4; pp. 1465 - 1473 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2007
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8–12 Hz) and high phase coupling in the beta and gamma frequency range (20–45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>
20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis. |
---|---|
AbstractList | In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis. In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis. In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8–12 Hz) and high phase coupling in the beta and gamma frequency range (20–45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (> 20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis. |
Author | Hanslmayr, Simon Herrmann, Christoph S. Staudigl, Tobias Bäuml, Karl-Heinz Aslan, Alp Klimesch, Wolfgang |
Author_xml | – sequence: 1 givenname: Simon surname: Hanslmayr fullname: Hanslmayr, Simon email: simon.hanslmayr@psychologie.uni-r.de organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany – sequence: 2 givenname: Alp surname: Aslan fullname: Aslan, Alp organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany – sequence: 3 givenname: Tobias surname: Staudigl fullname: Staudigl, Tobias organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany – sequence: 4 givenname: Wolfgang surname: Klimesch fullname: Klimesch, Wolfgang organization: Department of Physiological Psychology, Salzburg University, Austria – sequence: 5 givenname: Christoph S. surname: Herrmann fullname: Herrmann, Christoph S. organization: Department for Biological Psychology, Magdeburg University, Germany – sequence: 6 givenname: Karl-Heinz surname: Bäuml fullname: Bäuml, Karl-Heinz organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17706433$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV2L1TAQhoOsuB_6FyQgeNdj0jRpcyPqorvCgl7ojTehTaaa2iY1H7vsvzf1rCycqwMDGcgzLzPve45OnHeAEKZkRwkVb6adgxy8XfqfsKsJaXdbUfoEnVEieSV5W59sPWdVR6k8RecxToQQSZvuGTqlbUtEw9gZ-vE1QEx2yXOO2Edt57lP1ruI1wDG6oRvbcz9jFcIGtbta2tHH5beacADpDsAh3tn8J1Nv6zDMQ8T6BSfo6djP0d48fBeoO-fPn67vK5uvlx9vnx_U-mGdanSgzASmrFt6dgIItnIxrrmhoOmjA-cdKYUGxg1VJaLBtNICVqIjjLSyIFdoNd73TX4P7lcoxYbNZRDHPgclejqtgzKAr46ACefgyu7KcqJaGveCFGolw9UHhYwag3F5nCv_ntWgG4P6OBjDDA-IkRt8ahJPcajtnjUVpSW0bcHo9qmf36n0Nv5GIEPewEoht5aCKpEBiUIY0PxXBlvjxF5dyCiZ-us7uffcH-cxF9xEsmP |
CitedBy_id | crossref_primary_10_31857_S0131164624040031 crossref_primary_10_1016_j_bandl_2016_09_008 crossref_primary_10_1016_j_neuroimage_2023_120477 crossref_primary_10_1111_psyp_12666 crossref_primary_10_1177_0963721414529145 crossref_primary_10_1186_s13195_020_00613_6 crossref_primary_10_1523_JNEUROSCI_5630_10_2011 crossref_primary_10_3389_fnhum_2016_00010 crossref_primary_10_1016_j_bpsc_2017_09_009 crossref_primary_10_1038_s41598_021_92404_8 crossref_primary_10_3390_bs10010017 crossref_primary_10_1016_j_neubiorev_2014_03_015 crossref_primary_10_3389_fpsyg_2018_01768 crossref_primary_10_1002_hbm_24216 crossref_primary_10_1371_journal_pone_0038392 crossref_primary_10_1177_0301006618755639 crossref_primary_10_1371_journal_pone_0016243 crossref_primary_10_1016_j_clinph_2009_11_078 crossref_primary_10_1111_ejn_13905 crossref_primary_10_1016_j_nicl_2018_05_029 crossref_primary_10_1038_srep37718 crossref_primary_10_1016_j_copsyc_2019_03_015 crossref_primary_10_1523_JNEUROSCI_1161_11_2011 crossref_primary_10_1016_j_concog_2017_05_003 crossref_primary_10_1016_j_neubiorev_2016_07_016 crossref_primary_10_1016_j_cub_2012_03_050 crossref_primary_10_3389_fnins_2019_00311 crossref_primary_10_1007_s11571_015_9342_4 crossref_primary_10_3758_s13414_015_1023_1 crossref_primary_10_1016_j_bandc_2017_12_001 crossref_primary_10_1126_science_aar7186 crossref_primary_10_1146_annurev_neuro_092019_100200 crossref_primary_10_1177_1550059420933142 crossref_primary_10_1016_j_bbr_2014_06_015 crossref_primary_10_3390_vision3020016 crossref_primary_10_3758_s13423_011_0056_2 crossref_primary_10_1002_hbm_22064 crossref_primary_10_1111_ejn_12701 crossref_primary_10_1093_cercor_bhs343 crossref_primary_10_1016_j_neubiorev_2012_06_004 crossref_primary_10_1016_j_nicl_2021_102892 crossref_primary_10_1016_j_neuroimage_2017_02_033 crossref_primary_10_1016_j_dibe_2023_100172 crossref_primary_10_1016_j_jneumeth_2014_03_007 crossref_primary_10_1162_jocn_a_01145 crossref_primary_10_1523_ENEURO_0030_21_2021 crossref_primary_10_7554_eLife_91135_3 crossref_primary_10_1093_cercor_bhr125 crossref_primary_10_1093_cercor_bhq279 crossref_primary_10_1523_JNEUROSCI_1149_11_2011 crossref_primary_10_1523_JNEUROSCI_5199_10_2011 crossref_primary_10_1523_JNEUROSCI_2969_10_2010 crossref_primary_10_1523_JNEUROSCI_1827_22_2023 crossref_primary_10_7554_eLife_49562 crossref_primary_10_1007_s10548_015_0433_7 crossref_primary_10_3389_fnbeh_2019_00220 crossref_primary_10_1016_j_neuroimage_2013_02_028 crossref_primary_10_1016_j_clinph_2012_02_061 crossref_primary_10_1162_jocn_a_01032 crossref_primary_10_1016_j_neuroimage_2012_07_024 crossref_primary_10_1155_2016_3616807 crossref_primary_10_1016_j_brs_2023_10_008 crossref_primary_10_1016_j_tics_2020_05_004 crossref_primary_10_3389_fnhum_2015_00637 crossref_primary_10_1093_texcom_tgaa006 crossref_primary_10_1007_s00221_021_06142_4 crossref_primary_10_1038_s41598_020_61359_7 crossref_primary_10_3390_brainsci10080530 crossref_primary_10_1186_s13229_016_0102_z crossref_primary_10_1523_JNEUROSCI_3357_14_2015 crossref_primary_10_1016_j_concog_2010_01_012 crossref_primary_10_1152_jn_00125_2013 crossref_primary_10_1016_j_cub_2023_09_065 crossref_primary_10_1016_j_cub_2012_03_025 crossref_primary_10_1162_jocn_a_00270 crossref_primary_10_1371_journal_pbio_3000487 crossref_primary_10_3390_neurosci3020025 crossref_primary_10_1016_j_bbr_2019_111899 crossref_primary_10_1007_s11571_013_9250_4 crossref_primary_10_1523_JNEUROSCI_0514_21_2021 crossref_primary_10_3758_s13415_014_0281_z crossref_primary_10_1111_ejn_13947 crossref_primary_10_3389_fnins_2022_827888 crossref_primary_10_1162_jocn_a_00164 crossref_primary_10_1016_j_neuropsychologia_2016_07_037 crossref_primary_10_1073_pnas_1317267111 crossref_primary_10_1016_j_nlm_2019_107099 crossref_primary_10_1016_j_plrev_2025_03_008 crossref_primary_10_1162_jocn_2008_21174 crossref_primary_10_3389_fnhum_2016_00170 crossref_primary_10_1142_S0129065717500319 crossref_primary_10_1155_2014_936096 crossref_primary_10_1371_journal_pone_0255032 crossref_primary_10_1016_j_neuroimage_2017_02_043 crossref_primary_10_1371_journal_pone_0038090 crossref_primary_10_1007_s11055_015_0185_6 crossref_primary_10_1016_j_brs_2019_10_022 crossref_primary_10_1016_j_neuroimage_2009_01_017 crossref_primary_10_1155_2020_5758038 crossref_primary_10_3389_fnbeh_2019_00013 crossref_primary_10_1016_j_neuroimage_2024_120650 crossref_primary_10_1111_pcn_12936 crossref_primary_10_3389_fnhum_2016_00277 crossref_primary_10_1162_jocn_a_00494 crossref_primary_10_1162_jocn_a_00374 crossref_primary_10_1016_j_cub_2013_12_041 crossref_primary_10_1016_j_neuroimage_2010_03_041 crossref_primary_10_1371_journal_pone_0283863 crossref_primary_10_1016_j_concog_2017_04_009 crossref_primary_10_3389_fpsyg_2014_01230 crossref_primary_10_1162_jocn_2010_21557 crossref_primary_10_1016_j_neuroscience_2021_02_013 crossref_primary_10_1016_j_cub_2013_12_037 crossref_primary_10_1016_j_neuron_2019_03_025 crossref_primary_10_1016_j_neuroimage_2010_02_004 crossref_primary_10_1111_psyp_13987 crossref_primary_10_1016_j_clinph_2024_03_003 crossref_primary_10_3390_brainsci15030286 crossref_primary_10_3389_fnsys_2021_598383 crossref_primary_10_1016_j_neuroimage_2010_03_030 crossref_primary_10_1523_JNEUROSCI_2133_15_2016 crossref_primary_10_1016_j_neubiorev_2020_01_037 crossref_primary_10_1002_aur_1374 crossref_primary_10_1016_j_neuroimage_2013_10_041 crossref_primary_10_1016_j_neuroimage_2017_02_068 crossref_primary_10_3390_vision5020030 crossref_primary_10_1016_j_expneurol_2022_114205 crossref_primary_10_1088_1741_2552_aaae73 crossref_primary_10_3389_fnins_2016_00426 crossref_primary_10_1016_j_neures_2014_02_010 crossref_primary_10_1007_s10548_013_0295_9 crossref_primary_10_1016_j_ijpsycho_2011_09_001 crossref_primary_10_1073_pnas_1011284108 crossref_primary_10_3389_fnhum_2014_00913 crossref_primary_10_1016_j_neuroimage_2012_09_003 crossref_primary_10_1002_hbm_24619 crossref_primary_10_1016_j_brainres_2016_01_043 crossref_primary_10_1016_j_neuropsychologia_2017_02_005 crossref_primary_10_1016_j_concog_2017_04_020 crossref_primary_10_1016_j_alcohol_2013_12_004 crossref_primary_10_1016_j_biopsycho_2022_108400 crossref_primary_10_1155_2017_7407241 crossref_primary_10_1016_j_brainres_2014_12_016 crossref_primary_10_1016_j_neurobiolaging_2016_02_018 crossref_primary_10_1007_s10633_012_9357_7 crossref_primary_10_1080_17588928_2019_1627303 crossref_primary_10_1016_j_neuropsychologia_2013_06_024 crossref_primary_10_1523_JNEUROSCI_5684_09_2010 crossref_primary_10_1016_j_neuropsychologia_2021_107914 crossref_primary_10_1080_01426397_2018_1548586 crossref_primary_10_3389_fnrgo_2021_754472 crossref_primary_10_1016_j_neuroimage_2023_120085 crossref_primary_10_1109_ACCESS_2018_2844303 crossref_primary_10_1088_1741_2552_ace551 crossref_primary_10_1038_s41598_024_56014_4 crossref_primary_10_1007_s10548_014_0397_z crossref_primary_10_3389_fpsyg_2017_01147 crossref_primary_10_1155_2018_4638903 crossref_primary_10_1523_ENEURO_0327_24_2024 crossref_primary_10_3389_fncom_2014_00036 crossref_primary_10_1162_jocn_a_01219 crossref_primary_10_1016_j_neuroimage_2020_117051 crossref_primary_10_1111_psyp_12849 crossref_primary_10_1523_JNEUROSCI_0637_10_2010 crossref_primary_10_1016_j_neuropsychologia_2008_07_021 crossref_primary_10_1523_JNEUROSCI_1076_11_2011 crossref_primary_10_1016_j_neuropsychologia_2015_09_006 crossref_primary_10_1080_17588928_2022_2026312 crossref_primary_10_1016_j_cub_2014_03_007 crossref_primary_10_1016_j_bbr_2008_07_026 crossref_primary_10_1016_j_psyneuen_2022_105768 crossref_primary_10_1016_j_conb_2014_08_010 crossref_primary_10_1523_ENEURO_0268_19_2019 crossref_primary_10_1016_j_neuropsychologia_2015_06_003 crossref_primary_10_1093_cercor_bhac119 crossref_primary_10_1371_journal_pbio_1001064 crossref_primary_10_1016_j_neubiorev_2009_10_004 crossref_primary_10_3389_fnbeh_2014_00163 crossref_primary_10_1016_j_ijpsycho_2013_05_007 crossref_primary_10_1016_j_neuroimage_2008_02_053 crossref_primary_10_1016_j_neuroimage_2015_04_040 crossref_primary_10_1016_j_neulet_2014_01_010 crossref_primary_10_1093_cercor_bhaa185 crossref_primary_10_1111_ejn_15949 crossref_primary_10_1016_j_brainresrev_2011_04_002 crossref_primary_10_1523_JNEUROSCI_1166_20_2020 crossref_primary_10_1002_hbm_22452 crossref_primary_10_1523_JNEUROSCI_3187_13_2014 crossref_primary_10_1016_j_neuron_2015_07_032 crossref_primary_10_1016_j_brainres_2008_12_085 crossref_primary_10_1523_JNEUROSCI_1777_12_2012 crossref_primary_10_3758_CABN_10_3_329 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1016_j_biopsych_2020_01_004 crossref_primary_10_1093_cercor_bhad217 crossref_primary_10_1186_s11689_020_09351_0 crossref_primary_10_3389_fnhum_2019_00033 crossref_primary_10_3389_fnagi_2015_00193 crossref_primary_10_1111_ejn_15719 crossref_primary_10_1016_j_neuroimage_2014_04_069 crossref_primary_10_3389_fncom_2016_00032 crossref_primary_10_1111_ejn_15956 crossref_primary_10_1016_j_neuroimage_2015_11_024 crossref_primary_10_1523_JNEUROSCI_2123_16_2017 crossref_primary_10_1152_jn_00273_2019 crossref_primary_10_1523_JNEUROSCI_1432_16_2016 crossref_primary_10_1016_j_neuroimage_2009_10_033 crossref_primary_10_3389_fnsys_2021_734660 crossref_primary_10_1162_jocn_a_00551 crossref_primary_10_1016_j_neubiorev_2025_106041 crossref_primary_10_3389_fnhum_2021_699473 crossref_primary_10_1016_j_neuroimage_2010_12_068 crossref_primary_10_1038_s41598_017_05610_8 crossref_primary_10_1371_journal_pone_0093753 crossref_primary_10_1016_j_schres_2024_08_016 crossref_primary_10_3389_fnhum_2023_1168108 crossref_primary_10_1016_j_neulet_2008_04_067 crossref_primary_10_1016_j_brainres_2020_147203 crossref_primary_10_3389_fnsys_2021_767477 crossref_primary_10_1007_s11571_022_09862_7 crossref_primary_10_1523_JNEUROSCI_3755_12_2013 crossref_primary_10_1162_jocn_a_00569 crossref_primary_10_1038_srep28092 crossref_primary_10_1038_s41598_025_91881_5 crossref_primary_10_1038_s41598_017_15195_x crossref_primary_10_1093_cercor_bhac426 crossref_primary_10_1007_s10548_009_0123_4 crossref_primary_10_3758_s13423_017_1257_0 crossref_primary_10_1016_j_brainres_2022_147834 crossref_primary_10_1523_JNEUROSCI_3963_08_2009 crossref_primary_10_1523_JNEUROSCI_5647_12_2013 crossref_primary_10_1016_j_plrev_2024_07_006 crossref_primary_10_5014_ajot_2019_029231 crossref_primary_10_1016_j_neuroimage_2013_02_070 crossref_primary_10_1016_j_apergo_2024_104346 crossref_primary_10_1162_jocn_a_00653 crossref_primary_10_1002_hbm_21322 crossref_primary_10_1016_j_neuron_2013_10_017 crossref_primary_10_1093_cercor_bhr329 crossref_primary_10_1162_jocn_a_00658 crossref_primary_10_1088_1741_2560_12_2_026012 crossref_primary_10_1371_journal_pone_0056589 crossref_primary_10_1162_neco_a_01109 crossref_primary_10_1093_cercor_bhr314 crossref_primary_10_1162_jocn_a_01513 crossref_primary_10_1093_cercor_bhn197 crossref_primary_10_1016_j_neulet_2009_05_068 crossref_primary_10_1007_s00115_015_4317_6 crossref_primary_10_1038_s41598_023_40408_x crossref_primary_10_3390_app10103616 crossref_primary_10_1016_j_clinph_2022_02_001 crossref_primary_10_3724_SP_J_1042_2020_00945 crossref_primary_10_1093_cercor_bhs409 crossref_primary_10_1523_JNEUROSCI_4201_11_2012 crossref_primary_10_1523_JNEUROSCI_2359_19_2020 crossref_primary_10_1016_j_neuroscience_2011_11_048 crossref_primary_10_1523_JNEUROSCI_0742_19_2019 crossref_primary_10_1134_S0362119710020027 crossref_primary_10_1016_j_neuroimage_2020_116927 crossref_primary_10_1371_journal_pone_0013766 crossref_primary_10_1111_j_1460_9568_2008_06290_x crossref_primary_10_1016_j_neuron_2013_09_038 crossref_primary_10_1002_hbm_20659 crossref_primary_10_1111_ejn_13570 crossref_primary_10_1162_jocn_a_01843 crossref_primary_10_3389_fnsys_2024_1489949 crossref_primary_10_1371_journal_pone_0048504 crossref_primary_10_1016_j_humov_2021_102819 crossref_primary_10_1134_S036211971405003X crossref_primary_10_1016_j_bbr_2019_112142 crossref_primary_10_1162_jocn_a_00637 crossref_primary_10_1016_j_neuropsychologia_2012_10_007 crossref_primary_10_1016_j_nicl_2019_102145 crossref_primary_10_1016_j_heares_2013_07_009 crossref_primary_10_1073_pnas_2405395121 crossref_primary_10_1093_cercor_bhv146 crossref_primary_10_1016_j_ijpsycho_2018_02_014 crossref_primary_10_1016_j_bandc_2022_105861 crossref_primary_10_1093_scan_nsp010 crossref_primary_10_1016_j_cortex_2018_08_012 crossref_primary_10_1016_j_ijpsycho_2016_06_017 crossref_primary_10_1371_journal_pone_0220732 crossref_primary_10_1016_j_brainresbull_2010_01_013 crossref_primary_10_1016_j_brainresbull_2011_03_025 crossref_primary_10_1016_j_clinph_2022_03_010 crossref_primary_10_1016_j_neuroimage_2022_119789 crossref_primary_10_1146_annurev_psych_093008_100427 crossref_primary_10_1016_j_ijpsycho_2018_02_002 crossref_primary_10_1111_jcpp_13514 crossref_primary_10_1371_journal_pone_0107715 crossref_primary_10_1016_j_cortex_2015_03_020 crossref_primary_10_1016_j_neuropsychologia_2019_107121 crossref_primary_10_1038_srep20805 crossref_primary_10_1111_ejn_16511 crossref_primary_10_1016_j_brs_2018_09_009 crossref_primary_10_1016_j_nicl_2018_08_013 crossref_primary_10_1016_j_bbr_2018_10_024 crossref_primary_10_1016_j_neuroimage_2015_10_037 crossref_primary_10_1016_j_neuroimage_2021_118498 crossref_primary_10_1016_j_neuroimage_2011_11_071 crossref_primary_10_1038_s41598_021_96849_9 crossref_primary_10_1002_hbm_22857 crossref_primary_10_1016_j_neuroimage_2019_116374 crossref_primary_10_1088_1741_2552_aae5d8 crossref_primary_10_3389_fnint_2020_00012 crossref_primary_10_1038_s41467_022_31407_z crossref_primary_10_1523_JNEUROSCI_1944_23_2024 crossref_primary_10_1016_j_nbd_2024_106557 crossref_primary_10_1073_pnas_1004801107 crossref_primary_10_1152_jn_00654_2013 crossref_primary_10_1016_j_cortex_2019_09_008 crossref_primary_10_1016_j_tics_2009_01_004 crossref_primary_10_52547_shefa_9_3_45 crossref_primary_10_1016_j_crbeha_2023_100139 crossref_primary_10_1523_JNEUROSCI_2474_17_2017 crossref_primary_10_1093_cercor_bhm229 crossref_primary_10_1016_j_neuroimage_2019_116313 crossref_primary_10_1007_s00221_009_1936_9 crossref_primary_10_1016_j_brainres_2010_12_048 crossref_primary_10_1111_j_1469_8986_2012_01453_x crossref_primary_10_1007_s10548_021_00826_4 crossref_primary_10_1073_pnas_1812499116 crossref_primary_10_1016_j_jad_2014_10_001 crossref_primary_10_1016_j_neuroimage_2016_03_025 crossref_primary_10_1111_ejn_14226 crossref_primary_10_3389_fspor_2022_965195 crossref_primary_10_1088_1741_2552_ab890f crossref_primary_10_7554_eLife_91135 crossref_primary_10_1016_j_neuroimage_2011_11_010 crossref_primary_10_1038_s42003_024_06834_x crossref_primary_10_1108_IJCS_09_2018_0022 crossref_primary_10_1016_j_neuroimage_2015_03_028 crossref_primary_10_1134_S0362119711040207 crossref_primary_10_1016_j_ijpsycho_2011_03_012 crossref_primary_10_1152_jn_00969_2016 crossref_primary_10_1523_JNEUROSCI_1114_21_2021 crossref_primary_10_3758_s13423_022_02238_2 crossref_primary_10_1093_cercor_bhw392 crossref_primary_10_1016_j_tics_2012_10_007 crossref_primary_10_1007_s10548_013_0327_5 crossref_primary_10_3389_fnins_2016_00352 crossref_primary_10_1111_psyp_14498 crossref_primary_10_1016_j_biopsycho_2017_12_004 crossref_primary_10_1016_j_ijpsycho_2015_11_004 crossref_primary_10_1016_j_neuropsychologia_2008_10_012 crossref_primary_10_1586_14737175_2015_992782 crossref_primary_10_3389_fnhum_2017_00034 crossref_primary_10_1016_j_neuropsychologia_2017_05_019 crossref_primary_10_1152_jn_00856_2016 crossref_primary_10_1073_pnas_1620350114 crossref_primary_10_1523_ENEURO_0028_21_2021 crossref_primary_10_1016_j_clinph_2020_06_029 crossref_primary_10_1016_j_concog_2020_103034 crossref_primary_10_1038_s41598_020_58787_w crossref_primary_10_1111_psyp_14388 crossref_primary_10_1002_hbm_22816 crossref_primary_10_1109_OJCSYS_2022_3193127 crossref_primary_10_1016_j_neuron_2020_09_039 crossref_primary_10_1371_journal_pone_0059595 crossref_primary_10_3389_fnsys_2014_00119 crossref_primary_10_1097_WNR_0b013e3282f454c4 crossref_primary_10_1016_j_clinph_2010_10_044 crossref_primary_10_1073_pnas_2211147119 crossref_primary_10_1038_srep14434 crossref_primary_10_1111_j_1460_9568_2010_07174_x crossref_primary_10_1038_s41467_019_09664_2 crossref_primary_10_1016_j_bspc_2018_02_017 crossref_primary_10_1016_j_brs_2017_09_016 crossref_primary_10_1016_j_neuroimage_2016_11_062 crossref_primary_10_1016_j_cortex_2013_04_001 crossref_primary_10_1109_MIM_2021_9448258 crossref_primary_10_1109_TNSRE_2012_2205707 crossref_primary_10_1152_jn_00778_2010 crossref_primary_10_1177_1550059414527284 crossref_primary_10_1073_pnas_1817317116 crossref_primary_10_1371_journal_pbio_3000724 crossref_primary_10_1016_j_cortex_2014_06_017 crossref_primary_10_1093_cercor_bhv312 crossref_primary_10_3390_vision2030027 crossref_primary_10_1016_j_bandc_2015_09_001 crossref_primary_10_15275_rusomj_2022_0402 crossref_primary_10_1371_journal_pone_0082272 crossref_primary_10_1162_jocn_a_00915 crossref_primary_10_1523_ENEURO_0012_22_2022 crossref_primary_10_1038_s41598_022_25720_2 crossref_primary_10_1016_j_neuroimage_2010_02_027 crossref_primary_10_1038_srep27754 crossref_primary_10_1007_s10668_021_01308_0 crossref_primary_10_1016_j_concog_2009_02_011 crossref_primary_10_1016_j_neuroimage_2018_05_003 crossref_primary_10_3389_fnhum_2020_00139 crossref_primary_10_1111_ejn_15006 crossref_primary_10_1016_j_neubiorev_2009_09_001 crossref_primary_10_1111_ejn_15483 crossref_primary_10_1111_psyp_13480 crossref_primary_10_1152_jn_00781_2012 crossref_primary_10_2478_v10053_008_0089_x crossref_primary_10_1016_j_neuroimage_2013_08_054 crossref_primary_10_1162_jocn_a_00803 crossref_primary_10_1016_j_neuroimage_2015_01_035 crossref_primary_10_1111_pcn_13300 crossref_primary_10_1152_jn_00535_2009 crossref_primary_10_1016_j_visres_2014_08_003 crossref_primary_10_1016_j_clinph_2011_05_001 crossref_primary_10_1016_j_tins_2021_05_004 crossref_primary_10_1093_cercor_bhv212 crossref_primary_10_1111_ejn_15138 crossref_primary_10_1111_ejn_15259 crossref_primary_10_1111_psyp_14467 crossref_primary_10_1093_texcom_tgac012 crossref_primary_10_1111_ejn_14285 crossref_primary_10_1177_15500594241252483 crossref_primary_10_1523_JNEUROSCI_4385_13_2014 crossref_primary_10_1177_1073858420958629 crossref_primary_10_1523_JNEUROSCI_4795_10_2011 crossref_primary_10_1016_j_brainres_2011_06_003 crossref_primary_10_1016_j_neuroimage_2013_04_121 crossref_primary_10_1016_j_neuroimage_2013_04_120 crossref_primary_10_1163_22134808_00002572 crossref_primary_10_3758_s13414_022_02617_w crossref_primary_10_1016_j_neuroimage_2015_01_023 crossref_primary_10_1080_23273798_2019_1693050 crossref_primary_10_1016_j_neuroimage_2019_116304 crossref_primary_10_1016_j_neuroimage_2023_120420 crossref_primary_10_3389_fnhum_2016_00503 crossref_primary_10_1016_j_neuroimage_2019_116429 crossref_primary_10_1111_psyp_13386 crossref_primary_10_1111_ejn_15388 crossref_primary_10_1162_jocn_2010_21478 crossref_primary_10_1016_j_neuroimage_2008_07_005 crossref_primary_10_1016_j_neuroimage_2014_07_065 crossref_primary_10_1038_s41598_024_69433_0 crossref_primary_10_1111_j_1460_9568_2009_06980_x crossref_primary_10_1371_journal_pone_0217729 crossref_primary_10_1016_j_neuroimage_2013_06_080 crossref_primary_10_1007_s11910_023_01276_0 crossref_primary_10_1016_j_neuroimage_2012_06_075 crossref_primary_10_2139_ssrn_2542558 crossref_primary_10_1002_hbm_24026 crossref_primary_10_1111_psyp_14525 crossref_primary_10_1016_j_neuroimage_2018_11_029 crossref_primary_10_3389_fnins_2022_1013691 crossref_primary_10_1523_JNEUROSCI_5198_11_2012 crossref_primary_10_1371_journal_pone_0060035 crossref_primary_10_1016_j_neuroimage_2013_11_014 crossref_primary_10_1016_j_brainres_2013_09_031 crossref_primary_10_1177_0333102417736899 crossref_primary_10_1016_j_neuroimage_2010_02_053 crossref_primary_10_1002_hbm_23048 crossref_primary_10_1016_j_mri_2009_04_001 crossref_primary_10_1371_journal_pone_0114817 crossref_primary_10_1038_srep25132 crossref_primary_10_1523_JNEUROSCI_2389_17_2017 crossref_primary_10_1080_10255842_2025_2476185 crossref_primary_10_1523_JNEUROSCI_1134_20_2020 crossref_primary_10_3390_app112311544 crossref_primary_10_1016_j_neuroimage_2012_03_010 crossref_primary_10_3389_fnins_2017_00296 crossref_primary_10_1093_cercor_bhu247 crossref_primary_10_1186_s40708_019_0094_5 crossref_primary_10_1016_j_ijpsycho_2011_11_006 crossref_primary_10_1016_j_cortex_2017_03_018 crossref_primary_10_1152_jn_00387_2013 crossref_primary_10_1016_j_brs_2012_03_003 crossref_primary_10_1093_cercor_bhad083 crossref_primary_10_1152_jn_00306_2018 crossref_primary_10_1038_s41562_018_0465_6 crossref_primary_10_1016_j_cub_2011_05_049 crossref_primary_10_1016_j_neures_2019_12_005 crossref_primary_10_1093_cercor_bhv015 crossref_primary_10_1016_j_neuroimage_2020_116824 crossref_primary_10_1016_j_neuropsychologia_2016_12_030 crossref_primary_10_1007_s10548_020_00776_3 crossref_primary_10_3389_fnhum_2023_1051844 crossref_primary_10_3389_fnins_2018_00279 crossref_primary_10_1038_s41598_017_14742_w crossref_primary_10_1016_j_neurobiolaging_2019_03_012 crossref_primary_10_1162_jocn_a_01190 crossref_primary_10_3389_fnhum_2014_00446 crossref_primary_10_1016_j_concog_2012_07_007 crossref_primary_10_1038_s41598_019_45978_3 crossref_primary_10_1016_j_neurobiolaging_2019_03_017 crossref_primary_10_1134_S0362119724700798 crossref_primary_10_1016_j_neuroimage_2013_05_001 crossref_primary_10_1016_j_bbr_2022_113763 crossref_primary_10_1016_j_neuropsychologia_2020_107464 crossref_primary_10_1016_j_nicl_2016_01_023 crossref_primary_10_3389_fncom_2023_1145267 crossref_primary_10_1016_j_brainres_2015_10_054 crossref_primary_10_1016_j_ijpsycho_2012_07_002 crossref_primary_10_1016_j_neuroimage_2017_04_051 |
Cites_doi | 10.1523/JNEUROSCI.20-06-j0002.2000 10.1016/j.tics.2004.10.008 10.1038/385157a0 10.1111/j.1460-9568.2005.04482.x 10.1016/j.tics.2005.08.011 10.1111/j.1469-8986.1993.tb02075.x 10.1016/S0165-0173(03)00178-4 10.1016/S0006-3223(00)00907-0 10.1023/A:1008973215925 10.1016/S0304-3940(98)00122-0 10.1016/S0167-8760(02)00107-1 10.1007/s10484-005-2169-8 10.1093/cercor/bhj104 10.1186/1471-2202-8-27 10.1523/JNEUROSCI.4623-06.2007 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1038/364059a0 10.1126/science.273.5283.1868 10.1016/S0079-6123(06)59010-7 10.1523/JNEUROSCI.3244-05.2005 10.1093/schbul/sbj020 10.1038/35094565 10.1111/j.1467-9280.2005.01645.x 10.1111/j.1460-9568.2007.05278.x 10.1038/17120 10.1016/j.tins.2007.02.001 10.1002/hbm.20150 10.1016/j.cogbrainres.2004.03.009 10.1152/jn.01234.2005 10.1146/annurev.ps.37.020186.001451 10.1097/00001756-200304150-00005 10.1016/S0149-7634(01)00027-6 10.1038/35067550 10.1016/j.brainresrev.2006.06.003 10.1126/science.3992243 10.1016/j.neulet.2004.10.092 10.1523/JNEUROSCI.0875-06.2006 10.1097/00004691-200203000-00002 10.1093/cercor/bhh139 10.1126/science.1055465 10.1073/pnas.0404944101 10.1073/pnas.97.26.14748 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Inc. Copyright Elsevier Limited Oct 1, 2007 |
Copyright_xml | – notice: 2007 Elsevier Inc. – notice: Copyright Elsevier Limited Oct 1, 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2007.07.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1473 |
ExternalDocumentID | 3244516931 17706433 10_1016_j_neuroimage_2007_07_011 S1053811907006039 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c438t-cb6d9e4f771f46093f3f225d5ec135b508d08d3b31d19105bd499ec66813049b3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Mon Jul 21 11:13:33 EDT 2025 Wed Aug 13 08:04:08 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 02:14:17 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Tue Aug 26 17:34:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Oscillations Alpha Perception Phase coupling Prestimulus EEG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-cb6d9e4f771f46093f3f225d5ec135b508d08d3b31d19105bd499ec66813049b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 17706433 |
PQID | 1506725466 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68279109 proquest_journals_1506725466 pubmed_primary_17706433 crossref_primary_10_1016_j_neuroimage_2007_07_011 crossref_citationtrail_10_1016_j_neuroimage_2007_07_011 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_07_011 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Fries (bib10) 2005; 9 Rihs, Michel, Thut (bib30) 2007; 25 Gross, Schmitz, Schnitzler, Kessler, Shapiro, Hommel, Schnitzler (bib13) 2004; 101 Lachaux, Rodriguez, Martinerie, Varela (bib24) 1999; 8 Cooper, Croft, Dominey, Burgess, Gruzelier (bib4) 2003; 47 Tallon-Baudry (bib37) 2004; 8 Hanslmayr, Klimesch, Sauseng, Gruber, Doppelmayr, Freunberger, Pecherstorfer (bib15) 2005; 375 Siegel, Körding, König (bib35) 2000; 8 Jin, Plotkin, Kemp, Huerta, Alva, Thai, Carreon, Bunney (bib19) 2006; 32 Varela, Lachaux, Rodriguez, Martinerie (bib41) 2001; 2 Arieli, Sterkin, Grinvald, Aertsen (bib1) 1996; 273 Klimesch, Doppelmayr, Pachinger, Russegger (bib21) 1998; 244 Sauseng, Klimesch, Stadler, Schabus, Doppelmayr, Hanslmayr, Gruber, Birbaumer (bib33) 2005; 22 Melloni, Molina, Pena, Torres, Singer, Rodriguez (bib26) 2007; 27 Sauseng, Klimesch, Doppelmayr, Pecherstorfer, Freunberger, Hanslmayr (bib34) 2005; 26 Thut, Nietzel, Brandt, Pascual-Leone (bib38) 2006; 26 Sponheim, Clementz, Iacono, Beiser (bib36) 2000; 48 Fisher (bib9) 1993 Hanslmayr, Sauseng, Doppelmayr, Schabus, Klimesch (bib16) 2005; 30 Linkenkaer-Hansen, Nikulin, Palva, Illmoniemi, Palva (bib25) 2004; 25 Ray, Cole (bib29) 1985; 228 Blair, Karniski (bib3) 1993; 30 Roelfsema, Engel, König, Singer (bib32) 1997; 385 Mirsky, Duncan (bib27) 1986; 37 Debener, Herrmann, Gembris, Engel (bib5) 2003; 14 Fründ, Busch, Schadow, Korner, Herrmann (bib12) 2007; 8 Ergenoglu, Demiralp, Bayaraktaroglu, Ergen, Beydagi, Uresin (bib7) 2004; 20 von Stein, Chiang, König (bib42) 2000; 97 Klimesch, Doppelmayr, Hanslmayr (bib22) 2006; 159 Worden, Foxe, Wang, Simpson (bib43) 2000; 20 Engel, Fries, Singer (bib6) 2001; 2 Fries, Reynolds, Rorie, Desimone (bib11) 2001; 291 Gruber, Klimesch, Sauseng, Doppelmayr (bib14) 2005; 15 Kelly, Lalor, Reilly, Foxe (bib20) 2006; 95 Palva, Palva (bib28) 2007; 30 Todd, Fougnie, Marois (bib40) 2005; 16 Fell, Fernández, Klaver, Elger, Fries (bib8) 2003; 42 Herrmann, Knight (bib17) 2001; 25 Babiloni, Vecchio, Cappa, Pasqualetti, Rossi, Minussi, Rossini (bib2) 2006; 16 Ille, Berg, Scherg (bib18) 2002; 19 Rodriguez, George, Lachaux, Martinerie, Renault, Varela (bib31) 1999; 397 Tiitinen, Sinkkonen, Reinikainen, Alho, Lavikainen, Naatanen (bib39) 1993; 364 Klimesch, Sauseng, Hanslmayr (bib23) 2007; 53 Ille (10.1016/j.neuroimage.2007.07.011_bib18) 2002; 19 Kelly (10.1016/j.neuroimage.2007.07.011_bib20) 2006; 95 Gruber (10.1016/j.neuroimage.2007.07.011_bib14) 2005; 15 Herrmann (10.1016/j.neuroimage.2007.07.011_bib17) 2001; 25 Varela (10.1016/j.neuroimage.2007.07.011_bib41) 2001; 2 Sauseng (10.1016/j.neuroimage.2007.07.011_bib33) 2005; 22 Thut (10.1016/j.neuroimage.2007.07.011_bib38) 2006; 26 Fell (10.1016/j.neuroimage.2007.07.011_bib8) 2003; 42 Worden (10.1016/j.neuroimage.2007.07.011_bib43) 2000; 20 Gross (10.1016/j.neuroimage.2007.07.011_bib13) 2004; 101 Melloni (10.1016/j.neuroimage.2007.07.011_bib26) 2007; 27 Sponheim (10.1016/j.neuroimage.2007.07.011_bib36) 2000; 48 Fründ (10.1016/j.neuroimage.2007.07.011_bib12) 2007; 8 Mirsky (10.1016/j.neuroimage.2007.07.011_bib27) 1986; 37 Rihs (10.1016/j.neuroimage.2007.07.011_bib30) 2007; 25 Ray (10.1016/j.neuroimage.2007.07.011_bib29) 1985; 228 Jin (10.1016/j.neuroimage.2007.07.011_bib19) 2006; 32 Siegel (10.1016/j.neuroimage.2007.07.011_bib35) 2000; 8 Fries (10.1016/j.neuroimage.2007.07.011_bib10) 2005; 9 von Stein (10.1016/j.neuroimage.2007.07.011_bib42) 2000; 97 Fries (10.1016/j.neuroimage.2007.07.011_bib11) 2001; 291 Debener (10.1016/j.neuroimage.2007.07.011_bib5) 2003; 14 Blair (10.1016/j.neuroimage.2007.07.011_bib3) 1993; 30 Klimesch (10.1016/j.neuroimage.2007.07.011_bib23) 2007; 53 Tiitinen (10.1016/j.neuroimage.2007.07.011_bib39) 1993; 364 Hanslmayr (10.1016/j.neuroimage.2007.07.011_bib16) 2005; 30 Rodriguez (10.1016/j.neuroimage.2007.07.011_bib31) 1999; 397 Arieli (10.1016/j.neuroimage.2007.07.011_bib1) 1996; 273 Palva (10.1016/j.neuroimage.2007.07.011_bib28) 2007; 30 Sauseng (10.1016/j.neuroimage.2007.07.011_bib34) 2005; 26 Babiloni (10.1016/j.neuroimage.2007.07.011_bib2) 2006; 16 Lachaux (10.1016/j.neuroimage.2007.07.011_bib24) 1999; 8 Klimesch (10.1016/j.neuroimage.2007.07.011_bib21) 1998; 244 Linkenkaer-Hansen (10.1016/j.neuroimage.2007.07.011_bib25) 2004; 25 Tallon-Baudry (10.1016/j.neuroimage.2007.07.011_bib37) 2004; 8 Todd (10.1016/j.neuroimage.2007.07.011_bib40) 2005; 16 Engel (10.1016/j.neuroimage.2007.07.011_bib6) 2001; 2 Hanslmayr (10.1016/j.neuroimage.2007.07.011_bib15) 2005; 375 Ergenoglu (10.1016/j.neuroimage.2007.07.011_bib7) 2004; 20 Roelfsema (10.1016/j.neuroimage.2007.07.011_bib32) 1997; 385 Cooper (10.1016/j.neuroimage.2007.07.011_bib4) 2003; 47 Fisher (10.1016/j.neuroimage.2007.07.011_bib9) 1993 Klimesch (10.1016/j.neuroimage.2007.07.011_bib22) 2006; 159 |
References_xml | – volume: 97 start-page: 14748 year: 2000 end-page: 14753 ident: bib42 article-title: Top-down processing mediated by inter-areal synchronization publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 159 start-page: 151 year: 2006 end-page: 165 ident: bib22 article-title: Upper alpha ERD and absolute power: their meaning for memory performance publication-title: Prog. Brain Res. – volume: 25 start-page: 603 year: 2007 end-page: 610 ident: bib30 article-title: Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization publication-title: Eur. J. Neurosci. – volume: 30 start-page: 518 year: 1993 end-page: 524 ident: bib3 article-title: An alternative method for significance testing of waveform difference potentials publication-title: Psychophysiology – volume: 19 start-page: 113 year: 2002 end-page: 124 ident: bib18 article-title: Artefact correction of the ongoing EEG using spatial filters based on artefact and brain signal topographies publication-title: J. Clin. Neurophysiol. – volume: 2 start-page: 229 year: 2001 end-page: 239 ident: bib41 article-title: The brainweb: phase Synchronization and large-scale integration publication-title: Nat. Rev., Neurosci. – volume: 291 start-page: 1560 year: 2001 end-page: 1563 ident: bib11 article-title: Modulation of oscillatory neuronal synchronization by selective visual attention publication-title: Science – volume: 101 start-page: 13050 year: 2004 end-page: 13055 ident: bib13 article-title: Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 37 start-page: 291 year: 1986 end-page: 319 ident: bib27 article-title: Etiology and expression of schizophrenia: neurobiological and psychosocial factors publication-title: Ann. Rev. Psychol. – volume: 15 start-page: 371 year: 2005 end-page: 377 ident: bib14 article-title: Alpha phase synchronization predicts P1 and N1 latency and amplitude size publication-title: Cereb. Cortex – volume: 16 start-page: 1690 year: 2006 end-page: 1700 ident: bib2 article-title: Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study publication-title: Cereb. Cortex – volume: 273 start-page: 1868 year: 1996 end-page: 1871 ident: bib1 article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses publication-title: Science – volume: 14 start-page: 683 year: 2003 end-page: 686 ident: bib5 article-title: Top-down attentional processing enhances auditory evoked gamma band activity publication-title: NeuroReport – volume: 22 start-page: 1926 year: 2005 end-page: 2917 ident: bib33 article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity publication-title: Eur. J. Neurosci. – volume: 25 start-page: 465 year: 2001 end-page: 476 ident: bib17 article-title: Mechanisms of human attention: event-related potentials and oscillations publication-title: Neurosci. Biobehav. Rev. – volume: 25 start-page: 10131 year: 2004 end-page: 10137 ident: bib25 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: J. Neurosci. – volume: 8 start-page: 523 year: 2004 end-page: 525 ident: bib37 article-title: Attention and awareness in synchrony publication-title: Trends Cogn. Sci. – volume: 26 start-page: 148 year: 2005 end-page: 155 ident: bib34 article-title: EEG alpha synchronization and functional coupling during top-down processing in a working memory task publication-title: Hum. Brain Mapp. – volume: 397 start-page: 430 year: 1999 end-page: 433 ident: bib31 article-title: Perception's shadow: long-distance synchronization of human brain activity publication-title: Nature – volume: 20 start-page: 376 year: 2004 end-page: 383 ident: bib7 article-title: Alpha rhythm of the EEG modulates visual detection performance in humans publication-title: Brain Res. Cogn. Brain Res. – volume: 53 start-page: 63 year: 2007 end-page: 88 ident: bib23 article-title: EEG alpha oscillations: the inhibition-timing hypothesis publication-title: Brain Res. Brain Res. Rev. – volume: 27 start-page: 2858 year: 2007 end-page: 2865 ident: bib26 article-title: Synchronization of neural activity across cortical areas correlates with conscious perception publication-title: J. Neurosci. – volume: 26 start-page: 9494 year: 2006 end-page: 9502 ident: bib38 article-title: Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection publication-title: J. Neurosci. – volume: 16 start-page: 965 year: 2005 end-page: 972 ident: bib40 article-title: Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness publication-title: Psychol. Sci. – volume: 20 start-page: 1 year: 2000 end-page: 6 ident: bib43 article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex publication-title: J. Neurosci. – volume: 32 start-page: 556 year: 2006 end-page: 561 ident: bib19 article-title: Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (alpha TMS) on the negative symptoms of schizophrenia publication-title: Schizophr. Bull. – volume: 95 start-page: 3844 year: 2006 end-page: 3851 ident: bib20 article-title: Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention publication-title: J. Neurophysiol. – volume: 244 start-page: 73 year: 1998 end-page: 76 ident: bib21 article-title: Induced alpha band power changes in the human EEG and attention publication-title: Neurosci. Lett. – volume: 42 start-page: 265 year: 2003 end-page: 272 ident: bib8 article-title: Is synchronized neuronal gamma activity relevant for selective attention? publication-title: Brain Res. Brain Res. Rev. – volume: 8 start-page: 27 year: 2007 ident: bib12 article-title: From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task publication-title: BMC Neurosci. – volume: 48 start-page: 1088 year: 2000 end-page: 1097 ident: bib36 article-title: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia publication-title: Biol. Psychiatry – year: 1993 ident: bib9 article-title: Statistical Analysis of Circular Data – volume: 9 start-page: 474 year: 2005 end-page: 480 ident: bib10 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cogn. Sci. – volume: 385 start-page: 157 year: 1997 end-page: 161 ident: bib32 article-title: Visuomotor integration is associated with zero-time lag synchronization among cortical areas publication-title: Nature – volume: 30 start-page: 150 year: 2007 end-page: 158 ident: bib28 article-title: New vistas for alpha-frequency band oscillations publication-title: Trends Neurosci. – volume: 47 start-page: 65 year: 2003 end-page: 74 ident: bib4 article-title: Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypothesis publication-title: Int. J. Psychophysiol. – volume: 2 start-page: 704 year: 2001 end-page: 716 ident: bib6 article-title: Dynamic predictions: oscillations and synchrony in top-down processing publication-title: Nat. Rev., Neurosci. – volume: 375 start-page: 64 year: 2005 end-page: 68 ident: bib15 article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking publication-title: Neurosci. Lett. – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: bib24 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. – volume: 228 start-page: 750 year: 1985 end-page: 752 ident: bib29 article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes publication-title: Science – volume: 8 start-page: 161 year: 2000 end-page: 173 ident: bib35 article-title: Integrating top-down and bottom-up sensory processing by somato-dendritic interactions publication-title: J. Comp. Neurosci. – volume: 364 start-page: 59 year: 1993 end-page: 60 ident: bib39 article-title: Selective attention enhances the auditory 40-Hz transient response in humans publication-title: Nature – volume: 30 start-page: 1 year: 2005 end-page: 10 ident: bib16 article-title: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects publication-title: Appl. Psychophysiol. Biofeedback – volume: 20 start-page: 1 year: 2000 ident: 10.1016/j.neuroimage.2007.07.011_bib43 article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-06-j0002.2000 – volume: 8 start-page: 523 year: 2004 ident: 10.1016/j.neuroimage.2007.07.011_bib37 article-title: Attention and awareness in synchrony publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.10.008 – volume: 385 start-page: 157 year: 1997 ident: 10.1016/j.neuroimage.2007.07.011_bib32 article-title: Visuomotor integration is associated with zero-time lag synchronization among cortical areas publication-title: Nature doi: 10.1038/385157a0 – volume: 22 start-page: 1926 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib33 article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04482.x – volume: 9 start-page: 474 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib10 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2005.08.011 – volume: 30 start-page: 518 year: 1993 ident: 10.1016/j.neuroimage.2007.07.011_bib3 article-title: An alternative method for significance testing of waveform difference potentials publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1993.tb02075.x – volume: 42 start-page: 265 year: 2003 ident: 10.1016/j.neuroimage.2007.07.011_bib8 article-title: Is synchronized neuronal gamma activity relevant for selective attention? publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(03)00178-4 – volume: 48 start-page: 1088 year: 2000 ident: 10.1016/j.neuroimage.2007.07.011_bib36 article-title: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(00)00907-0 – volume: 8 start-page: 161 year: 2000 ident: 10.1016/j.neuroimage.2007.07.011_bib35 article-title: Integrating top-down and bottom-up sensory processing by somato-dendritic interactions publication-title: J. Comp. Neurosci. doi: 10.1023/A:1008973215925 – volume: 244 start-page: 73 year: 1998 ident: 10.1016/j.neuroimage.2007.07.011_bib21 article-title: Induced alpha band power changes in the human EEG and attention publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(98)00122-0 – year: 1993 ident: 10.1016/j.neuroimage.2007.07.011_bib9 – volume: 47 start-page: 65 year: 2003 ident: 10.1016/j.neuroimage.2007.07.011_bib4 article-title: Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypothesis publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(02)00107-1 – volume: 30 start-page: 1 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib16 article-title: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects publication-title: Appl. Psychophysiol. Biofeedback doi: 10.1007/s10484-005-2169-8 – volume: 16 start-page: 1690 year: 2006 ident: 10.1016/j.neuroimage.2007.07.011_bib2 article-title: Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj104 – volume: 8 start-page: 27 year: 2007 ident: 10.1016/j.neuroimage.2007.07.011_bib12 article-title: From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task publication-title: BMC Neurosci. doi: 10.1186/1471-2202-8-27 – volume: 27 start-page: 2858 year: 2007 ident: 10.1016/j.neuroimage.2007.07.011_bib26 article-title: Synchronization of neural activity across cortical areas correlates with conscious perception publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4623-06.2007 – volume: 8 start-page: 194 year: 1999 ident: 10.1016/j.neuroimage.2007.07.011_bib24 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 364 start-page: 59 year: 1993 ident: 10.1016/j.neuroimage.2007.07.011_bib39 article-title: Selective attention enhances the auditory 40-Hz transient response in humans publication-title: Nature doi: 10.1038/364059a0 – volume: 273 start-page: 1868 year: 1996 ident: 10.1016/j.neuroimage.2007.07.011_bib1 article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses publication-title: Science doi: 10.1126/science.273.5283.1868 – volume: 159 start-page: 151 year: 2006 ident: 10.1016/j.neuroimage.2007.07.011_bib22 article-title: Upper alpha ERD and absolute power: their meaning for memory performance publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)59010-7 – volume: 25 start-page: 10131 year: 2004 ident: 10.1016/j.neuroimage.2007.07.011_bib25 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3244-05.2005 – volume: 32 start-page: 556 year: 2006 ident: 10.1016/j.neuroimage.2007.07.011_bib19 article-title: Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (alpha TMS) on the negative symptoms of schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbj020 – volume: 2 start-page: 704 year: 2001 ident: 10.1016/j.neuroimage.2007.07.011_bib6 article-title: Dynamic predictions: oscillations and synchrony in top-down processing publication-title: Nat. Rev., Neurosci. doi: 10.1038/35094565 – volume: 16 start-page: 965 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib40 article-title: Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.2005.01645.x – volume: 25 start-page: 603 year: 2007 ident: 10.1016/j.neuroimage.2007.07.011_bib30 article-title: Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05278.x – volume: 397 start-page: 430 year: 1999 ident: 10.1016/j.neuroimage.2007.07.011_bib31 article-title: Perception's shadow: long-distance synchronization of human brain activity publication-title: Nature doi: 10.1038/17120 – volume: 30 start-page: 150 year: 2007 ident: 10.1016/j.neuroimage.2007.07.011_bib28 article-title: New vistas for alpha-frequency band oscillations publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.02.001 – volume: 26 start-page: 148 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib34 article-title: EEG alpha synchronization and functional coupling during top-down processing in a working memory task publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20150 – volume: 20 start-page: 376 year: 2004 ident: 10.1016/j.neuroimage.2007.07.011_bib7 article-title: Alpha rhythm of the EEG modulates visual detection performance in humans publication-title: Brain Res. Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2004.03.009 – volume: 95 start-page: 3844 year: 2006 ident: 10.1016/j.neuroimage.2007.07.011_bib20 article-title: Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention publication-title: J. Neurophysiol. doi: 10.1152/jn.01234.2005 – volume: 37 start-page: 291 year: 1986 ident: 10.1016/j.neuroimage.2007.07.011_bib27 article-title: Etiology and expression of schizophrenia: neurobiological and psychosocial factors publication-title: Ann. Rev. Psychol. doi: 10.1146/annurev.ps.37.020186.001451 – volume: 14 start-page: 683 year: 2003 ident: 10.1016/j.neuroimage.2007.07.011_bib5 article-title: Top-down attentional processing enhances auditory evoked gamma band activity publication-title: NeuroReport doi: 10.1097/00001756-200304150-00005 – volume: 25 start-page: 465 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2007.07.011_bib17 article-title: Mechanisms of human attention: event-related potentials and oscillations publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(01)00027-6 – volume: 2 start-page: 229 year: 2001 ident: 10.1016/j.neuroimage.2007.07.011_bib41 article-title: The brainweb: phase Synchronization and large-scale integration publication-title: Nat. Rev., Neurosci. doi: 10.1038/35067550 – volume: 53 start-page: 63 year: 2007 ident: 10.1016/j.neuroimage.2007.07.011_bib23 article-title: EEG alpha oscillations: the inhibition-timing hypothesis publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/j.brainresrev.2006.06.003 – volume: 228 start-page: 750 year: 1985 ident: 10.1016/j.neuroimage.2007.07.011_bib29 article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes publication-title: Science doi: 10.1126/science.3992243 – volume: 375 start-page: 64 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib15 article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2004.10.092 – volume: 26 start-page: 9494 year: 2006 ident: 10.1016/j.neuroimage.2007.07.011_bib38 article-title: Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0875-06.2006 – volume: 19 start-page: 113 year: 2002 ident: 10.1016/j.neuroimage.2007.07.011_bib18 article-title: Artefact correction of the ongoing EEG using spatial filters based on artefact and brain signal topographies publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200203000-00002 – volume: 15 start-page: 371 year: 2005 ident: 10.1016/j.neuroimage.2007.07.011_bib14 article-title: Alpha phase synchronization predicts P1 and N1 latency and amplitude size publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh139 – volume: 291 start-page: 1560 year: 2001 ident: 10.1016/j.neuroimage.2007.07.011_bib11 article-title: Modulation of oscillatory neuronal synchronization by selective visual attention publication-title: Science doi: 10.1126/science.1055465 – volume: 101 start-page: 13050 year: 2004 ident: 10.1016/j.neuroimage.2007.07.011_bib13 article-title: Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0404944101 – volume: 97 start-page: 14748 year: 2000 ident: 10.1016/j.neuroimage.2007.07.011_bib42 article-title: Top-down processing mediated by inter-areal synchronization publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.26.14748 |
SSID | ssj0009148 |
Score | 2.4414127 |
Snippet | In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1465 |
SubjectTerms | Adult Alpha Attention - physiology Beta Rhythm Brain research Cortical Synchronization Data Interpretation, Statistical EEG Electroencephalography Electrophysiology Female Humans Individuality Letters Male Oscillations Perception Perceptual Masking Phase coupling Photic Stimulation Prestimulus Psychomotor Performance - physiology Studies Visual Perception - physiology |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhDyGX0jzabrNJdcjV3dXbJqewJIRCcmkDIRexsixw2XWW2O4xvz0ztrxLD4GFgA7G9hh5JM2MNN_MEHKhFjL1KudJSHmeSLABEqeUSkTgIdWZV15jvPPdvb59kL8e1eMemQ-xMAirjLK_l-mdtI53ppGb03VZTn-DZQDqBhSawaQiAoP4pDQ4y3--bmEeGZN9OJwSCb4d0Tw9xqvLGVmuYOXGZIbQGHtPRb1ngnaq6OYz-RRtSHrVd_OQ7BXVEdm_i17yY_KEuIqmXLXLtqaYrHIZAW90_YIvNfRfWbfwhfUG1YKXQwABjdgtuqg8xXPasqJ16_DApj4hDzfXf-a3SayhkORSpE2SO-2zQgZjWJB6lokAo8CVV0XOhHJgnnlowgnmYec2U87DFqjItU4ZOuCc-EJG1XNVfCM0uMxkjqPfzQOftZOOG4zyKTgPs5CPiRnYZvOYYBzrXCztgCT7a7cMx_qXxmJjbEzYhnLdJ9nYgSYbRsYOQaQg9ixogh1oLze0_022Haknw0SwccHXFhM1GqwtoMfkx-YxLFX0vyyq4rmtrU65AR5nY_K1nz7bnzUGTUPx_UMdOyUH3clzBzWckFHz0hZnYDI17rxbE292PBZd priority: 102 providerName: Elsevier |
Title | Prestimulus oscillations predict visual perception performance between and within subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907006039 https://dx.doi.org/10.1016/j.neuroimage.2007.07.011 https://www.ncbi.nlm.nih.gov/pubmed/17706433 https://www.proquest.com/docview/1506725466 https://www.proquest.com/docview/68279109 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFsZexr6Xrcv0sFdtkawPmz2MrrRkHw2lrBD2IiLJgozUyWp7j_vbp7Pl5KkjILDBPoOlk3S6-93vAN7Jhci9dJyGnDsqog1ArZSSZoGHXBVeeoX5zhczNb0WX-dynhxudYJVDmtit1D7tUMf-QdkwtNI3q4-bX5TrBqF0dVUQuMAjpC6DLVaz_WOdJeJPhVOZjSPLyQkT4_v6vgilzdx1iYiw9gYu2t7usv87Lah80fwMNmP5KQf8Mdwr6yewP2LFCF_Cj8RU9Esb9pVWxMkqlwlsBvZ3OJLDfmzrNv4hc0W0YK3Q_IASbgtsqg8QR_tsiJ1a9FZUz-D6_OzH6dTmuonUCeyvKHOKl-UImjNglCTIgtxBLj0snQskzaaZj62zGbMx1PbRFofjz-lUypnGHyz2XM4rNZV-RJIsIUuLMeYmxdaKSss15jhU3IeJsGNQA_dZlwiF8caFyszoMh-mV2HY-1LbbAxNgK2ldz0BBt7yBTDyJghgTQueSbuAnvIftzKJiOjNx72lD4eFMGkyV6bnWqO4O32cZymGHtZVOW6rY3KuY59XIzgRa8-u5_VGs3C7NX_P_0aHnRu5Q5HeAyHzW1bvon2UGPHcPD-Lxt3qj-Go5PTq--XeP3ybTqL189ns8urf1buEL4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGfZUqgPcIxYO7GdqEIIAdWWdntqpRUXs44dadE2u22Sov4pfiMzibN7KtpLJR8iJWMlzngenm9mAN7LaZI6mYuoSEUeJWgDRFZKGcWFKFKVOekU5TuPz9ToIvkxkZMt-NvnwhCsspeJraB2i5zOyD9SJTxNxdvV5-VVRF2jKLrat9Do2OLE3_5Bl636dPwN_-8HIY6-n38dRaGrQJQncVpHuVUu80mhNS8ShQ59ge8lpJM-57G0aLA4HLGNuUNfZiitQ6fA50qlnEJSNsZ5H8BDVLxDcvb0RK-L_PKkS72TcZRyngXkUIcna-tTzi5RSoTCiTg4v0sd3mXutmrv6Ck8CfYq-9Ix2DPY8uVzeDQOEfkX8JMwHPXsspk3FaPCmPMArmPLa3qoZjezqsEZlisEDV32yQos4MTYtHSMzoRnJasaS4dD1Uu4uJeVfQXb5aL0r4EVNtOZFRTjc4lWyiZWaMoo8kIUwyIfgO6XzeShmDn11JibHrX226wXnHptakOD8wHwFeWyK-ixAU3W_xnTJ6yiiDWodTagPVzRBqOmM1Y2pN7vGcEE4VKZ9VYYwMHqNooFivVMS79oKqNSoXGNswHsduyz_lityQyN9_4_9QE8Hp2PT83p8dnJG9hpj7RbDOM-bNfXjX-Ltlht37UbgMGv-95x_wCfY0aU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGTZp4QfzfscHyAI_VlrRJWk0IAdtpY-w0ISZNvIRL00iHbr1jbUF8NT4ddpvePQ3dy6Q8VGodtant2PHPNsBrOUlSJ3MR-VTkUYI2QGSllFHshU9V5qRTlO98PlYnl8mnK3m1AX_7XBiCVfY6sVXUbp7TGfk-VcLTVLxd7fsAi7g4Gr1b_IyogxRFWvt2Gh2LnBV_fqP7Vr09PcJ__UaI0fHXjydR6DAQ5Umc1lFulcuKxGvNfaLQuff4jkI6WeQ8lhaNF4cjtjF36NccSOvQQShypVJO4Skb47z3YFOTVzSAzQ_H44svq5K_POkS8WQcpZxnAUfUocvaapXTa9QZoYwiDs5v2xxvM37bTXD0EB4E65W979jtEWwU5WPYOg_x-SfwjRAd9fS6mTUVozKZswC1Y4sbeqhmv6ZVgzMslngauuxTF1hAjbFJ6RidEE9LVjWWjoqqp3B5J2v7DAblvCy2gXmb6cwKivi5RCtlEys05RcVQvgDnw9B98tm8lDanDpszEyPYfthVgtOnTe1ocH5EPiSctGV91iDJuv_jOnTV1HhGtyD1qA9XNIGE6czXdak3u0ZwQRVU5mVYAxhb3kblQRFfiZlMW8qo1KhcY2zITzv2Gf1sVqTURq_-P_Ue7CF0mY-n47PduB-e77dAhp3YVDfNMVLNMxq-ypIAIPvdy10_wBdXkwv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prestimulus+oscillations+predict+visual+perception+performance+between+and+within+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hanslmayr%2C+Simon&rft.au=Aslan%2C+Alp&rft.au=Staudigl%2C+Tobias&rft.au=Klimesch%2C+Wolfgang&rft.date=2007-10-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=37&rft.issue=4&rft.spage=1465&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.07.011&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3244516931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |