Prestimulus oscillations predict visual perception performance between and within subjects

In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 37; no. 4; pp. 1465 - 1473
Main Authors Hanslmayr, Simon, Aslan, Alp, Staudigl, Tobias, Klimesch, Wolfgang, Herrmann, Christoph S., Bäuml, Karl-Heinz
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2007
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8–12 Hz) and high phase coupling in the beta and gamma frequency range (20–45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (> 20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.
AbstractList In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.
In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.
In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8–12 Hz) and high phase coupling in the beta and gamma frequency range (20–45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (> 20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.
Author Hanslmayr, Simon
Herrmann, Christoph S.
Staudigl, Tobias
Bäuml, Karl-Heinz
Aslan, Alp
Klimesch, Wolfgang
Author_xml – sequence: 1
  givenname: Simon
  surname: Hanslmayr
  fullname: Hanslmayr, Simon
  email: simon.hanslmayr@psychologie.uni-r.de
  organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany
– sequence: 2
  givenname: Alp
  surname: Aslan
  fullname: Aslan, Alp
  organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany
– sequence: 3
  givenname: Tobias
  surname: Staudigl
  fullname: Staudigl, Tobias
  organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany
– sequence: 4
  givenname: Wolfgang
  surname: Klimesch
  fullname: Klimesch, Wolfgang
  organization: Department of Physiological Psychology, Salzburg University, Austria
– sequence: 5
  givenname: Christoph S.
  surname: Herrmann
  fullname: Herrmann, Christoph S.
  organization: Department for Biological Psychology, Magdeburg University, Germany
– sequence: 6
  givenname: Karl-Heinz
  surname: Bäuml
  fullname: Bäuml, Karl-Heinz
  organization: Department of Experimental Psychology, Regensburg University, 93040 Regensburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17706433$$D View this record in MEDLINE/PubMed
BookMark eNqNkV2L1TAQhoOsuB_6FyQgeNdj0jRpcyPqorvCgl7ojTehTaaa2iY1H7vsvzf1rCycqwMDGcgzLzPve45OnHeAEKZkRwkVb6adgxy8XfqfsKsJaXdbUfoEnVEieSV5W59sPWdVR6k8RecxToQQSZvuGTqlbUtEw9gZ-vE1QEx2yXOO2Edt57lP1ruI1wDG6oRvbcz9jFcIGtbta2tHH5beacADpDsAh3tn8J1Nv6zDMQ8T6BSfo6djP0d48fBeoO-fPn67vK5uvlx9vnx_U-mGdanSgzASmrFt6dgIItnIxrrmhoOmjA-cdKYUGxg1VJaLBtNICVqIjjLSyIFdoNd73TX4P7lcoxYbNZRDHPgclejqtgzKAr46ACefgyu7KcqJaGveCFGolw9UHhYwag3F5nCv_ntWgG4P6OBjDDA-IkRt8ahJPcajtnjUVpSW0bcHo9qmf36n0Nv5GIEPewEoht5aCKpEBiUIY0PxXBlvjxF5dyCiZ-us7uffcH-cxF9xEsmP
CitedBy_id crossref_primary_10_31857_S0131164624040031
crossref_primary_10_1016_j_bandl_2016_09_008
crossref_primary_10_1016_j_neuroimage_2023_120477
crossref_primary_10_1111_psyp_12666
crossref_primary_10_1177_0963721414529145
crossref_primary_10_1186_s13195_020_00613_6
crossref_primary_10_1523_JNEUROSCI_5630_10_2011
crossref_primary_10_3389_fnhum_2016_00010
crossref_primary_10_1016_j_bpsc_2017_09_009
crossref_primary_10_1038_s41598_021_92404_8
crossref_primary_10_3390_bs10010017
crossref_primary_10_1016_j_neubiorev_2014_03_015
crossref_primary_10_3389_fpsyg_2018_01768
crossref_primary_10_1002_hbm_24216
crossref_primary_10_1371_journal_pone_0038392
crossref_primary_10_1177_0301006618755639
crossref_primary_10_1371_journal_pone_0016243
crossref_primary_10_1016_j_clinph_2009_11_078
crossref_primary_10_1111_ejn_13905
crossref_primary_10_1016_j_nicl_2018_05_029
crossref_primary_10_1038_srep37718
crossref_primary_10_1016_j_copsyc_2019_03_015
crossref_primary_10_1523_JNEUROSCI_1161_11_2011
crossref_primary_10_1016_j_concog_2017_05_003
crossref_primary_10_1016_j_neubiorev_2016_07_016
crossref_primary_10_1016_j_cub_2012_03_050
crossref_primary_10_3389_fnins_2019_00311
crossref_primary_10_1007_s11571_015_9342_4
crossref_primary_10_3758_s13414_015_1023_1
crossref_primary_10_1016_j_bandc_2017_12_001
crossref_primary_10_1126_science_aar7186
crossref_primary_10_1146_annurev_neuro_092019_100200
crossref_primary_10_1177_1550059420933142
crossref_primary_10_1016_j_bbr_2014_06_015
crossref_primary_10_3390_vision3020016
crossref_primary_10_3758_s13423_011_0056_2
crossref_primary_10_1002_hbm_22064
crossref_primary_10_1111_ejn_12701
crossref_primary_10_1093_cercor_bhs343
crossref_primary_10_1016_j_neubiorev_2012_06_004
crossref_primary_10_1016_j_nicl_2021_102892
crossref_primary_10_1016_j_neuroimage_2017_02_033
crossref_primary_10_1016_j_dibe_2023_100172
crossref_primary_10_1016_j_jneumeth_2014_03_007
crossref_primary_10_1162_jocn_a_01145
crossref_primary_10_1523_ENEURO_0030_21_2021
crossref_primary_10_7554_eLife_91135_3
crossref_primary_10_1093_cercor_bhr125
crossref_primary_10_1093_cercor_bhq279
crossref_primary_10_1523_JNEUROSCI_1149_11_2011
crossref_primary_10_1523_JNEUROSCI_5199_10_2011
crossref_primary_10_1523_JNEUROSCI_2969_10_2010
crossref_primary_10_1523_JNEUROSCI_1827_22_2023
crossref_primary_10_7554_eLife_49562
crossref_primary_10_1007_s10548_015_0433_7
crossref_primary_10_3389_fnbeh_2019_00220
crossref_primary_10_1016_j_neuroimage_2013_02_028
crossref_primary_10_1016_j_clinph_2012_02_061
crossref_primary_10_1162_jocn_a_01032
crossref_primary_10_1016_j_neuroimage_2012_07_024
crossref_primary_10_1155_2016_3616807
crossref_primary_10_1016_j_brs_2023_10_008
crossref_primary_10_1016_j_tics_2020_05_004
crossref_primary_10_3389_fnhum_2015_00637
crossref_primary_10_1093_texcom_tgaa006
crossref_primary_10_1007_s00221_021_06142_4
crossref_primary_10_1038_s41598_020_61359_7
crossref_primary_10_3390_brainsci10080530
crossref_primary_10_1186_s13229_016_0102_z
crossref_primary_10_1523_JNEUROSCI_3357_14_2015
crossref_primary_10_1016_j_concog_2010_01_012
crossref_primary_10_1152_jn_00125_2013
crossref_primary_10_1016_j_cub_2023_09_065
crossref_primary_10_1016_j_cub_2012_03_025
crossref_primary_10_1162_jocn_a_00270
crossref_primary_10_1371_journal_pbio_3000487
crossref_primary_10_3390_neurosci3020025
crossref_primary_10_1016_j_bbr_2019_111899
crossref_primary_10_1007_s11571_013_9250_4
crossref_primary_10_1523_JNEUROSCI_0514_21_2021
crossref_primary_10_3758_s13415_014_0281_z
crossref_primary_10_1111_ejn_13947
crossref_primary_10_3389_fnins_2022_827888
crossref_primary_10_1162_jocn_a_00164
crossref_primary_10_1016_j_neuropsychologia_2016_07_037
crossref_primary_10_1073_pnas_1317267111
crossref_primary_10_1016_j_nlm_2019_107099
crossref_primary_10_1016_j_plrev_2025_03_008
crossref_primary_10_1162_jocn_2008_21174
crossref_primary_10_3389_fnhum_2016_00170
crossref_primary_10_1142_S0129065717500319
crossref_primary_10_1155_2014_936096
crossref_primary_10_1371_journal_pone_0255032
crossref_primary_10_1016_j_neuroimage_2017_02_043
crossref_primary_10_1371_journal_pone_0038090
crossref_primary_10_1007_s11055_015_0185_6
crossref_primary_10_1016_j_brs_2019_10_022
crossref_primary_10_1016_j_neuroimage_2009_01_017
crossref_primary_10_1155_2020_5758038
crossref_primary_10_3389_fnbeh_2019_00013
crossref_primary_10_1016_j_neuroimage_2024_120650
crossref_primary_10_1111_pcn_12936
crossref_primary_10_3389_fnhum_2016_00277
crossref_primary_10_1162_jocn_a_00494
crossref_primary_10_1162_jocn_a_00374
crossref_primary_10_1016_j_cub_2013_12_041
crossref_primary_10_1016_j_neuroimage_2010_03_041
crossref_primary_10_1371_journal_pone_0283863
crossref_primary_10_1016_j_concog_2017_04_009
crossref_primary_10_3389_fpsyg_2014_01230
crossref_primary_10_1162_jocn_2010_21557
crossref_primary_10_1016_j_neuroscience_2021_02_013
crossref_primary_10_1016_j_cub_2013_12_037
crossref_primary_10_1016_j_neuron_2019_03_025
crossref_primary_10_1016_j_neuroimage_2010_02_004
crossref_primary_10_1111_psyp_13987
crossref_primary_10_1016_j_clinph_2024_03_003
crossref_primary_10_3390_brainsci15030286
crossref_primary_10_3389_fnsys_2021_598383
crossref_primary_10_1016_j_neuroimage_2010_03_030
crossref_primary_10_1523_JNEUROSCI_2133_15_2016
crossref_primary_10_1016_j_neubiorev_2020_01_037
crossref_primary_10_1002_aur_1374
crossref_primary_10_1016_j_neuroimage_2013_10_041
crossref_primary_10_1016_j_neuroimage_2017_02_068
crossref_primary_10_3390_vision5020030
crossref_primary_10_1016_j_expneurol_2022_114205
crossref_primary_10_1088_1741_2552_aaae73
crossref_primary_10_3389_fnins_2016_00426
crossref_primary_10_1016_j_neures_2014_02_010
crossref_primary_10_1007_s10548_013_0295_9
crossref_primary_10_1016_j_ijpsycho_2011_09_001
crossref_primary_10_1073_pnas_1011284108
crossref_primary_10_3389_fnhum_2014_00913
crossref_primary_10_1016_j_neuroimage_2012_09_003
crossref_primary_10_1002_hbm_24619
crossref_primary_10_1016_j_brainres_2016_01_043
crossref_primary_10_1016_j_neuropsychologia_2017_02_005
crossref_primary_10_1016_j_concog_2017_04_020
crossref_primary_10_1016_j_alcohol_2013_12_004
crossref_primary_10_1016_j_biopsycho_2022_108400
crossref_primary_10_1155_2017_7407241
crossref_primary_10_1016_j_brainres_2014_12_016
crossref_primary_10_1016_j_neurobiolaging_2016_02_018
crossref_primary_10_1007_s10633_012_9357_7
crossref_primary_10_1080_17588928_2019_1627303
crossref_primary_10_1016_j_neuropsychologia_2013_06_024
crossref_primary_10_1523_JNEUROSCI_5684_09_2010
crossref_primary_10_1016_j_neuropsychologia_2021_107914
crossref_primary_10_1080_01426397_2018_1548586
crossref_primary_10_3389_fnrgo_2021_754472
crossref_primary_10_1016_j_neuroimage_2023_120085
crossref_primary_10_1109_ACCESS_2018_2844303
crossref_primary_10_1088_1741_2552_ace551
crossref_primary_10_1038_s41598_024_56014_4
crossref_primary_10_1007_s10548_014_0397_z
crossref_primary_10_3389_fpsyg_2017_01147
crossref_primary_10_1155_2018_4638903
crossref_primary_10_1523_ENEURO_0327_24_2024
crossref_primary_10_3389_fncom_2014_00036
crossref_primary_10_1162_jocn_a_01219
crossref_primary_10_1016_j_neuroimage_2020_117051
crossref_primary_10_1111_psyp_12849
crossref_primary_10_1523_JNEUROSCI_0637_10_2010
crossref_primary_10_1016_j_neuropsychologia_2008_07_021
crossref_primary_10_1523_JNEUROSCI_1076_11_2011
crossref_primary_10_1016_j_neuropsychologia_2015_09_006
crossref_primary_10_1080_17588928_2022_2026312
crossref_primary_10_1016_j_cub_2014_03_007
crossref_primary_10_1016_j_bbr_2008_07_026
crossref_primary_10_1016_j_psyneuen_2022_105768
crossref_primary_10_1016_j_conb_2014_08_010
crossref_primary_10_1523_ENEURO_0268_19_2019
crossref_primary_10_1016_j_neuropsychologia_2015_06_003
crossref_primary_10_1093_cercor_bhac119
crossref_primary_10_1371_journal_pbio_1001064
crossref_primary_10_1016_j_neubiorev_2009_10_004
crossref_primary_10_3389_fnbeh_2014_00163
crossref_primary_10_1016_j_ijpsycho_2013_05_007
crossref_primary_10_1016_j_neuroimage_2008_02_053
crossref_primary_10_1016_j_neuroimage_2015_04_040
crossref_primary_10_1016_j_neulet_2014_01_010
crossref_primary_10_1093_cercor_bhaa185
crossref_primary_10_1111_ejn_15949
crossref_primary_10_1016_j_brainresrev_2011_04_002
crossref_primary_10_1523_JNEUROSCI_1166_20_2020
crossref_primary_10_1002_hbm_22452
crossref_primary_10_1523_JNEUROSCI_3187_13_2014
crossref_primary_10_1016_j_neuron_2015_07_032
crossref_primary_10_1016_j_brainres_2008_12_085
crossref_primary_10_1523_JNEUROSCI_1777_12_2012
crossref_primary_10_3758_CABN_10_3_329
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1016_j_biopsych_2020_01_004
crossref_primary_10_1093_cercor_bhad217
crossref_primary_10_1186_s11689_020_09351_0
crossref_primary_10_3389_fnhum_2019_00033
crossref_primary_10_3389_fnagi_2015_00193
crossref_primary_10_1111_ejn_15719
crossref_primary_10_1016_j_neuroimage_2014_04_069
crossref_primary_10_3389_fncom_2016_00032
crossref_primary_10_1111_ejn_15956
crossref_primary_10_1016_j_neuroimage_2015_11_024
crossref_primary_10_1523_JNEUROSCI_2123_16_2017
crossref_primary_10_1152_jn_00273_2019
crossref_primary_10_1523_JNEUROSCI_1432_16_2016
crossref_primary_10_1016_j_neuroimage_2009_10_033
crossref_primary_10_3389_fnsys_2021_734660
crossref_primary_10_1162_jocn_a_00551
crossref_primary_10_1016_j_neubiorev_2025_106041
crossref_primary_10_3389_fnhum_2021_699473
crossref_primary_10_1016_j_neuroimage_2010_12_068
crossref_primary_10_1038_s41598_017_05610_8
crossref_primary_10_1371_journal_pone_0093753
crossref_primary_10_1016_j_schres_2024_08_016
crossref_primary_10_3389_fnhum_2023_1168108
crossref_primary_10_1016_j_neulet_2008_04_067
crossref_primary_10_1016_j_brainres_2020_147203
crossref_primary_10_3389_fnsys_2021_767477
crossref_primary_10_1007_s11571_022_09862_7
crossref_primary_10_1523_JNEUROSCI_3755_12_2013
crossref_primary_10_1162_jocn_a_00569
crossref_primary_10_1038_srep28092
crossref_primary_10_1038_s41598_025_91881_5
crossref_primary_10_1038_s41598_017_15195_x
crossref_primary_10_1093_cercor_bhac426
crossref_primary_10_1007_s10548_009_0123_4
crossref_primary_10_3758_s13423_017_1257_0
crossref_primary_10_1016_j_brainres_2022_147834
crossref_primary_10_1523_JNEUROSCI_3963_08_2009
crossref_primary_10_1523_JNEUROSCI_5647_12_2013
crossref_primary_10_1016_j_plrev_2024_07_006
crossref_primary_10_5014_ajot_2019_029231
crossref_primary_10_1016_j_neuroimage_2013_02_070
crossref_primary_10_1016_j_apergo_2024_104346
crossref_primary_10_1162_jocn_a_00653
crossref_primary_10_1002_hbm_21322
crossref_primary_10_1016_j_neuron_2013_10_017
crossref_primary_10_1093_cercor_bhr329
crossref_primary_10_1162_jocn_a_00658
crossref_primary_10_1088_1741_2560_12_2_026012
crossref_primary_10_1371_journal_pone_0056589
crossref_primary_10_1162_neco_a_01109
crossref_primary_10_1093_cercor_bhr314
crossref_primary_10_1162_jocn_a_01513
crossref_primary_10_1093_cercor_bhn197
crossref_primary_10_1016_j_neulet_2009_05_068
crossref_primary_10_1007_s00115_015_4317_6
crossref_primary_10_1038_s41598_023_40408_x
crossref_primary_10_3390_app10103616
crossref_primary_10_1016_j_clinph_2022_02_001
crossref_primary_10_3724_SP_J_1042_2020_00945
crossref_primary_10_1093_cercor_bhs409
crossref_primary_10_1523_JNEUROSCI_4201_11_2012
crossref_primary_10_1523_JNEUROSCI_2359_19_2020
crossref_primary_10_1016_j_neuroscience_2011_11_048
crossref_primary_10_1523_JNEUROSCI_0742_19_2019
crossref_primary_10_1134_S0362119710020027
crossref_primary_10_1016_j_neuroimage_2020_116927
crossref_primary_10_1371_journal_pone_0013766
crossref_primary_10_1111_j_1460_9568_2008_06290_x
crossref_primary_10_1016_j_neuron_2013_09_038
crossref_primary_10_1002_hbm_20659
crossref_primary_10_1111_ejn_13570
crossref_primary_10_1162_jocn_a_01843
crossref_primary_10_3389_fnsys_2024_1489949
crossref_primary_10_1371_journal_pone_0048504
crossref_primary_10_1016_j_humov_2021_102819
crossref_primary_10_1134_S036211971405003X
crossref_primary_10_1016_j_bbr_2019_112142
crossref_primary_10_1162_jocn_a_00637
crossref_primary_10_1016_j_neuropsychologia_2012_10_007
crossref_primary_10_1016_j_nicl_2019_102145
crossref_primary_10_1016_j_heares_2013_07_009
crossref_primary_10_1073_pnas_2405395121
crossref_primary_10_1093_cercor_bhv146
crossref_primary_10_1016_j_ijpsycho_2018_02_014
crossref_primary_10_1016_j_bandc_2022_105861
crossref_primary_10_1093_scan_nsp010
crossref_primary_10_1016_j_cortex_2018_08_012
crossref_primary_10_1016_j_ijpsycho_2016_06_017
crossref_primary_10_1371_journal_pone_0220732
crossref_primary_10_1016_j_brainresbull_2010_01_013
crossref_primary_10_1016_j_brainresbull_2011_03_025
crossref_primary_10_1016_j_clinph_2022_03_010
crossref_primary_10_1016_j_neuroimage_2022_119789
crossref_primary_10_1146_annurev_psych_093008_100427
crossref_primary_10_1016_j_ijpsycho_2018_02_002
crossref_primary_10_1111_jcpp_13514
crossref_primary_10_1371_journal_pone_0107715
crossref_primary_10_1016_j_cortex_2015_03_020
crossref_primary_10_1016_j_neuropsychologia_2019_107121
crossref_primary_10_1038_srep20805
crossref_primary_10_1111_ejn_16511
crossref_primary_10_1016_j_brs_2018_09_009
crossref_primary_10_1016_j_nicl_2018_08_013
crossref_primary_10_1016_j_bbr_2018_10_024
crossref_primary_10_1016_j_neuroimage_2015_10_037
crossref_primary_10_1016_j_neuroimage_2021_118498
crossref_primary_10_1016_j_neuroimage_2011_11_071
crossref_primary_10_1038_s41598_021_96849_9
crossref_primary_10_1002_hbm_22857
crossref_primary_10_1016_j_neuroimage_2019_116374
crossref_primary_10_1088_1741_2552_aae5d8
crossref_primary_10_3389_fnint_2020_00012
crossref_primary_10_1038_s41467_022_31407_z
crossref_primary_10_1523_JNEUROSCI_1944_23_2024
crossref_primary_10_1016_j_nbd_2024_106557
crossref_primary_10_1073_pnas_1004801107
crossref_primary_10_1152_jn_00654_2013
crossref_primary_10_1016_j_cortex_2019_09_008
crossref_primary_10_1016_j_tics_2009_01_004
crossref_primary_10_52547_shefa_9_3_45
crossref_primary_10_1016_j_crbeha_2023_100139
crossref_primary_10_1523_JNEUROSCI_2474_17_2017
crossref_primary_10_1093_cercor_bhm229
crossref_primary_10_1016_j_neuroimage_2019_116313
crossref_primary_10_1007_s00221_009_1936_9
crossref_primary_10_1016_j_brainres_2010_12_048
crossref_primary_10_1111_j_1469_8986_2012_01453_x
crossref_primary_10_1007_s10548_021_00826_4
crossref_primary_10_1073_pnas_1812499116
crossref_primary_10_1016_j_jad_2014_10_001
crossref_primary_10_1016_j_neuroimage_2016_03_025
crossref_primary_10_1111_ejn_14226
crossref_primary_10_3389_fspor_2022_965195
crossref_primary_10_1088_1741_2552_ab890f
crossref_primary_10_7554_eLife_91135
crossref_primary_10_1016_j_neuroimage_2011_11_010
crossref_primary_10_1038_s42003_024_06834_x
crossref_primary_10_1108_IJCS_09_2018_0022
crossref_primary_10_1016_j_neuroimage_2015_03_028
crossref_primary_10_1134_S0362119711040207
crossref_primary_10_1016_j_ijpsycho_2011_03_012
crossref_primary_10_1152_jn_00969_2016
crossref_primary_10_1523_JNEUROSCI_1114_21_2021
crossref_primary_10_3758_s13423_022_02238_2
crossref_primary_10_1093_cercor_bhw392
crossref_primary_10_1016_j_tics_2012_10_007
crossref_primary_10_1007_s10548_013_0327_5
crossref_primary_10_3389_fnins_2016_00352
crossref_primary_10_1111_psyp_14498
crossref_primary_10_1016_j_biopsycho_2017_12_004
crossref_primary_10_1016_j_ijpsycho_2015_11_004
crossref_primary_10_1016_j_neuropsychologia_2008_10_012
crossref_primary_10_1586_14737175_2015_992782
crossref_primary_10_3389_fnhum_2017_00034
crossref_primary_10_1016_j_neuropsychologia_2017_05_019
crossref_primary_10_1152_jn_00856_2016
crossref_primary_10_1073_pnas_1620350114
crossref_primary_10_1523_ENEURO_0028_21_2021
crossref_primary_10_1016_j_clinph_2020_06_029
crossref_primary_10_1016_j_concog_2020_103034
crossref_primary_10_1038_s41598_020_58787_w
crossref_primary_10_1111_psyp_14388
crossref_primary_10_1002_hbm_22816
crossref_primary_10_1109_OJCSYS_2022_3193127
crossref_primary_10_1016_j_neuron_2020_09_039
crossref_primary_10_1371_journal_pone_0059595
crossref_primary_10_3389_fnsys_2014_00119
crossref_primary_10_1097_WNR_0b013e3282f454c4
crossref_primary_10_1016_j_clinph_2010_10_044
crossref_primary_10_1073_pnas_2211147119
crossref_primary_10_1038_srep14434
crossref_primary_10_1111_j_1460_9568_2010_07174_x
crossref_primary_10_1038_s41467_019_09664_2
crossref_primary_10_1016_j_bspc_2018_02_017
crossref_primary_10_1016_j_brs_2017_09_016
crossref_primary_10_1016_j_neuroimage_2016_11_062
crossref_primary_10_1016_j_cortex_2013_04_001
crossref_primary_10_1109_MIM_2021_9448258
crossref_primary_10_1109_TNSRE_2012_2205707
crossref_primary_10_1152_jn_00778_2010
crossref_primary_10_1177_1550059414527284
crossref_primary_10_1073_pnas_1817317116
crossref_primary_10_1371_journal_pbio_3000724
crossref_primary_10_1016_j_cortex_2014_06_017
crossref_primary_10_1093_cercor_bhv312
crossref_primary_10_3390_vision2030027
crossref_primary_10_1016_j_bandc_2015_09_001
crossref_primary_10_15275_rusomj_2022_0402
crossref_primary_10_1371_journal_pone_0082272
crossref_primary_10_1162_jocn_a_00915
crossref_primary_10_1523_ENEURO_0012_22_2022
crossref_primary_10_1038_s41598_022_25720_2
crossref_primary_10_1016_j_neuroimage_2010_02_027
crossref_primary_10_1038_srep27754
crossref_primary_10_1007_s10668_021_01308_0
crossref_primary_10_1016_j_concog_2009_02_011
crossref_primary_10_1016_j_neuroimage_2018_05_003
crossref_primary_10_3389_fnhum_2020_00139
crossref_primary_10_1111_ejn_15006
crossref_primary_10_1016_j_neubiorev_2009_09_001
crossref_primary_10_1111_ejn_15483
crossref_primary_10_1111_psyp_13480
crossref_primary_10_1152_jn_00781_2012
crossref_primary_10_2478_v10053_008_0089_x
crossref_primary_10_1016_j_neuroimage_2013_08_054
crossref_primary_10_1162_jocn_a_00803
crossref_primary_10_1016_j_neuroimage_2015_01_035
crossref_primary_10_1111_pcn_13300
crossref_primary_10_1152_jn_00535_2009
crossref_primary_10_1016_j_visres_2014_08_003
crossref_primary_10_1016_j_clinph_2011_05_001
crossref_primary_10_1016_j_tins_2021_05_004
crossref_primary_10_1093_cercor_bhv212
crossref_primary_10_1111_ejn_15138
crossref_primary_10_1111_ejn_15259
crossref_primary_10_1111_psyp_14467
crossref_primary_10_1093_texcom_tgac012
crossref_primary_10_1111_ejn_14285
crossref_primary_10_1177_15500594241252483
crossref_primary_10_1523_JNEUROSCI_4385_13_2014
crossref_primary_10_1177_1073858420958629
crossref_primary_10_1523_JNEUROSCI_4795_10_2011
crossref_primary_10_1016_j_brainres_2011_06_003
crossref_primary_10_1016_j_neuroimage_2013_04_121
crossref_primary_10_1016_j_neuroimage_2013_04_120
crossref_primary_10_1163_22134808_00002572
crossref_primary_10_3758_s13414_022_02617_w
crossref_primary_10_1016_j_neuroimage_2015_01_023
crossref_primary_10_1080_23273798_2019_1693050
crossref_primary_10_1016_j_neuroimage_2019_116304
crossref_primary_10_1016_j_neuroimage_2023_120420
crossref_primary_10_3389_fnhum_2016_00503
crossref_primary_10_1016_j_neuroimage_2019_116429
crossref_primary_10_1111_psyp_13386
crossref_primary_10_1111_ejn_15388
crossref_primary_10_1162_jocn_2010_21478
crossref_primary_10_1016_j_neuroimage_2008_07_005
crossref_primary_10_1016_j_neuroimage_2014_07_065
crossref_primary_10_1038_s41598_024_69433_0
crossref_primary_10_1111_j_1460_9568_2009_06980_x
crossref_primary_10_1371_journal_pone_0217729
crossref_primary_10_1016_j_neuroimage_2013_06_080
crossref_primary_10_1007_s11910_023_01276_0
crossref_primary_10_1016_j_neuroimage_2012_06_075
crossref_primary_10_2139_ssrn_2542558
crossref_primary_10_1002_hbm_24026
crossref_primary_10_1111_psyp_14525
crossref_primary_10_1016_j_neuroimage_2018_11_029
crossref_primary_10_3389_fnins_2022_1013691
crossref_primary_10_1523_JNEUROSCI_5198_11_2012
crossref_primary_10_1371_journal_pone_0060035
crossref_primary_10_1016_j_neuroimage_2013_11_014
crossref_primary_10_1016_j_brainres_2013_09_031
crossref_primary_10_1177_0333102417736899
crossref_primary_10_1016_j_neuroimage_2010_02_053
crossref_primary_10_1002_hbm_23048
crossref_primary_10_1016_j_mri_2009_04_001
crossref_primary_10_1371_journal_pone_0114817
crossref_primary_10_1038_srep25132
crossref_primary_10_1523_JNEUROSCI_2389_17_2017
crossref_primary_10_1080_10255842_2025_2476185
crossref_primary_10_1523_JNEUROSCI_1134_20_2020
crossref_primary_10_3390_app112311544
crossref_primary_10_1016_j_neuroimage_2012_03_010
crossref_primary_10_3389_fnins_2017_00296
crossref_primary_10_1093_cercor_bhu247
crossref_primary_10_1186_s40708_019_0094_5
crossref_primary_10_1016_j_ijpsycho_2011_11_006
crossref_primary_10_1016_j_cortex_2017_03_018
crossref_primary_10_1152_jn_00387_2013
crossref_primary_10_1016_j_brs_2012_03_003
crossref_primary_10_1093_cercor_bhad083
crossref_primary_10_1152_jn_00306_2018
crossref_primary_10_1038_s41562_018_0465_6
crossref_primary_10_1016_j_cub_2011_05_049
crossref_primary_10_1016_j_neures_2019_12_005
crossref_primary_10_1093_cercor_bhv015
crossref_primary_10_1016_j_neuroimage_2020_116824
crossref_primary_10_1016_j_neuropsychologia_2016_12_030
crossref_primary_10_1007_s10548_020_00776_3
crossref_primary_10_3389_fnhum_2023_1051844
crossref_primary_10_3389_fnins_2018_00279
crossref_primary_10_1038_s41598_017_14742_w
crossref_primary_10_1016_j_neurobiolaging_2019_03_012
crossref_primary_10_1162_jocn_a_01190
crossref_primary_10_3389_fnhum_2014_00446
crossref_primary_10_1016_j_concog_2012_07_007
crossref_primary_10_1038_s41598_019_45978_3
crossref_primary_10_1016_j_neurobiolaging_2019_03_017
crossref_primary_10_1134_S0362119724700798
crossref_primary_10_1016_j_neuroimage_2013_05_001
crossref_primary_10_1016_j_bbr_2022_113763
crossref_primary_10_1016_j_neuropsychologia_2020_107464
crossref_primary_10_1016_j_nicl_2016_01_023
crossref_primary_10_3389_fncom_2023_1145267
crossref_primary_10_1016_j_brainres_2015_10_054
crossref_primary_10_1016_j_ijpsycho_2012_07_002
crossref_primary_10_1016_j_neuroimage_2017_04_051
Cites_doi 10.1523/JNEUROSCI.20-06-j0002.2000
10.1016/j.tics.2004.10.008
10.1038/385157a0
10.1111/j.1460-9568.2005.04482.x
10.1016/j.tics.2005.08.011
10.1111/j.1469-8986.1993.tb02075.x
10.1016/S0165-0173(03)00178-4
10.1016/S0006-3223(00)00907-0
10.1023/A:1008973215925
10.1016/S0304-3940(98)00122-0
10.1016/S0167-8760(02)00107-1
10.1007/s10484-005-2169-8
10.1093/cercor/bhj104
10.1186/1471-2202-8-27
10.1523/JNEUROSCI.4623-06.2007
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1038/364059a0
10.1126/science.273.5283.1868
10.1016/S0079-6123(06)59010-7
10.1523/JNEUROSCI.3244-05.2005
10.1093/schbul/sbj020
10.1038/35094565
10.1111/j.1467-9280.2005.01645.x
10.1111/j.1460-9568.2007.05278.x
10.1038/17120
10.1016/j.tins.2007.02.001
10.1002/hbm.20150
10.1016/j.cogbrainres.2004.03.009
10.1152/jn.01234.2005
10.1146/annurev.ps.37.020186.001451
10.1097/00001756-200304150-00005
10.1016/S0149-7634(01)00027-6
10.1038/35067550
10.1016/j.brainresrev.2006.06.003
10.1126/science.3992243
10.1016/j.neulet.2004.10.092
10.1523/JNEUROSCI.0875-06.2006
10.1097/00004691-200203000-00002
10.1093/cercor/bhh139
10.1126/science.1055465
10.1073/pnas.0404944101
10.1073/pnas.97.26.14748
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Oct 1, 2007
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Oct 1, 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2007.07.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1473
ExternalDocumentID 3244516931
17706433
10_1016_j_neuroimage_2007_07_011
S1053811907006039
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c438t-cb6d9e4f771f46093f3f225d5ec135b508d08d3b31d19105bd499ec66813049b3
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Mon Jul 21 11:13:33 EDT 2025
Wed Aug 13 08:04:08 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 02:14:17 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Tue Aug 26 17:34:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Oscillations
Alpha
Perception
Phase coupling
Prestimulus
EEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-cb6d9e4f771f46093f3f225d5ec135b508d08d3b31d19105bd499ec66813049b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 17706433
PQID 1506725466
PQPubID 2031077
PageCount 9
ParticipantIDs proquest_miscellaneous_68279109
proquest_journals_1506725466
pubmed_primary_17706433
crossref_primary_10_1016_j_neuroimage_2007_07_011
crossref_citationtrail_10_1016_j_neuroimage_2007_07_011
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_07_011
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Fries (bib10) 2005; 9
Rihs, Michel, Thut (bib30) 2007; 25
Gross, Schmitz, Schnitzler, Kessler, Shapiro, Hommel, Schnitzler (bib13) 2004; 101
Lachaux, Rodriguez, Martinerie, Varela (bib24) 1999; 8
Cooper, Croft, Dominey, Burgess, Gruzelier (bib4) 2003; 47
Tallon-Baudry (bib37) 2004; 8
Hanslmayr, Klimesch, Sauseng, Gruber, Doppelmayr, Freunberger, Pecherstorfer (bib15) 2005; 375
Siegel, Körding, König (bib35) 2000; 8
Jin, Plotkin, Kemp, Huerta, Alva, Thai, Carreon, Bunney (bib19) 2006; 32
Varela, Lachaux, Rodriguez, Martinerie (bib41) 2001; 2
Arieli, Sterkin, Grinvald, Aertsen (bib1) 1996; 273
Klimesch, Doppelmayr, Pachinger, Russegger (bib21) 1998; 244
Sauseng, Klimesch, Stadler, Schabus, Doppelmayr, Hanslmayr, Gruber, Birbaumer (bib33) 2005; 22
Melloni, Molina, Pena, Torres, Singer, Rodriguez (bib26) 2007; 27
Sauseng, Klimesch, Doppelmayr, Pecherstorfer, Freunberger, Hanslmayr (bib34) 2005; 26
Thut, Nietzel, Brandt, Pascual-Leone (bib38) 2006; 26
Sponheim, Clementz, Iacono, Beiser (bib36) 2000; 48
Fisher (bib9) 1993
Hanslmayr, Sauseng, Doppelmayr, Schabus, Klimesch (bib16) 2005; 30
Linkenkaer-Hansen, Nikulin, Palva, Illmoniemi, Palva (bib25) 2004; 25
Ray, Cole (bib29) 1985; 228
Blair, Karniski (bib3) 1993; 30
Roelfsema, Engel, König, Singer (bib32) 1997; 385
Mirsky, Duncan (bib27) 1986; 37
Debener, Herrmann, Gembris, Engel (bib5) 2003; 14
Fründ, Busch, Schadow, Korner, Herrmann (bib12) 2007; 8
Ergenoglu, Demiralp, Bayaraktaroglu, Ergen, Beydagi, Uresin (bib7) 2004; 20
von Stein, Chiang, König (bib42) 2000; 97
Klimesch, Doppelmayr, Hanslmayr (bib22) 2006; 159
Worden, Foxe, Wang, Simpson (bib43) 2000; 20
Engel, Fries, Singer (bib6) 2001; 2
Fries, Reynolds, Rorie, Desimone (bib11) 2001; 291
Gruber, Klimesch, Sauseng, Doppelmayr (bib14) 2005; 15
Kelly, Lalor, Reilly, Foxe (bib20) 2006; 95
Palva, Palva (bib28) 2007; 30
Todd, Fougnie, Marois (bib40) 2005; 16
Fell, Fernández, Klaver, Elger, Fries (bib8) 2003; 42
Herrmann, Knight (bib17) 2001; 25
Babiloni, Vecchio, Cappa, Pasqualetti, Rossi, Minussi, Rossini (bib2) 2006; 16
Ille, Berg, Scherg (bib18) 2002; 19
Rodriguez, George, Lachaux, Martinerie, Renault, Varela (bib31) 1999; 397
Tiitinen, Sinkkonen, Reinikainen, Alho, Lavikainen, Naatanen (bib39) 1993; 364
Klimesch, Sauseng, Hanslmayr (bib23) 2007; 53
Ille (10.1016/j.neuroimage.2007.07.011_bib18) 2002; 19
Kelly (10.1016/j.neuroimage.2007.07.011_bib20) 2006; 95
Gruber (10.1016/j.neuroimage.2007.07.011_bib14) 2005; 15
Herrmann (10.1016/j.neuroimage.2007.07.011_bib17) 2001; 25
Varela (10.1016/j.neuroimage.2007.07.011_bib41) 2001; 2
Sauseng (10.1016/j.neuroimage.2007.07.011_bib33) 2005; 22
Thut (10.1016/j.neuroimage.2007.07.011_bib38) 2006; 26
Fell (10.1016/j.neuroimage.2007.07.011_bib8) 2003; 42
Worden (10.1016/j.neuroimage.2007.07.011_bib43) 2000; 20
Gross (10.1016/j.neuroimage.2007.07.011_bib13) 2004; 101
Melloni (10.1016/j.neuroimage.2007.07.011_bib26) 2007; 27
Sponheim (10.1016/j.neuroimage.2007.07.011_bib36) 2000; 48
Fründ (10.1016/j.neuroimage.2007.07.011_bib12) 2007; 8
Mirsky (10.1016/j.neuroimage.2007.07.011_bib27) 1986; 37
Rihs (10.1016/j.neuroimage.2007.07.011_bib30) 2007; 25
Ray (10.1016/j.neuroimage.2007.07.011_bib29) 1985; 228
Jin (10.1016/j.neuroimage.2007.07.011_bib19) 2006; 32
Siegel (10.1016/j.neuroimage.2007.07.011_bib35) 2000; 8
Fries (10.1016/j.neuroimage.2007.07.011_bib10) 2005; 9
von Stein (10.1016/j.neuroimage.2007.07.011_bib42) 2000; 97
Fries (10.1016/j.neuroimage.2007.07.011_bib11) 2001; 291
Debener (10.1016/j.neuroimage.2007.07.011_bib5) 2003; 14
Blair (10.1016/j.neuroimage.2007.07.011_bib3) 1993; 30
Klimesch (10.1016/j.neuroimage.2007.07.011_bib23) 2007; 53
Tiitinen (10.1016/j.neuroimage.2007.07.011_bib39) 1993; 364
Hanslmayr (10.1016/j.neuroimage.2007.07.011_bib16) 2005; 30
Rodriguez (10.1016/j.neuroimage.2007.07.011_bib31) 1999; 397
Arieli (10.1016/j.neuroimage.2007.07.011_bib1) 1996; 273
Palva (10.1016/j.neuroimage.2007.07.011_bib28) 2007; 30
Sauseng (10.1016/j.neuroimage.2007.07.011_bib34) 2005; 26
Babiloni (10.1016/j.neuroimage.2007.07.011_bib2) 2006; 16
Lachaux (10.1016/j.neuroimage.2007.07.011_bib24) 1999; 8
Klimesch (10.1016/j.neuroimage.2007.07.011_bib21) 1998; 244
Linkenkaer-Hansen (10.1016/j.neuroimage.2007.07.011_bib25) 2004; 25
Tallon-Baudry (10.1016/j.neuroimage.2007.07.011_bib37) 2004; 8
Todd (10.1016/j.neuroimage.2007.07.011_bib40) 2005; 16
Engel (10.1016/j.neuroimage.2007.07.011_bib6) 2001; 2
Hanslmayr (10.1016/j.neuroimage.2007.07.011_bib15) 2005; 375
Ergenoglu (10.1016/j.neuroimage.2007.07.011_bib7) 2004; 20
Roelfsema (10.1016/j.neuroimage.2007.07.011_bib32) 1997; 385
Cooper (10.1016/j.neuroimage.2007.07.011_bib4) 2003; 47
Fisher (10.1016/j.neuroimage.2007.07.011_bib9) 1993
Klimesch (10.1016/j.neuroimage.2007.07.011_bib22) 2006; 159
References_xml – volume: 97
  start-page: 14748
  year: 2000
  end-page: 14753
  ident: bib42
  article-title: Top-down processing mediated by inter-areal synchronization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 159
  start-page: 151
  year: 2006
  end-page: 165
  ident: bib22
  article-title: Upper alpha ERD and absolute power: their meaning for memory performance
  publication-title: Prog. Brain Res.
– volume: 25
  start-page: 603
  year: 2007
  end-page: 610
  ident: bib30
  article-title: Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization
  publication-title: Eur. J. Neurosci.
– volume: 30
  start-page: 518
  year: 1993
  end-page: 524
  ident: bib3
  article-title: An alternative method for significance testing of waveform difference potentials
  publication-title: Psychophysiology
– volume: 19
  start-page: 113
  year: 2002
  end-page: 124
  ident: bib18
  article-title: Artefact correction of the ongoing EEG using spatial filters based on artefact and brain signal topographies
  publication-title: J. Clin. Neurophysiol.
– volume: 2
  start-page: 229
  year: 2001
  end-page: 239
  ident: bib41
  article-title: The brainweb: phase Synchronization and large-scale integration
  publication-title: Nat. Rev., Neurosci.
– volume: 291
  start-page: 1560
  year: 2001
  end-page: 1563
  ident: bib11
  article-title: Modulation of oscillatory neuronal synchronization by selective visual attention
  publication-title: Science
– volume: 101
  start-page: 13050
  year: 2004
  end-page: 13055
  ident: bib13
  article-title: Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 37
  start-page: 291
  year: 1986
  end-page: 319
  ident: bib27
  article-title: Etiology and expression of schizophrenia: neurobiological and psychosocial factors
  publication-title: Ann. Rev. Psychol.
– volume: 15
  start-page: 371
  year: 2005
  end-page: 377
  ident: bib14
  article-title: Alpha phase synchronization predicts P1 and N1 latency and amplitude size
  publication-title: Cereb. Cortex
– volume: 16
  start-page: 1690
  year: 2006
  end-page: 1700
  ident: bib2
  article-title: Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study
  publication-title: Cereb. Cortex
– volume: 273
  start-page: 1868
  year: 1996
  end-page: 1871
  ident: bib1
  article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses
  publication-title: Science
– volume: 14
  start-page: 683
  year: 2003
  end-page: 686
  ident: bib5
  article-title: Top-down attentional processing enhances auditory evoked gamma band activity
  publication-title: NeuroReport
– volume: 22
  start-page: 1926
  year: 2005
  end-page: 2917
  ident: bib33
  article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity
  publication-title: Eur. J. Neurosci.
– volume: 25
  start-page: 465
  year: 2001
  end-page: 476
  ident: bib17
  article-title: Mechanisms of human attention: event-related potentials and oscillations
  publication-title: Neurosci. Biobehav. Rev.
– volume: 25
  start-page: 10131
  year: 2004
  end-page: 10137
  ident: bib25
  article-title: Prestimulus oscillations enhance psychophysical performance in humans
  publication-title: J. Neurosci.
– volume: 8
  start-page: 523
  year: 2004
  end-page: 525
  ident: bib37
  article-title: Attention and awareness in synchrony
  publication-title: Trends Cogn. Sci.
– volume: 26
  start-page: 148
  year: 2005
  end-page: 155
  ident: bib34
  article-title: EEG alpha synchronization and functional coupling during top-down processing in a working memory task
  publication-title: Hum. Brain Mapp.
– volume: 397
  start-page: 430
  year: 1999
  end-page: 433
  ident: bib31
  article-title: Perception's shadow: long-distance synchronization of human brain activity
  publication-title: Nature
– volume: 20
  start-page: 376
  year: 2004
  end-page: 383
  ident: bib7
  article-title: Alpha rhythm of the EEG modulates visual detection performance in humans
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 53
  start-page: 63
  year: 2007
  end-page: 88
  ident: bib23
  article-title: EEG alpha oscillations: the inhibition-timing hypothesis
  publication-title: Brain Res. Brain Res. Rev.
– volume: 27
  start-page: 2858
  year: 2007
  end-page: 2865
  ident: bib26
  article-title: Synchronization of neural activity across cortical areas correlates with conscious perception
  publication-title: J. Neurosci.
– volume: 26
  start-page: 9494
  year: 2006
  end-page: 9502
  ident: bib38
  article-title: Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection
  publication-title: J. Neurosci.
– volume: 16
  start-page: 965
  year: 2005
  end-page: 972
  ident: bib40
  article-title: Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness
  publication-title: Psychol. Sci.
– volume: 20
  start-page: 1
  year: 2000
  end-page: 6
  ident: bib43
  article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex
  publication-title: J. Neurosci.
– volume: 32
  start-page: 556
  year: 2006
  end-page: 561
  ident: bib19
  article-title: Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (alpha TMS) on the negative symptoms of schizophrenia
  publication-title: Schizophr. Bull.
– volume: 95
  start-page: 3844
  year: 2006
  end-page: 3851
  ident: bib20
  article-title: Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention
  publication-title: J. Neurophysiol.
– volume: 244
  start-page: 73
  year: 1998
  end-page: 76
  ident: bib21
  article-title: Induced alpha band power changes in the human EEG and attention
  publication-title: Neurosci. Lett.
– volume: 42
  start-page: 265
  year: 2003
  end-page: 272
  ident: bib8
  article-title: Is synchronized neuronal gamma activity relevant for selective attention?
  publication-title: Brain Res. Brain Res. Rev.
– volume: 8
  start-page: 27
  year: 2007
  ident: bib12
  article-title: From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task
  publication-title: BMC Neurosci.
– volume: 48
  start-page: 1088
  year: 2000
  end-page: 1097
  ident: bib36
  article-title: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia
  publication-title: Biol. Psychiatry
– year: 1993
  ident: bib9
  article-title: Statistical Analysis of Circular Data
– volume: 9
  start-page: 474
  year: 2005
  end-page: 480
  ident: bib10
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
– volume: 385
  start-page: 157
  year: 1997
  end-page: 161
  ident: bib32
  article-title: Visuomotor integration is associated with zero-time lag synchronization among cortical areas
  publication-title: Nature
– volume: 30
  start-page: 150
  year: 2007
  end-page: 158
  ident: bib28
  article-title: New vistas for alpha-frequency band oscillations
  publication-title: Trends Neurosci.
– volume: 47
  start-page: 65
  year: 2003
  end-page: 74
  ident: bib4
  article-title: Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypothesis
  publication-title: Int. J. Psychophysiol.
– volume: 2
  start-page: 704
  year: 2001
  end-page: 716
  ident: bib6
  article-title: Dynamic predictions: oscillations and synchrony in top-down processing
  publication-title: Nat. Rev., Neurosci.
– volume: 375
  start-page: 64
  year: 2005
  end-page: 68
  ident: bib15
  article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking
  publication-title: Neurosci. Lett.
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  ident: bib24
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
– volume: 228
  start-page: 750
  year: 1985
  end-page: 752
  ident: bib29
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
– volume: 8
  start-page: 161
  year: 2000
  end-page: 173
  ident: bib35
  article-title: Integrating top-down and bottom-up sensory processing by somato-dendritic interactions
  publication-title: J. Comp. Neurosci.
– volume: 364
  start-page: 59
  year: 1993
  end-page: 60
  ident: bib39
  article-title: Selective attention enhances the auditory 40-Hz transient response in humans
  publication-title: Nature
– volume: 30
  start-page: 1
  year: 2005
  end-page: 10
  ident: bib16
  article-title: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects
  publication-title: Appl. Psychophysiol. Biofeedback
– volume: 20
  start-page: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2007.07.011_bib43
  article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-06-j0002.2000
– volume: 8
  start-page: 523
  year: 2004
  ident: 10.1016/j.neuroimage.2007.07.011_bib37
  article-title: Attention and awareness in synchrony
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.10.008
– volume: 385
  start-page: 157
  year: 1997
  ident: 10.1016/j.neuroimage.2007.07.011_bib32
  article-title: Visuomotor integration is associated with zero-time lag synchronization among cortical areas
  publication-title: Nature
  doi: 10.1038/385157a0
– volume: 22
  start-page: 1926
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib33
  article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04482.x
– volume: 9
  start-page: 474
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib10
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.08.011
– volume: 30
  start-page: 518
  year: 1993
  ident: 10.1016/j.neuroimage.2007.07.011_bib3
  article-title: An alternative method for significance testing of waveform difference potentials
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1993.tb02075.x
– volume: 42
  start-page: 265
  year: 2003
  ident: 10.1016/j.neuroimage.2007.07.011_bib8
  article-title: Is synchronized neuronal gamma activity relevant for selective attention?
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(03)00178-4
– volume: 48
  start-page: 1088
  year: 2000
  ident: 10.1016/j.neuroimage.2007.07.011_bib36
  article-title: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(00)00907-0
– volume: 8
  start-page: 161
  year: 2000
  ident: 10.1016/j.neuroimage.2007.07.011_bib35
  article-title: Integrating top-down and bottom-up sensory processing by somato-dendritic interactions
  publication-title: J. Comp. Neurosci.
  doi: 10.1023/A:1008973215925
– volume: 244
  start-page: 73
  year: 1998
  ident: 10.1016/j.neuroimage.2007.07.011_bib21
  article-title: Induced alpha band power changes in the human EEG and attention
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(98)00122-0
– year: 1993
  ident: 10.1016/j.neuroimage.2007.07.011_bib9
– volume: 47
  start-page: 65
  year: 2003
  ident: 10.1016/j.neuroimage.2007.07.011_bib4
  article-title: Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypothesis
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(02)00107-1
– volume: 30
  start-page: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib16
  article-title: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects
  publication-title: Appl. Psychophysiol. Biofeedback
  doi: 10.1007/s10484-005-2169-8
– volume: 16
  start-page: 1690
  year: 2006
  ident: 10.1016/j.neuroimage.2007.07.011_bib2
  article-title: Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj104
– volume: 8
  start-page: 27
  year: 2007
  ident: 10.1016/j.neuroimage.2007.07.011_bib12
  article-title: From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-8-27
– volume: 27
  start-page: 2858
  year: 2007
  ident: 10.1016/j.neuroimage.2007.07.011_bib26
  article-title: Synchronization of neural activity across cortical areas correlates with conscious perception
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4623-06.2007
– volume: 8
  start-page: 194
  year: 1999
  ident: 10.1016/j.neuroimage.2007.07.011_bib24
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 364
  start-page: 59
  year: 1993
  ident: 10.1016/j.neuroimage.2007.07.011_bib39
  article-title: Selective attention enhances the auditory 40-Hz transient response in humans
  publication-title: Nature
  doi: 10.1038/364059a0
– volume: 273
  start-page: 1868
  year: 1996
  ident: 10.1016/j.neuroimage.2007.07.011_bib1
  article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses
  publication-title: Science
  doi: 10.1126/science.273.5283.1868
– volume: 159
  start-page: 151
  year: 2006
  ident: 10.1016/j.neuroimage.2007.07.011_bib22
  article-title: Upper alpha ERD and absolute power: their meaning for memory performance
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)59010-7
– volume: 25
  start-page: 10131
  year: 2004
  ident: 10.1016/j.neuroimage.2007.07.011_bib25
  article-title: Prestimulus oscillations enhance psychophysical performance in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3244-05.2005
– volume: 32
  start-page: 556
  year: 2006
  ident: 10.1016/j.neuroimage.2007.07.011_bib19
  article-title: Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (alpha TMS) on the negative symptoms of schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbj020
– volume: 2
  start-page: 704
  year: 2001
  ident: 10.1016/j.neuroimage.2007.07.011_bib6
  article-title: Dynamic predictions: oscillations and synchrony in top-down processing
  publication-title: Nat. Rev., Neurosci.
  doi: 10.1038/35094565
– volume: 16
  start-page: 965
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib40
  article-title: Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness
  publication-title: Psychol. Sci.
  doi: 10.1111/j.1467-9280.2005.01645.x
– volume: 25
  start-page: 603
  year: 2007
  ident: 10.1016/j.neuroimage.2007.07.011_bib30
  article-title: Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05278.x
– volume: 397
  start-page: 430
  year: 1999
  ident: 10.1016/j.neuroimage.2007.07.011_bib31
  article-title: Perception's shadow: long-distance synchronization of human brain activity
  publication-title: Nature
  doi: 10.1038/17120
– volume: 30
  start-page: 150
  year: 2007
  ident: 10.1016/j.neuroimage.2007.07.011_bib28
  article-title: New vistas for alpha-frequency band oscillations
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.02.001
– volume: 26
  start-page: 148
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib34
  article-title: EEG alpha synchronization and functional coupling during top-down processing in a working memory task
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20150
– volume: 20
  start-page: 376
  year: 2004
  ident: 10.1016/j.neuroimage.2007.07.011_bib7
  article-title: Alpha rhythm of the EEG modulates visual detection performance in humans
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2004.03.009
– volume: 95
  start-page: 3844
  year: 2006
  ident: 10.1016/j.neuroimage.2007.07.011_bib20
  article-title: Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01234.2005
– volume: 37
  start-page: 291
  year: 1986
  ident: 10.1016/j.neuroimage.2007.07.011_bib27
  article-title: Etiology and expression of schizophrenia: neurobiological and psychosocial factors
  publication-title: Ann. Rev. Psychol.
  doi: 10.1146/annurev.ps.37.020186.001451
– volume: 14
  start-page: 683
  year: 2003
  ident: 10.1016/j.neuroimage.2007.07.011_bib5
  article-title: Top-down attentional processing enhances auditory evoked gamma band activity
  publication-title: NeuroReport
  doi: 10.1097/00001756-200304150-00005
– volume: 25
  start-page: 465
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2007.07.011_bib17
  article-title: Mechanisms of human attention: event-related potentials and oscillations
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(01)00027-6
– volume: 2
  start-page: 229
  year: 2001
  ident: 10.1016/j.neuroimage.2007.07.011_bib41
  article-title: The brainweb: phase Synchronization and large-scale integration
  publication-title: Nat. Rev., Neurosci.
  doi: 10.1038/35067550
– volume: 53
  start-page: 63
  year: 2007
  ident: 10.1016/j.neuroimage.2007.07.011_bib23
  article-title: EEG alpha oscillations: the inhibition-timing hypothesis
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2006.06.003
– volume: 228
  start-page: 750
  year: 1985
  ident: 10.1016/j.neuroimage.2007.07.011_bib29
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
  doi: 10.1126/science.3992243
– volume: 375
  start-page: 64
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib15
  article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2004.10.092
– volume: 26
  start-page: 9494
  year: 2006
  ident: 10.1016/j.neuroimage.2007.07.011_bib38
  article-title: Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0875-06.2006
– volume: 19
  start-page: 113
  year: 2002
  ident: 10.1016/j.neuroimage.2007.07.011_bib18
  article-title: Artefact correction of the ongoing EEG using spatial filters based on artefact and brain signal topographies
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200203000-00002
– volume: 15
  start-page: 371
  year: 2005
  ident: 10.1016/j.neuroimage.2007.07.011_bib14
  article-title: Alpha phase synchronization predicts P1 and N1 latency and amplitude size
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh139
– volume: 291
  start-page: 1560
  year: 2001
  ident: 10.1016/j.neuroimage.2007.07.011_bib11
  article-title: Modulation of oscillatory neuronal synchronization by selective visual attention
  publication-title: Science
  doi: 10.1126/science.1055465
– volume: 101
  start-page: 13050
  year: 2004
  ident: 10.1016/j.neuroimage.2007.07.011_bib13
  article-title: Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0404944101
– volume: 97
  start-page: 14748
  year: 2000
  ident: 10.1016/j.neuroimage.2007.07.011_bib42
  article-title: Top-down processing mediated by inter-areal synchronization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.26.14748
SSID ssj0009148
Score 2.4414127
Snippet In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1465
SubjectTerms Adult
Alpha
Attention - physiology
Beta Rhythm
Brain research
Cortical Synchronization
Data Interpretation, Statistical
EEG
Electroencephalography
Electrophysiology
Female
Humans
Individuality
Letters
Male
Oscillations
Perception
Perceptual Masking
Phase coupling
Photic Stimulation
Prestimulus
Psychomotor Performance - physiology
Studies
Visual Perception - physiology
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhDyGX0jzabrNJdcjV3dXbJqewJIRCcmkDIRexsixw2XWW2O4xvz0ztrxLD4GFgA7G9hh5JM2MNN_MEHKhFjL1KudJSHmeSLABEqeUSkTgIdWZV15jvPPdvb59kL8e1eMemQ-xMAirjLK_l-mdtI53ppGb03VZTn-DZQDqBhSawaQiAoP4pDQ4y3--bmEeGZN9OJwSCb4d0Tw9xqvLGVmuYOXGZIbQGHtPRb1ngnaq6OYz-RRtSHrVd_OQ7BXVEdm_i17yY_KEuIqmXLXLtqaYrHIZAW90_YIvNfRfWbfwhfUG1YKXQwABjdgtuqg8xXPasqJ16_DApj4hDzfXf-a3SayhkORSpE2SO-2zQgZjWJB6lokAo8CVV0XOhHJgnnlowgnmYec2U87DFqjItU4ZOuCc-EJG1XNVfCM0uMxkjqPfzQOftZOOG4zyKTgPs5CPiRnYZvOYYBzrXCztgCT7a7cMx_qXxmJjbEzYhnLdJ9nYgSYbRsYOQaQg9ixogh1oLze0_022Haknw0SwccHXFhM1GqwtoMfkx-YxLFX0vyyq4rmtrU65AR5nY_K1nz7bnzUGTUPx_UMdOyUH3clzBzWckFHz0hZnYDI17rxbE292PBZd
  priority: 102
  providerName: Elsevier
Title Prestimulus oscillations predict visual perception performance between and within subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907006039
https://dx.doi.org/10.1016/j.neuroimage.2007.07.011
https://www.ncbi.nlm.nih.gov/pubmed/17706433
https://www.proquest.com/docview/1506725466
https://www.proquest.com/docview/68279109
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFsZexr6Xrcv0sFdtkawPmz2MrrRkHw2lrBD2IiLJgozUyWp7j_vbp7Pl5KkjILDBPoOlk3S6-93vAN7Jhci9dJyGnDsqog1ArZSSZoGHXBVeeoX5zhczNb0WX-dynhxudYJVDmtit1D7tUMf-QdkwtNI3q4-bX5TrBqF0dVUQuMAjpC6DLVaz_WOdJeJPhVOZjSPLyQkT4_v6vgilzdx1iYiw9gYu2t7usv87Lah80fwMNmP5KQf8Mdwr6yewP2LFCF_Cj8RU9Esb9pVWxMkqlwlsBvZ3OJLDfmzrNv4hc0W0YK3Q_IASbgtsqg8QR_tsiJ1a9FZUz-D6_OzH6dTmuonUCeyvKHOKl-UImjNglCTIgtxBLj0snQskzaaZj62zGbMx1PbRFofjz-lUypnGHyz2XM4rNZV-RJIsIUuLMeYmxdaKSss15jhU3IeJsGNQA_dZlwiF8caFyszoMh-mV2HY-1LbbAxNgK2ldz0BBt7yBTDyJghgTQueSbuAnvIftzKJiOjNx72lD4eFMGkyV6bnWqO4O32cZymGHtZVOW6rY3KuY59XIzgRa8-u5_VGs3C7NX_P_0aHnRu5Q5HeAyHzW1bvon2UGPHcPD-Lxt3qj-Go5PTq--XeP3ybTqL189ns8urf1buEL4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGfZUqgPcIxYO7GdqEIIAdWWdntqpRUXs44dadE2u22Sov4pfiMzibN7KtpLJR8iJWMlzngenm9mAN7LaZI6mYuoSEUeJWgDRFZKGcWFKFKVOekU5TuPz9ToIvkxkZMt-NvnwhCsspeJraB2i5zOyD9SJTxNxdvV5-VVRF2jKLrat9Do2OLE3_5Bl636dPwN_-8HIY6-n38dRaGrQJQncVpHuVUu80mhNS8ShQ59ge8lpJM-57G0aLA4HLGNuUNfZiitQ6fA50qlnEJSNsZ5H8BDVLxDcvb0RK-L_PKkS72TcZRyngXkUIcna-tTzi5RSoTCiTg4v0sd3mXutmrv6Ck8CfYq-9Ix2DPY8uVzeDQOEfkX8JMwHPXsspk3FaPCmPMArmPLa3qoZjezqsEZlisEDV32yQos4MTYtHSMzoRnJasaS4dD1Uu4uJeVfQXb5aL0r4EVNtOZFRTjc4lWyiZWaMoo8kIUwyIfgO6XzeShmDn11JibHrX226wXnHptakOD8wHwFeWyK-ixAU3W_xnTJ6yiiDWodTagPVzRBqOmM1Y2pN7vGcEE4VKZ9VYYwMHqNooFivVMS79oKqNSoXGNswHsduyz_lityQyN9_4_9QE8Hp2PT83p8dnJG9hpj7RbDOM-bNfXjX-Ltlht37UbgMGv-95x_wCfY0aU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGTZp4QfzfscHyAI_VlrRJWk0IAdtpY-w0ISZNvIRL00iHbr1jbUF8NT4ddpvePQ3dy6Q8VGodtant2PHPNsBrOUlSJ3MR-VTkUYI2QGSllFHshU9V5qRTlO98PlYnl8mnK3m1AX_7XBiCVfY6sVXUbp7TGfk-VcLTVLxd7fsAi7g4Gr1b_IyogxRFWvt2Gh2LnBV_fqP7Vr09PcJ__UaI0fHXjydR6DAQ5Umc1lFulcuKxGvNfaLQuff4jkI6WeQ8lhaNF4cjtjF36NccSOvQQShypVJO4Skb47z3YFOTVzSAzQ_H44svq5K_POkS8WQcpZxnAUfUocvaapXTa9QZoYwiDs5v2xxvM37bTXD0EB4E65W979jtEWwU5WPYOg_x-SfwjRAd9fS6mTUVozKZswC1Y4sbeqhmv6ZVgzMslngauuxTF1hAjbFJ6RidEE9LVjWWjoqqp3B5J2v7DAblvCy2gXmb6cwKivi5RCtlEys05RcVQvgDnw9B98tm8lDanDpszEyPYfthVgtOnTe1ocH5EPiSctGV91iDJuv_jOnTV1HhGtyD1qA9XNIGE6czXdak3u0ZwQRVU5mVYAxhb3kblQRFfiZlMW8qo1KhcY2zITzv2Gf1sVqTURq_-P_Ue7CF0mY-n47PduB-e77dAhp3YVDfNMVLNMxq-ypIAIPvdy10_wBdXkwv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prestimulus+oscillations+predict+visual+perception+performance+between+and+within+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hanslmayr%2C+Simon&rft.au=Aslan%2C+Alp&rft.au=Staudigl%2C+Tobias&rft.au=Klimesch%2C+Wolfgang&rft.date=2007-10-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=37&rft.issue=4&rft.spage=1465&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.07.011&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3244516931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon