A machine-learning algorithm for predicting brain age using Rey-Osterrieth complex figure tests of healthy participants

Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm t...

Full description

Saved in:
Bibliographic Details
Published inApplied neuropsychology. Adult Vol. 32; no. 1; pp. 225 - 230
Main Authors Simfukwe, Chanda, Youn, Young Chul, Jeong, Ho Tae
Format Journal Article
LanguageEnglish
Published United States Routledge 02.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection. RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras ( https://keras.io/ ) with the Tensorflow library. The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years. The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.
AbstractList Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection. RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library. The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years. The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.
Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.OBJECTIVENeuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library.PARTICIPANTS AND METHODSRCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library.The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.RESULTSThe performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.CONCLUSIONThe MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.
Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection. RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras ( https://keras.io/ ) with the Tensorflow library. The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years. The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.
Author Youn, Young Chul
Simfukwe, Chanda
Jeong, Ho Tae
Author_xml – sequence: 1
  givenname: Chanda
  orcidid: 0000-0003-2845-8016
  surname: Simfukwe
  fullname: Simfukwe, Chanda
  organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul
– sequence: 2
  givenname: Young Chul
  orcidid: 0000-0002-2742-1759
  surname: Youn
  fullname: Youn, Young Chul
  organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul
– sequence: 3
  givenname: Ho Tae
  orcidid: 0000-0001-9228-6912
  surname: Jeong
  fullname: Jeong, Ho Tae
  organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36634203$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2PFCEQholZ4364P0HD0UuPNN30R7y42ehqsskmRs-kmi6mMTS0QGedfy-dmbl4UA5QVTxvQeq9JhfOOyTkTcl2JevYe17xtme92HHG-Y6XTV323QtytdWLvmT9xTnO0CW5jfEny6vjQnDxilxWTVPVnFVX5PmOzqAm47CwCMEZt6dg9z6YNM1U-0CXgKNRabsYAhhHYY90jVv-DQ_FU0wYgsE0UeXnxeJvqs1-DUgTxhSp13RCsGk60AVCMsos4FJ8TV5qsBFvT-cN-fH50_f7L8Xj08PX-7vHQtVVl_I-DFAqhmJoFOSkB82EqlsBwAWqrtXj2DYlVy3XqPp6zJW-Vh3nrdZcVDfk3bHvEvyvNf9IziYqtBYc-jVK3jaibetS1Bl9e0LXYcZRLsHMEA7yPKwMfDgCKvgYA2qpTIJkvEt5MFaWTG7uyLM7cnNHntzJavGX-vzA_3Qfjzrjsh0zPPtgR5ngYH3QAZwyUVb_bvEHXKuoLg
CitedBy_id crossref_primary_10_1186_s12888_024_05622_5
Cites_doi 10.1002/hbm.25316
10.1109/EURMIC.2000.874519
10.1016/j.neuroimage.2016.11.005
10.1093/geronb/gbab055
10.12779/dnd.2022.21.4.138
10.12779/dnd.2021.20.4.70
10.3389/fnagi.2018.00028
10.1109/EMBC.2015.7318450
10.1002/brb3.1020
10.1007/s42979-021-00592-x
10.1212/wnl.43.11.2412-a
10.1080/13803395.2012.763113
10.1016/j.tins.2017.10.001
10.1002/hbm.25368
10.1080/09084282.2011.643964
10.2217/nmt.15.7
10.1080/13854049308401884
10.31887/DCNS.2012.14.1/pharvey
10.1093/arclin/5.1.1
10.1001/archneur.65.8.1091
10.1080/13854049108404104
10.3389/fneur.2021.680474
10.1016/j.neurobiolaging.2019.11.005
10.1186/s13195-021-00821-8
10.1016/j.nrl.2012.03.008
10.1016/j.neurobiolaging.2021.04.015
10.1001/archneur.61.1.59
10.1016/j.ajodo.2015.11.019
10.1038/nprot.2006.115
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/23279095.2022.2164198
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2327-9109
EndPage 230
ExternalDocumentID 36634203
10_1080_23279095_2022_2164198
2164198
Genre Research Article
Journal Article
GrantInformation_xml – fundername: Ministry of Education
– fundername: National Research Foundation of Korea
  grantid: NRF-2020R1A2B5B01002463; NRF-2017S1A6A3A01078538
GroupedDBID 0BK
0R~
4.4
53G
6J9
AAGZJ
AAMFJ
AAMIU
AAPUL
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEISY
AEMXT
AEOZL
AEZRU
AFHDM
AFRVT
AGDLA
AGRBW
AIAGR
AIJEM
AIYEW
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
DKSSO
EAP
EBS
EMB
EPS
ESX
E~B
E~C
FMBMU
G-F
GTTXZ
H13
HF~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
AAGDL
AAHIA
AAYXX
AEFOU
AMPGV
CITATION
DGFLZ
ACUHS
AMATQ
CGR
CUY
CVF
EBC
EBD
ECM
EIF
EJD
EMK
EMOBN
EPL
NPM
SV3
TASJS
TUS
7X8
ID FETCH-LOGICAL-c438t-c4bba1c0e5b6ca4bb9af05c475aa25ec87fdd7612c72fec94d87f94c8227ff253
ISSN 2327-9095
2327-9109
IngestDate Fri Jul 11 14:27:02 EDT 2025
Mon Jul 21 05:27:54 EDT 2025
Tue Jul 01 05:14:36 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Sat Mar 22 04:50:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords neuropsychological tests
machine learning
regression analysis
Asians
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-c4bba1c0e5b6ca4bb9af05c475aa25ec87fdd7612c72fec94d87f94c8227ff253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2845-8016
0000-0001-9228-6912
0000-0002-2742-1759
PMID 36634203
PQID 2765774154
PQPubID 23479
PageCount 6
ParticipantIDs pubmed_primary_36634203
crossref_primary_10_1080_23279095_2022_2164198
informaworld_taylorfrancis_310_1080_23279095_2022_2164198
proquest_miscellaneous_2765774154
crossref_citationtrail_10_1080_23279095_2022_2164198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied neuropsychology. Adult
PublicationTitleAlternate Appl Neuropsychol Adult
PublicationYear 2025
Publisher Routledge
Publisher_xml – name: Routledge
References e_1_3_5_29_1
e_1_3_5_28_1
e_1_3_5_27_1
e_1_3_5_26_1
e_1_3_5_25_1
e_1_3_5_24_1
e_1_3_5_23_1
e_1_3_5_3_1
e_1_3_5_2_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_5_1
e_1_3_5_4_1
e_1_3_5_7_1
e_1_3_5_6_1
e_1_3_5_18_1
e_1_3_5_17_1
e_1_3_5_16_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_14_1
e_1_3_5_11_1
e_1_3_5_12_1
e_1_3_5_19_1
Rey A. (e_1_3_5_22_1) 1941; 28
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_2_1
  doi: 10.1002/hbm.25316
– ident: e_1_3_5_7_1
  doi: 10.1109/EURMIC.2000.874519
– ident: e_1_3_5_16_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_3_5_29_1
  doi: 10.1093/geronb/gbab055
– ident: e_1_3_5_27_1
  doi: 10.12779/dnd.2022.21.4.138
– ident: e_1_3_5_26_1
  doi: 10.12779/dnd.2021.20.4.70
– ident: e_1_3_5_15_1
  doi: 10.3389/fnagi.2018.00028
– ident: e_1_3_5_12_1
  doi: 10.1109/EMBC.2015.7318450
– ident: e_1_3_5_5_1
  doi: 10.1002/brb3.1020
– ident: e_1_3_5_24_1
  doi: 10.1007/s42979-021-00592-x
– ident: e_1_3_5_18_1
  doi: 10.1212/wnl.43.11.2412-a
– ident: e_1_3_5_17_1
  doi: 10.1080/13803395.2012.763113
– ident: e_1_3_5_8_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_3_5_4_1
  doi: 10.1002/hbm.25368
– ident: e_1_3_5_28_1
  doi: 10.1080/09084282.2011.643964
– ident: e_1_3_5_3_1
  doi: 10.2217/nmt.15.7
– ident: e_1_3_5_6_1
  doi: 10.1080/13854049308401884
– ident: e_1_3_5_10_1
  doi: 10.31887/DCNS.2012.14.1/pharvey
– ident: e_1_3_5_13_1
  doi: 10.1093/arclin/5.1.1
– ident: e_1_3_5_19_1
  doi: 10.1001/archneur.65.8.1091
– ident: e_1_3_5_23_1
  doi: 10.1080/13854049108404104
– ident: e_1_3_5_31_1
  doi: 10.3389/fneur.2021.680474
– ident: e_1_3_5_14_1
  doi: 10.1016/j.neurobiolaging.2019.11.005
– ident: e_1_3_5_30_1
  doi: 10.1186/s13195-021-00821-8
– volume: 28
  start-page: 215
  year: 1941
  ident: e_1_3_5_22_1
  article-title: L'examen psychologique dans les cas d‘encéphalopathie traumatique. Les problems. 1941. The psychological examination in cases of traumatic encephalopathy. Problems
  publication-title: Archives de Psychologie,
– ident: e_1_3_5_21_1
  doi: 10.1016/j.nrl.2012.03.008
– ident: e_1_3_5_11_1
  doi: 10.1016/j.neurobiolaging.2021.04.015
– ident: e_1_3_5_9_1
  doi: 10.1001/archneur.61.1.59
– ident: e_1_3_5_20_1
  doi: 10.1016/j.ajodo.2015.11.019
– ident: e_1_3_5_25_1
  doi: 10.1038/nprot.2006.115
SSID ssj0000825525
Score 2.3708923
Snippet Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 225
SubjectTerms Aged
Aged, 80 and over
Aging - physiology
Asians
Brain - physiology
Female
Healthy Volunteers
Humans
Machine Learning
Male
Middle Aged
neuropsychological tests
Neuropsychological Tests - standards
regression analysis
Supervised Machine Learning
Title A machine-learning algorithm for predicting brain age using Rey-Osterrieth complex figure tests of healthy participants
URI https://www.tandfonline.com/doi/abs/10.1080/23279095.2022.2164198
https://www.ncbi.nlm.nih.gov/pubmed/36634203
https://www.proquest.com/docview/2765774154
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbCqMvY1t36W5oMPZinDmyZMWPYWyEwDYYKfTNSLLUlSZxaB269Nf36OJLtpZuezGJhC_R9-X4nKNPRwi9Z7xklGoRK52lMc0li3M1GsXZOKM8Jbkcu70Ivn7Lpkd0dsyOu5yuW11Sy6G6unFdyf-gCm2Aq10l-w_ItheFBvgM-MIREIbjX2E8iZZOC6njRZPhEIuTCuL9n0unH1yf23kYp2yWdi-IyCp0NhdecreNv9sqCRArO_W5LRP8KzKnJ3ZKARxQL_Lw6yS30VoE_XUo_dRWrg1erKuLuW6s6XYYTWxhjzZ_c7o0m7NLHSb4e2kAa23ca8BaHejrdIozHdTC0yqaC91PTxDm0hPevmpnxsBl42BSk7xvc7ucZsutYED9Mug_DLtXQtpr5eAUQlxPyJBAqDfye1j3wF4vHdopuFKUJGn3nmvVh03XfbRHILggA7Q3_zGbTtvcnA2bGWHNgq9x8vHGG--jB82ldryanZq3t0cuzoOZP0IPQ-iBJ55Hj9E9vXqCDiYrUVfLLf6AnRjYoXeALif4d2rhlloY7os7amFHLQzjih218C61cKAW9tTCjlq4MjhQC_ep9RQdffk8_zSNwx4dsaLpuIajlGKkEs1kpgR8yYVJmKKcCUGYVmNuypKDG604MVrltISWnCrwS7kxhKXP0GBVrfQLhFkK48oSSSUE-dJORxMpM050WZoyM_QQ0WaMCxUK2Nt9VBbFKNS5bVAqLEpFQOkQDdvT1r6Cy10n5H0Ai9qlzozf56ZI7zj3XYN2AXbaTr6Jla42FwXhGePWfYff8dzToH2chkUvb-15hfa7P9drNKjPN_oNeMO1fBvIew2SkrJr
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdb-7C97Kv76D41GHtTlsiSFT2GseJ1bQclhb4JSZbSssYJiUOb_fW7k-3QDkof-mKw4Wzf-ST_7vTTHSFfpCqlEMEyH_KMCe0k034wYPkwFyrj2g1TL4LDo7w4Efun8vTaXhikVWIMHZtCEWmuxsGNyeiOEvcNUIDSgA0gvOO8xwHxQ-j8kGxLLTIIwLbHx_tFscm0YBAkU_dVlGMo2G3lue1eN35SN0qY3g5E0w9p7ynxnSoND-VPb1W7nv_7X5XH--n6jDxp8SodNQ72nDwI1QuyM6ogVp-u6VeaGKQpNb9DLkd0mriZgbXNKCbUXkxmi_P6bEpBOzpf4LoQMq2pw94UFGYzitT7CT0Oa_YbqzZA7F6f0UR1D1c0nk9Wi0ABENdLOou02be5pnPb8sGrevmSnOz9GH8vWNvYgXmRDWs4OmcHvh-ky72FE21jX3qhpLVcBj9UsSwVYC-veAxeixKuaOEBzKgYucxeka1qVoU3hMoMTCL7TjiIDB2uYXLncsVDWcYyj2KXiO5LGt9WPcfmGxdm0BZH7Qxs0MCmNfAu6W3E5k3Zj7sE9HU3MXXKt8SmOYrJ7pD93PmUgcGNKza2CrPV0nCVS4WYD_R43Tjb5nUywIqC97O393jyJ_KoGB8emIOfR7_ekcccextjeom_J1v1YhU-AOCq3cd2RP0DMXodYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaglRAXXuVRnoOEuG1IvH5kjxEQhQIFVa3EzbK9dlrRbKLEEYRfz9jrjShS1UMvK3ml2d2ZHdvf2J9nCHnDZc0Zc7qwTpQFqwwvKjsYFGIomCxpZYapFsHXQzE5YQc_eMcmXGVaZYyhfZsoIo3VsXMvat8x4t4hCJAVQgOM7ijtUQT8GDnfJLsCm-jku8dHB5PJdqElxkA8FV-NckUU7E7yXPasC3PUhQyml-PQNB-N7xLTadLSUH721sH07J__kjxeS9V75E5GqzBq3es-ueGaB2Rv1GCkPtvAW0j80bQwv0d-jWCWmJmuyKUopqDPp_PlWTidASoHi2XcFYo8azCxMgXgWAaReD-FI7cpvsWcDRi5h1NIRHf3G_zZdL10gHA4rGDuoT21uYGFzmzwJqwekpPxx-P3kyKXdSgsK4cBr8boge07boTV2Ki073PLJNeacmeH0te1RORlJfXOVqzGOxWzCGWk95SXj8hOM2_cEwK8RJPwvmEG40ITdzCpMUJSV9e-Fp7tE9b9SGVzzvNYeuNcDXJq1M7AKhpYZQPvk95WbNEm_bhKoPrXS1RIqy2-LY2iyitkX3cupbBrx_0a3bj5eqWoFFxGxId6PG59bfs5JSJFRvvl02u8-RW59f3DWH35dPj5GblNY2HjuLZEn5OdsFy7F4i2gnmZ-9NfkGccBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine-learning+algorithm+for+predicting+brain+age+using+Rey-Osterrieth+complex+figure+tests+of+healthy+participants&rft.jtitle=Applied+neuropsychology.+Adult&rft.au=Simfukwe%2C+Chanda&rft.au=Youn%2C+Young+Chul&rft.au=Jeong%2C+Ho+Tae&rft.date=2025-01-02&rft.eissn=2327-9109&rft.volume=32&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1080%2F23279095.2022.2164198&rft_id=info%3Apmid%2F36634203&rft.externalDocID=36634203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-9095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-9095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-9095&client=summon