A machine-learning algorithm for predicting brain age using Rey-Osterrieth complex figure tests of healthy participants
Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm t...
Saved in:
Published in | Applied neuropsychology. Adult Vol. 32; no. 1; pp. 225 - 230 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Routledge
02.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.
RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (
https://keras.io/
) with the Tensorflow library.
The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.
The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection. |
---|---|
AbstractList | Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.
RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library.
The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.
The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection. Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.OBJECTIVENeuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection.RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library.PARTICIPANTS AND METHODSRCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras (https://keras.io/) with the Tensorflow library.The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.RESULTSThe performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years.The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection.CONCLUSIONThe MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection. Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and assess constructional ability, with age being the most significant factor. Our study investigated a supervised machine learning (ML) algorithm to predict brain age gap using RCFT drawings from the healthy elderly community for early dementia detection. RCFT drawings from 1,970 healthy subjects (ages 45-90 years) were collected from the Korean elderly community. We recorded subject demographic information including: age, gender, and education level. We trained the ML model with RCFT copies, immediate recall, delayed recall, and education level of the healthy subjects using CNN regression algorithm from Keras ( https://keras.io/ ) with the Tensorflow library. The performance was evaluated by the mean absolute error (MAE) and root mean squared error (RMSE) between the predicted age and the chronological age based on a test dataset of 300 healthy subjects. The CNN regression model achieved an MAE of 7.2 years in predicting the brain age gap of the subjects, with an RMSE of 8.9 years. The MAE and RMSE accuracies of the CNN regression model predicting the brain age gap showed the model could be a potential biomarker for individual brain aging and a cost-effective method for early dementia detection. |
Author | Youn, Young Chul Simfukwe, Chanda Jeong, Ho Tae |
Author_xml | – sequence: 1 givenname: Chanda orcidid: 0000-0003-2845-8016 surname: Simfukwe fullname: Simfukwe, Chanda organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul – sequence: 2 givenname: Young Chul orcidid: 0000-0002-2742-1759 surname: Youn fullname: Youn, Young Chul organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul – sequence: 3 givenname: Ho Tae orcidid: 0000-0001-9228-6912 surname: Jeong fullname: Jeong, Ho Tae organization: Department of Neurology, College of Medicine, Chung-Ang University Seoul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36634203$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2PFCEQholZ4364P0HD0UuPNN30R7y42ehqsskmRs-kmi6mMTS0QGedfy-dmbl4UA5QVTxvQeq9JhfOOyTkTcl2JevYe17xtme92HHG-Y6XTV323QtytdWLvmT9xTnO0CW5jfEny6vjQnDxilxWTVPVnFVX5PmOzqAm47CwCMEZt6dg9z6YNM1U-0CXgKNRabsYAhhHYY90jVv-DQ_FU0wYgsE0UeXnxeJvqs1-DUgTxhSp13RCsGk60AVCMsos4FJ8TV5qsBFvT-cN-fH50_f7L8Xj08PX-7vHQtVVl_I-DFAqhmJoFOSkB82EqlsBwAWqrtXj2DYlVy3XqPp6zJW-Vh3nrdZcVDfk3bHvEvyvNf9IziYqtBYc-jVK3jaibetS1Bl9e0LXYcZRLsHMEA7yPKwMfDgCKvgYA2qpTIJkvEt5MFaWTG7uyLM7cnNHntzJavGX-vzA_3Qfjzrjsh0zPPtgR5ngYH3QAZwyUVb_bvEHXKuoLg |
CitedBy_id | crossref_primary_10_1186_s12888_024_05622_5 |
Cites_doi | 10.1002/hbm.25316 10.1109/EURMIC.2000.874519 10.1016/j.neuroimage.2016.11.005 10.1093/geronb/gbab055 10.12779/dnd.2022.21.4.138 10.12779/dnd.2021.20.4.70 10.3389/fnagi.2018.00028 10.1109/EMBC.2015.7318450 10.1002/brb3.1020 10.1007/s42979-021-00592-x 10.1212/wnl.43.11.2412-a 10.1080/13803395.2012.763113 10.1016/j.tins.2017.10.001 10.1002/hbm.25368 10.1080/09084282.2011.643964 10.2217/nmt.15.7 10.1080/13854049308401884 10.31887/DCNS.2012.14.1/pharvey 10.1093/arclin/5.1.1 10.1001/archneur.65.8.1091 10.1080/13854049108404104 10.3389/fneur.2021.680474 10.1016/j.neurobiolaging.2019.11.005 10.1186/s13195-021-00821-8 10.1016/j.nrl.2012.03.008 10.1016/j.neurobiolaging.2021.04.015 10.1001/archneur.61.1.59 10.1016/j.ajodo.2015.11.019 10.1038/nprot.2006.115 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/23279095.2022.2164198 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2327-9109 |
EndPage | 230 |
ExternalDocumentID | 36634203 10_1080_23279095_2022_2164198 2164198 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: Ministry of Education – fundername: National Research Foundation of Korea grantid: NRF-2020R1A2B5B01002463; NRF-2017S1A6A3A01078538 |
GroupedDBID | 0BK 0R~ 4.4 53G 6J9 AAGZJ AAMFJ AAMIU AAPUL AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ACGFO ACGFS ACTIO ACTOA ADAHI ADCVX ADKVQ ADYSH AECIN AEISY AEMXT AEOZL AEZRU AFHDM AFRVT AGDLA AGRBW AIAGR AIJEM AIYEW AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW BEJHT BLEHA BMOTO BOHLJ CCCUG DKSSO EAP EBS EMB EPS ESX E~B E~C FMBMU G-F GTTXZ H13 HF~ IPNFZ J.O KYCEM LJTGL M4Z RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TFH TFL TFW TNTFI TRJHH TUROJ UT5 AAGDL AAHIA AAYXX AEFOU AMPGV CITATION DGFLZ ACUHS AMATQ CGR CUY CVF EBC EBD ECM EIF EJD EMK EMOBN EPL NPM SV3 TASJS TUS 7X8 |
ID | FETCH-LOGICAL-c438t-c4bba1c0e5b6ca4bb9af05c475aa25ec87fdd7612c72fec94d87f94c8227ff253 |
ISSN | 2327-9095 2327-9109 |
IngestDate | Fri Jul 11 14:27:02 EDT 2025 Mon Jul 21 05:27:54 EDT 2025 Tue Jul 01 05:14:36 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Sat Mar 22 04:50:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | neuropsychological tests machine learning regression analysis Asians |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-c4bba1c0e5b6ca4bb9af05c475aa25ec87fdd7612c72fec94d87f94c8227ff253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2845-8016 0000-0001-9228-6912 0000-0002-2742-1759 |
PMID | 36634203 |
PQID | 2765774154 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_36634203 crossref_primary_10_1080_23279095_2022_2164198 informaworld_taylorfrancis_310_1080_23279095_2022_2164198 proquest_miscellaneous_2765774154 crossref_citationtrail_10_1080_23279095_2022_2164198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied neuropsychology. Adult |
PublicationTitleAlternate | Appl Neuropsychol Adult |
PublicationYear | 2025 |
Publisher | Routledge |
Publisher_xml | – name: Routledge |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 e_1_3_5_25_1 e_1_3_5_24_1 e_1_3_5_23_1 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_4_1 e_1_3_5_7_1 e_1_3_5_6_1 e_1_3_5_18_1 e_1_3_5_17_1 e_1_3_5_16_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_14_1 e_1_3_5_11_1 e_1_3_5_12_1 e_1_3_5_19_1 Rey A. (e_1_3_5_22_1) 1941; 28 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_2_1 doi: 10.1002/hbm.25316 – ident: e_1_3_5_7_1 doi: 10.1109/EURMIC.2000.874519 – ident: e_1_3_5_16_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_3_5_29_1 doi: 10.1093/geronb/gbab055 – ident: e_1_3_5_27_1 doi: 10.12779/dnd.2022.21.4.138 – ident: e_1_3_5_26_1 doi: 10.12779/dnd.2021.20.4.70 – ident: e_1_3_5_15_1 doi: 10.3389/fnagi.2018.00028 – ident: e_1_3_5_12_1 doi: 10.1109/EMBC.2015.7318450 – ident: e_1_3_5_5_1 doi: 10.1002/brb3.1020 – ident: e_1_3_5_24_1 doi: 10.1007/s42979-021-00592-x – ident: e_1_3_5_18_1 doi: 10.1212/wnl.43.11.2412-a – ident: e_1_3_5_17_1 doi: 10.1080/13803395.2012.763113 – ident: e_1_3_5_8_1 doi: 10.1016/j.tins.2017.10.001 – ident: e_1_3_5_4_1 doi: 10.1002/hbm.25368 – ident: e_1_3_5_28_1 doi: 10.1080/09084282.2011.643964 – ident: e_1_3_5_3_1 doi: 10.2217/nmt.15.7 – ident: e_1_3_5_6_1 doi: 10.1080/13854049308401884 – ident: e_1_3_5_10_1 doi: 10.31887/DCNS.2012.14.1/pharvey – ident: e_1_3_5_13_1 doi: 10.1093/arclin/5.1.1 – ident: e_1_3_5_19_1 doi: 10.1001/archneur.65.8.1091 – ident: e_1_3_5_23_1 doi: 10.1080/13854049108404104 – ident: e_1_3_5_31_1 doi: 10.3389/fneur.2021.680474 – ident: e_1_3_5_14_1 doi: 10.1016/j.neurobiolaging.2019.11.005 – ident: e_1_3_5_30_1 doi: 10.1186/s13195-021-00821-8 – volume: 28 start-page: 215 year: 1941 ident: e_1_3_5_22_1 article-title: L'examen psychologique dans les cas d‘encéphalopathie traumatique. Les problems. 1941. The psychological examination in cases of traumatic encephalopathy. Problems publication-title: Archives de Psychologie, – ident: e_1_3_5_21_1 doi: 10.1016/j.nrl.2012.03.008 – ident: e_1_3_5_11_1 doi: 10.1016/j.neurobiolaging.2021.04.015 – ident: e_1_3_5_9_1 doi: 10.1001/archneur.61.1.59 – ident: e_1_3_5_20_1 doi: 10.1016/j.ajodo.2015.11.019 – ident: e_1_3_5_25_1 doi: 10.1038/nprot.2006.115 |
SSID | ssj0000825525 |
Score | 2.3708923 |
Snippet | Neuropsychologists widely use the Rey-Osterrieth complex figure test (RCFT) as part of neuropsychological test batteries to evaluate cognitive function and... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 225 |
SubjectTerms | Aged Aged, 80 and over Aging - physiology Asians Brain - physiology Female Healthy Volunteers Humans Machine Learning Male Middle Aged neuropsychological tests Neuropsychological Tests - standards regression analysis Supervised Machine Learning |
Title | A machine-learning algorithm for predicting brain age using Rey-Osterrieth complex figure tests of healthy participants |
URI | https://www.tandfonline.com/doi/abs/10.1080/23279095.2022.2164198 https://www.ncbi.nlm.nih.gov/pubmed/36634203 https://www.proquest.com/docview/2765774154 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbCqMvY1t36W5oMPZinDmyZMWPYWyEwDYYKfTNSLLUlSZxaB269Nf36OJLtpZuezGJhC_R9-X4nKNPRwi9Z7xklGoRK52lMc0li3M1GsXZOKM8Jbkcu70Ivn7Lpkd0dsyOu5yuW11Sy6G6unFdyf-gCm2Aq10l-w_ItheFBvgM-MIREIbjX2E8iZZOC6njRZPhEIuTCuL9n0unH1yf23kYp2yWdi-IyCp0NhdecreNv9sqCRArO_W5LRP8KzKnJ3ZKARxQL_Lw6yS30VoE_XUo_dRWrg1erKuLuW6s6XYYTWxhjzZ_c7o0m7NLHSb4e2kAa23ca8BaHejrdIozHdTC0yqaC91PTxDm0hPevmpnxsBl42BSk7xvc7ucZsutYED9Mug_DLtXQtpr5eAUQlxPyJBAqDfye1j3wF4vHdopuFKUJGn3nmvVh03XfbRHILggA7Q3_zGbTtvcnA2bGWHNgq9x8vHGG--jB82ldryanZq3t0cuzoOZP0IPQ-iBJ55Hj9E9vXqCDiYrUVfLLf6AnRjYoXeALif4d2rhlloY7os7amFHLQzjih218C61cKAW9tTCjlq4MjhQC_ep9RQdffk8_zSNwx4dsaLpuIajlGKkEs1kpgR8yYVJmKKcCUGYVmNuypKDG604MVrltISWnCrwS7kxhKXP0GBVrfQLhFkK48oSSSUE-dJORxMpM050WZoyM_QQ0WaMCxUK2Nt9VBbFKNS5bVAqLEpFQOkQDdvT1r6Cy10n5H0Ai9qlzozf56ZI7zj3XYN2AXbaTr6Jla42FwXhGePWfYff8dzToH2chkUvb-15hfa7P9drNKjPN_oNeMO1fBvIew2SkrJr |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdb-7C97Kv76D41GHtTlsiSFT2GseJ1bQclhb4JSZbSssYJiUOb_fW7k-3QDkof-mKw4Wzf-ST_7vTTHSFfpCqlEMEyH_KMCe0k034wYPkwFyrj2g1TL4LDo7w4Efun8vTaXhikVWIMHZtCEWmuxsGNyeiOEvcNUIDSgA0gvOO8xwHxQ-j8kGxLLTIIwLbHx_tFscm0YBAkU_dVlGMo2G3lue1eN35SN0qY3g5E0w9p7ynxnSoND-VPb1W7nv_7X5XH--n6jDxp8SodNQ72nDwI1QuyM6ogVp-u6VeaGKQpNb9DLkd0mriZgbXNKCbUXkxmi_P6bEpBOzpf4LoQMq2pw94UFGYzitT7CT0Oa_YbqzZA7F6f0UR1D1c0nk9Wi0ABENdLOou02be5pnPb8sGrevmSnOz9GH8vWNvYgXmRDWs4OmcHvh-ky72FE21jX3qhpLVcBj9UsSwVYC-veAxeixKuaOEBzKgYucxeka1qVoU3hMoMTCL7TjiIDB2uYXLncsVDWcYyj2KXiO5LGt9WPcfmGxdm0BZH7Qxs0MCmNfAu6W3E5k3Zj7sE9HU3MXXKt8SmOYrJ7pD93PmUgcGNKza2CrPV0nCVS4WYD_R43Tjb5nUywIqC97O393jyJ_KoGB8emIOfR7_ekcccextjeom_J1v1YhU-AOCq3cd2RP0DMXodYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaglRAXXuVRnoOEuG1IvH5kjxEQhQIFVa3EzbK9dlrRbKLEEYRfz9jrjShS1UMvK3ml2d2ZHdvf2J9nCHnDZc0Zc7qwTpQFqwwvKjsYFGIomCxpZYapFsHXQzE5YQc_eMcmXGVaZYyhfZsoIo3VsXMvat8x4t4hCJAVQgOM7ijtUQT8GDnfJLsCm-jku8dHB5PJdqElxkA8FV-NckUU7E7yXPasC3PUhQyml-PQNB-N7xLTadLSUH721sH07J__kjxeS9V75E5GqzBq3es-ueGaB2Rv1GCkPtvAW0j80bQwv0d-jWCWmJmuyKUopqDPp_PlWTidASoHi2XcFYo8azCxMgXgWAaReD-FI7cpvsWcDRi5h1NIRHf3G_zZdL10gHA4rGDuoT21uYGFzmzwJqwekpPxx-P3kyKXdSgsK4cBr8boge07boTV2Ki073PLJNeacmeH0te1RORlJfXOVqzGOxWzCGWk95SXj8hOM2_cEwK8RJPwvmEG40ITdzCpMUJSV9e-Fp7tE9b9SGVzzvNYeuNcDXJq1M7AKhpYZQPvk95WbNEm_bhKoPrXS1RIqy2-LY2iyitkX3cupbBrx_0a3bj5eqWoFFxGxId6PG59bfs5JSJFRvvl02u8-RW59f3DWH35dPj5GblNY2HjuLZEn5OdsFy7F4i2gnmZ-9NfkGccBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine-learning+algorithm+for+predicting+brain+age+using+Rey-Osterrieth+complex+figure+tests+of+healthy+participants&rft.jtitle=Applied+neuropsychology.+Adult&rft.au=Simfukwe%2C+Chanda&rft.au=Youn%2C+Young+Chul&rft.au=Jeong%2C+Ho+Tae&rft.date=2025-01-02&rft.eissn=2327-9109&rft.volume=32&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1080%2F23279095.2022.2164198&rft_id=info%3Apmid%2F36634203&rft.externalDocID=36634203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-9095&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-9095&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-9095&client=summon |