Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances
•This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area. With the rise...
Saved in:
Published in | Expert systems with applications Vol. 193; p. 116429 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area.
With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning. |
---|---|
AbstractList | With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning. •This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area. With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning. |
ArticleNumber | 116429 |
Author | Gadsden, S. Andrew Hilal, Waleed Yawney, John |
Author_xml | – sequence: 1 givenname: Waleed orcidid: 0000-0002-9164-165X surname: Hilal fullname: Hilal, Waleed email: hilalw@mcmaster.ca organization: McMaster University, Canada – sequence: 2 givenname: S. Andrew surname: Gadsden fullname: Gadsden, S. Andrew email: gadsden@mcmaster.ca organization: McMaster University, Canada – sequence: 3 givenname: John surname: Yawney fullname: Yawney, John email: john.yawney@adastragrp.com organization: Adastra Corporation, Canada |
BookMark | eNp9kE1LAzEQhoNUsH78AU8Bz7vmY5vsipeiVoWKIPUcxkkWs9RsTbZK_71Z6smDp7m8zzszzzGZhD44Qs45Kznj6rIrXfqGUjDBS85VJZoDMuW1loXSjZyQKWtmuqi4ro7IcUodY1wzpqfkaeEDBPSwposIW3tF5_TFfXn3TfuWzkP_AesdvXWDw8H3ga4cvgf_uXWJQrA5ii4MdG6_colLp-SwhXVyZ7_zhLwu7lY3D8Xy-f7xZr4ssJL1UKAAprUSsm1ANRJmAt6stY4j1CDtTAispa6YQtRvCpoGRYWKCztD0AhcnpCLfe8m9uMtg-n6bQx5pRFKNlpkWOSU2Kcw9ilF15pN9B8Qd4YzM2oznRm1mVGb2WvLUP0HQj_A-PsQwa__R6_3qMuvZ4XRJPQue7E-Zn3G9v4__AevDom4 |
CitedBy_id | crossref_primary_10_3390_pr12020251 crossref_primary_10_1016_j_cose_2023_103344 crossref_primary_10_1038_s41598_024_84863_6 crossref_primary_10_51583_IJLTEMAS_2024_130524 crossref_primary_10_1108_JMLC_07_2024_0120 crossref_primary_10_56294_dm2023109 crossref_primary_10_1016_j_future_2024_107545 crossref_primary_10_1108_JFC_10_2023_0270 crossref_primary_10_1109_MSMC_2023_3236163 crossref_primary_10_1016_j_sigpro_2024_109398 crossref_primary_10_1007_s42979_025_03785_w crossref_primary_10_54392_irjmt25211 crossref_primary_10_1007_s42488_023_00086_w crossref_primary_10_3390_info14120647 crossref_primary_10_1007_s11831_025_10260_5 crossref_primary_10_1108_JFRA_11_2023_0689 crossref_primary_10_1109_JSAIT_2024_3396079 crossref_primary_10_1007_s12525_024_00746_8 crossref_primary_10_1051_epjconf_202429508022 crossref_primary_10_4108_eetsis_v10i3_3033 crossref_primary_10_7717_peerj_cs_2479 crossref_primary_10_1007_s13042_024_02482_z crossref_primary_10_1016_j_dsm_2025_01_005 crossref_primary_10_3390_app15010286 crossref_primary_10_1016_j_procs_2022_11_156 crossref_primary_10_1007_s42979_024_02681_z crossref_primary_10_1016_j_ins_2024_121587 crossref_primary_10_1016_j_knosys_2024_111367 crossref_primary_10_4236_jdaip_2025_131005 crossref_primary_10_1007_s11042_024_18793_w crossref_primary_10_1007_s44443_025_00021_6 crossref_primary_10_1007_s11416_023_00500_2 crossref_primary_10_1109_TSE_2024_3513413 crossref_primary_10_1002_spy2_500 crossref_primary_10_7240_jeps_1519469 crossref_primary_10_1109_ACCESS_2024_3524908 crossref_primary_10_3390_app14020919 crossref_primary_10_1134_S1810232824010016 crossref_primary_10_3390_computers14040120 crossref_primary_10_1007_s11227_024_06030_y crossref_primary_10_1016_j_eswa_2023_121533 crossref_primary_10_2478_ijssis_2024_0023 crossref_primary_10_1007_s11042_024_18764_1 crossref_primary_10_1016_j_jobe_2023_106923 crossref_primary_10_1007_s40010_024_00871_1 crossref_primary_10_3390_math10132160 crossref_primary_10_1007_s10994_024_06618_8 crossref_primary_10_1016_j_eswa_2024_124953 crossref_primary_10_3390_app15031356 crossref_primary_10_1109_TEM_2024_3385298 crossref_primary_10_1016_j_jeconc_2025_100127 crossref_primary_10_1186_s40854_023_00470_w crossref_primary_10_1016_j_aej_2024_10_084 crossref_primary_10_1016_j_health_2023_100134 crossref_primary_10_3390_data9100121 crossref_primary_10_47978_TUS_2024_74_03_019 crossref_primary_10_1016_j_jjimei_2024_100308 crossref_primary_10_1016_j_ins_2022_09_027 crossref_primary_10_1088_2058_9565_ad9177 crossref_primary_10_1109_ACCESS_2025_3532326 crossref_primary_10_1016_j_eswa_2023_122162 crossref_primary_10_1016_j_patcog_2023_110056 crossref_primary_10_1144_geochem2024_009 crossref_primary_10_3390_math10244681 crossref_primary_10_4018_JOEUC_342113 crossref_primary_10_21684_2587_8484_2023_7_2_67_97 crossref_primary_10_1016_j_eswa_2025_126922 crossref_primary_10_1108_K_08_2021_0760 crossref_primary_10_1007_s11416_023_00480_3 crossref_primary_10_1016_j_eswa_2024_124109 crossref_primary_10_24857_rgsa_v18n1_121 crossref_primary_10_1007_s42952_024_00303_1 crossref_primary_10_1007_s10489_024_05545_4 crossref_primary_10_1016_j_eswa_2022_119037 crossref_primary_10_32604_cmc_2023_046051 crossref_primary_10_7717_peerj_cs_2716 crossref_primary_10_7717_peerj_cs_1749 crossref_primary_10_1057_s41599_024_03606_0 crossref_primary_10_1007_s11416_024_00529_x crossref_primary_10_1109_ACCESS_2023_3239549 crossref_primary_10_1016_j_ins_2024_120286 crossref_primary_10_3390_electronics12010251 crossref_primary_10_1007_s00521_024_10397_7 crossref_primary_10_3389_frai_2024_1466321 crossref_primary_10_1016_j_heliyon_2024_e30045 crossref_primary_10_1360_SSPMA_2024_0471 crossref_primary_10_3390_s24061835 crossref_primary_10_3390_app122312492 crossref_primary_10_3390_app12199637 crossref_primary_10_3390_risks12050074 crossref_primary_10_1016_j_eswa_2024_124339 crossref_primary_10_3389_fenrg_2024_1364456 crossref_primary_10_48084_etasr_7437 crossref_primary_10_1016_j_eswa_2022_118330 crossref_primary_10_1109_ACCESS_2025_3548529 crossref_primary_10_1186_s13677_024_00674_0 crossref_primary_10_1016_j_ymssp_2023_110139 crossref_primary_10_3390_s25010190 crossref_primary_10_1016_j_engappai_2024_108065 crossref_primary_10_1080_0951192X_2024_2397821 crossref_primary_10_1145_3719292 crossref_primary_10_1007_s11042_023_14814_2 crossref_primary_10_3390_su16208866 crossref_primary_10_1007_s13385_024_00399_z crossref_primary_10_1016_j_pacfin_2025_102693 crossref_primary_10_1016_j_eswa_2024_124127 crossref_primary_10_1016_j_eswa_2024_125216 crossref_primary_10_2139_ssrn_5036334 crossref_primary_10_3390_make5040084 crossref_primary_10_2478_jaiscr_2025_0001 crossref_primary_10_1155_2022_1780834 crossref_primary_10_1007_s40747_023_01016_4 crossref_primary_10_4018_IJGHPC_334125 crossref_primary_10_1109_ACCESS_2025_3547285 crossref_primary_10_59413_ajocs_v5_i1_6 crossref_primary_10_32628_CSEIT251112349 crossref_primary_10_3390_sym16121585 crossref_primary_10_1007_s41019_024_00275_6 crossref_primary_10_1007_s11356_024_32170_y crossref_primary_10_1016_j_neunet_2025_107169 crossref_primary_10_1016_j_knosys_2022_110003 crossref_primary_10_3390_admsci12040166 crossref_primary_10_14778_3636218_3636233 crossref_primary_10_1109_ACCESS_2022_3170467 crossref_primary_10_1007_s11227_023_05049_x crossref_primary_10_1016_j_asoc_2024_112193 crossref_primary_10_1080_12460125_2024_2349425 crossref_primary_10_1109_ACCESS_2022_3175581 crossref_primary_10_1080_01621459_2024_2370613 crossref_primary_10_1371_journal_pone_0315721 crossref_primary_10_1145_3641283 crossref_primary_10_21511_ppm_22_2__2024_04 crossref_primary_10_1016_j_artmed_2024_103061 crossref_primary_10_1080_1206212X_2025_2449999 crossref_primary_10_1007_s00146_024_02166_w crossref_primary_10_1016_j_eswa_2023_122156 crossref_primary_10_1061_JCCEE5_CPENG_6090 crossref_primary_10_3233_JIFS_222405 |
Cites_doi | 10.1016/0098-3004(84)90020-7 10.1109/ICCSE.2018.8468855 10.1016/j.engappai.2014.09.019 10.1016/j.eswa.2014.02.026 10.1016/j.eswa.2005.04.030 10.1109/5.58325 10.1016/j.dss.2010.08.008 10.1109/ICDM.2008.17 10.1162/neco.1992.4.5.720 10.1109/TKDE.2013.184 10.4156/jcit.vol6.issue1.8 10.1109/ICMLA.2016.0172 10.1016/j.dss.2017.11.001 10.1016/j.eswa.2006.02.016 10.1145/1081870.1081917 10.1109/ICCIC.2015.7435726 10.1016/j.dss.2020.113303 10.1016/j.eswa.2015.12.030 10.1023/B:AIRE.0000045502.10941.a9 10.1016/j.cose.2015.09.005 10.1016/j.advengsoft.2016.01.008 10.1016/j.procs.2020.03.219 10.3141/2124-08 10.1214/ss/1042727940 10.1016/j.promfg.2020.05.012 10.1162/neco_a_01199 10.1016/j.patrec.2017.08.024 10.1016/j.asoc.2008.05.006 10.1016/j.eswa.2017.08.043 10.1007/978-3-319-46675-0_53 10.1109/CSO.2011.213 10.1016/j.eswa.2007.08.093 10.1109/TKDE.2004.1277822 10.21533/pen.v6i2.533 10.1145/1273496.1273614 10.1109/ICDE.2012.88 10.1016/j.jfds.2016.03.001 10.1109/ACCESS.2020.2983300 10.3390/s20061546 10.1145/1081870.1081891 10.1109/ASONAM.2016.7752336 10.1145/1541880.1541882 10.1016/j.eswa.2014.01.012 10.1016/j.patcog.2013.06.005 10.1016/S0957-4174(97)00045-6 10.1016/j.eswa.2005.09.003 10.1111/1539-6975.00026 10.1016/j.jksuci.2017.09.010 10.1108/13685200710746875 10.1016/j.eswa.2014.10.037 10.1613/jair.953 10.1109/STARTUP.2016.7583942 10.1080/08839514.2013.785791 10.1155/2018/8676387 10.1016/j.future.2019.08.029 10.5120/8184-1538 10.1162/neco.1997.9.8.1735 10.1145/342009.335388 10.1111/1539-6975.00023 10.1016/j.ins.2014.10.015 10.1609/aaai.v33i01.33011286 10.1109/TDSC.2007.70228 10.1016/S0893-6080(05)80056-5 10.1016/j.eswa.2018.01.037 10.1016/j.eswa.2010.07.143 10.5194/nhess-11-1099-2011 10.1109/ICACCE.2015.33 10.1016/j.sigpro.2003.07.018 10.1186/s12859-020-03936-1 10.1023/A:1022627411411 10.1016/j.ins.2017.12.030 10.1109/TKDE.2006.46 10.1016/j.eswa.2008.02.001 10.1016/j.jnca.2016.04.007 10.1145/2939672.2939778 10.1016/j.patcog.2017.09.037 10.1002/sam.11161 10.1016/j.dss.2018.04.001 10.1145/2523813 10.14569/IJACSA.2018.090103 10.1016/j.knosys.2019.105187 10.1016/j.knosys.2014.07.008 10.1023/A:1007465528199 10.1109/5.18626 10.1109/CYBERNETICSCOM.2017.8311689 10.1109/KBEI.2017.8324876 10.1109/ACCESS.2020.3015600 10.1145/2939672.2939785 10.1162/089976600300015015 10.1109/IEMCON.2018.8614815 10.1109/TPAMI.2013.50 10.3390/engproc2021005056 10.1145/1007730.1007738 10.1109/IJCNN48605.2020.9206844 10.1145/1007730.1007733 10.1016/j.eswa.2016.09.029 10.1016/j.dss.2010.08.006 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright Elsevier BV May 1, 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright Elsevier BV May 1, 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.116429 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_116429 S0957417421017164 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFPUW AFTJW AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AFXIZ AGQPQ AGRNS ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW WUQ XPP ZMT 7SC 8FD JQ2 L7M L~C L~D SSH |
ID | FETCH-LOGICAL-c438t-c2a077623f9a693a52abddde1ca8a3d522c837406cc7b6a99c24c612d5ca7ca13 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Sun Jul 13 05:20:11 EDT 2025 Thu Jul 31 00:36:13 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Sat Aug 23 17:11:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outlier Deep learning Insider trading Credit card fraud Securities and commodities fraud Machine learning Money laundering Outlier detection Insurance fraud Financial fraud Index Terms — Anomaly Anomaly detection |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-c2a077623f9a693a52abddde1ca8a3d522c837406cc7b6a99c24c612d5ca7ca13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9164-165X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417421017164 |
PQID | 2639727402 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2639727402 crossref_primary_10_1016_j_eswa_2021_116429 crossref_citationtrail_10_1016_j_eswa_2021_116429 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116429 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Tanaka, F. H., & Aranha, C. (2019). University of California, Irvine. (2000). Phuket, Thailand. Zhang, C., Cheng, X., Liu, J., & Liu, G. (2018). Deep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion Status. Pourhabibi, Ong, Kam, Boo (b0565) 2020; 133 Retrieved Dec. 30, 2020, from Bengio, Courville, Vincent (b0080) 2013; 35 Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b0640) 2000 Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud detection. Beijing, China. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Thangavel, Pethalakshmi (b0720) 2009; 9 Gómez, Arévalo, Paredes, Nin (b0270) 2018; 105 Gers, Schmidhuber, Cummins (b0260) 2000; 12 Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton, Caelen (b0345) 2018; 100 KPMG. (2012). Sahin, Duman (b0625) 2011 Sweers, T., Heskes, T., & Krijthe, J. (2018). Cortes, Vapnik (b0170) 1995; 20 Ridgeway, G., Madigan, D., & Richardson, T. (1998). Interpretable Boosted Naïve Bayes Classification. Chawla, Bowyer, Hall, Kegelmeyer (b0145) 2002; 16 Lundberg, S. M. (2017). A Unified Approach to Interpreting Model Predictions. Srivastava, Kundu, Sural, Majumdar (b0665) 2008; 5 Grenada, Spain. New York, NY. Machine Learning Group. (2017). Fisher (b0225) 1993 Adewumi, Akinyelu (b0010) 2018; 8 Retrieved from Olszewski (b0525) 2014; 70 The Nilson Report. (2020). . Stripling, Baesens, Chizi, vanden Broucke (b0670) 2018; 11 Zareapoor, M., R, S. K., & Alam, M. A. (2012). Analysis of credit card fraud detection techniques: based on certain design criteria. Neal (b0510) 1996 Pang, Shen, Cao, van den Hengel (b0540) 2020; 1 Kohonen (b0375) 1990; 78 Mirjalili, Lewis (b0480) 2016; 95 Association of Certified Fraud Examiners. (2019). Tao, H., Zhixin, L., & Xiaodong, S. (2012). Insurance Fraud Identification Research Based on Fuzzy Support Vector Machine with Dual Membership. Tehran, Iran. Tingfei, Guangquan, Kuihua (b0730) 2020; 8 Lucas, Y., & Jurgovsky, J. (2020). Retrieved from arXiv:2010.06479. Chawla, Japkowicz, Kotcz (b0150) 2004; 6 Vancouver, BC. van der Maaten, Hinton (b0745) 2008; 9 Retrieved Dec. 22, 2020, from Bolton, Hand (b0110) 2002; 17 Targu Mures, Romania. Retrieved from arXiv:2007.13559v2. Retrieved Dec. 29, 2020, from Glasgow, UK. Retrieved Dec. 23, 2020, from Internet Crime Complaint Center. (2019). Dreżewski, Sepielak, Filipkowski (b0210) 2015; 295 Dhieb, Ghazzai, Besbes, Massoud (b0185) 2020; 8 Kingma, D. P., & Ba, J. (2014). National Health Care Anti-Fraud Association. (2018). Fujimaki, R., Yairi, T., & Machida, K. (2005). An approach to spacecraft anomaly detection problem using kernel feature space. Møller (b0495) 1993; 6 Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. Chalapathy, R., & Chawla, S. (2019). Jiang, P., Zhang, J., & Zou, J. (2019). Sanya, China. West, Bhattacharya (b0790) 2016; 57 Ngai, Hu, Wong, Chen, Sun (b0515) 2011; 50 Blei, Ng, Jordan (b0100) 2003; 3 Viaene, Dedene, Derrig (b0755) 2005; 29 Retrieved Dec. 10, 2020, from Robinson, Aria (b0610) 2018; 91 Charitou, C., Garcez, A. d., & Dragicevic, S. (2020). Semi-supervised GANs for Fraud Detection. San Francisco, CA. Sánchez, Vila, Cerda, Serrano (b0630) 2009; 36 Gao, Ye (b0255) 2007; 10 Hejazi, Singh (b0305) 2013; 27 Patidar, Sharma (b0545) 2011; 1 Ba, H. (2019). Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. Retrieved from arXiv:1907.03355. (3), 35-42. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Networks. Šubelj, Furlan, Bajec (b0675) 2011; 38 Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Domingues, Filippone, Michiardi, Zouaoui (b0205) 2018; 74 Subudhi, Panigrahi (b0680) 2020; 32 Markou, Singh (b0470) 2003; 83 Misra, Thakur, Ghosh, Saha (b0490) 2020; 167 Hochreiter, Schmidhuber (b0315) 1997; 9 Huang, Tsaih, Yu (b0325) 2014; 9 Behera, T. K., & Panigrahi, S. (2015). Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network. Quah, Sriganesh (b0580) 2008; 35 Sparrow (b0655) 2000 Zimek, Schubert, Kriegel (b0845) 2012; 5 Retrieved from arXiv:1906.11632. Wiese, Omlin (b0795) 2009 Chicago, IL. Kremmler, Rodner, Wacker, Denzler (b0390) 2013; 46 Zhang, Zhou, Zhang, Wang, Wang (b0835) 2018 Lu, Ju (b0425) 2011; 6 Mahmoudi, Duman (b0460) 2015; 42 Retrieved Dec. 2, 2020, from Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit Card Fraud Detection Using Convolutional Neural Networks. Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental Perspectives on Learning from Imbalanced Data. Retrieved from arXiv:1009.6119. Nian, Zhang, Tayal, Coleman, Li (b0520) 2016; 2 Zheng, Yuan, Wu, Li, Lu (b0840) 2019; 33 Schott (b0645) 2004 Long Beach, CA. Retrieved from arXiv:1901.03407. Aleskerov, Freisleben, Rao (b0025) 1997 Lille, France. Viaene, Derrig, Baesens, Dedene (b0765) 2002; 69 Gupta, Gao, Aggarwal, Han (b0280) 2014; 26 Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Yang, Hwang (b0810) 2006; 31 Ghosh, Reilly (b0265) 1994 Spence, Parra, Sajda (b0660) 2001 Khan, A. U., Akhtar, N., & Qureshi, M. N. (2014). Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm. Mirza, M., & Osindero, S. (2014). Retrieved from arXiv:2009.07578. Kou, Y., Lu, C.-T., Sirwongwattana, S., & Huang, Y.-P. (2004). Survey of Fraud Detection Techniques. Kirkos, Spathis, Manolopoulos (b0370) 2007; 32 Anaheim, CA. Zaslavsky, Strizhak (b0825) 2006; 18 Bahnsen, Aouada, Stojanovic, Ottersten (b0065) 2016; 51 Dehradun, India. Rabiner (b0585) 1989; 77 Derrig (b0180) 2002; 69 MacKay (b0450) 1992; 4 Dhok (b0190) 2012; 2 Moschini, G., Houssou, R., Bovay, J., & Robert-Nicoud, S. (2020). Aggarwal (b0020) 2013 Sabau (b0620) 2012; 16 Di Mattia, F., Galeone, P., De Simoni, M., & Ghelfi, E. (2019). Pumsirirat, Yan (b0575) 2018; 9 Rifai, Vincent, Muller, Glorot, Bengio (b0605) 2011 Association of Certified Fraud Examiners. (2004). Colladon, Remondi (b0165) 2017; 67 Xu, W., Wang, S., Zhang, D., & Yang, B. (2011). Random Rough Subspace based Neural Network Ensemble for Insurance Fraud Detection. Retrieved from arXiv:1412.6980. Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0770) 2010; 11 Singh, Upadhyaya (b0650) 2012; 9 Retrieved from arXiv:1511.08458. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. Lucas, Portier, Laporte, He-Guelton, Caelen, Granitzer, Calabretto (b0435) 2020; 102 Chandola, Banerjee, Kumar (b0135) 2009; 41 Hodge, Austin (b0320) 2004; 22 Colombo, Sri Lanka. Chen, J., Shen, Y., & Ali, R. (2018). Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network. SNU Data Mining Center. LeCun, Bengio (b0415) 1998 Bhusari, V., & Patil, S. (2016). Study of Hidden Markov Model in Credit Card Fraudulent Detection. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (b0275) 2014; 27 Wang, C., Wang, Y., Ye, Z., Yan, L., Cai, W., & Pan, S. (2018). Credit Card Fraud Detection Based on Whale Algorithm Optimized BP Neural Network. Sundarkumar, G. G., Ravi, V., & Siddeshwar, V. (2015). One-class support vector machine based undersampling: Application to churn prediction and insurance fraud detection. Madurai, India. Xiong, Pandey, Steinbach, Kumar (b0800) 2006; 18 Doersch, C. (2016). Pozzolo, Caelen, Le Borgne, Waterschoot, Bontempi (b0570) 2014; 41 American Institute of CPAs. (2011). Phua, Alahakoon, Lee (b0555) 2004; 6 Toledo, Katz (b0735) 2009; 2124 Federal Bureau of Investigation. (2011). Fiore, De Santis, Perla, Zanetti (b0220) 2019; 479 Retrieved from arXiv:1904.09135. Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). Corvalis, OR. Retrieved from arXiv:1606.05908. Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. Abdallah, Maarof, Zainal (b0005) 2016; 68 Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. A., . . . Satoh, S. (2020). American Institute of CPAs. Syeda, Zhang, Pan (b0700) 2002 Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier. An, J., & Cho, S. (2015). Hawkins (b0290) 1980 Hong Kong, China. Washington, DC. Retrieved from arXiv:1411.1784. Maes, Tuyls (b0455) 2002 Coimbatore, India. Yu, Si, Hu, Zhang (b0815) 2019; 31 Renström, M., & Holmsten, T. (2018). Rtayli, N., & Enneya, N. (2020). Selection Features and Support Vector Machine for Credit Card Risk Identification. O'Shea, K., & Nash, R. (2015). Ounacer, Ait El Bour, Oubrahim, Ghoumari, Azzouazi (b0535) 2018; 6 Keller, F., Muller, E., & Bohm, K. (2012). HiCS: High Contrast Subspaces for Density-Based Outlier Ranking. Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Dallas, TX. Bezdek, Ehrlich, Full (b0085) 1984; 10 Viaene, Derrig, Dedene (b0760) 2004; 16 Makhzani, A., & Frey, B. (2014). Sydney, Australia. Retrieved from arXiv:1701.07875. Delamaire, Abdou, Pointon (b0175) 2000; 4 Kucharski, Kłeczek, Jaworek-Korjakowska, Dyduch, Gorgon (b0400) 2020; 20 Boukerche, Zheng, Alfandi (b0115) 2020; 53 Michelucci (b0475) 2018 Edinburgh, UK. Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagão, T. (2016). Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering. Wang, Du, Lin, Cui, Shen, Yang (b0780) 2020; 190 Sundarkumar, Ravi (b0685) 2015; 37 Branting, L. K., Reeder, F., Gold, J., & Champney, T. (2016). Graph Analytics for Healthcare Fraud Risk Estimation. Retrieved Dec. 5, 2020, from Kazemi, Z., & Zarrabi, H. (2017). Using deep networks for fraud detection in the credit card transactions. Dissertation. Heryadi, Y., & Warnars, H. L. (2017). Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM. Association of Certified Fraud Examiners. (2020). Adhikari, Agrawal (b0015) 2013 Saradjian, Akhoondzadeh (b0635) 2011; 11 Retrieved from arXiv:1908.11 Adhikari (10.1016/j.eswa.2021.116429_b0015) 2013 Viaene (10.1016/j.eswa.2021.116429_b0765) 2002; 69 10.1016/j.eswa.2021.116429_b0820 Lu (10.1016/j.eswa.2021.116429_b0425) 2011; 6 Pourhabibi (10.1016/j.eswa.2021.116429_b0565) 2020; 133 10.1016/j.eswa.2021.116429_b0705 10.1016/j.eswa.2021.116429_b0140 West (10.1016/j.eswa.2021.116429_b0790) 2016; 57 Hawkins (10.1016/j.eswa.2021.116429_b0290) 1980 10.1016/j.eswa.2021.116429_b0385 10.1016/j.eswa.2021.116429_b0420 Mirjalili (10.1016/j.eswa.2021.116429_b0480) 2016; 95 Srivastava (10.1016/j.eswa.2021.116429_b0665) 2008; 5 Dhieb (10.1016/j.eswa.2021.116429_b0185) 2020; 8 Dreżewski (10.1016/j.eswa.2021.116429_b0210) 2015; 295 Jurgovsky (10.1016/j.eswa.2021.116429_b0345) 2018; 100 Abdallah (10.1016/j.eswa.2021.116429_b0005) 2016; 68 Saradjian (10.1016/j.eswa.2021.116429_b0635) 2011; 11 van der Maaten (10.1016/j.eswa.2021.116429_b0745) 2008; 9 Bolton (10.1016/j.eswa.2021.116429_b0110) 2002; 17 Chawla (10.1016/j.eswa.2021.116429_b0145) 2002; 16 Spence (10.1016/j.eswa.2021.116429_b0660) 2001 Singh (10.1016/j.eswa.2021.116429_b0650) 2012; 9 Zheng (10.1016/j.eswa.2021.116429_b0840) 2019; 33 Goodfellow (10.1016/j.eswa.2021.116429_b0275) 2014; 27 10.1016/j.eswa.2021.116429_b0830 10.1016/j.eswa.2021.116429_b0710 Pang (10.1016/j.eswa.2021.116429_b0540) 2020; 1 10.1016/j.eswa.2021.116429_b0030 10.1016/j.eswa.2021.116429_b0395 10.1016/j.eswa.2021.116429_b0550 10.1016/j.eswa.2021.116429_b0155 10.1016/j.eswa.2021.116429_b0430 10.1016/j.eswa.2021.116429_b0035 10.1016/j.eswa.2021.116429_b0310 Olszewski (10.1016/j.eswa.2021.116429_b0525) 2014; 70 Ounacer (10.1016/j.eswa.2021.116429_b0535) 2018; 6 Møller (10.1016/j.eswa.2021.116429_b0495) 1993; 6 10.1016/j.eswa.2021.116429_b0160 10.1016/j.eswa.2021.116429_b0040 Wang (10.1016/j.eswa.2021.116429_b0785) 2018; 105 Aleskerov (10.1016/j.eswa.2021.116429_b0025) 1997 10.1016/j.eswa.2021.116429_b0445 10.1016/j.eswa.2021.116429_b0600 Quah (10.1016/j.eswa.2021.116429_b0580) 2008; 35 Stripling (10.1016/j.eswa.2021.116429_b0670) 2018; 11 10.1016/j.eswa.2021.116429_b0725 Kucharski (10.1016/j.eswa.2021.116429_b0400) 2020; 20 10.1016/j.eswa.2021.116429_b0285 10.1016/j.eswa.2021.116429_b0560 10.1016/j.eswa.2021.116429_b0440 10.1016/j.eswa.2021.116429_b0045 10.1016/j.eswa.2021.116429_b0200 Fisher (10.1016/j.eswa.2021.116429_b0225) 1993 Thangavel (10.1016/j.eswa.2021.116429_b0720) 2009; 9 Schott (10.1016/j.eswa.2021.116429_b0645) 2004 Adewumi (10.1016/j.eswa.2021.116429_b0010) 2018; 8 Vincent (10.1016/j.eswa.2021.116429_b0770) 2010; 11 Mahmoudi (10.1016/j.eswa.2021.116429_b0460) 2015; 42 Syeda (10.1016/j.eswa.2021.116429_b0700) 2002 10.1016/j.eswa.2021.116429_b0050 Tingfei (10.1016/j.eswa.2021.116429_b0730) 2020; 8 Rifai (10.1016/j.eswa.2021.116429_b0605) 2011 Sabau (10.1016/j.eswa.2021.116429_b0620) 2012; 16 Nian (10.1016/j.eswa.2021.116429_b0520) 2016; 2 Kremmler (10.1016/j.eswa.2021.116429_b0390) 2013; 46 10.1016/j.eswa.2021.116429_b0335 10.1016/j.eswa.2021.116429_b0215 Gers (10.1016/j.eswa.2021.116429_b0260) 2000; 12 Robinson (10.1016/j.eswa.2021.116429_b0610) 2018; 91 10.1016/j.eswa.2021.116429_b0615 Gama (10.1016/j.eswa.2021.116429_b0250) 2014; 46 Zhang (10.1016/j.eswa.2021.116429_b0835) 2018 Hochreiter (10.1016/j.eswa.2021.116429_b0315) 1997; 9 10.1016/j.eswa.2021.116429_b0690 10.1016/j.eswa.2021.116429_b0295 Hodge (10.1016/j.eswa.2021.116429_b0320) 2004; 22 Ghosh (10.1016/j.eswa.2021.116429_b0265) 1994 10.1016/j.eswa.2021.116429_b0055 10.1016/j.eswa.2021.116429_b0330 Sparrow (10.1016/j.eswa.2021.116429_b0655) 2000 Boukerche (10.1016/j.eswa.2021.116429_b0115) 2020; 53 10.1016/j.eswa.2021.116429_b0695 10.1016/j.eswa.2021.116429_b0060 Gao (10.1016/j.eswa.2021.116429_b0255) 2007; 10 Delamaire (10.1016/j.eswa.2021.116429_b0175) 2000; 4 Subudhi (10.1016/j.eswa.2021.116429_b0680) 2020; 32 Bezdek (10.1016/j.eswa.2021.116429_b0085) 1984; 10 Chandola (10.1016/j.eswa.2021.116429_b0135) 2009; 41 Phua (10.1016/j.eswa.2021.116429_b0555) 2004; 6 10.1016/j.eswa.2021.116429_b0500 10.1016/j.eswa.2021.116429_b0105 Huang (10.1016/j.eswa.2021.116429_b0325) 2014; 9 Hejazi (10.1016/j.eswa.2021.116429_b0305) 2013; 27 LeCun (10.1016/j.eswa.2021.116429_b0415) 1998 10.1016/j.eswa.2021.116429_b0505 10.1016/j.eswa.2021.116429_b0340 Šubelj (10.1016/j.eswa.2021.116429_b0675) 2011; 38 Yu (10.1016/j.eswa.2021.116429_b0815) 2019; 31 MacKay (10.1016/j.eswa.2021.116429_b0450) 1992; 4 10.1016/j.eswa.2021.116429_b0465 10.1016/j.eswa.2021.116429_b0740 Sánchez (10.1016/j.eswa.2021.116429_b0630) 2009; 36 10.1016/j.eswa.2021.116429_b0590 Patidar (10.1016/j.eswa.2021.116429_b0545) 2011; 1 Lucas (10.1016/j.eswa.2021.116429_b0435) 2020; 102 Derrig (10.1016/j.eswa.2021.116429_b0180) 2002; 69 Misra (10.1016/j.eswa.2021.116429_b0490) 2020; 167 Bengio (10.1016/j.eswa.2021.116429_b0080) 2013; 35 Tax (10.1016/j.eswa.2021.116429_b0715) 2001; 2 Markou (10.1016/j.eswa.2021.116429_b0470) 2003; 83 Cortes (10.1016/j.eswa.2021.116429_b0170) 1995; 20 10.1016/j.eswa.2021.116429_b0195 10.1016/j.eswa.2021.116429_b0075 10.1016/j.eswa.2021.116429_b0350 10.1016/j.eswa.2021.116429_b0230 Pozzolo (10.1016/j.eswa.2021.116429_b0570) 2014; 41 10.1016/j.eswa.2021.116429_b0595 Sahin (10.1016/j.eswa.2021.116429_b0625) 2011 10.1016/j.eswa.2021.116429_b0750 10.1016/j.eswa.2021.116429_b0355 Toledo (10.1016/j.eswa.2021.116429_b0735) 2009; 2124 Colladon (10.1016/j.eswa.2021.116429_b0165) 2017; 67 Domingues (10.1016/j.eswa.2021.116429_b0205) 2018; 74 Michelucci (10.1016/j.eswa.2021.116429_b0475) 2018 Pumsirirat (10.1016/j.eswa.2021.116429_b0575) 2018; 9 10.1016/j.eswa.2021.116429_b0360 10.1016/j.eswa.2021.116429_b0240 10.1016/j.eswa.2021.116429_b0120 He (10.1016/j.eswa.2021.116429_b0300) 1997; 13 Neal (10.1016/j.eswa.2021.116429_b0510) 1996 Zimek (10.1016/j.eswa.2021.116429_b0845) 2012; 5 Kohonen (10.1016/j.eswa.2021.116429_b0375) 1990; 78 10.1016/j.eswa.2021.116429_b0485 Zaslavsky (10.1016/j.eswa.2021.116429_b0825) 2006; 18 10.1016/j.eswa.2021.116429_b0365 10.1016/j.eswa.2021.116429_b0245 Blei (10.1016/j.eswa.2021.116429_b0100) 2003; 3 10.1016/j.eswa.2021.116429_b0125 Yang (10.1016/j.eswa.2021.116429_b0810) 2006; 31 Aggarwal (10.1016/j.eswa.2021.116429_b0020) 2013 10.1016/j.eswa.2021.116429_b0095 10.1016/j.eswa.2021.116429_b0805 Rabiner (10.1016/j.eswa.2021.116429_b0585) 1989; 77 Viaene (10.1016/j.eswa.2021.116429_b0755) 2005; 29 Kirkos (10.1016/j.eswa.2021.116429_b0370) 2007; 32 10.1016/j.eswa.2021.116429_b0775 Fiore (10.1016/j.eswa.2021.116429_b0220) 2019; 479 Maes (10.1016/j.eswa.2021.116429_b0455) 2002 Xiong (10.1016/j.eswa.2021.116429_b0800) 2006; 18 Gómez (10.1016/j.eswa.2021.116429_b0270) 2018; 105 10.1016/j.eswa.2021.116429_b0130 Schölkopf (10.1016/j.eswa.2021.116429_b0640) 2000 Sundarkumar (10.1016/j.eswa.2021.116429_b0685) 2015; 37 10.1016/j.eswa.2021.116429_b0530 Friedman (10.1016/j.eswa.2021.116429_b0235) 1997; 29 10.1016/j.eswa.2021.116429_b0410 Bhattacharyya (10.1016/j.eswa.2021.116429_b0090) 2011; 50 Chawla (10.1016/j.eswa.2021.116429_b0150) 2004; 6 Gupta (10.1016/j.eswa.2021.116429_b0280) 2014; 26 Dhok (10.1016/j.eswa.2021.116429_b0190) 2012; 2 10.1016/j.eswa.2021.116429_b0380 Wiese (10.1016/j.eswa.2021.116429_b0795) 2009 Wang (10.1016/j.eswa.2021.116429_b0780) 2020; 190 Viaene (10.1016/j.eswa.2021.116429_b0760) 2004; 16 Bahnsen (10.1016/j.eswa.2021.116429_b0065) 2016; 51 Ngai (10.1016/j.eswa.2021.116429_b0515) 2011; 50 |
References_xml | – volume: 167 start-page: 254 year: 2020 end-page: 262 ident: b0490 article-title: An autoencoder based model for detecting fraudulent credit card transaction publication-title: Procedia Computer Science – volume: 67 start-page: 49 year: 2017 end-page: 58 ident: b0165 article-title: Using social network analysis to prevent money laundering publication-title: Expert Systems with Applications – reference: Chalapathy, R., & Chawla, S. (2019). – reference: Taipei, Taiwan. – reference: Madurai, India. – volume: 69 start-page: 271 year: 2002 end-page: 287 ident: b0180 article-title: Insurance fraud publication-title: The Journal of Risk and Insurance – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0480 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – reference: American Institute of CPAs. (2011). – reference: Lundberg, S. M. (2017). A Unified Approach to Interpreting Model Predictions. – volume: 8 start-page: 58546 year: 2020 end-page: 58558 ident: b0185 article-title: A secure AI-driven architecture for automated insurance systems: Fraud detection and risk measurement publication-title: IEEE Access – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: b0235 article-title: Bayesian network classifiers publication-title: Machine Learning – volume: 69 start-page: 373 year: 2002 end-page: 421 ident: b0765 article-title: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection publication-title: The Journal of Risk and Insurance – volume: 16 start-page: 612 year: 2004 end-page: 620 ident: b0760 article-title: A case study of applying boosting naive bayes to claim fraud diagnosis publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (3), 35-42. – reference: Retrieved Dec. 10, 2020, from – reference: Jiang, P., Zhang, J., & Zou, J. (2019). – reference: Bhusari, V., & Patil, S. (2016). Study of Hidden Markov Model in Credit Card Fraudulent Detection. – reference: Chicago, IL. – reference: Kazemi, Z., & Zarrabi, H. (2017). Using deep networks for fraud detection in the credit card transactions. – reference: Lucas, Y., & Jurgovsky, J. (2020). – reference: Ba, H. (2019). Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. Retrieved from arXiv:1907.03355. – reference: Retrieved Dec. 2, 2020, from – reference: Retrieved from arXiv:2009.07578. – reference: Retrieved from arXiv:1009.6119. – start-page: 231 year: 2009 end-page: 268 ident: b0795 article-title: Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time Series with LSTM Recurrent Neural Networks publication-title: Innovations in Neural Information Paradigms and Applications – volume: 18 start-page: 48 year: 2006 end-page: 63 ident: b0825 article-title: Credit card fraud detection using self-organizing maps publication-title: Information and Security – reference: Internet Crime Complaint Center. (2019). – volume: 20 year: 2020 ident: b0400 article-title: Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders publication-title: Sensors – year: 2000 ident: b0640 article-title: Support vector method for novelty detection – year: 1996 ident: b0510 article-title: Bayesian learning for neural networks – volume: 31 start-page: 56 year: 2006 end-page: 68 ident: b0810 article-title: A process-mining framework for the detection of healthcare fraud and abuse publication-title: Expert Systems with Applications – reference: Khan, A. U., Akhtar, N., & Qureshi, M. N. (2014). Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm. – volume: 46 start-page: Article 44 year: 2014 ident: b0250 article-title: A survey on concept drift adaptation publication-title: ACM Computing Surveys – reference: Xu, W., Wang, S., Zhang, D., & Yang, B. (2011). Random Rough Subspace based Neural Network Ensemble for Insurance Fraud Detection. – volume: 27 start-page: 351 year: 2013 end-page: 366 ident: b0305 article-title: One-class support vector machines approach to anomaly detection publication-title: Applied Artificial Intelligence – year: 2002 ident: b0700 article-title: Parallel granular neural networks for fast credit card fraud detection – volume: 29 start-page: 653 year: 2005 end-page: 666 ident: b0755 article-title: Auto claim fraud detection using Bayesian learning neural networks publication-title: Expert Systems with Applications – reference: SNU Data Mining Center. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0315 article-title: Long short-term memory publication-title: Neural Computation – volume: 9 start-page: 18 year: 2018 end-page: 25 ident: b0575 article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine publication-title: International Journal of Advanced Computer Science and Applications – volume: 16 start-page: 110 year: 2012 end-page: 122 ident: b0620 article-title: Survey of clustering based financial fraud detection research publication-title: Informatica Economica – volume: 53 start-page: Article 55 year: 2020 ident: b0115 article-title: Outlier Detection: Methods, Models, and Classification publication-title: ACM Computing Surveys – volume: 9 start-page: 4360 year: 2014 end-page: 4372 ident: b0325 article-title: Topological pattern discovery and feature extraction for fraudulent financial reporting publication-title: Expert Systems with Applications – volume: 35 start-page: 1721 year: 2008 end-page: 1732 ident: b0580 article-title: Real-time credit card fraud detection using computational intelligence publication-title: Expert Systems with Applications – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0170 article-title: Support-vector networks publication-title: Machine Learning – reference: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Networks. – volume: 50 start-page: 602 year: 2011 end-page: 613 ident: b0090 article-title: Data mining for credit card fraud: A comparative study publication-title: Decision Support Systems – reference: National Health Care Anti-Fraud Association. (2018). – volume: 50 start-page: 559 year: 2011 end-page: 569 ident: b0515 article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature publication-title: Decision Support Systems – reference: Doersch, C. (2016). – reference: Coimbatore, India. – year: 2011 ident: b0605 article-title: Contractive Auto-Encoders: Explicit Invariance During Feature Extraction publication-title: 28th International Conference on Machine Learning – volume: 32 start-page: 568 year: 2020 end-page: 575 ident: b0680 article-title: Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection publication-title: Journal of King Saud University - Computer and Information Sciences – reference: Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. – year: 2001 ident: b0660 article-title: Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model – reference: Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental Perspectives on Learning from Imbalanced Data. – volume: 2 start-page: 88 year: 2012 end-page: 92 ident: b0190 article-title: Credit card fraud detection using hidden markov model publication-title: International Journal of Soft Computing and Engineering – reference: Moschini, G., Houssou, R., Bovay, J., & Robert-Nicoud, S. (2020). – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b0770 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – reference: University of California, Irvine. (2000). – reference: San Francisco, CA. – year: 1997 ident: b0025 article-title: CARDWATCH: A neural network based databased mining system for credit card fraud detection – reference: Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. – reference: Targu Mures, Romania. – volume: 6 start-page: 1 year: 2004 end-page: 6 ident: b0150 article-title: Editorial: Special issue on learning from imbalanced data sets publication-title: ACM SIGKDD Explorations Newsletter – reference: Retrieved Dec. 22, 2020, from – reference: Dehradun, India. – reference: Grenada, Spain. – volume: 13 start-page: 329 year: 1997 end-page: 336 ident: b0300 article-title: Application of neural networks to detection of medical fraud publication-title: Expert Systems with Applications – reference: Federal Bureau of Investigation. (2011). – reference: Tehran, Iran. – volume: 1 start-page: 32 year: 2011 end-page: 38 ident: b0545 article-title: Credit card fraud detection using neural network publication-title: International Journal of Soft Computing and Engineering – reference: Kingma, D. P., & Ba, J. (2014). – reference: Corvalis, OR. – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: b0260 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Computation – reference: Yunnan, China. – reference: Ridgeway, G., Madigan, D., & Richardson, T. (1998). Interpretable Boosted Naïve Bayes Classification. – volume: 74 start-page: 406 year: 2018 end-page: 421 ident: b0205 article-title: A comparative evaluation of outlier detection algorithms: Experiments and analyses publication-title: Pattern Recognition – reference: Retrieved Dec. 13, 2020, from – reference: Retrieved Dec. 5, 2020, from – year: 2011 ident: b0625 article-title: Detecting Credit Card Fraud by Decision Trees and Support Vector Machines publication-title: Hong Kong – year: 1998 ident: b0415 article-title: Convolutional networks for images, speech, and time series publication-title: In – volume: 8 start-page: 937 year: 2018 end-page: 953 ident: b0010 article-title: A survey of machine-learning and nature-inspired based credit card fraud detection techniques publication-title: International Journal of System Assurance Engineering and Management – reference: Renström, M., & Holmsten, T. (2018). – volume: 9 start-page: 307 year: 2012 end-page: 323 ident: b0650 article-title: Outlier detection: Applications and techniques publication-title: International Journal of Computer Science – year: 2018 ident: b0835 article-title: A model based on convolutional neural network for online transaction fraud detection – reference: Chen, J., Shen, Y., & Ali, R. (2018). Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network. – volume: 479 start-page: 448 year: 2019 end-page: 455 ident: b0220 article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection publication-title: Information Sciences – volume: 42 start-page: 2510 year: 2015 end-page: 2516 ident: b0460 article-title: Detecting credit card fraud by modified fisher discriminant analysis publication-title: Expert Systems with Applications – reference: Long Beach, CA. – reference: Chandigarh, India. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b0145 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research – volume: 78 start-page: 1464 year: 1990 end-page: 1480 ident: b0375 article-title: The self-organizing map publication-title: Proceedings of the IEEE – reference: Di Mattia, F., Galeone, P., De Simoni, M., & Ghelfi, E. (2019). – volume: 5 start-page: 37 year: 2008 end-page: 48 ident: b0665 article-title: Credit card fraud detection using hidden markov model publication-title: IEEE Transactions on Dependable and Secure Computing – reference: KPMG. (2012). – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b0815 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Computation – reference: Behera, T. K., & Panigrahi, S. (2015). Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network. – reference: Beijing, China. – volume: 37 start-page: 368 year: 2015 end-page: 377 ident: b0685 article-title: A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance publication-title: Engineering Applications of Artificial Intelligence – reference: Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. – reference: Kou, Y., Lu, C.-T., Sirwongwattana, S., & Huang, Y.-P. (2004). Survey of Fraud Detection Techniques. – reference: Phuket, Thailand. – reference: Machine Learning Group. (2017). – reference: Retrieved from arXiv:1901.03407. – volume: 190 year: 2020 ident: b0780 article-title: adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection publication-title: Knowledge-Based Systems – volume: 57 start-page: 47 year: 2016 end-page: 66 ident: b0790 article-title: Intelligent financial fraud detection: A comprehensive review publication-title: Computers & Security – volume: 10 start-page: 170 year: 2007 end-page: 179 ident: b0255 article-title: A framework for data mining-based anti-money laundering research publication-title: Journal of Money Laundering Control – volume: 11 start-page: 1099 year: 2011 end-page: 1108 ident: b0635 article-title: Thermal anomalies detection before strong earthquakes (M >6.0) using interquartile, wavelet and Kalman filter methods publication-title: Natural Hazards and Earth System Sciences – volume: 4 start-page: 57 year: 2000 end-page: 68 ident: b0175 article-title: Credit card fraud and detection techniques: A review publication-title: Banks and Bank Systems – reference: Dissertation. – reference: Fujimaki, R., Yairi, T., & Machida, K. (2005). An approach to spacecraft anomaly detection problem using kernel feature space. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0080 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: . – reference: Rtayli, N., & Enneya, N. (2020). Selection Features and Support Vector Machine for Credit Card Risk Identification. – reference: Glasgow, UK. – volume: 18 start-page: 304 year: 2006 end-page: 319 ident: b0800 article-title: Enhancing data analysis with noise removal publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 46 start-page: 3507 year: 2013 end-page: 3518 ident: b0390 article-title: One-class classification with Gaussian processes publication-title: Pattern Recognition – reference: Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. – volume: 1 year: 2020 ident: b0540 article-title: Deep learning for anomaly detection: A review publication-title: ACM Computing Surveys – reference: Retrieved Dec. 29, 2020, from – reference: Heryadi, Y., & Warnars, H. L. (2017). Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM. – reference: Anaheim, CA. – reference: Branting, L. K., Reeder, F., Gold, J., & Champney, T. (2016). Graph Analytics for Healthcare Fraud Risk Estimation. – start-page: 83 year: 2018 end-page: 136 ident: b0475 article-title: Feedforward Neural Networks publication-title: Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks – volume: 91 start-page: 235 year: 2018 end-page: 251 ident: b0610 article-title: Sequential fraud detection for prepaid cards using hidden Markov model divergence publication-title: Expert Systems with Applications – volume: 6 start-page: 62 year: 2011 end-page: 68 ident: b0425 article-title: Research on credit card fraud detection model based on class weighted support vector machine publication-title: Journal of Convergence Information Technology – volume: 6 start-page: 50 year: 2004 end-page: 59 ident: b0555 article-title: June). Minority report in fraud detection: Classification of skewed data publication-title: ACM SIGKDD Explorations Newsletter – reference: Retrieved from arXiv:1606.05908. – reference: Sweers, T., Heskes, T., & Krijthe, J. (2018). – volume: 4 start-page: 720 year: 1992 end-page: 736 ident: b0450 article-title: The evidence framework applied to classification networks publication-title: Neural Computation – reference: Makhzani, A., & Frey, B. (2014). – reference: Retrieved Dec. 30, 2020, from – reference: Retrieved Dec. 23, 2020, from – reference: Association of Certified Fraud Examiners. (2004). – volume: 41 start-page: 4915 year: 2014 end-page: 4928 ident: b0570 article-title: Learned lessons in credit card fraud detection from a practitioner perspective publication-title: Expert Systems with Applications – volume: 100 start-page: 234 year: 2018 end-page: 245 ident: b0345 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Systems with Applications – reference: Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. – reference: Retrieved from arXiv:1906.11632. – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: b0495 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks – reference: Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud detection. – volume: 295 start-page: 18 year: 2015 end-page: 32 ident: b0210 article-title: The application of social network analysis algorithms in a system supporting money laundering detection publication-title: Information Sciences – reference: Retrieved from arXiv:1411.1784. – year: 1993 ident: b0225 article-title: Statistical analysis of circular data – reference: Vancouver, BC. – year: 1994 ident: b0265 article-title: Credit Card Fraud Detection with a Neural-Network publication-title: 27th International Conference on System Sciences – reference: Zhang, C., Cheng, X., Liu, J., & Liu, G. (2018). Deep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion Status. – volume: 5 start-page: 363 year: 2012 end-page: 387 ident: b0845 article-title: A survey on unsupervised outlier detection in high-dimensional numerical data publication-title: Statistical Analysis and Data Mining – volume: 17 start-page: 235 year: 2002 end-page: 255 ident: b0110 article-title: Statistical fraud detection: A review publication-title: Statistical Science – volume: 36 start-page: 3630 year: 2009 end-page: 3640 ident: b0630 article-title: Association rules applied to credit card fraud detection publication-title: Expert Systems with Applications – year: 2013 ident: b0015 article-title: An Introductory Study on Time Series Modeling and Forecasting publication-title: Retrieved from – reference: New York, NY. – reference: Association of Certified Fraud Examiners. (2019). – reference: Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit Card Fraud Detection Using Convolutional Neural Networks. – volume: 8 start-page: 149841 year: 2020 end-page: 149853 ident: b0730 article-title: Using variational auto encoding in credit card fraud detection publication-title: IEEE Access – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: b0100 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – year: 1980 ident: b0290 article-title: Identification of outliers – volume: 105 start-page: 87 year: 2018 end-page: 95 ident: b0785 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decision Support Systems – reference: The Nilson Report. (2020). – volume: 83 start-page: 2481 year: 2003 end-page: 2497 ident: b0470 article-title: Novelty detection: A review—part 1: Statistical approaches publication-title: Signal Processing – volume: 26 start-page: 2250 year: 2014 end-page: 2267 ident: b0280 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Retrieved from – reference: Retrieved from arXiv:1511.08458. – reference: Sundarkumar, G. G., Ravi, V., & Siddeshwar, V. (2015). One-class support vector machine based undersampling: Application to churn prediction and insurance fraud detection. – reference: Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. – reference: Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. A., . . . Satoh, S. (2020). – reference: Retrieved from arXiv:1908.11553. – reference: Retrieved from arXiv:1412.6980. – volume: 6 start-page: 394 year: 2018 end-page: 400 ident: b0535 article-title: Using Isolation Forest in anomaly detection: The case of credit card transactions publication-title: Periodicals of Engineering and Natural Sciences – reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0085 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computers & Geosciences – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0745 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – reference: Charitou, C., Garcez, A. d., & Dragicevic, S. (2020). Semi-supervised GANs for Fraud Detection. – volume: 70 start-page: 324 year: 2014 end-page: 334 ident: b0525 article-title: Fraud detection using self-organizing map visualizing the user profiles publication-title: Knowledge-Based Systems – volume: 105 start-page: 175 year: 2018 end-page: 181 ident: b0270 article-title: End-to-end neural network architecture for fraud scoring in card payments publication-title: Pattern Recognition Letters – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: b0585 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – reference: Dallas, TX. – reference: Tao, H., Zhixin, L., & Xiaodong, S. (2012). Insurance Fraud Identification Research Based on Fuzzy Support Vector Machine with Dual Membership. – reference: Mirza, M., & Osindero, S. (2014). – reference: Colombo, Sri Lanka. – reference: Hong Kong, China. – reference: Sydney, Australia. Retrieved from arXiv:1701.07875. – volume: 38 start-page: 1039 year: 2011 end-page: 1052 ident: b0675 article-title: An expert system for detecting automobile insurance fraud using social network analysis publication-title: Expert Systems with Applications – reference: O'Shea, K., & Nash, R. (2015). – volume: 2 start-page: 58 year: 2016 end-page: 75 ident: b0520 article-title: Auto insurance fraud detection using unsupervised spectral ranking for anomaly publication-title: The Journal of Finance and Data Science – volume: 133 year: 2020 ident: b0565 article-title: Fraud detection: A systematic literature review of graph-based anomaly detection approaches publication-title: Decision Support Systems – reference: Sanya, China. – reference: Washington, DC. – reference: Wang, C., Wang, Y., Ye, Z., Yan, L., Cai, W., & Pan, S. (2018). Credit Card Fraud Detection Based on Whale Algorithm Optimized BP Neural Network. – volume: 102 start-page: 393 year: 2020 end-page: 402 ident: b0435 article-title: Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs publication-title: Future Generation Computer Systems – reference: Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). – reference: American Institute of CPAs. – volume: 33 start-page: 1286 year: 2019 end-page: 1293 ident: b0840 article-title: One-class adversarial nets for fraud detection publication-title: AAAI – reference: Retrieved from arXiv:1904.09135. – volume: 11 start-page: 13 year: 2018 end-page: 26 ident: b0670 article-title: Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud publication-title: Decision Support Systems – year: 2013 ident: b0020 article-title: Outlier analysis – reference: Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. – volume: 41 start-page: 1 year: 2009 end-page: 58 ident: b0135 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys – volume: 9 start-page: 1 year: 2009 end-page: 12 ident: b0720 article-title: Dimensionality reduction based on rough set theory: A review publication-title: Applied Soft Computing – volume: 2 start-page: 155 year: 2001 end-page: 173 ident: b0715 article-title: Uniform object generation for optimizing one-class classifiers publication-title: Journal of Machine Learning Research – volume: 27 start-page: 2672 year: 2014 end-page: 2680 ident: b0275 article-title: Generative Adversarial Nets publication-title: Advances in Neural Information Processing Systems – reference: Zareapoor, M., R, S. K., & Alam, M. A. (2012). Analysis of credit card fraud detection techniques: based on certain design criteria. – reference: An, J., & Cho, S. (2015). – year: 2004 ident: b0645 article-title: Reference guide to anti-money laundering and combating the financing of terrorism – reference: Tanaka, F. H., & Aranha, C. (2019). – reference: Edinburgh, UK. – reference: Retrieved from arXiv:2010.06479. – reference: Association of Certified Fraud Examiners. (2020). – reference: Keller, F., Muller, E., & Bohm, K. (2012). HiCS: High Contrast Subspaces for Density-Based Outlier Ranking. – volume: 68 start-page: 90 year: 2016 end-page: 113 ident: b0005 article-title: Fraud detection system: A survey publication-title: Journal of Network and Computer Applications – reference: Lille, France. – volume: 32 start-page: 995 year: 2007 end-page: 1003 ident: b0370 article-title: Data Mining techniques for the detection of fraudulent financial statements publication-title: Expert Systems with Applications – reference: Barcelona, Spain. – volume: 2124 start-page: 81 year: 2009 end-page: 88 ident: b0735 article-title: State dependence in lane-changing models publication-title: Transportation Research Record: Journal of the Transportation Research Board – reference: He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. – reference: Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagão, T. (2016). Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering. – year: 2002 ident: b0455 article-title: Credit card fraud detection using bayesian and neural networks – year: 2000 ident: b0655 article-title: License to steal: How fraud bleeds America’s health care system – volume: 51 start-page: 134 year: 2016 end-page: 142 ident: b0065 article-title: Feature engineering strategies for credit card fraud detection publication-title: Expert Systems with Applications – volume: 22 start-page: 85 year: 2004 end-page: 126 ident: b0320 article-title: A survey of outlier detection methodologies publication-title: Artificial Intelligence Review – reference: Retrieved from arXiv:2007.13559v2. – ident: 10.1016/j.eswa.2021.116429_b0445 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.eswa.2021.116429_b0085 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computers & Geosciences doi: 10.1016/0098-3004(84)90020-7 – ident: 10.1016/j.eswa.2021.116429_b0365 – ident: 10.1016/j.eswa.2021.116429_b0380 – volume: 2 start-page: 155 year: 2001 ident: 10.1016/j.eswa.2021.116429_b0715 article-title: Uniform object generation for optimizing one-class classifiers publication-title: Journal of Machine Learning Research – ident: 10.1016/j.eswa.2021.116429_b0030 – ident: 10.1016/j.eswa.2021.116429_b0775 doi: 10.1109/ICCSE.2018.8468855 – volume: 37 start-page: 368 year: 2015 ident: 10.1016/j.eswa.2021.116429_b0685 article-title: A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.09.019 – ident: 10.1016/j.eswa.2021.116429_b0050 – volume: 41 start-page: 4915 issue: 10 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0570 article-title: Learned lessons in credit card fraud detection from a practitioner perspective publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.02.026 – year: 2004 ident: 10.1016/j.eswa.2021.116429_b0645 – volume: 29 start-page: 653 issue: 3 year: 2005 ident: 10.1016/j.eswa.2021.116429_b0755 article-title: Auto claim fraud detection using Bayesian learning neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.030 – ident: 10.1016/j.eswa.2021.116429_b0560 – volume: 9 start-page: 307 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.116429_b0650 article-title: Outlier detection: Applications and techniques publication-title: International Journal of Computer Science – ident: 10.1016/j.eswa.2021.116429_b0130 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: 10.1016/j.eswa.2021.116429_b0375 article-title: The self-organizing map publication-title: Proceedings of the IEEE doi: 10.1109/5.58325 – volume: 50 start-page: 602 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0090 article-title: Data mining for credit card fraud: A comparative study publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.08.008 – ident: 10.1016/j.eswa.2021.116429_b0420 doi: 10.1109/ICDM.2008.17 – volume: 4 start-page: 720 issue: 5 year: 1992 ident: 10.1016/j.eswa.2021.116429_b0450 article-title: The evidence framework applied to classification networks publication-title: Neural Computation doi: 10.1162/neco.1992.4.5.720 – volume: 26 start-page: 2250 issue: 9 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0280 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.184 – volume: 6 start-page: 62 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0425 article-title: Research on credit card fraud detection model based on class weighted support vector machine publication-title: Journal of Convergence Information Technology doi: 10.4156/jcit.vol6.issue1.8 – ident: 10.1016/j.eswa.2021.116429_b0550 doi: 10.1109/ICMLA.2016.0172 – ident: 10.1016/j.eswa.2021.116429_b0230 – ident: 10.1016/j.eswa.2021.116429_b0385 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.eswa.2021.116429_b0770 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – ident: 10.1016/j.eswa.2021.116429_b0360 – ident: 10.1016/j.eswa.2021.116429_b0725 – year: 2000 ident: 10.1016/j.eswa.2021.116429_b0640 – volume: 4 start-page: 57 issue: 2 year: 2000 ident: 10.1016/j.eswa.2021.116429_b0175 article-title: Credit card fraud and detection techniques: A review publication-title: Banks and Bank Systems – volume: 105 start-page: 87 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0785 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.11.001 – volume: 32 start-page: 995 issue: 4 year: 2007 ident: 10.1016/j.eswa.2021.116429_b0370 article-title: Data Mining techniques for the detection of fraudulent financial statements publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.02.016 – ident: 10.1016/j.eswa.2021.116429_b0245 doi: 10.1145/1081870.1081917 – ident: 10.1016/j.eswa.2021.116429_b0690 doi: 10.1109/ICCIC.2015.7435726 – volume: 8 start-page: 937 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0010 article-title: A survey of machine-learning and nature-inspired based credit card fraud detection techniques publication-title: International Journal of System Assurance Engineering and Management – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0540 article-title: Deep learning for anomaly detection: A review publication-title: ACM Computing Surveys – volume: 133 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0565 article-title: Fraud detection: A systematic literature review of graph-based anomaly detection approaches publication-title: Decision Support Systems doi: 10.1016/j.dss.2020.113303 – year: 2013 ident: 10.1016/j.eswa.2021.116429_b0015 article-title: An Introductory Study on Time Series Modeling and Forecasting publication-title: Retrieved from – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: 10.1016/j.eswa.2021.116429_b0745 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 51 start-page: 134 year: 2016 ident: 10.1016/j.eswa.2021.116429_b0065 article-title: Feature engineering strategies for credit card fraud detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.12.030 – year: 2011 ident: 10.1016/j.eswa.2021.116429_b0605 article-title: Contractive Auto-Encoders: Explicit Invariance During Feature Extraction – ident: 10.1016/j.eswa.2021.116429_b0695 – volume: 22 start-page: 85 issue: 2 year: 2004 ident: 10.1016/j.eswa.2021.116429_b0320 article-title: A survey of outlier detection methodologies publication-title: Artificial Intelligence Review doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume: 57 start-page: 47 year: 2016 ident: 10.1016/j.eswa.2021.116429_b0790 article-title: Intelligent financial fraud detection: A comprehensive review publication-title: Computers & Security doi: 10.1016/j.cose.2015.09.005 – year: 2002 ident: 10.1016/j.eswa.2021.116429_b0700 – ident: 10.1016/j.eswa.2021.116429_b0340 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2021.116429_b0480 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 167 start-page: 254 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0490 article-title: An autoencoder based model for detecting fraudulent credit card transaction publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.03.219 – volume: 2124 start-page: 81 issue: 1 year: 2009 ident: 10.1016/j.eswa.2021.116429_b0735 article-title: State dependence in lane-changing models publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/2124-08 – volume: 17 start-page: 235 issue: 3 year: 2002 ident: 10.1016/j.eswa.2021.116429_b0110 article-title: Statistical fraud detection: A review publication-title: Statistical Science doi: 10.1214/ss/1042727940 – ident: 10.1016/j.eswa.2021.116429_b0615 doi: 10.1016/j.promfg.2020.05.012 – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 10.1016/j.eswa.2021.116429_b0815 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Computation doi: 10.1162/neco_a_01199 – volume: 105 start-page: 175 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0270 article-title: End-to-end neural network architecture for fraud scoring in card payments publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.08.024 – volume: 9 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.eswa.2021.116429_b0720 article-title: Dimensionality reduction based on rough set theory: A review publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.05.006 – year: 1997 ident: 10.1016/j.eswa.2021.116429_b0025 – volume: 91 start-page: 235 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0610 article-title: Sequential fraud detection for prepaid cards using hidden Markov model divergence publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.043 – ident: 10.1016/j.eswa.2021.116429_b0240 doi: 10.1007/978-3-319-46675-0_53 – ident: 10.1016/j.eswa.2021.116429_b0600 – ident: 10.1016/j.eswa.2021.116429_b0805 doi: 10.1109/CSO.2011.213 – volume: 35 start-page: 1721 issue: 4 year: 2008 ident: 10.1016/j.eswa.2021.116429_b0580 article-title: Real-time credit card fraud detection using computational intelligence publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.093 – volume: 16 start-page: 612 issue: 5 year: 2004 ident: 10.1016/j.eswa.2021.116429_b0760 article-title: A case study of applying boosting naive bayes to claim fraud diagnosis publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2004.1277822 – volume: 6 start-page: 394 issue: 2 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0535 article-title: Using Isolation Forest in anomaly detection: The case of credit card transactions publication-title: Periodicals of Engineering and Natural Sciences doi: 10.21533/pen.v6i2.533 – ident: 10.1016/j.eswa.2021.116429_b0750 doi: 10.1145/1273496.1273614 – ident: 10.1016/j.eswa.2021.116429_b0355 doi: 10.1109/ICDE.2012.88 – ident: 10.1016/j.eswa.2021.116429_b0430 – volume: 2 start-page: 58 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.116429_b0520 article-title: Auto insurance fraud detection using unsupervised spectral ranking for anomaly publication-title: The Journal of Finance and Data Science doi: 10.1016/j.jfds.2016.03.001 – year: 1993 ident: 10.1016/j.eswa.2021.116429_b0225 – volume: 8 start-page: 58546 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0185 article-title: A secure AI-driven architecture for automated insurance systems: Fraud detection and risk measurement publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983300 – volume: 20 issue: 6 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0400 article-title: Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders publication-title: Sensors doi: 10.3390/s20061546 – ident: 10.1016/j.eswa.2021.116429_b0410 doi: 10.1145/1081870.1081891 – ident: 10.1016/j.eswa.2021.116429_b0120 doi: 10.1109/ASONAM.2016.7752336 – volume: 18 start-page: 48 year: 2006 ident: 10.1016/j.eswa.2021.116429_b0825 article-title: Credit card fraud detection using self-organizing maps publication-title: Information and Security – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.eswa.2021.116429_b0135 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys doi: 10.1145/1541880.1541882 – volume: 9 start-page: 4360 issue: 41 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0325 article-title: Topological pattern discovery and feature extraction for fraudulent financial reporting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.01.012 – volume: 46 start-page: 3507 issue: 12 year: 2013 ident: 10.1016/j.eswa.2021.116429_b0390 article-title: One-class classification with Gaussian processes publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.06.005 – ident: 10.1016/j.eswa.2021.116429_b0215 – volume: 13 start-page: 329 issue: 4 year: 1997 ident: 10.1016/j.eswa.2021.116429_b0300 article-title: Application of neural networks to detection of medical fraud publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(97)00045-6 – ident: 10.1016/j.eswa.2021.116429_b0705 – ident: 10.1016/j.eswa.2021.116429_b0045 – volume: 31 start-page: 56 issue: 1 year: 2006 ident: 10.1016/j.eswa.2021.116429_b0810 article-title: A process-mining framework for the detection of healthcare fraud and abuse publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.003 – volume: 69 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.eswa.2021.116429_b0180 article-title: Insurance fraud publication-title: The Journal of Risk and Insurance doi: 10.1111/1539-6975.00026 – volume: 32 start-page: 568 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0680 article-title: Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2017.09.010 – year: 1994 ident: 10.1016/j.eswa.2021.116429_b0265 article-title: Credit Card Fraud Detection with a Neural-Network – volume: 10 start-page: 170 issue: 2 year: 2007 ident: 10.1016/j.eswa.2021.116429_b0255 article-title: A framework for data mining-based anti-money laundering research publication-title: Journal of Money Laundering Control doi: 10.1108/13685200710746875 – volume: 42 start-page: 2510 issue: 5 year: 2015 ident: 10.1016/j.eswa.2021.116429_b0460 article-title: Detecting credit card fraud by modified fisher discriminant analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.10.037 – ident: 10.1016/j.eswa.2021.116429_b0040 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.eswa.2021.116429_b0145 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – ident: 10.1016/j.eswa.2021.116429_b0195 – ident: 10.1016/j.eswa.2021.116429_b0095 doi: 10.1109/STARTUP.2016.7583942 – volume: 27 start-page: 351 issue: 5 year: 2013 ident: 10.1016/j.eswa.2021.116429_b0305 article-title: One-class support vector machines approach to anomaly detection publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2013.785791 – ident: 10.1016/j.eswa.2021.116429_b0830 doi: 10.1155/2018/8676387 – year: 1998 ident: 10.1016/j.eswa.2021.116429_b0415 article-title: Convolutional networks for images, speech, and time series – year: 2001 ident: 10.1016/j.eswa.2021.116429_b0660 – ident: 10.1016/j.eswa.2021.116429_b0200 – volume: 102 start-page: 393 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0435 article-title: Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.08.029 – volume: 2 start-page: 88 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.116429_b0190 article-title: Credit card fraud detection using hidden markov model publication-title: International Journal of Soft Computing and Engineering – ident: 10.1016/j.eswa.2021.116429_b0820 doi: 10.5120/8184-1538 – ident: 10.1016/j.eswa.2021.116429_b0105 – year: 1980 ident: 10.1016/j.eswa.2021.116429_b0290 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.eswa.2021.116429_b0315 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.eswa.2021.116429_b0125 doi: 10.1145/342009.335388 – volume: 69 start-page: 373 issue: 3 year: 2002 ident: 10.1016/j.eswa.2021.116429_b0765 article-title: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection publication-title: The Journal of Risk and Insurance doi: 10.1111/1539-6975.00023 – start-page: 231 year: 2009 ident: 10.1016/j.eswa.2021.116429_b0795 article-title: Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time Series with LSTM Recurrent Neural Networks – volume: 295 start-page: 18 year: 2015 ident: 10.1016/j.eswa.2021.116429_b0210 article-title: The application of social network analysis algorithms in a system supporting money laundering detection publication-title: Information Sciences doi: 10.1016/j.ins.2014.10.015 – volume: 33 start-page: 1286 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.116429_b0840 article-title: One-class adversarial nets for fraud detection publication-title: AAAI doi: 10.1609/aaai.v33i01.33011286 – volume: 3 start-page: 993 year: 2003 ident: 10.1016/j.eswa.2021.116429_b0100 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – year: 2002 ident: 10.1016/j.eswa.2021.116429_b0455 – volume: 5 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.eswa.2021.116429_b0665 article-title: Credit card fraud detection using hidden markov model publication-title: IEEE Transactions on Dependable and Secure Computing doi: 10.1109/TDSC.2007.70228 – ident: 10.1016/j.eswa.2021.116429_b0530 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.eswa.2021.116429_b0495 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80056-5 – volume: 100 start-page: 234 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0345 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.037 – volume: 16 start-page: 110 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.116429_b0620 article-title: Survey of clustering based financial fraud detection research publication-title: Informatica Economica – volume: 38 start-page: 1039 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0675 article-title: An expert system for detecting automobile insurance fraud using social network analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.07.143 – volume: 27 start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0275 article-title: Generative Adversarial Nets publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 1099 issue: 4 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0635 article-title: Thermal anomalies detection before strong earthquakes (M >6.0) using interquartile, wavelet and Kalman filter methods publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-11-1099-2011 – ident: 10.1016/j.eswa.2021.116429_b0710 – ident: 10.1016/j.eswa.2021.116429_b0075 doi: 10.1109/ICACCE.2015.33 – volume: 83 start-page: 2481 issue: 12 year: 2003 ident: 10.1016/j.eswa.2021.116429_b0470 article-title: Novelty detection: A review—part 1: Statistical approaches publication-title: Signal Processing doi: 10.1016/j.sigpro.2003.07.018 – year: 2000 ident: 10.1016/j.eswa.2021.116429_b0655 – ident: 10.1016/j.eswa.2021.116429_b0285 doi: 10.1186/s12859-020-03936-1 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.eswa.2021.116429_b0170 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1023/A:1022627411411 – volume: 479 start-page: 448 year: 2019 ident: 10.1016/j.eswa.2021.116429_b0220 article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection publication-title: Information Sciences doi: 10.1016/j.ins.2017.12.030 – start-page: 83 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0475 article-title: Feedforward Neural Networks – volume: 18 start-page: 304 issue: 3 year: 2006 ident: 10.1016/j.eswa.2021.116429_b0800 article-title: Enhancing data analysis with noise removal publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.46 – ident: 10.1016/j.eswa.2021.116429_b0060 – volume: 1 start-page: 32 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0545 article-title: Credit card fraud detection using neural network publication-title: International Journal of Soft Computing and Engineering – volume: 36 start-page: 3630 issue: 2 year: 2009 ident: 10.1016/j.eswa.2021.116429_b0630 article-title: Association rules applied to credit card fraud detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.001 – ident: 10.1016/j.eswa.2021.116429_b0395 – year: 2018 ident: 10.1016/j.eswa.2021.116429_b0835 – volume: 68 start-page: 90 year: 2016 ident: 10.1016/j.eswa.2021.116429_b0005 article-title: Fraud detection system: A survey publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2016.04.007 – ident: 10.1016/j.eswa.2021.116429_b0595 doi: 10.1145/2939672.2939778 – volume: 74 start-page: 406 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0205 article-title: A comparative evaluation of outlier detection algorithms: Experiments and analyses publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.09.037 – volume: 5 start-page: 363 issue: 5 year: 2012 ident: 10.1016/j.eswa.2021.116429_b0845 article-title: A survey on unsupervised outlier detection in high-dimensional numerical data publication-title: Statistical Analysis and Data Mining doi: 10.1002/sam.11161 – volume: 11 start-page: 13 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0670 article-title: Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud publication-title: Decision Support Systems doi: 10.1016/j.dss.2018.04.001 – volume: 46 start-page: Article 44 issue: 4 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0250 article-title: A survey on concept drift adaptation publication-title: ACM Computing Surveys doi: 10.1145/2523813 – volume: 9 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.116429_b0575 article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2018.090103 – volume: 190 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0780 article-title: adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105187 – volume: 70 start-page: 324 year: 2014 ident: 10.1016/j.eswa.2021.116429_b0525 article-title: Fraud detection using self-organizing map visualizing the user profiles publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.07.008 – volume: 29 start-page: 131 issue: 2–3 year: 1997 ident: 10.1016/j.eswa.2021.116429_b0235 article-title: Bayesian network classifiers publication-title: Machine Learning doi: 10.1023/A:1007465528199 – volume: 53 start-page: Article 55 issue: 3 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0115 article-title: Outlier Detection: Methods, Models, and Classification publication-title: ACM Computing Surveys – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.eswa.2021.116429_b0585 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – ident: 10.1016/j.eswa.2021.116429_b0310 doi: 10.1109/CYBERNETICSCOM.2017.8311689 – year: 2011 ident: 10.1016/j.eswa.2021.116429_b0625 article-title: Detecting Credit Card Fraud by Decision Trees and Support Vector Machines – ident: 10.1016/j.eswa.2021.116429_b0505 – ident: 10.1016/j.eswa.2021.116429_b0350 doi: 10.1109/KBEI.2017.8324876 – volume: 8 start-page: 149841 year: 2020 ident: 10.1016/j.eswa.2021.116429_b0730 article-title: Using variational auto encoding in credit card fraud detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015600 – ident: 10.1016/j.eswa.2021.116429_b0335 – year: 1996 ident: 10.1016/j.eswa.2021.116429_b0510 – ident: 10.1016/j.eswa.2021.116429_b0465 – ident: 10.1016/j.eswa.2021.116429_b0740 – ident: 10.1016/j.eswa.2021.116429_b0160 doi: 10.1145/2939672.2939785 – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.eswa.2021.116429_b0260 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Computation doi: 10.1162/089976600300015015 – ident: 10.1016/j.eswa.2021.116429_b0155 doi: 10.1109/IEMCON.2018.8614815 – ident: 10.1016/j.eswa.2021.116429_b0440 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.eswa.2021.116429_b0080 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – ident: 10.1016/j.eswa.2021.116429_b0500 doi: 10.3390/engproc2021005056 – volume: 6 start-page: 50 issue: 1 year: 2004 ident: 10.1016/j.eswa.2021.116429_b0555 article-title: June). Minority report in fraud detection: Classification of skewed data publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/1007730.1007738 – ident: 10.1016/j.eswa.2021.116429_b0035 – ident: 10.1016/j.eswa.2021.116429_b0295 – ident: 10.1016/j.eswa.2021.116429_b0140 doi: 10.1109/IJCNN48605.2020.9206844 – volume: 6 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.eswa.2021.116429_b0150 article-title: Editorial: Special issue on learning from imbalanced data sets publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/1007730.1007733 – ident: 10.1016/j.eswa.2021.116429_b0590 – ident: 10.1016/j.eswa.2021.116429_b0485 – ident: 10.1016/j.eswa.2021.116429_b0055 – volume: 67 start-page: 49 year: 2017 ident: 10.1016/j.eswa.2021.116429_b0165 article-title: Using social network analysis to prevent money laundering publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.09.029 – ident: 10.1016/j.eswa.2021.116429_b0330 – volume: 50 start-page: 559 issue: 3 year: 2011 ident: 10.1016/j.eswa.2021.116429_b0515 article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.08.006 – year: 2013 ident: 10.1016/j.eswa.2021.116429_b0020 |
SSID | ssj0017007 |
Score | 2.7168367 |
SecondaryResourceType | review_article |
Snippet | •This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised... With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116429 |
SubjectTerms | Algorithms Anomalies Anomaly detection Artificial intelligence Credit card fraud Crime Deep learning Economic development Financial fraud Fraud Index Terms — Anomaly Insider trading Insurance fraud Machine learning Money laundering Outlier Outlier detection Securities and commodities fraud |
Title | Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances |
URI | https://dx.doi.org/10.1016/j.eswa.2021.116429 https://www.proquest.com/docview/2639727402 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qTNN-stbmY6pbBc32C2kaQuT2Q3XIV78232vTQYK7uCxJQnlNfnee8n3vhByxXPOVYgbVTyJHAE-B3AwYo6nFMqd6DBMsMB5OPIHE_E09aYN0rO1MEirNNhfY3qF1uZN11izu5zNui8QHIA7hNSOVZovqAkqRICz_OZrQ_NA-bmg1tsLHGxtCmdqjle2-kDtIZcBckAgHv3lnH7BdOV7-gdkzwSNNK6_65A0suKI7NsLGahZn8dk2Lf6GRQC0nV6R2Nab_7TRU4h039T8096n5UV_6qgYyvguqKqSKEpUjVpXNMCVidk0n8Y9waOuS_B0YKHpaNdheI8Ls8j5Udcea5KUoAvplWoeAqRloZ0FDy41kHiqyjSrtAQ4aSeVoFWjJ-SZrEosjNCU19zkSlIh3CLkHGVpzlLPAHDJfAQtAizhpLaiInjnRZzaVljrxKNK9G4sjZui1xv-ixrKY2trT1rf_ljQkjA-q392vZnSbMcV9LF40vIv2_d838Oe0F2XSx8qKiObdIs39fZJYQjZdKp5luH7MSPz4PRN77S3S4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH6Z20Ev_jZOp_bgzZANCgO8kenC3I-LW7JbUwokM5MtwmL8732lZYkm7uAR0jbk0X7ve-17XwHuaUop9-RGFY18w0afgzjom4bDuZQ7EZ4XyQLn8aQbzuyXuTOvQa-qhZFplRr7FaaXaK3ftLU12-vFov2K5ADdIYZ2Zqn5Yu9BQ6pTOXVoBINhONkeJrgdVTWN7Q3ZQdfOqDSvJP-U8kOWieCBXNz_yz_9QurS_fSP4VDzRhKoTzuBWpKdwlF1JwPRS_QMxv1KQoMgJ93EjyQgav-frFKCwf47X36Rp6QoU7AyMq00XHPCsxibymxNEqjMgPwcZv3naS809JUJhrCpVxjC4lKfx6Kpz7s-5Y7FoxgRzBTc4zRGsiUwIkUnLoQbdbnvC8sWSHJiR3BXcJNeQD1bZcklkLgrqJ1wjIjkLqFJeRqnZuTYOFyED24TzMpQTGg9cXmtxZJViWNvTBqXSeMyZdwmPGz7rJWaxs7WTmV_9mNOMIT7nf1a1c9iekXmzJInmBiCd6yrfw57B_vhdDxio8FkeA0HlqyDKDMfW1AvPjbJDbKTIrrVs-8bYKDf3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Fraud%3A+A+Review+of+Anomaly+Detection+Techniques+and+Recent+Advances&rft.jtitle=Expert+systems+with+applications&rft.au=Hilal%2C+Waleed&rft.au=Gadsden%2C+S+Andrew&rft.au=Yawney%2C+John&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=193&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.116429&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |