Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances

•This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area. With the rise...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 193; p. 116429
Main Authors Hilal, Waleed, Gadsden, S. Andrew, Yawney, John
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area. With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning.
AbstractList With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning.
•This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised learning.•Comprehensive discussion in financial fraud applications.•This survey will form a foundation for future research in the area. With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the current prevention measures in place, many of whom are targeting the financial sector. These crimes include credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques have been intensively studied for this purpose by researchers over the last couple of decades, many of which employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have been the most popular types of models studied in research up until recently. However, supervised learning models are associated with many challenges that have been and can be addressed by semi-supervised and unsupervised learning models proposed in recently published literature. This survey aims to investigate and present a thorough review of the most popular and effective anomaly detection techniques applied to detect financial fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised learning.
ArticleNumber 116429
Author Gadsden, S. Andrew
Hilal, Waleed
Yawney, John
Author_xml – sequence: 1
  givenname: Waleed
  orcidid: 0000-0002-9164-165X
  surname: Hilal
  fullname: Hilal, Waleed
  email: hilalw@mcmaster.ca
  organization: McMaster University, Canada
– sequence: 2
  givenname: S. Andrew
  surname: Gadsden
  fullname: Gadsden, S. Andrew
  email: gadsden@mcmaster.ca
  organization: McMaster University, Canada
– sequence: 3
  givenname: John
  surname: Yawney
  fullname: Yawney, John
  email: john.yawney@adastragrp.com
  organization: Adastra Corporation, Canada
BookMark eNp9kE1LAzEQhoNUsH78AU8Bz7vmY5vsipeiVoWKIPUcxkkWs9RsTbZK_71Z6smDp7m8zzszzzGZhD44Qs45Kznj6rIrXfqGUjDBS85VJZoDMuW1loXSjZyQKWtmuqi4ro7IcUodY1wzpqfkaeEDBPSwposIW3tF5_TFfXn3TfuWzkP_AesdvXWDw8H3ga4cvgf_uXWJQrA5ii4MdG6_colLp-SwhXVyZ7_zhLwu7lY3D8Xy-f7xZr4ssJL1UKAAprUSsm1ANRJmAt6stY4j1CDtTAispa6YQtRvCpoGRYWKCztD0AhcnpCLfe8m9uMtg-n6bQx5pRFKNlpkWOSU2Kcw9ilF15pN9B8Qd4YzM2oznRm1mVGb2WvLUP0HQj_A-PsQwa__R6_3qMuvZ4XRJPQue7E-Zn3G9v4__AevDom4
CitedBy_id crossref_primary_10_3390_pr12020251
crossref_primary_10_1016_j_cose_2023_103344
crossref_primary_10_1038_s41598_024_84863_6
crossref_primary_10_51583_IJLTEMAS_2024_130524
crossref_primary_10_1108_JMLC_07_2024_0120
crossref_primary_10_56294_dm2023109
crossref_primary_10_1016_j_future_2024_107545
crossref_primary_10_1108_JFC_10_2023_0270
crossref_primary_10_1109_MSMC_2023_3236163
crossref_primary_10_1016_j_sigpro_2024_109398
crossref_primary_10_1007_s42979_025_03785_w
crossref_primary_10_54392_irjmt25211
crossref_primary_10_1007_s42488_023_00086_w
crossref_primary_10_3390_info14120647
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1108_JFRA_11_2023_0689
crossref_primary_10_1109_JSAIT_2024_3396079
crossref_primary_10_1007_s12525_024_00746_8
crossref_primary_10_1051_epjconf_202429508022
crossref_primary_10_4108_eetsis_v10i3_3033
crossref_primary_10_7717_peerj_cs_2479
crossref_primary_10_1007_s13042_024_02482_z
crossref_primary_10_1016_j_dsm_2025_01_005
crossref_primary_10_3390_app15010286
crossref_primary_10_1016_j_procs_2022_11_156
crossref_primary_10_1007_s42979_024_02681_z
crossref_primary_10_1016_j_ins_2024_121587
crossref_primary_10_1016_j_knosys_2024_111367
crossref_primary_10_4236_jdaip_2025_131005
crossref_primary_10_1007_s11042_024_18793_w
crossref_primary_10_1007_s44443_025_00021_6
crossref_primary_10_1007_s11416_023_00500_2
crossref_primary_10_1109_TSE_2024_3513413
crossref_primary_10_1002_spy2_500
crossref_primary_10_7240_jeps_1519469
crossref_primary_10_1109_ACCESS_2024_3524908
crossref_primary_10_3390_app14020919
crossref_primary_10_1134_S1810232824010016
crossref_primary_10_3390_computers14040120
crossref_primary_10_1007_s11227_024_06030_y
crossref_primary_10_1016_j_eswa_2023_121533
crossref_primary_10_2478_ijssis_2024_0023
crossref_primary_10_1007_s11042_024_18764_1
crossref_primary_10_1016_j_jobe_2023_106923
crossref_primary_10_1007_s40010_024_00871_1
crossref_primary_10_3390_math10132160
crossref_primary_10_1007_s10994_024_06618_8
crossref_primary_10_1016_j_eswa_2024_124953
crossref_primary_10_3390_app15031356
crossref_primary_10_1109_TEM_2024_3385298
crossref_primary_10_1016_j_jeconc_2025_100127
crossref_primary_10_1186_s40854_023_00470_w
crossref_primary_10_1016_j_aej_2024_10_084
crossref_primary_10_1016_j_health_2023_100134
crossref_primary_10_3390_data9100121
crossref_primary_10_47978_TUS_2024_74_03_019
crossref_primary_10_1016_j_jjimei_2024_100308
crossref_primary_10_1016_j_ins_2022_09_027
crossref_primary_10_1088_2058_9565_ad9177
crossref_primary_10_1109_ACCESS_2025_3532326
crossref_primary_10_1016_j_eswa_2023_122162
crossref_primary_10_1016_j_patcog_2023_110056
crossref_primary_10_1144_geochem2024_009
crossref_primary_10_3390_math10244681
crossref_primary_10_4018_JOEUC_342113
crossref_primary_10_21684_2587_8484_2023_7_2_67_97
crossref_primary_10_1016_j_eswa_2025_126922
crossref_primary_10_1108_K_08_2021_0760
crossref_primary_10_1007_s11416_023_00480_3
crossref_primary_10_1016_j_eswa_2024_124109
crossref_primary_10_24857_rgsa_v18n1_121
crossref_primary_10_1007_s42952_024_00303_1
crossref_primary_10_1007_s10489_024_05545_4
crossref_primary_10_1016_j_eswa_2022_119037
crossref_primary_10_32604_cmc_2023_046051
crossref_primary_10_7717_peerj_cs_2716
crossref_primary_10_7717_peerj_cs_1749
crossref_primary_10_1057_s41599_024_03606_0
crossref_primary_10_1007_s11416_024_00529_x
crossref_primary_10_1109_ACCESS_2023_3239549
crossref_primary_10_1016_j_ins_2024_120286
crossref_primary_10_3390_electronics12010251
crossref_primary_10_1007_s00521_024_10397_7
crossref_primary_10_3389_frai_2024_1466321
crossref_primary_10_1016_j_heliyon_2024_e30045
crossref_primary_10_1360_SSPMA_2024_0471
crossref_primary_10_3390_s24061835
crossref_primary_10_3390_app122312492
crossref_primary_10_3390_app12199637
crossref_primary_10_3390_risks12050074
crossref_primary_10_1016_j_eswa_2024_124339
crossref_primary_10_3389_fenrg_2024_1364456
crossref_primary_10_48084_etasr_7437
crossref_primary_10_1016_j_eswa_2022_118330
crossref_primary_10_1109_ACCESS_2025_3548529
crossref_primary_10_1186_s13677_024_00674_0
crossref_primary_10_1016_j_ymssp_2023_110139
crossref_primary_10_3390_s25010190
crossref_primary_10_1016_j_engappai_2024_108065
crossref_primary_10_1080_0951192X_2024_2397821
crossref_primary_10_1145_3719292
crossref_primary_10_1007_s11042_023_14814_2
crossref_primary_10_3390_su16208866
crossref_primary_10_1007_s13385_024_00399_z
crossref_primary_10_1016_j_pacfin_2025_102693
crossref_primary_10_1016_j_eswa_2024_124127
crossref_primary_10_1016_j_eswa_2024_125216
crossref_primary_10_2139_ssrn_5036334
crossref_primary_10_3390_make5040084
crossref_primary_10_2478_jaiscr_2025_0001
crossref_primary_10_1155_2022_1780834
crossref_primary_10_1007_s40747_023_01016_4
crossref_primary_10_4018_IJGHPC_334125
crossref_primary_10_1109_ACCESS_2025_3547285
crossref_primary_10_59413_ajocs_v5_i1_6
crossref_primary_10_32628_CSEIT251112349
crossref_primary_10_3390_sym16121585
crossref_primary_10_1007_s41019_024_00275_6
crossref_primary_10_1007_s11356_024_32170_y
crossref_primary_10_1016_j_neunet_2025_107169
crossref_primary_10_1016_j_knosys_2022_110003
crossref_primary_10_3390_admsci12040166
crossref_primary_10_14778_3636218_3636233
crossref_primary_10_1109_ACCESS_2022_3170467
crossref_primary_10_1007_s11227_023_05049_x
crossref_primary_10_1016_j_asoc_2024_112193
crossref_primary_10_1080_12460125_2024_2349425
crossref_primary_10_1109_ACCESS_2022_3175581
crossref_primary_10_1080_01621459_2024_2370613
crossref_primary_10_1371_journal_pone_0315721
crossref_primary_10_1145_3641283
crossref_primary_10_21511_ppm_22_2__2024_04
crossref_primary_10_1016_j_artmed_2024_103061
crossref_primary_10_1080_1206212X_2025_2449999
crossref_primary_10_1007_s00146_024_02166_w
crossref_primary_10_1016_j_eswa_2023_122156
crossref_primary_10_1061_JCCEE5_CPENG_6090
crossref_primary_10_3233_JIFS_222405
Cites_doi 10.1016/0098-3004(84)90020-7
10.1109/ICCSE.2018.8468855
10.1016/j.engappai.2014.09.019
10.1016/j.eswa.2014.02.026
10.1016/j.eswa.2005.04.030
10.1109/5.58325
10.1016/j.dss.2010.08.008
10.1109/ICDM.2008.17
10.1162/neco.1992.4.5.720
10.1109/TKDE.2013.184
10.4156/jcit.vol6.issue1.8
10.1109/ICMLA.2016.0172
10.1016/j.dss.2017.11.001
10.1016/j.eswa.2006.02.016
10.1145/1081870.1081917
10.1109/ICCIC.2015.7435726
10.1016/j.dss.2020.113303
10.1016/j.eswa.2015.12.030
10.1023/B:AIRE.0000045502.10941.a9
10.1016/j.cose.2015.09.005
10.1016/j.advengsoft.2016.01.008
10.1016/j.procs.2020.03.219
10.3141/2124-08
10.1214/ss/1042727940
10.1016/j.promfg.2020.05.012
10.1162/neco_a_01199
10.1016/j.patrec.2017.08.024
10.1016/j.asoc.2008.05.006
10.1016/j.eswa.2017.08.043
10.1007/978-3-319-46675-0_53
10.1109/CSO.2011.213
10.1016/j.eswa.2007.08.093
10.1109/TKDE.2004.1277822
10.21533/pen.v6i2.533
10.1145/1273496.1273614
10.1109/ICDE.2012.88
10.1016/j.jfds.2016.03.001
10.1109/ACCESS.2020.2983300
10.3390/s20061546
10.1145/1081870.1081891
10.1109/ASONAM.2016.7752336
10.1145/1541880.1541882
10.1016/j.eswa.2014.01.012
10.1016/j.patcog.2013.06.005
10.1016/S0957-4174(97)00045-6
10.1016/j.eswa.2005.09.003
10.1111/1539-6975.00026
10.1016/j.jksuci.2017.09.010
10.1108/13685200710746875
10.1016/j.eswa.2014.10.037
10.1613/jair.953
10.1109/STARTUP.2016.7583942
10.1080/08839514.2013.785791
10.1155/2018/8676387
10.1016/j.future.2019.08.029
10.5120/8184-1538
10.1162/neco.1997.9.8.1735
10.1145/342009.335388
10.1111/1539-6975.00023
10.1016/j.ins.2014.10.015
10.1609/aaai.v33i01.33011286
10.1109/TDSC.2007.70228
10.1016/S0893-6080(05)80056-5
10.1016/j.eswa.2018.01.037
10.1016/j.eswa.2010.07.143
10.5194/nhess-11-1099-2011
10.1109/ICACCE.2015.33
10.1016/j.sigpro.2003.07.018
10.1186/s12859-020-03936-1
10.1023/A:1022627411411
10.1016/j.ins.2017.12.030
10.1109/TKDE.2006.46
10.1016/j.eswa.2008.02.001
10.1016/j.jnca.2016.04.007
10.1145/2939672.2939778
10.1016/j.patcog.2017.09.037
10.1002/sam.11161
10.1016/j.dss.2018.04.001
10.1145/2523813
10.14569/IJACSA.2018.090103
10.1016/j.knosys.2019.105187
10.1016/j.knosys.2014.07.008
10.1023/A:1007465528199
10.1109/5.18626
10.1109/CYBERNETICSCOM.2017.8311689
10.1109/KBEI.2017.8324876
10.1109/ACCESS.2020.3015600
10.1145/2939672.2939785
10.1162/089976600300015015
10.1109/IEMCON.2018.8614815
10.1109/TPAMI.2013.50
10.3390/engproc2021005056
10.1145/1007730.1007738
10.1109/IJCNN48605.2020.9206844
10.1145/1007730.1007733
10.1016/j.eswa.2016.09.029
10.1016/j.dss.2010.08.006
ContentType Journal Article
Copyright 2022 The Authors
Copyright Elsevier BV May 1, 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright Elsevier BV May 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.116429
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_116429
S0957417421017164
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFJKZ
AFXIZ
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
WUQ
XPP
ZMT
7SC
8FD
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c438t-c2a077623f9a693a52abddde1ca8a3d522c837406cc7b6a99c24c612d5ca7ca13
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Jul 13 05:20:11 EDT 2025
Thu Jul 31 00:36:13 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Sat Aug 23 17:11:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Outlier
Deep learning
Insider trading
Credit card fraud
Securities and commodities fraud
Machine learning
Money laundering
Outlier detection
Insurance fraud
Financial fraud
Index Terms — Anomaly
Anomaly detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c2a077623f9a693a52abddde1ca8a3d522c837406cc7b6a99c24c612d5ca7ca13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9164-165X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417421017164
PQID 2639727402
PQPubID 2045477
ParticipantIDs proquest_journals_2639727402
crossref_primary_10_1016_j_eswa_2021_116429
crossref_citationtrail_10_1016_j_eswa_2021_116429
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116429
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tanaka, F. H., & Aranha, C. (2019).
University of California, Irvine. (2000).
Phuket, Thailand.
Zhang, C., Cheng, X., Liu, J., & Liu, G. (2018). Deep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion Status.
Pourhabibi, Ong, Kam, Boo (b0565) 2020; 133
Retrieved Dec. 30, 2020, from
Bengio, Courville, Vincent (b0080) 2013; 35
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b0640) 2000
Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud detection.
Beijing, China.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
Thangavel, Pethalakshmi (b0720) 2009; 9
Gómez, Arévalo, Paredes, Nin (b0270) 2018; 105
Gers, Schmidhuber, Cummins (b0260) 2000; 12
Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton, Caelen (b0345) 2018; 100
KPMG. (2012).
Sahin, Duman (b0625) 2011
Sweers, T., Heskes, T., & Krijthe, J. (2018).
Cortes, Vapnik (b0170) 1995; 20
Ridgeway, G., Madigan, D., & Richardson, T. (1998). Interpretable Boosted Naïve Bayes Classification.
Chawla, Bowyer, Hall, Kegelmeyer (b0145) 2002; 16
Lundberg, S. M. (2017). A Unified Approach to Interpreting Model Predictions.
Srivastava, Kundu, Sural, Majumdar (b0665) 2008; 5
Grenada, Spain.
New York, NY.
Machine Learning Group. (2017).
Fisher (b0225) 1993
Adewumi, Akinyelu (b0010) 2018; 8
Retrieved from
Olszewski (b0525) 2014; 70
The Nilson Report. (2020).
.
Stripling, Baesens, Chizi, vanden Broucke (b0670) 2018; 11
Zareapoor, M., R, S. K., & Alam, M. A. (2012). Analysis of credit card fraud detection techniques: based on certain design criteria.
Neal (b0510) 1996
Pang, Shen, Cao, van den Hengel (b0540) 2020; 1
Kohonen (b0375) 1990; 78
Mirjalili, Lewis (b0480) 2016; 95
Association of Certified Fraud Examiners. (2019).
Tao, H., Zhixin, L., & Xiaodong, S. (2012). Insurance Fraud Identification Research Based on Fuzzy Support Vector Machine with Dual Membership.
Tehran, Iran.
Tingfei, Guangquan, Kuihua (b0730) 2020; 8
Lucas, Y., & Jurgovsky, J. (2020).
Retrieved from arXiv:2010.06479.
Chawla, Japkowicz, Kotcz (b0150) 2004; 6
Vancouver, BC.
van der Maaten, Hinton (b0745) 2008; 9
Retrieved Dec. 22, 2020, from
Bolton, Hand (b0110) 2002; 17
Targu Mures, Romania.
Retrieved from arXiv:2007.13559v2.
Retrieved Dec. 29, 2020, from
Glasgow, UK.
Retrieved Dec. 23, 2020, from
Internet Crime Complaint Center. (2019).
Dreżewski, Sepielak, Filipkowski (b0210) 2015; 295
Dhieb, Ghazzai, Besbes, Massoud (b0185) 2020; 8
Kingma, D. P., & Ba, J. (2014).
National Health Care Anti-Fraud Association. (2018).
Fujimaki, R., Yairi, T., & Machida, K. (2005). An approach to spacecraft anomaly detection problem using kernel feature space.
Møller (b0495) 1993; 6
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks.
Chalapathy, R., & Chawla, S. (2019).
Jiang, P., Zhang, J., & Zou, J. (2019).
Sanya, China.
West, Bhattacharya (b0790) 2016; 57
Ngai, Hu, Wong, Chen, Sun (b0515) 2011; 50
Blei, Ng, Jordan (b0100) 2003; 3
Viaene, Dedene, Derrig (b0755) 2005; 29
Retrieved Dec. 10, 2020, from
Robinson, Aria (b0610) 2018; 91
Charitou, C., Garcez, A. d., & Dragicevic, S. (2020). Semi-supervised GANs for Fraud Detection.
San Francisco, CA.
Sánchez, Vila, Cerda, Serrano (b0630) 2009; 36
Gao, Ye (b0255) 2007; 10
Hejazi, Singh (b0305) 2013; 27
Patidar, Sharma (b0545) 2011; 1
Ba, H. (2019). Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. Retrieved from arXiv:1907.03355.
(3), 35-42.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Networks.
Šubelj, Furlan, Bajec (b0675) 2011; 38
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers.
Domingues, Filippone, Michiardi, Zouaoui (b0205) 2018; 74
Subudhi, Panigrahi (b0680) 2020; 32
Markou, Singh (b0470) 2003; 83
Misra, Thakur, Ghosh, Saha (b0490) 2020; 167
Hochreiter, Schmidhuber (b0315) 1997; 9
Huang, Tsaih, Yu (b0325) 2014; 9
Behera, T. K., & Panigrahi, S. (2015). Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network.
Quah, Sriganesh (b0580) 2008; 35
Sparrow (b0655) 2000
Zimek, Schubert, Kriegel (b0845) 2012; 5
Retrieved from arXiv:1906.11632.
Wiese, Omlin (b0795) 2009
Chicago, IL.
Kremmler, Rodner, Wacker, Denzler (b0390) 2013; 46
Zhang, Zhou, Zhang, Wang, Wang (b0835) 2018
Lu, Ju (b0425) 2011; 6
Mahmoudi, Duman (b0460) 2015; 42
Retrieved Dec. 2, 2020, from
Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit Card Fraud Detection Using Convolutional Neural Networks.
Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental Perspectives on Learning from Imbalanced Data.
Retrieved from arXiv:1009.6119.
Nian, Zhang, Tayal, Coleman, Li (b0520) 2016; 2
Zheng, Yuan, Wu, Li, Lu (b0840) 2019; 33
Schott (b0645) 2004
Long Beach, CA.
Retrieved from arXiv:1901.03407.
Aleskerov, Freisleben, Rao (b0025) 1997
Lille, France.
Viaene, Derrig, Baesens, Dedene (b0765) 2002; 69
Gupta, Gao, Aggarwal, Han (b0280) 2014; 26
Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm.
Yang, Hwang (b0810) 2006; 31
Ghosh, Reilly (b0265) 1994
Spence, Parra, Sajda (b0660) 2001
Khan, A. U., Akhtar, N., & Qureshi, M. N. (2014). Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm.
Mirza, M., & Osindero, S. (2014).
Retrieved from arXiv:2009.07578.
Kou, Y., Lu, C.-T., Sirwongwattana, S., & Huang, Y.-P. (2004). Survey of Fraud Detection Techniques.
Kirkos, Spathis, Manolopoulos (b0370) 2007; 32
Anaheim, CA.
Zaslavsky, Strizhak (b0825) 2006; 18
Bahnsen, Aouada, Stojanovic, Ottersten (b0065) 2016; 51
Dehradun, India.
Rabiner (b0585) 1989; 77
Derrig (b0180) 2002; 69
MacKay (b0450) 1992; 4
Dhok (b0190) 2012; 2
Moschini, G., Houssou, R., Bovay, J., & Robert-Nicoud, S. (2020).
Aggarwal (b0020) 2013
Sabau (b0620) 2012; 16
Di Mattia, F., Galeone, P., De Simoni, M., & Ghelfi, E. (2019).
Pumsirirat, Yan (b0575) 2018; 9
Rifai, Vincent, Muller, Glorot, Bengio (b0605) 2011
Association of Certified Fraud Examiners. (2004).
Colladon, Remondi (b0165) 2017; 67
Xu, W., Wang, S., Zhang, D., & Yang, B. (2011). Random Rough Subspace based Neural Network Ensemble for Insurance Fraud Detection.
Retrieved from arXiv:1412.6980.
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0770) 2010; 11
Singh, Upadhyaya (b0650) 2012; 9
Retrieved from arXiv:1511.08458.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
Lucas, Portier, Laporte, He-Guelton, Caelen, Granitzer, Calabretto (b0435) 2020; 102
Chandola, Banerjee, Kumar (b0135) 2009; 41
Hodge, Austin (b0320) 2004; 22
Colombo, Sri Lanka.
Chen, J., Shen, Y., & Ali, R. (2018). Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network.
SNU Data Mining Center.
LeCun, Bengio (b0415) 1998
Bhusari, V., & Patil, S. (2016). Study of Hidden Markov Model in Credit Card Fraudulent Detection.
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (b0275) 2014; 27
Wang, C., Wang, Y., Ye, Z., Yan, L., Cai, W., & Pan, S. (2018). Credit Card Fraud Detection Based on Whale Algorithm Optimized BP Neural Network.
Sundarkumar, G. G., Ravi, V., & Siddeshwar, V. (2015). One-class support vector machine based undersampling: Application to churn prediction and insurance fraud detection.
Madurai, India.
Xiong, Pandey, Steinbach, Kumar (b0800) 2006; 18
Doersch, C. (2016).
Pozzolo, Caelen, Le Borgne, Waterschoot, Bontempi (b0570) 2014; 41
American Institute of CPAs. (2011).
Phua, Alahakoon, Lee (b0555) 2004; 6
Toledo, Katz (b0735) 2009; 2124
Federal Bureau of Investigation. (2011).
Fiore, De Santis, Perla, Zanetti (b0220) 2019; 479
Retrieved from arXiv:1904.09135.
Phua, C., Lee, V., Smith, K., & Gayler, R. (2010).
Corvalis, OR.
Retrieved from arXiv:1606.05908.
Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection.
Abdallah, Maarof, Zainal (b0005) 2016; 68
Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. A., . . . Satoh, S. (2020).
American Institute of CPAs.
Syeda, Zhang, Pan (b0700) 2002
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier.
An, J., & Cho, S. (2015).
Hawkins (b0290) 1980
Hong Kong, China.
Washington, DC.
Retrieved from arXiv:1411.1784.
Maes, Tuyls (b0455) 2002
Coimbatore, India.
Yu, Si, Hu, Zhang (b0815) 2019; 31
Renström, M., & Holmsten, T. (2018).
Rtayli, N., & Enneya, N. (2020). Selection Features and Support Vector Machine for Credit Card Risk Identification.
O'Shea, K., & Nash, R. (2015).
Ounacer, Ait El Bour, Oubrahim, Ghoumari, Azzouazi (b0535) 2018; 6
Keller, F., Muller, E., & Bohm, K. (2012). HiCS: High Contrast Subspaces for Density-Based Outlier Ranking.
Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
Dallas, TX.
Bezdek, Ehrlich, Full (b0085) 1984; 10
Viaene, Derrig, Dedene (b0760) 2004; 16
Makhzani, A., & Frey, B. (2014).
Sydney, Australia. Retrieved from arXiv:1701.07875.
Delamaire, Abdou, Pointon (b0175) 2000; 4
Kucharski, Kłeczek, Jaworek-Korjakowska, Dyduch, Gorgon (b0400) 2020; 20
Boukerche, Zheng, Alfandi (b0115) 2020; 53
Michelucci (b0475) 2018
Edinburgh, UK.
Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagão, T. (2016). Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering.
Wang, Du, Lin, Cui, Shen, Yang (b0780) 2020; 190
Sundarkumar, Ravi (b0685) 2015; 37
Branting, L. K., Reeder, F., Gold, J., & Champney, T. (2016). Graph Analytics for Healthcare Fraud Risk Estimation.
Retrieved Dec. 5, 2020, from
Kazemi, Z., & Zarrabi, H. (2017). Using deep networks for fraud detection in the credit card transactions.
Dissertation.
Heryadi, Y., & Warnars, H. L. (2017). Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM.
Association of Certified Fraud Examiners. (2020).
Adhikari, Agrawal (b0015) 2013
Saradjian, Akhoondzadeh (b0635) 2011; 11
Retrieved from arXiv:1908.11
Adhikari (10.1016/j.eswa.2021.116429_b0015) 2013
Viaene (10.1016/j.eswa.2021.116429_b0765) 2002; 69
10.1016/j.eswa.2021.116429_b0820
Lu (10.1016/j.eswa.2021.116429_b0425) 2011; 6
Pourhabibi (10.1016/j.eswa.2021.116429_b0565) 2020; 133
10.1016/j.eswa.2021.116429_b0705
10.1016/j.eswa.2021.116429_b0140
West (10.1016/j.eswa.2021.116429_b0790) 2016; 57
Hawkins (10.1016/j.eswa.2021.116429_b0290) 1980
10.1016/j.eswa.2021.116429_b0385
10.1016/j.eswa.2021.116429_b0420
Mirjalili (10.1016/j.eswa.2021.116429_b0480) 2016; 95
Srivastava (10.1016/j.eswa.2021.116429_b0665) 2008; 5
Dhieb (10.1016/j.eswa.2021.116429_b0185) 2020; 8
Dreżewski (10.1016/j.eswa.2021.116429_b0210) 2015; 295
Jurgovsky (10.1016/j.eswa.2021.116429_b0345) 2018; 100
Abdallah (10.1016/j.eswa.2021.116429_b0005) 2016; 68
Saradjian (10.1016/j.eswa.2021.116429_b0635) 2011; 11
van der Maaten (10.1016/j.eswa.2021.116429_b0745) 2008; 9
Bolton (10.1016/j.eswa.2021.116429_b0110) 2002; 17
Chawla (10.1016/j.eswa.2021.116429_b0145) 2002; 16
Spence (10.1016/j.eswa.2021.116429_b0660) 2001
Singh (10.1016/j.eswa.2021.116429_b0650) 2012; 9
Zheng (10.1016/j.eswa.2021.116429_b0840) 2019; 33
Goodfellow (10.1016/j.eswa.2021.116429_b0275) 2014; 27
10.1016/j.eswa.2021.116429_b0830
10.1016/j.eswa.2021.116429_b0710
Pang (10.1016/j.eswa.2021.116429_b0540) 2020; 1
10.1016/j.eswa.2021.116429_b0030
10.1016/j.eswa.2021.116429_b0395
10.1016/j.eswa.2021.116429_b0550
10.1016/j.eswa.2021.116429_b0155
10.1016/j.eswa.2021.116429_b0430
10.1016/j.eswa.2021.116429_b0035
10.1016/j.eswa.2021.116429_b0310
Olszewski (10.1016/j.eswa.2021.116429_b0525) 2014; 70
Ounacer (10.1016/j.eswa.2021.116429_b0535) 2018; 6
Møller (10.1016/j.eswa.2021.116429_b0495) 1993; 6
10.1016/j.eswa.2021.116429_b0160
10.1016/j.eswa.2021.116429_b0040
Wang (10.1016/j.eswa.2021.116429_b0785) 2018; 105
Aleskerov (10.1016/j.eswa.2021.116429_b0025) 1997
10.1016/j.eswa.2021.116429_b0445
10.1016/j.eswa.2021.116429_b0600
Quah (10.1016/j.eswa.2021.116429_b0580) 2008; 35
Stripling (10.1016/j.eswa.2021.116429_b0670) 2018; 11
10.1016/j.eswa.2021.116429_b0725
Kucharski (10.1016/j.eswa.2021.116429_b0400) 2020; 20
10.1016/j.eswa.2021.116429_b0285
10.1016/j.eswa.2021.116429_b0560
10.1016/j.eswa.2021.116429_b0440
10.1016/j.eswa.2021.116429_b0045
10.1016/j.eswa.2021.116429_b0200
Fisher (10.1016/j.eswa.2021.116429_b0225) 1993
Thangavel (10.1016/j.eswa.2021.116429_b0720) 2009; 9
Schott (10.1016/j.eswa.2021.116429_b0645) 2004
Adewumi (10.1016/j.eswa.2021.116429_b0010) 2018; 8
Vincent (10.1016/j.eswa.2021.116429_b0770) 2010; 11
Mahmoudi (10.1016/j.eswa.2021.116429_b0460) 2015; 42
Syeda (10.1016/j.eswa.2021.116429_b0700) 2002
10.1016/j.eswa.2021.116429_b0050
Tingfei (10.1016/j.eswa.2021.116429_b0730) 2020; 8
Rifai (10.1016/j.eswa.2021.116429_b0605) 2011
Sabau (10.1016/j.eswa.2021.116429_b0620) 2012; 16
Nian (10.1016/j.eswa.2021.116429_b0520) 2016; 2
Kremmler (10.1016/j.eswa.2021.116429_b0390) 2013; 46
10.1016/j.eswa.2021.116429_b0335
10.1016/j.eswa.2021.116429_b0215
Gers (10.1016/j.eswa.2021.116429_b0260) 2000; 12
Robinson (10.1016/j.eswa.2021.116429_b0610) 2018; 91
10.1016/j.eswa.2021.116429_b0615
Gama (10.1016/j.eswa.2021.116429_b0250) 2014; 46
Zhang (10.1016/j.eswa.2021.116429_b0835) 2018
Hochreiter (10.1016/j.eswa.2021.116429_b0315) 1997; 9
10.1016/j.eswa.2021.116429_b0690
10.1016/j.eswa.2021.116429_b0295
Hodge (10.1016/j.eswa.2021.116429_b0320) 2004; 22
Ghosh (10.1016/j.eswa.2021.116429_b0265) 1994
10.1016/j.eswa.2021.116429_b0055
10.1016/j.eswa.2021.116429_b0330
Sparrow (10.1016/j.eswa.2021.116429_b0655) 2000
Boukerche (10.1016/j.eswa.2021.116429_b0115) 2020; 53
10.1016/j.eswa.2021.116429_b0695
10.1016/j.eswa.2021.116429_b0060
Gao (10.1016/j.eswa.2021.116429_b0255) 2007; 10
Delamaire (10.1016/j.eswa.2021.116429_b0175) 2000; 4
Subudhi (10.1016/j.eswa.2021.116429_b0680) 2020; 32
Bezdek (10.1016/j.eswa.2021.116429_b0085) 1984; 10
Chandola (10.1016/j.eswa.2021.116429_b0135) 2009; 41
Phua (10.1016/j.eswa.2021.116429_b0555) 2004; 6
10.1016/j.eswa.2021.116429_b0500
10.1016/j.eswa.2021.116429_b0105
Huang (10.1016/j.eswa.2021.116429_b0325) 2014; 9
Hejazi (10.1016/j.eswa.2021.116429_b0305) 2013; 27
LeCun (10.1016/j.eswa.2021.116429_b0415) 1998
10.1016/j.eswa.2021.116429_b0505
10.1016/j.eswa.2021.116429_b0340
Šubelj (10.1016/j.eswa.2021.116429_b0675) 2011; 38
Yu (10.1016/j.eswa.2021.116429_b0815) 2019; 31
MacKay (10.1016/j.eswa.2021.116429_b0450) 1992; 4
10.1016/j.eswa.2021.116429_b0465
10.1016/j.eswa.2021.116429_b0740
Sánchez (10.1016/j.eswa.2021.116429_b0630) 2009; 36
10.1016/j.eswa.2021.116429_b0590
Patidar (10.1016/j.eswa.2021.116429_b0545) 2011; 1
Lucas (10.1016/j.eswa.2021.116429_b0435) 2020; 102
Derrig (10.1016/j.eswa.2021.116429_b0180) 2002; 69
Misra (10.1016/j.eswa.2021.116429_b0490) 2020; 167
Bengio (10.1016/j.eswa.2021.116429_b0080) 2013; 35
Tax (10.1016/j.eswa.2021.116429_b0715) 2001; 2
Markou (10.1016/j.eswa.2021.116429_b0470) 2003; 83
Cortes (10.1016/j.eswa.2021.116429_b0170) 1995; 20
10.1016/j.eswa.2021.116429_b0195
10.1016/j.eswa.2021.116429_b0075
10.1016/j.eswa.2021.116429_b0350
10.1016/j.eswa.2021.116429_b0230
Pozzolo (10.1016/j.eswa.2021.116429_b0570) 2014; 41
10.1016/j.eswa.2021.116429_b0595
Sahin (10.1016/j.eswa.2021.116429_b0625) 2011
10.1016/j.eswa.2021.116429_b0750
10.1016/j.eswa.2021.116429_b0355
Toledo (10.1016/j.eswa.2021.116429_b0735) 2009; 2124
Colladon (10.1016/j.eswa.2021.116429_b0165) 2017; 67
Domingues (10.1016/j.eswa.2021.116429_b0205) 2018; 74
Michelucci (10.1016/j.eswa.2021.116429_b0475) 2018
Pumsirirat (10.1016/j.eswa.2021.116429_b0575) 2018; 9
10.1016/j.eswa.2021.116429_b0360
10.1016/j.eswa.2021.116429_b0240
10.1016/j.eswa.2021.116429_b0120
He (10.1016/j.eswa.2021.116429_b0300) 1997; 13
Neal (10.1016/j.eswa.2021.116429_b0510) 1996
Zimek (10.1016/j.eswa.2021.116429_b0845) 2012; 5
Kohonen (10.1016/j.eswa.2021.116429_b0375) 1990; 78
10.1016/j.eswa.2021.116429_b0485
Zaslavsky (10.1016/j.eswa.2021.116429_b0825) 2006; 18
10.1016/j.eswa.2021.116429_b0365
10.1016/j.eswa.2021.116429_b0245
Blei (10.1016/j.eswa.2021.116429_b0100) 2003; 3
10.1016/j.eswa.2021.116429_b0125
Yang (10.1016/j.eswa.2021.116429_b0810) 2006; 31
Aggarwal (10.1016/j.eswa.2021.116429_b0020) 2013
10.1016/j.eswa.2021.116429_b0095
10.1016/j.eswa.2021.116429_b0805
Rabiner (10.1016/j.eswa.2021.116429_b0585) 1989; 77
Viaene (10.1016/j.eswa.2021.116429_b0755) 2005; 29
Kirkos (10.1016/j.eswa.2021.116429_b0370) 2007; 32
10.1016/j.eswa.2021.116429_b0775
Fiore (10.1016/j.eswa.2021.116429_b0220) 2019; 479
Maes (10.1016/j.eswa.2021.116429_b0455) 2002
Xiong (10.1016/j.eswa.2021.116429_b0800) 2006; 18
Gómez (10.1016/j.eswa.2021.116429_b0270) 2018; 105
10.1016/j.eswa.2021.116429_b0130
Schölkopf (10.1016/j.eswa.2021.116429_b0640) 2000
Sundarkumar (10.1016/j.eswa.2021.116429_b0685) 2015; 37
10.1016/j.eswa.2021.116429_b0530
Friedman (10.1016/j.eswa.2021.116429_b0235) 1997; 29
10.1016/j.eswa.2021.116429_b0410
Bhattacharyya (10.1016/j.eswa.2021.116429_b0090) 2011; 50
Chawla (10.1016/j.eswa.2021.116429_b0150) 2004; 6
Gupta (10.1016/j.eswa.2021.116429_b0280) 2014; 26
Dhok (10.1016/j.eswa.2021.116429_b0190) 2012; 2
10.1016/j.eswa.2021.116429_b0380
Wiese (10.1016/j.eswa.2021.116429_b0795) 2009
Wang (10.1016/j.eswa.2021.116429_b0780) 2020; 190
Viaene (10.1016/j.eswa.2021.116429_b0760) 2004; 16
Bahnsen (10.1016/j.eswa.2021.116429_b0065) 2016; 51
Ngai (10.1016/j.eswa.2021.116429_b0515) 2011; 50
References_xml – volume: 167
  start-page: 254
  year: 2020
  end-page: 262
  ident: b0490
  article-title: An autoencoder based model for detecting fraudulent credit card transaction
  publication-title: Procedia Computer Science
– volume: 67
  start-page: 49
  year: 2017
  end-page: 58
  ident: b0165
  article-title: Using social network analysis to prevent money laundering
  publication-title: Expert Systems with Applications
– reference: Chalapathy, R., & Chawla, S. (2019).
– reference: Taipei, Taiwan.
– reference: Madurai, India.
– volume: 69
  start-page: 271
  year: 2002
  end-page: 287
  ident: b0180
  article-title: Insurance fraud
  publication-title: The Journal of Risk and Insurance
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0480
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– reference: American Institute of CPAs. (2011).
– reference: Lundberg, S. M. (2017). A Unified Approach to Interpreting Model Predictions.
– volume: 8
  start-page: 58546
  year: 2020
  end-page: 58558
  ident: b0185
  article-title: A secure AI-driven architecture for automated insurance systems: Fraud detection and risk measurement
  publication-title: IEEE Access
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: b0235
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
– volume: 69
  start-page: 373
  year: 2002
  end-page: 421
  ident: b0765
  article-title: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
  publication-title: The Journal of Risk and Insurance
– volume: 16
  start-page: 612
  year: 2004
  end-page: 620
  ident: b0760
  article-title: A case study of applying boosting naive bayes to claim fraud diagnosis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (3), 35-42.
– reference: Retrieved Dec. 10, 2020, from
– reference: Jiang, P., Zhang, J., & Zou, J. (2019).
– reference: Bhusari, V., & Patil, S. (2016). Study of Hidden Markov Model in Credit Card Fraudulent Detection.
– reference: Chicago, IL.
– reference: Kazemi, Z., & Zarrabi, H. (2017). Using deep networks for fraud detection in the credit card transactions.
– reference: Lucas, Y., & Jurgovsky, J. (2020).
– reference: Ba, H. (2019). Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. Retrieved from arXiv:1907.03355.
– reference: Retrieved Dec. 2, 2020, from
– reference: Retrieved from arXiv:2009.07578.
– reference: Retrieved from arXiv:1009.6119.
– start-page: 231
  year: 2009
  end-page: 268
  ident: b0795
  article-title: Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time Series with LSTM Recurrent Neural Networks
  publication-title: Innovations in Neural Information Paradigms and Applications
– volume: 18
  start-page: 48
  year: 2006
  end-page: 63
  ident: b0825
  article-title: Credit card fraud detection using self-organizing maps
  publication-title: Information and Security
– reference: Internet Crime Complaint Center. (2019).
– volume: 20
  year: 2020
  ident: b0400
  article-title: Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders
  publication-title: Sensors
– year: 2000
  ident: b0640
  article-title: Support vector method for novelty detection
– year: 1996
  ident: b0510
  article-title: Bayesian learning for neural networks
– volume: 31
  start-page: 56
  year: 2006
  end-page: 68
  ident: b0810
  article-title: A process-mining framework for the detection of healthcare fraud and abuse
  publication-title: Expert Systems with Applications
– reference: Khan, A. U., Akhtar, N., & Qureshi, M. N. (2014). Real-Time Credit-Card Fraud Detection using Artificial Neural Network Tuned by Simulated Annealing Algorithm.
– volume: 46
  start-page: Article 44
  year: 2014
  ident: b0250
  article-title: A survey on concept drift adaptation
  publication-title: ACM Computing Surveys
– reference: Xu, W., Wang, S., Zhang, D., & Yang, B. (2011). Random Rough Subspace based Neural Network Ensemble for Insurance Fraud Detection.
– volume: 27
  start-page: 351
  year: 2013
  end-page: 366
  ident: b0305
  article-title: One-class support vector machines approach to anomaly detection
  publication-title: Applied Artificial Intelligence
– year: 2002
  ident: b0700
  article-title: Parallel granular neural networks for fast credit card fraud detection
– volume: 29
  start-page: 653
  year: 2005
  end-page: 666
  ident: b0755
  article-title: Auto claim fraud detection using Bayesian learning neural networks
  publication-title: Expert Systems with Applications
– reference: SNU Data Mining Center.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0315
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 9
  start-page: 18
  year: 2018
  end-page: 25
  ident: b0575
  article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine
  publication-title: International Journal of Advanced Computer Science and Applications
– volume: 16
  start-page: 110
  year: 2012
  end-page: 122
  ident: b0620
  article-title: Survey of clustering based financial fraud detection research
  publication-title: Informatica Economica
– volume: 53
  start-page: Article 55
  year: 2020
  ident: b0115
  article-title: Outlier Detection: Methods, Models, and Classification
  publication-title: ACM Computing Surveys
– volume: 9
  start-page: 4360
  year: 2014
  end-page: 4372
  ident: b0325
  article-title: Topological pattern discovery and feature extraction for fraudulent financial reporting
  publication-title: Expert Systems with Applications
– volume: 35
  start-page: 1721
  year: 2008
  end-page: 1732
  ident: b0580
  article-title: Real-time credit card fraud detection using computational intelligence
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0170
  article-title: Support-vector networks
  publication-title: Machine Learning
– reference: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Networks.
– volume: 50
  start-page: 602
  year: 2011
  end-page: 613
  ident: b0090
  article-title: Data mining for credit card fraud: A comparative study
  publication-title: Decision Support Systems
– reference: National Health Care Anti-Fraud Association. (2018).
– volume: 50
  start-page: 559
  year: 2011
  end-page: 569
  ident: b0515
  article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
  publication-title: Decision Support Systems
– reference: Doersch, C. (2016).
– reference: Coimbatore, India.
– year: 2011
  ident: b0605
  article-title: Contractive Auto-Encoders: Explicit Invariance During Feature Extraction
  publication-title: 28th International Conference on Machine Learning
– volume: 32
  start-page: 568
  year: 2020
  end-page: 575
  ident: b0680
  article-title: Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection
  publication-title: Journal of King Saud University - Computer and Information Sciences
– reference: Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
– year: 2001
  ident: b0660
  article-title: Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model
– reference: Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental Perspectives on Learning from Imbalanced Data.
– volume: 2
  start-page: 88
  year: 2012
  end-page: 92
  ident: b0190
  article-title: Credit card fraud detection using hidden markov model
  publication-title: International Journal of Soft Computing and Engineering
– reference: Moschini, G., Houssou, R., Bovay, J., & Robert-Nicoud, S. (2020).
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b0770
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– reference: University of California, Irvine. (2000).
– reference: San Francisco, CA.
– year: 1997
  ident: b0025
  article-title: CARDWATCH: A neural network based databased mining system for credit card fraud detection
– reference: Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm.
– reference: Targu Mures, Romania.
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  ident: b0150
  article-title: Editorial: Special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explorations Newsletter
– reference: Retrieved Dec. 22, 2020, from
– reference: Dehradun, India.
– reference: Grenada, Spain.
– volume: 13
  start-page: 329
  year: 1997
  end-page: 336
  ident: b0300
  article-title: Application of neural networks to detection of medical fraud
  publication-title: Expert Systems with Applications
– reference: Federal Bureau of Investigation. (2011).
– reference: Tehran, Iran.
– volume: 1
  start-page: 32
  year: 2011
  end-page: 38
  ident: b0545
  article-title: Credit card fraud detection using neural network
  publication-title: International Journal of Soft Computing and Engineering
– reference: Kingma, D. P., & Ba, J. (2014).
– reference: Corvalis, OR.
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: b0260
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Computation
– reference: Yunnan, China.
– reference: Ridgeway, G., Madigan, D., & Richardson, T. (1998). Interpretable Boosted Naïve Bayes Classification.
– volume: 74
  start-page: 406
  year: 2018
  end-page: 421
  ident: b0205
  article-title: A comparative evaluation of outlier detection algorithms: Experiments and analyses
  publication-title: Pattern Recognition
– reference: Retrieved Dec. 13, 2020, from
– reference: Retrieved Dec. 5, 2020, from
– year: 2011
  ident: b0625
  article-title: Detecting Credit Card Fraud by Decision Trees and Support Vector Machines
  publication-title: Hong Kong
– year: 1998
  ident: b0415
  article-title: Convolutional networks for images, speech, and time series
  publication-title: In
– volume: 8
  start-page: 937
  year: 2018
  end-page: 953
  ident: b0010
  article-title: A survey of machine-learning and nature-inspired based credit card fraud detection techniques
  publication-title: International Journal of System Assurance Engineering and Management
– reference: Renström, M., & Holmsten, T. (2018).
– volume: 9
  start-page: 307
  year: 2012
  end-page: 323
  ident: b0650
  article-title: Outlier detection: Applications and techniques
  publication-title: International Journal of Computer Science
– year: 2018
  ident: b0835
  article-title: A model based on convolutional neural network for online transaction fraud detection
– reference: Chen, J., Shen, Y., & Ali, R. (2018). Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network.
– volume: 479
  start-page: 448
  year: 2019
  end-page: 455
  ident: b0220
  article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection
  publication-title: Information Sciences
– volume: 42
  start-page: 2510
  year: 2015
  end-page: 2516
  ident: b0460
  article-title: Detecting credit card fraud by modified fisher discriminant analysis
  publication-title: Expert Systems with Applications
– reference: Long Beach, CA.
– reference: Chandigarh, India.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b0145
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: b0375
  article-title: The self-organizing map
  publication-title: Proceedings of the IEEE
– reference: Di Mattia, F., Galeone, P., De Simoni, M., & Ghelfi, E. (2019).
– volume: 5
  start-page: 37
  year: 2008
  end-page: 48
  ident: b0665
  article-title: Credit card fraud detection using hidden markov model
  publication-title: IEEE Transactions on Dependable and Secure Computing
– reference: KPMG. (2012).
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b0815
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Computation
– reference: Behera, T. K., & Panigrahi, S. (2015). Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network.
– reference: Beijing, China.
– volume: 37
  start-page: 368
  year: 2015
  end-page: 377
  ident: b0685
  article-title: A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
– reference: Kou, Y., Lu, C.-T., Sirwongwattana, S., & Huang, Y.-P. (2004). Survey of Fraud Detection Techniques.
– reference: Phuket, Thailand.
– reference: Machine Learning Group. (2017).
– reference: Retrieved from arXiv:1901.03407.
– volume: 190
  year: 2020
  ident: b0780
  article-title: adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
  publication-title: Knowledge-Based Systems
– volume: 57
  start-page: 47
  year: 2016
  end-page: 66
  ident: b0790
  article-title: Intelligent financial fraud detection: A comprehensive review
  publication-title: Computers & Security
– volume: 10
  start-page: 170
  year: 2007
  end-page: 179
  ident: b0255
  article-title: A framework for data mining-based anti-money laundering research
  publication-title: Journal of Money Laundering Control
– volume: 11
  start-page: 1099
  year: 2011
  end-page: 1108
  ident: b0635
  article-title: Thermal anomalies detection before strong earthquakes (M >6.0) using interquartile, wavelet and Kalman filter methods
  publication-title: Natural Hazards and Earth System Sciences
– volume: 4
  start-page: 57
  year: 2000
  end-page: 68
  ident: b0175
  article-title: Credit card fraud and detection techniques: A review
  publication-title: Banks and Bank Systems
– reference: Dissertation.
– reference: Fujimaki, R., Yairi, T., & Machida, K. (2005). An approach to spacecraft anomaly detection problem using kernel feature space.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0080
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: .
– reference: Rtayli, N., & Enneya, N. (2020). Selection Features and Support Vector Machine for Credit Card Risk Identification.
– reference: Glasgow, UK.
– volume: 18
  start-page: 304
  year: 2006
  end-page: 319
  ident: b0800
  article-title: Enhancing data analysis with noise removal
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 46
  start-page: 3507
  year: 2013
  end-page: 3518
  ident: b0390
  article-title: One-class classification with Gaussian processes
  publication-title: Pattern Recognition
– reference: Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks.
– volume: 1
  year: 2020
  ident: b0540
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Computing Surveys
– reference: Retrieved Dec. 29, 2020, from
– reference: Heryadi, Y., & Warnars, H. L. (2017). Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM.
– reference: Anaheim, CA.
– reference: Branting, L. K., Reeder, F., Gold, J., & Champney, T. (2016). Graph Analytics for Healthcare Fraud Risk Estimation.
– start-page: 83
  year: 2018
  end-page: 136
  ident: b0475
  article-title: Feedforward Neural Networks
  publication-title: Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks
– volume: 91
  start-page: 235
  year: 2018
  end-page: 251
  ident: b0610
  article-title: Sequential fraud detection for prepaid cards using hidden Markov model divergence
  publication-title: Expert Systems with Applications
– volume: 6
  start-page: 62
  year: 2011
  end-page: 68
  ident: b0425
  article-title: Research on credit card fraud detection model based on class weighted support vector machine
  publication-title: Journal of Convergence Information Technology
– volume: 6
  start-page: 50
  year: 2004
  end-page: 59
  ident: b0555
  article-title: June). Minority report in fraud detection: Classification of skewed data
  publication-title: ACM SIGKDD Explorations Newsletter
– reference: Retrieved from arXiv:1606.05908.
– reference: Sweers, T., Heskes, T., & Krijthe, J. (2018).
– volume: 4
  start-page: 720
  year: 1992
  end-page: 736
  ident: b0450
  article-title: The evidence framework applied to classification networks
  publication-title: Neural Computation
– reference: Makhzani, A., & Frey, B. (2014).
– reference: Retrieved Dec. 30, 2020, from
– reference: Retrieved Dec. 23, 2020, from
– reference: Association of Certified Fraud Examiners. (2004).
– volume: 41
  start-page: 4915
  year: 2014
  end-page: 4928
  ident: b0570
  article-title: Learned lessons in credit card fraud detection from a practitioner perspective
  publication-title: Expert Systems with Applications
– volume: 100
  start-page: 234
  year: 2018
  end-page: 245
  ident: b0345
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Systems with Applications
– reference: Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection.
– reference: Retrieved from arXiv:1906.11632.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: b0495
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
– reference: Bolton, R. J., & Hand, D. J. (2001). Unsupervised profiling methods for fraud detection.
– volume: 295
  start-page: 18
  year: 2015
  end-page: 32
  ident: b0210
  article-title: The application of social network analysis algorithms in a system supporting money laundering detection
  publication-title: Information Sciences
– reference: Retrieved from arXiv:1411.1784.
– year: 1993
  ident: b0225
  article-title: Statistical analysis of circular data
– reference: Vancouver, BC.
– year: 1994
  ident: b0265
  article-title: Credit Card Fraud Detection with a Neural-Network
  publication-title: 27th International Conference on System Sciences
– reference: Zhang, C., Cheng, X., Liu, J., & Liu, G. (2018). Deep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion Status.
– volume: 5
  start-page: 363
  year: 2012
  end-page: 387
  ident: b0845
  article-title: A survey on unsupervised outlier detection in high-dimensional numerical data
  publication-title: Statistical Analysis and Data Mining
– volume: 17
  start-page: 235
  year: 2002
  end-page: 255
  ident: b0110
  article-title: Statistical fraud detection: A review
  publication-title: Statistical Science
– volume: 36
  start-page: 3630
  year: 2009
  end-page: 3640
  ident: b0630
  article-title: Association rules applied to credit card fraud detection
  publication-title: Expert Systems with Applications
– year: 2013
  ident: b0015
  article-title: An Introductory Study on Time Series Modeling and Forecasting
  publication-title: Retrieved from
– reference: New York, NY.
– reference: Association of Certified Fraud Examiners. (2019).
– reference: Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit Card Fraud Detection Using Convolutional Neural Networks.
– volume: 8
  start-page: 149841
  year: 2020
  end-page: 149853
  ident: b0730
  article-title: Using variational auto encoding in credit card fraud detection
  publication-title: IEEE Access
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b0100
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– year: 1980
  ident: b0290
  article-title: Identification of outliers
– volume: 105
  start-page: 87
  year: 2018
  end-page: 95
  ident: b0785
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decision Support Systems
– reference: The Nilson Report. (2020).
– volume: 83
  start-page: 2481
  year: 2003
  end-page: 2497
  ident: b0470
  article-title: Novelty detection: A review—part 1: Statistical approaches
  publication-title: Signal Processing
– volume: 26
  start-page: 2250
  year: 2014
  end-page: 2267
  ident: b0280
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Retrieved from
– reference: Retrieved from arXiv:1511.08458.
– reference: Sundarkumar, G. G., Ravi, V., & Siddeshwar, V. (2015). One-class support vector machine based undersampling: Application to churn prediction and insurance fraud detection.
– reference: Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers.
– reference: Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, Z. A., . . . Satoh, S. (2020).
– reference: Retrieved from arXiv:1908.11553.
– reference: Retrieved from arXiv:1412.6980.
– volume: 6
  start-page: 394
  year: 2018
  end-page: 400
  ident: b0535
  article-title: Using Isolation Forest in anomaly detection: The case of credit card transactions
  publication-title: Periodicals of Engineering and Natural Sciences
– reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0085
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0745
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: Charitou, C., Garcez, A. d., & Dragicevic, S. (2020). Semi-supervised GANs for Fraud Detection.
– volume: 70
  start-page: 324
  year: 2014
  end-page: 334
  ident: b0525
  article-title: Fraud detection using self-organizing map visualizing the user profiles
  publication-title: Knowledge-Based Systems
– volume: 105
  start-page: 175
  year: 2018
  end-page: 181
  ident: b0270
  article-title: End-to-end neural network architecture for fraud scoring in card payments
  publication-title: Pattern Recognition Letters
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: b0585
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– reference: Dallas, TX.
– reference: Tao, H., Zhixin, L., & Xiaodong, S. (2012). Insurance Fraud Identification Research Based on Fuzzy Support Vector Machine with Dual Membership.
– reference: Mirza, M., & Osindero, S. (2014).
– reference: Colombo, Sri Lanka.
– reference: Hong Kong, China.
– reference: Sydney, Australia. Retrieved from arXiv:1701.07875.
– volume: 38
  start-page: 1039
  year: 2011
  end-page: 1052
  ident: b0675
  article-title: An expert system for detecting automobile insurance fraud using social network analysis
  publication-title: Expert Systems with Applications
– reference: O'Shea, K., & Nash, R. (2015).
– volume: 2
  start-page: 58
  year: 2016
  end-page: 75
  ident: b0520
  article-title: Auto insurance fraud detection using unsupervised spectral ranking for anomaly
  publication-title: The Journal of Finance and Data Science
– volume: 133
  year: 2020
  ident: b0565
  article-title: Fraud detection: A systematic literature review of graph-based anomaly detection approaches
  publication-title: Decision Support Systems
– reference: Sanya, China.
– reference: Washington, DC.
– reference: Wang, C., Wang, Y., Ye, Z., Yan, L., Cai, W., & Pan, S. (2018). Credit Card Fraud Detection Based on Whale Algorithm Optimized BP Neural Network.
– volume: 102
  start-page: 393
  year: 2020
  end-page: 402
  ident: b0435
  article-title: Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs
  publication-title: Future Generation Computer Systems
– reference: Phua, C., Lee, V., Smith, K., & Gayler, R. (2010).
– reference: American Institute of CPAs.
– volume: 33
  start-page: 1286
  year: 2019
  end-page: 1293
  ident: b0840
  article-title: One-class adversarial nets for fraud detection
  publication-title: AAAI
– reference: Retrieved from arXiv:1904.09135.
– volume: 11
  start-page: 13
  year: 2018
  end-page: 26
  ident: b0670
  article-title: Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud
  publication-title: Decision Support Systems
– year: 2013
  ident: b0020
  article-title: Outlier analysis
– reference: Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest.
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: b0135
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
– volume: 9
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0720
  article-title: Dimensionality reduction based on rough set theory: A review
  publication-title: Applied Soft Computing
– volume: 2
  start-page: 155
  year: 2001
  end-page: 173
  ident: b0715
  article-title: Uniform object generation for optimizing one-class classifiers
  publication-title: Journal of Machine Learning Research
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0275
  article-title: Generative Adversarial Nets
  publication-title: Advances in Neural Information Processing Systems
– reference: Zareapoor, M., R, S. K., & Alam, M. A. (2012). Analysis of credit card fraud detection techniques: based on certain design criteria.
– reference: An, J., & Cho, S. (2015).
– year: 2004
  ident: b0645
  article-title: Reference guide to anti-money laundering and combating the financing of terrorism
– reference: Tanaka, F. H., & Aranha, C. (2019).
– reference: Edinburgh, UK.
– reference: Retrieved from arXiv:2010.06479.
– reference: Association of Certified Fraud Examiners. (2020).
– reference: Keller, F., Muller, E., & Bohm, K. (2012). HiCS: High Contrast Subspaces for Density-Based Outlier Ranking.
– volume: 68
  start-page: 90
  year: 2016
  end-page: 113
  ident: b0005
  article-title: Fraud detection system: A survey
  publication-title: Journal of Network and Computer Applications
– reference: Lille, France.
– volume: 32
  start-page: 995
  year: 2007
  end-page: 1003
  ident: b0370
  article-title: Data Mining techniques for the detection of fraudulent financial statements
  publication-title: Expert Systems with Applications
– reference: Barcelona, Spain.
– volume: 2124
  start-page: 81
  year: 2009
  end-page: 88
  ident: b0735
  article-title: State dependence in lane-changing models
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– reference: He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
– reference: Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagão, T. (2016). Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering.
– year: 2002
  ident: b0455
  article-title: Credit card fraud detection using bayesian and neural networks
– year: 2000
  ident: b0655
  article-title: License to steal: How fraud bleeds America’s health care system
– volume: 51
  start-page: 134
  year: 2016
  end-page: 142
  ident: b0065
  article-title: Feature engineering strategies for credit card fraud detection
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 85
  year: 2004
  end-page: 126
  ident: b0320
  article-title: A survey of outlier detection methodologies
  publication-title: Artificial Intelligence Review
– reference: Retrieved from arXiv:2007.13559v2.
– ident: 10.1016/j.eswa.2021.116429_b0445
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.eswa.2021.116429_b0085
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.eswa.2021.116429_b0365
– ident: 10.1016/j.eswa.2021.116429_b0380
– volume: 2
  start-page: 155
  year: 2001
  ident: 10.1016/j.eswa.2021.116429_b0715
  article-title: Uniform object generation for optimizing one-class classifiers
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.eswa.2021.116429_b0030
– ident: 10.1016/j.eswa.2021.116429_b0775
  doi: 10.1109/ICCSE.2018.8468855
– volume: 37
  start-page: 368
  year: 2015
  ident: 10.1016/j.eswa.2021.116429_b0685
  article-title: A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.09.019
– ident: 10.1016/j.eswa.2021.116429_b0050
– volume: 41
  start-page: 4915
  issue: 10
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0570
  article-title: Learned lessons in credit card fraud detection from a practitioner perspective
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.02.026
– year: 2004
  ident: 10.1016/j.eswa.2021.116429_b0645
– volume: 29
  start-page: 653
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2021.116429_b0755
  article-title: Auto claim fraud detection using Bayesian learning neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.030
– ident: 10.1016/j.eswa.2021.116429_b0560
– volume: 9
  start-page: 307
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.116429_b0650
  article-title: Outlier detection: Applications and techniques
  publication-title: International Journal of Computer Science
– ident: 10.1016/j.eswa.2021.116429_b0130
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 10.1016/j.eswa.2021.116429_b0375
  article-title: The self-organizing map
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58325
– volume: 50
  start-page: 602
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0090
  article-title: Data mining for credit card fraud: A comparative study
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.08.008
– ident: 10.1016/j.eswa.2021.116429_b0420
  doi: 10.1109/ICDM.2008.17
– volume: 4
  start-page: 720
  issue: 5
  year: 1992
  ident: 10.1016/j.eswa.2021.116429_b0450
  article-title: The evidence framework applied to classification networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.5.720
– volume: 26
  start-page: 2250
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0280
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.184
– volume: 6
  start-page: 62
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0425
  article-title: Research on credit card fraud detection model based on class weighted support vector machine
  publication-title: Journal of Convergence Information Technology
  doi: 10.4156/jcit.vol6.issue1.8
– ident: 10.1016/j.eswa.2021.116429_b0550
  doi: 10.1109/ICMLA.2016.0172
– ident: 10.1016/j.eswa.2021.116429_b0230
– ident: 10.1016/j.eswa.2021.116429_b0385
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.eswa.2021.116429_b0770
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.eswa.2021.116429_b0360
– ident: 10.1016/j.eswa.2021.116429_b0725
– year: 2000
  ident: 10.1016/j.eswa.2021.116429_b0640
– volume: 4
  start-page: 57
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2021.116429_b0175
  article-title: Credit card fraud and detection techniques: A review
  publication-title: Banks and Bank Systems
– volume: 105
  start-page: 87
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0785
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.11.001
– volume: 32
  start-page: 995
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2021.116429_b0370
  article-title: Data Mining techniques for the detection of fraudulent financial statements
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.02.016
– ident: 10.1016/j.eswa.2021.116429_b0245
  doi: 10.1145/1081870.1081917
– ident: 10.1016/j.eswa.2021.116429_b0690
  doi: 10.1109/ICCIC.2015.7435726
– volume: 8
  start-page: 937
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0010
  article-title: A survey of machine-learning and nature-inspired based credit card fraud detection techniques
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0540
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Computing Surveys
– volume: 133
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0565
  article-title: Fraud detection: A systematic literature review of graph-based anomaly detection approaches
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2020.113303
– year: 2013
  ident: 10.1016/j.eswa.2021.116429_b0015
  article-title: An Introductory Study on Time Series Modeling and Forecasting
  publication-title: Retrieved from
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: 10.1016/j.eswa.2021.116429_b0745
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 51
  start-page: 134
  year: 2016
  ident: 10.1016/j.eswa.2021.116429_b0065
  article-title: Feature engineering strategies for credit card fraud detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.12.030
– year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0605
  article-title: Contractive Auto-Encoders: Explicit Invariance During Feature Extraction
– ident: 10.1016/j.eswa.2021.116429_b0695
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2021.116429_b0320
  article-title: A survey of outlier detection methodologies
  publication-title: Artificial Intelligence Review
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– volume: 57
  start-page: 47
  year: 2016
  ident: 10.1016/j.eswa.2021.116429_b0790
  article-title: Intelligent financial fraud detection: A comprehensive review
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2015.09.005
– year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0700
– ident: 10.1016/j.eswa.2021.116429_b0340
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2021.116429_b0480
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 167
  start-page: 254
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0490
  article-title: An autoencoder based model for detecting fraudulent credit card transaction
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.219
– volume: 2124
  start-page: 81
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.116429_b0735
  article-title: State dependence in lane-changing models
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2124-08
– volume: 17
  start-page: 235
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0110
  article-title: Statistical fraud detection: A review
  publication-title: Statistical Science
  doi: 10.1214/ss/1042727940
– ident: 10.1016/j.eswa.2021.116429_b0615
  doi: 10.1016/j.promfg.2020.05.012
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2021.116429_b0815
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01199
– volume: 105
  start-page: 175
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0270
  article-title: End-to-end neural network architecture for fraud scoring in card payments
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.08.024
– volume: 9
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.116429_b0720
  article-title: Dimensionality reduction based on rough set theory: A review
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.05.006
– year: 1997
  ident: 10.1016/j.eswa.2021.116429_b0025
– volume: 91
  start-page: 235
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0610
  article-title: Sequential fraud detection for prepaid cards using hidden Markov model divergence
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.043
– ident: 10.1016/j.eswa.2021.116429_b0240
  doi: 10.1007/978-3-319-46675-0_53
– ident: 10.1016/j.eswa.2021.116429_b0600
– ident: 10.1016/j.eswa.2021.116429_b0805
  doi: 10.1109/CSO.2011.213
– volume: 35
  start-page: 1721
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2021.116429_b0580
  article-title: Real-time credit card fraud detection using computational intelligence
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.093
– volume: 16
  start-page: 612
  issue: 5
  year: 2004
  ident: 10.1016/j.eswa.2021.116429_b0760
  article-title: A case study of applying boosting naive bayes to claim fraud diagnosis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.1277822
– volume: 6
  start-page: 394
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0535
  article-title: Using Isolation Forest in anomaly detection: The case of credit card transactions
  publication-title: Periodicals of Engineering and Natural Sciences
  doi: 10.21533/pen.v6i2.533
– ident: 10.1016/j.eswa.2021.116429_b0750
  doi: 10.1145/1273496.1273614
– ident: 10.1016/j.eswa.2021.116429_b0355
  doi: 10.1109/ICDE.2012.88
– ident: 10.1016/j.eswa.2021.116429_b0430
– volume: 2
  start-page: 58
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.116429_b0520
  article-title: Auto insurance fraud detection using unsupervised spectral ranking for anomaly
  publication-title: The Journal of Finance and Data Science
  doi: 10.1016/j.jfds.2016.03.001
– year: 1993
  ident: 10.1016/j.eswa.2021.116429_b0225
– volume: 8
  start-page: 58546
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0185
  article-title: A secure AI-driven architecture for automated insurance systems: Fraud detection and risk measurement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983300
– volume: 20
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0400
  article-title: Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders
  publication-title: Sensors
  doi: 10.3390/s20061546
– ident: 10.1016/j.eswa.2021.116429_b0410
  doi: 10.1145/1081870.1081891
– ident: 10.1016/j.eswa.2021.116429_b0120
  doi: 10.1109/ASONAM.2016.7752336
– volume: 18
  start-page: 48
  year: 2006
  ident: 10.1016/j.eswa.2021.116429_b0825
  article-title: Credit card fraud detection using self-organizing maps
  publication-title: Information and Security
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2021.116429_b0135
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/1541880.1541882
– volume: 9
  start-page: 4360
  issue: 41
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0325
  article-title: Topological pattern discovery and feature extraction for fraudulent financial reporting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.01.012
– volume: 46
  start-page: 3507
  issue: 12
  year: 2013
  ident: 10.1016/j.eswa.2021.116429_b0390
  article-title: One-class classification with Gaussian processes
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.06.005
– ident: 10.1016/j.eswa.2021.116429_b0215
– volume: 13
  start-page: 329
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2021.116429_b0300
  article-title: Application of neural networks to detection of medical fraud
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(97)00045-6
– ident: 10.1016/j.eswa.2021.116429_b0705
– ident: 10.1016/j.eswa.2021.116429_b0045
– volume: 31
  start-page: 56
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2021.116429_b0810
  article-title: A process-mining framework for the detection of healthcare fraud and abuse
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.003
– volume: 69
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0180
  article-title: Insurance fraud
  publication-title: The Journal of Risk and Insurance
  doi: 10.1111/1539-6975.00026
– volume: 32
  start-page: 568
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0680
  article-title: Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2017.09.010
– year: 1994
  ident: 10.1016/j.eswa.2021.116429_b0265
  article-title: Credit Card Fraud Detection with a Neural-Network
– volume: 10
  start-page: 170
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2021.116429_b0255
  article-title: A framework for data mining-based anti-money laundering research
  publication-title: Journal of Money Laundering Control
  doi: 10.1108/13685200710746875
– volume: 42
  start-page: 2510
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2021.116429_b0460
  article-title: Detecting credit card fraud by modified fisher discriminant analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.037
– ident: 10.1016/j.eswa.2021.116429_b0040
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0145
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– ident: 10.1016/j.eswa.2021.116429_b0195
– ident: 10.1016/j.eswa.2021.116429_b0095
  doi: 10.1109/STARTUP.2016.7583942
– volume: 27
  start-page: 351
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2021.116429_b0305
  article-title: One-class support vector machines approach to anomaly detection
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2013.785791
– ident: 10.1016/j.eswa.2021.116429_b0830
  doi: 10.1155/2018/8676387
– year: 1998
  ident: 10.1016/j.eswa.2021.116429_b0415
  article-title: Convolutional networks for images, speech, and time series
– year: 2001
  ident: 10.1016/j.eswa.2021.116429_b0660
– ident: 10.1016/j.eswa.2021.116429_b0200
– volume: 102
  start-page: 393
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0435
  article-title: Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.08.029
– volume: 2
  start-page: 88
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.116429_b0190
  article-title: Credit card fraud detection using hidden markov model
  publication-title: International Journal of Soft Computing and Engineering
– ident: 10.1016/j.eswa.2021.116429_b0820
  doi: 10.5120/8184-1538
– ident: 10.1016/j.eswa.2021.116429_b0105
– year: 1980
  ident: 10.1016/j.eswa.2021.116429_b0290
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.eswa.2021.116429_b0315
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.eswa.2021.116429_b0125
  doi: 10.1145/342009.335388
– volume: 69
  start-page: 373
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0765
  article-title: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
  publication-title: The Journal of Risk and Insurance
  doi: 10.1111/1539-6975.00023
– start-page: 231
  year: 2009
  ident: 10.1016/j.eswa.2021.116429_b0795
  article-title: Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time Series with LSTM Recurrent Neural Networks
– volume: 295
  start-page: 18
  year: 2015
  ident: 10.1016/j.eswa.2021.116429_b0210
  article-title: The application of social network analysis algorithms in a system supporting money laundering detection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.10.015
– volume: 33
  start-page: 1286
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.116429_b0840
  article-title: One-class adversarial nets for fraud detection
  publication-title: AAAI
  doi: 10.1609/aaai.v33i01.33011286
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.eswa.2021.116429_b0100
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– year: 2002
  ident: 10.1016/j.eswa.2021.116429_b0455
– volume: 5
  start-page: 37
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2021.116429_b0665
  article-title: Credit card fraud detection using hidden markov model
  publication-title: IEEE Transactions on Dependable and Secure Computing
  doi: 10.1109/TDSC.2007.70228
– ident: 10.1016/j.eswa.2021.116429_b0530
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2021.116429_b0495
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 100
  start-page: 234
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0345
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.037
– volume: 16
  start-page: 110
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.116429_b0620
  article-title: Survey of clustering based financial fraud detection research
  publication-title: Informatica Economica
– volume: 38
  start-page: 1039
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0675
  article-title: An expert system for detecting automobile insurance fraud using social network analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.143
– volume: 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0275
  article-title: Generative Adversarial Nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 1099
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0635
  article-title: Thermal anomalies detection before strong earthquakes (M >6.0) using interquartile, wavelet and Kalman filter methods
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-11-1099-2011
– ident: 10.1016/j.eswa.2021.116429_b0710
– ident: 10.1016/j.eswa.2021.116429_b0075
  doi: 10.1109/ICACCE.2015.33
– volume: 83
  start-page: 2481
  issue: 12
  year: 2003
  ident: 10.1016/j.eswa.2021.116429_b0470
  article-title: Novelty detection: A review—part 1: Statistical approaches
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2003.07.018
– year: 2000
  ident: 10.1016/j.eswa.2021.116429_b0655
– ident: 10.1016/j.eswa.2021.116429_b0285
  doi: 10.1186/s12859-020-03936-1
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2021.116429_b0170
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 479
  start-page: 448
  year: 2019
  ident: 10.1016/j.eswa.2021.116429_b0220
  article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.12.030
– start-page: 83
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0475
  article-title: Feedforward Neural Networks
– volume: 18
  start-page: 304
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2021.116429_b0800
  article-title: Enhancing data analysis with noise removal
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.46
– ident: 10.1016/j.eswa.2021.116429_b0060
– volume: 1
  start-page: 32
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0545
  article-title: Credit card fraud detection using neural network
  publication-title: International Journal of Soft Computing and Engineering
– volume: 36
  start-page: 3630
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2021.116429_b0630
  article-title: Association rules applied to credit card fraud detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.001
– ident: 10.1016/j.eswa.2021.116429_b0395
– year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0835
– volume: 68
  start-page: 90
  year: 2016
  ident: 10.1016/j.eswa.2021.116429_b0005
  article-title: Fraud detection system: A survey
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2016.04.007
– ident: 10.1016/j.eswa.2021.116429_b0595
  doi: 10.1145/2939672.2939778
– volume: 74
  start-page: 406
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0205
  article-title: A comparative evaluation of outlier detection algorithms: Experiments and analyses
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.09.037
– volume: 5
  start-page: 363
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2021.116429_b0845
  article-title: A survey on unsupervised outlier detection in high-dimensional numerical data
  publication-title: Statistical Analysis and Data Mining
  doi: 10.1002/sam.11161
– volume: 11
  start-page: 13
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0670
  article-title: Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.04.001
– volume: 46
  start-page: Article 44
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0250
  article-title: A survey on concept drift adaptation
  publication-title: ACM Computing Surveys
  doi: 10.1145/2523813
– volume: 9
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.116429_b0575
  article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2018.090103
– volume: 190
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0780
  article-title: adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105187
– volume: 70
  start-page: 324
  year: 2014
  ident: 10.1016/j.eswa.2021.116429_b0525
  article-title: Fraud detection using self-organizing map visualizing the user profiles
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.07.008
– volume: 29
  start-page: 131
  issue: 2–3
  year: 1997
  ident: 10.1016/j.eswa.2021.116429_b0235
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
  doi: 10.1023/A:1007465528199
– volume: 53
  start-page: Article 55
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0115
  article-title: Outlier Detection: Methods, Models, and Classification
  publication-title: ACM Computing Surveys
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.eswa.2021.116429_b0585
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– ident: 10.1016/j.eswa.2021.116429_b0310
  doi: 10.1109/CYBERNETICSCOM.2017.8311689
– year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0625
  article-title: Detecting Credit Card Fraud by Decision Trees and Support Vector Machines
– ident: 10.1016/j.eswa.2021.116429_b0505
– ident: 10.1016/j.eswa.2021.116429_b0350
  doi: 10.1109/KBEI.2017.8324876
– volume: 8
  start-page: 149841
  year: 2020
  ident: 10.1016/j.eswa.2021.116429_b0730
  article-title: Using variational auto encoding in credit card fraud detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015600
– ident: 10.1016/j.eswa.2021.116429_b0335
– year: 1996
  ident: 10.1016/j.eswa.2021.116429_b0510
– ident: 10.1016/j.eswa.2021.116429_b0465
– ident: 10.1016/j.eswa.2021.116429_b0740
– ident: 10.1016/j.eswa.2021.116429_b0160
  doi: 10.1145/2939672.2939785
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.eswa.2021.116429_b0260
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Computation
  doi: 10.1162/089976600300015015
– ident: 10.1016/j.eswa.2021.116429_b0155
  doi: 10.1109/IEMCON.2018.8614815
– ident: 10.1016/j.eswa.2021.116429_b0440
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2021.116429_b0080
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.eswa.2021.116429_b0500
  doi: 10.3390/engproc2021005056
– volume: 6
  start-page: 50
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2021.116429_b0555
  article-title: June). Minority report in fraud detection: Classification of skewed data
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1007730.1007738
– ident: 10.1016/j.eswa.2021.116429_b0035
– ident: 10.1016/j.eswa.2021.116429_b0295
– ident: 10.1016/j.eswa.2021.116429_b0140
  doi: 10.1109/IJCNN48605.2020.9206844
– volume: 6
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2021.116429_b0150
  article-title: Editorial: Special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1007730.1007733
– ident: 10.1016/j.eswa.2021.116429_b0590
– ident: 10.1016/j.eswa.2021.116429_b0485
– ident: 10.1016/j.eswa.2021.116429_b0055
– volume: 67
  start-page: 49
  year: 2017
  ident: 10.1016/j.eswa.2021.116429_b0165
  article-title: Using social network analysis to prevent money laundering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.09.029
– ident: 10.1016/j.eswa.2021.116429_b0330
– volume: 50
  start-page: 559
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.116429_b0515
  article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.08.006
– year: 2013
  ident: 10.1016/j.eswa.2021.116429_b0020
SSID ssj0017007
Score 2.7168367
SecondaryResourceType review_article
Snippet •This survey includes the most popular and effective anomaly detection techniques.•Highlights recent advancements in semi-supervised and unsupervised...
With the rise of technology and the continued economic growth evident in modern society, acts of fraud have become much more prevalent in the financial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116429
SubjectTerms Algorithms
Anomalies
Anomaly detection
Artificial intelligence
Credit card fraud
Crime
Deep learning
Economic development
Financial fraud
Fraud
Index Terms — Anomaly
Insider trading
Insurance fraud
Machine learning
Money laundering
Outlier
Outlier detection
Securities and commodities fraud
Title Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances
URI https://dx.doi.org/10.1016/j.eswa.2021.116429
https://www.proquest.com/docview/2639727402
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qTNN-stbmY6pbBc32C2kaQuT2Q3XIV78232vTQYK7uCxJQnlNfnee8n3vhByxXPOVYgbVTyJHAE-B3AwYo6nFMqd6DBMsMB5OPIHE_E09aYN0rO1MEirNNhfY3qF1uZN11izu5zNui8QHIA7hNSOVZovqAkqRICz_OZrQ_NA-bmg1tsLHGxtCmdqjle2-kDtIZcBckAgHv3lnH7BdOV7-gdkzwSNNK6_65A0suKI7NsLGahZn8dk2Lf6GRQC0nV6R2Nab_7TRU4h039T8096n5UV_6qgYyvguqKqSKEpUjVpXNMCVidk0n8Y9waOuS_B0YKHpaNdheI8Ls8j5Udcea5KUoAvplWoeAqRloZ0FDy41kHiqyjSrtAQ4aSeVoFWjJ-SZrEosjNCU19zkSlIh3CLkHGVpzlLPAHDJfAQtAizhpLaiInjnRZzaVljrxKNK9G4sjZui1xv-ixrKY2trT1rf_ljQkjA-q392vZnSbMcV9LF40vIv2_d838Oe0F2XSx8qKiObdIs39fZJYQjZdKp5luH7MSPz4PRN77S3S4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH6Z20Ev_jZOp_bgzZANCgO8kenC3I-LW7JbUwokM5MtwmL8732lZYkm7uAR0jbk0X7ve-17XwHuaUop9-RGFY18w0afgzjom4bDuZQ7EZ4XyQLn8aQbzuyXuTOvQa-qhZFplRr7FaaXaK3ftLU12-vFov2K5ADdIYZ2Zqn5Yu9BQ6pTOXVoBINhONkeJrgdVTWN7Q3ZQdfOqDSvJP-U8kOWieCBXNz_yz_9QurS_fSP4VDzRhKoTzuBWpKdwlF1JwPRS_QMxv1KQoMgJ93EjyQgav-frFKCwf47X36Rp6QoU7AyMq00XHPCsxibymxNEqjMgPwcZv3naS809JUJhrCpVxjC4lKfx6Kpz7s-5Y7FoxgRzBTc4zRGsiUwIkUnLoQbdbnvC8sWSHJiR3BXcJNeQD1bZcklkLgrqJ1wjIjkLqFJeRqnZuTYOFyED24TzMpQTGg9cXmtxZJViWNvTBqXSeMyZdwmPGz7rJWaxs7WTmV_9mNOMIT7nf1a1c9iekXmzJInmBiCd6yrfw57B_vhdDxio8FkeA0HlqyDKDMfW1AvPjbJDbKTIrrVs-8bYKDf3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Fraud%3A+A+Review+of+Anomaly+Detection+Techniques+and+Recent+Advances&rft.jtitle=Expert+systems+with+applications&rft.au=Hilal%2C+Waleed&rft.au=Gadsden%2C+S+Andrew&rft.au=Yawney%2C+John&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=193&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.116429&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon