Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 22651
Main Authors Yasir, Kashif Ammar, Liu, Wu-Ming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.03.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.
AbstractList Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.
Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.
ArticleNumber 22651
Author Yasir, Kashif Ammar
Liu, Wu-Ming
Author_xml – sequence: 1
  givenname: Kashif Ammar
  surname: Yasir
  fullname: Yasir, Kashif Ammar
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Wu-Ming
  surname: Liu
  fullname: Liu, Wu-Ming
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26955789$$D View this record in MEDLINE/PubMed
BookMark eNptkV9rFDEUxYNUbK198AvIgC8qjJ0kk5nkRdBlawuFgtTncCd_timZZExmhP32pm5d1mpecuH-7uHce16ioxCDQeg1bj7ihvLznMxESMfwM3RCmpbVhBJydFAfo7Oc75vyGBEtFi_QMekEYz0XJ0itYphT9N7oau2NKvUIm2Bmp8D7bXUV9KJK7zZByBMkE9S2gqCrCwix-mZyDBCUyZUL1eV2SE5XX9ar-maa42jUHQSn8iv03ILP5uzxP0XfL9a3q8v6-ubr1erzda1ayudaYdPZBlvVWYoBs4GA5oIOPcO8a_hgsdacaTvYYWitggawoNAOraZcKy3oKfq0052WYTRambIZeDklN0LayghO_t0J7k5u4k_Z9px2XVsE3j0KpPhjMXmWo8vKeA_BxCVL3PcEt4w0pKBvn6D3cUmhrCcxF7zHTPym3hw62lv5c_8CvN8BKsVckrR7BDfyIV65j7ew509Y5WaY3UOA4Px_Jz7sJnJRDRuTDkz-A_8C6c24HQ
CitedBy_id crossref_primary_10_7498_aps_74_20241432
crossref_primary_10_1088_1674_1056_ac6ed7
crossref_primary_10_1140_epjp_s13360_022_03631_5
crossref_primary_10_1103_PhysRevA_95_013810
crossref_primary_10_1038_s41598_022_08250_9
crossref_primary_10_1002_qua_27356
crossref_primary_10_1038_nphoton_2017_142
crossref_primary_10_1038_s41534_022_00617_0
crossref_primary_10_1103_PhysRevA_96_063819
crossref_primary_10_1002_andp_202300465
crossref_primary_10_12693_APhysPolA_132_1358
crossref_primary_10_1103_PhysRevA_96_053821
crossref_primary_10_1103_PhysRevA_98_053848
crossref_primary_10_1103_PhysRevA_102_033721
crossref_primary_10_1140_epjd_e2019_100356_4
crossref_primary_10_1016_j_physe_2020_114345
crossref_primary_10_1140_epjp_s13360_023_04437_9
crossref_primary_10_1007_s11468_023_02181_5
crossref_primary_10_1007_s10773_018_3801_8
crossref_primary_10_1088_1612_202X_aa7d8f
crossref_primary_10_1103_PhysRevA_97_063840
crossref_primary_10_1088_1361_6463_ab085d
crossref_primary_10_1007_s11071_023_08964_z
crossref_primary_10_1364_JOSAB_535185
crossref_primary_10_1088_1674_1056_ad8cbb
crossref_primary_10_1063_1_5038550
crossref_primary_10_1088_1555_6611_ab0d14
crossref_primary_10_1080_09500340_2016_1257749
crossref_primary_10_1088_1674_1056_27_3_034205
crossref_primary_10_1038_srep39781
crossref_primary_10_1016_j_physe_2020_113999
crossref_primary_10_1103_PhysRevA_95_033826
crossref_primary_10_1063_1_4961504
crossref_primary_10_1103_PhysRevA_106_053525
crossref_primary_10_1103_PhysRevA_95_052303
crossref_primary_10_1002_qua_27071
crossref_primary_10_1016_j_rinp_2024_107917
crossref_primary_10_1103_PhysRevA_101_043802
crossref_primary_10_1080_09500340_2018_1514083
crossref_primary_10_1016_j_rinp_2024_107711
crossref_primary_10_1088_1361_6455_aaca5c
crossref_primary_10_1007_s11082_020_02390_w
crossref_primary_10_1016_j_cjph_2022_06_011
crossref_primary_10_1016_j_optcom_2021_126820
crossref_primary_10_1007_s11128_022_03818_w
crossref_primary_10_1080_09500340_2018_1455917
crossref_primary_10_1088_1361_6455_abde52
Cites_doi 10.1103/PhysRevLett.108.153603
10.1103/PhysRevA.89.022331
10.1103/PhysRevA.83.031608
10.1103/PhysRevLett.82.2022
10.1103/PhysRev.124.1866
10.1088/1367-2630/13/1/013017
10.1038/srep10612
10.1088/0953-4075/48/6/065502
10.1038/ncomms1993
10.1103/PhysRevA.83.043606
10.1017/CBO9780511813993
10.1103/PhysRevLett.108.010402
10.1103/PhysRevLett.109.143601
10.1103/PhysRevB.83.235427
10.1103/PhysRevLett.84.2294
10.1103/PhysRevLett.66.2593
10.1038/nature06120
10.1038/nature10787
10.1080/09500340.2014.931476
10.1103/PhysRevLett.82.5229
10.1103/PhysRevA.83.063840
10.1038/35095000
10.1038/nature08171
10.1103/PhysRevB.81.235402
10.1038/nphys1894
10.1103/PhysRevLett.64.1107
10.1103/PhysRevB.86.060517
10.1038/nature10461
10.1038/srep03476
10.1103/PhysRevLett.88.120401
10.1103/PhysRevA.51.2537
10.1038/nature08967
10.1103/RevModPhys.86.1391
10.1103/RevModPhys.85.553
10.1038/nature09933
10.1103/PhysRevA.79.033401
10.1103/PhysRevA.63.023812
10.1103/PhysRevLett.91.010402
10.1038/nature05027
10.1364/JOSAB.31.002821
10.1007/978-3-662-09642-0
10.1126/science.1163218
10.1126/science.1195596
10.1038/nature09898
10.1088/1054-660X/24/11/115503
10.1103/PhysRevA.89.011602
10.1103/PhysRevLett.104.243602
10.1103/PhysRevLett.102.023602
10.1103/PhysRevA.81.013802
10.1103/PhysRevLett.99.183602
10.1126/science.1156032
10.1038/nature10261
10.1103/PhysRevA.87.063813
10.1038/nature07332
10.1103/PhysRevA.83.053821
10.1103/PhysRevLett.110.090402
10.1088/1367-2630/8/6/107
10.1103/PhysRevA.81.041803
10.1007/s10946-013-9352-9
10.1103/PhysRevA.85.061605
10.1103/PhysRevA.86.021801
10.1103/PhysRevLett.79.4056
10.1103/PhysRevLett.93.266403
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Mar 2016
Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Mar 2016
– notice: Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep22651
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
ExternalDocumentID PMC4783664
26955789
10_1038_srep22651
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c438t-c1e6f01fc6f31a15b2ad893b7518608bf1dd85dfbfbb4fca0a193a4b4d38dcd93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:04:29 EDT 2025
Fri Jul 11 10:20:21 EDT 2025
Sat Aug 23 12:28:37 EDT 2025
Thu Apr 03 06:59:09 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 00:43:50 EDT 2025
Fri Feb 21 02:38:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c1e6f01fc6f31a15b2ad893b7518608bf1dd85dfbfbb4fca0a193a4b4d38dcd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep22651
PMID 26955789
PQID 1898715902
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4783664
proquest_miscellaneous_1772145202
proquest_journals_1898715902
pubmed_primary_26955789
crossref_primary_10_1038_srep22651
crossref_citationtrail_10_1038_srep22651
springer_journals_10_1038_srep22651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-09
PublicationDateYYYYMMDD 2016-03-09
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cai, Wang, Wu (CR10) 2012; 86
Fano (CR48) 1961; 124
Weis (CR46) 2010; 330
Asjad (CR44) 2013; 34
Brennecke, Ritter, Donner, Esslinger (CR3) 2008; 322
Ji, Sun, Xie, Liu (CR36) 2009; 102
Zhang (CR58) 2013; 110
Akram, Ghafoor, Sair (CR51) 2015; 48
CR37
Dong, Zhou, Wu, Ramachandhran, Pu (CR11) 2014; 89
Qu, Agarwal (CR50) 2013; 87
Paternostro, Chiara, Palma (CR55) 2010; 104
Law (CR59) 1995; 51
Liu, Tan, Lv, Liu (CR19) 2011; 83
Abdi, Pirandola, Tombesi, Vitali (CR28) 2012; 109
Singh (CR27) 2012; 86
Ayub, Yasir, Saif (CR34) 2014; 24
Safavi-Naeini, Painter (CR45) 2010; 13
Naik (CR15) 2006; 443
Brennecke (CR54) 2007; 450
Tian, Zoller (CR14) 2004; 93
Choi, Niu (CR5) 1999; 82
Verhagen, Deleglise, Weis, Schliesser, Kippenberg (CR24) 2012; 482
Aspelmeyer, Kippenberg, Marquardt (CR2) 2014; 86
Sete, Eleuch, Ooi (CR30) 2014; 31
Gallinet, Martin (CR49) 2011; 83
Harris, Field, Imamoglu (CR39) 1990; 64
Boller, Imamoglu, Harris (CR40) 1991; 66
Teufel (CR17) 2011; 475
Groeblacher, Hammerer, Vanner, Aspelmeyer (CR22) 2009; 460
Agarwal, Huang (CR43) 2010; 81
Yang (CR57) 2011; 83
Giovannetti, Vitali (CR62) 2001; 63
Mancini, Giovannetti, Vitali, Tombesi (CR13) 2002; 88
Yi-Xiang, Ye, Liu (CR21) 2013; 3
Kash (CR41) 1999; 82
Liu (CR7) 1997; 79
Zhang, Chen, Bhattacharya, Meystre (CR25) 2010; 81
Cai, Zhou, Wu (CR9) 2012; 85
Dong, Ye, Pu (CR63) 2011; 83
Hu, Ramachandhran, Pu, Liu (CR12) 2012; 108
Lewenstein, Liu (CR8) 2011; 7
Chan (CR18) 2011; 478
Dudarev, Diener, Wu, Raizen, Niu (CR32) 2003; 91
Zhang, Cui, Zhou, Liu (CR56) 2009; 79
Kippenberg, Vahala (CR1) 2008; 321
Wang, Clerk (CR26) 2012; 108
Esteve (CR53) 2008; 455
Yasir, Ayub, Saif (CR33) 2014; 61
Shi, Jiang, Ye (CR31) 2010; 81
Ji, Xie, Liu (CR35) 2007; 99
Yasir, Liu (CR52) 2015; 5
Paternostro (CR61) 2006; 8
CR60
Teufel (CR23) 2011; 471
Abdi, Pirandola, Tombesi, Vitali (CR29) 2014; 89
Lukin, Imamoglu (CR42) 2001; 413
Ritsch, Domokos, Brennecke, Esslinger (CR4) 2013; 85
Liu, Wu, Niu (CR6) 2000; 84
Sun, Hu, Ji, Liu (CR20) 2011; 83
Safavi-Naeini (CR38) 2011; 472
O′Connell (CR16) 2010; 464
Massel (CR47) 2012; 3
EA Sete (BFsrep22651_CR30) 2014; 31
V Giovannetti (BFsrep22651_CR62) 2001; 63
Z Cai (BFsrep22651_CR9) 2012; 85
H Hu (BFsrep22651_CR12) 2012; 108
T Shi (BFsrep22651_CR31) 2010; 81
H Ritsch (BFsrep22651_CR4) 2013; 85
KJ Boller (BFsrep22651_CR40) 1991; 66
Y Yi-Xiang (BFsrep22651_CR21) 2013; 3
S Mancini (BFsrep22651_CR13) 2002; 88
J Esteve (BFsrep22651_CR53) 2008; 455
M Abdi (BFsrep22651_CR28) 2012; 109
AC Ji (BFsrep22651_CR36) 2009; 102
F Brennecke (BFsrep22651_CR54) 2007; 450
BFsrep22651_CR60
WM Liu (BFsrep22651_CR6) 2000; 84
L Dong (BFsrep22651_CR11) 2014; 89
Y-D Wang (BFsrep22651_CR26) 2012; 108
GS Agarwal (BFsrep22651_CR43) 2010; 81
JM Zhang (BFsrep22651_CR56) 2009; 79
KA Yasir (BFsrep22651_CR52) 2015; 5
AH Safavi-Naeini (BFsrep22651_CR38) 2011; 472
JD Teufel (BFsrep22651_CR23) 2011; 471
KA Yasir (BFsrep22651_CR33) 2014; 61
M Abdi (BFsrep22651_CR29) 2014; 89
E Verhagen (BFsrep22651_CR24) 2012; 482
SE Harris (BFsrep22651_CR39) 1990; 64
B Gallinet (BFsrep22651_CR49) 2011; 83
F Massel (BFsrep22651_CR47) 2012; 3
CK Law (BFsrep22651_CR59) 1995; 51
J Chan (BFsrep22651_CR18) 2011; 478
WV Liu (BFsrep22651_CR7) 1997; 79
K Liu (BFsrep22651_CR19) 2011; 83
XF Zhang (BFsrep22651_CR58) 2013; 110
AD O′Connell (BFsrep22651_CR16) 2010; 464
AH Safavi-Naeini (BFsrep22651_CR45) 2010; 13
S Singh (BFsrep22651_CR27) 2012; 86
BFsrep22651_CR37
MD Lukin (BFsrep22651_CR42) 2001; 413
JD Teufel (BFsrep22651_CR17) 2011; 475
AM Dudarev (BFsrep22651_CR32) 2003; 91
Q Sun (BFsrep22651_CR20) 2011; 83
MJ Akram (BFsrep22651_CR51) 2015; 48
AC Ji (BFsrep22651_CR35) 2007; 99
M Asjad (BFsrep22651_CR44) 2013; 34
U Fano (BFsrep22651_CR48) 1961; 124
M Ayub (BFsrep22651_CR34) 2014; 24
TJ Kippenberg (BFsrep22651_CR1) 2008; 321
K Qu (BFsrep22651_CR50) 2013; 87
M Paternostro (BFsrep22651_CR55) 2010; 104
A Naik (BFsrep22651_CR15) 2006; 443
M Lewenstein (BFsrep22651_CR8) 2011; 7
S Weis (BFsrep22651_CR46) 2010; 330
M Aspelmeyer (BFsrep22651_CR2) 2014; 86
M Paternostro (BFsrep22651_CR61) 2006; 8
Z Cai (BFsrep22651_CR10) 2012; 86
L Tian (BFsrep22651_CR14) 2004; 93
MM Kash (BFsrep22651_CR41) 1999; 82
D Choi (BFsrep22651_CR5) 1999; 82
S Yang (BFsrep22651_CR57) 2011; 83
F Brennecke (BFsrep22651_CR3) 2008; 322
S Groeblacher (BFsrep22651_CR22) 2009; 460
K Zhang (BFsrep22651_CR25) 2010; 81
Y Dong (BFsrep22651_CR63) 2011; 83
10041301 - Phys Rev Lett. 1990 Mar 5;64(10):1107-1110
20237473 - Nature. 2010 Apr 1;464(7289):697-703
23496692 - Phys Rev Lett. 2013 Mar 1;110(9):090402
19257273 - Phys Rev Lett. 2009 Jan 16;102(2):023602
11018868 - Phys Rev Lett. 2000 Mar 13;84(11):2294-7
21071628 - Science. 2010 Dec 10;330(6010):1520-3
21390117 - Nature. 2011 Mar 10;471(7337):168-9
12906521 - Phys Rev Lett. 2003 Jul 4;91(1):010402
18830245 - Nature. 2008 Oct 30;455(7217):1216-9
16971944 - Nature. 2006 Sep 14;443(7108):193-6
17995407 - Phys Rev Lett. 2007 Nov 2;99(18):183602
15697998 - Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):266403
18787133 - Science. 2008 Oct 10;322(5899):235-8
22587252 - Phys Rev Lett. 2012 Apr 13;108(15):153603
18755966 - Science. 2008 Aug 29;321(5893):1172-6
21979049 - Nature. 2011 Oct 05;478(7367):89-92
23083240 - Phys Rev Lett. 2012 Oct 5;109(14):143601
22297970 - Nature. 2012 Feb 01;482(7383):63-7
10043562 - Phys Rev Lett. 1991 May 20;66(20):2593-2596
19661913 - Nature. 2009 Aug 6;460(7256):724-7
17994093 - Nature. 2007 Nov 8;450(7167):268-71
26035206 - Sci Rep. 2015 Jun 02;5:10612
9911870 - Phys Rev A. 1995 Mar;51(3):2537-2541
21734657 - Nature. 2011 Jul 06;475(7356):359-63
20867301 - Phys Rev Lett. 2010 Jun 18;104(24):243602
22871806 - Nat Commun. 2012;3:987
24327105 - Sci Rep. 2013 Dec 11;3:3476
11909431 - Phys Rev Lett. 2002 Mar 25;88(12):120401
11565022 - Nature. 2001 Sep 20;413(6853):273-6
21412237 - Nature. 2011 Apr 7;472(7341):69-73
22304247 - Phys Rev Lett. 2012 Jan 6;108(1):010402
References_xml – volume: 86
  start-page: 1391
  year: 2014
  ident: CR2
  article-title: Cavity optomechanics
  publication-title: Rev. Mod. Phys.
– volume: 34
  start-page: 278
  year: 2013
  ident: CR44
  article-title: Optomechanically dark state in hybrid BEC-optomechanical systems
  publication-title: J. Russ. Laser. Res.
– volume: 472
  start-page: 69
  year: 2011
  ident: CR38
  article-title: Electromagnetically induced transparency and slow light with optomechanics
  publication-title: Nature
– volume: 102
  start-page: 023602
  year: 2009
  ident: CR36
  article-title: Josephson effect for photons in two weakly linked microcavities
  publication-title: Phys. Rev. Lett.
– volume: 124
  start-page: 1866
  year: 1961
  ident: CR48
  article-title: Effects of configuration interaction on intensities and phase shifts
  publication-title: Phys. Rev.
– volume: 87
  start-page: 063813
  year: 2013
  ident: CR50
  article-title: Fano resonances and their control in optomechanics
  publication-title: Phys. Rev. A
– volume: 88
  start-page: 120401
  year: 2002
  ident: CR13
  article-title: Entangling macroscopic oscillators exploiting radiation pressure
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 4056
  year: 1997
  ident: CR7
  article-title: Theoretical study of the damping of collective excitation in a Bose-Einstein condensate
  publication-title: Phys. Rev. Lett.
– volume: 64
  start-page: 1107
  year: 1990
  ident: CR39
  article-title: Nonlinear optical processes using electromagnetically induced transparency
  publication-title: Phys. Rev. Lett.
– volume: 110
  start-page: 090402
  year: 2013
  ident: CR58
  article-title: Rydberg Polaritons in a Cavity: A Superradiant Solid
  publication-title: Phys. Rev. Lett.
– volume: 475
  start-page: 359
  year: 2011
  ident: CR17
  article-title: Sideband cooling of micromechanical motion to the quantum ground state
  publication-title: Nature
– volume: 93
  start-page: 266403
  year: 2004
  ident: CR14
  article-title: Coupled ion-nanomechanical system
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 043606
  year: 2011
  ident: CR20
  article-title: Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity
  publication-title: Phys. Rev. A
– volume: 5
  start-page: 10612
  year: 2015
  ident: CR52
  article-title: Tunable bistability in hybrid Bose-Einstein condensate optomechanics
  publication-title: Sci. Rep.
– volume: 85
  start-page: 553
  year: 2013
  ident: CR4
  article-title: Cold atoms in cavity-generated dynamical optical potential
  publication-title: Rev. Mod. Phys.
– volume: 82
  start-page: 5229
  year: 1999
  ident: CR41
  article-title: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 2821
  year: 2014
  ident: CR30
  article-title: Light-to-matter entanglement transfer in optomechanics
  publication-title: J. Opt. Soc. Am. B
– volume: 3
  start-page: 3476
  year: 2013
  ident: CR21
  article-title: Goldstone and Higgs modes of photons inside a cavity
  publication-title: Sci. Rep.
– volume: 321
  start-page: 1172
  year: 2008
  ident: CR1
  article-title: Cavity optomechanics: Back-action at the mesoscale
  publication-title: Science
– volume: 443
  start-page: 193
  year: 2006
  ident: CR15
  article-title: Cooling a nanomechanical resonator with quantum back-action
  publication-title: Nature
– volume: 79
  start-page: 033401
  year: 2009
  ident: CR56
  article-title: Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity
  publication-title: Phys. Rev. A
– volume: 61
  start-page: 1318
  year: 2014
  ident: CR33
  article-title: Exponential localization of moving-end mirror in optomechanical system
  publication-title: J. Mod. Opt.
– volume: 104
  start-page: 243602
  year: 2010
  ident: CR55
  article-title: Cold-atom-induced control of an optomechanical device
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 010402
  year: 2003
  ident: CR32
  article-title: Entanglement generation and multiparticle interferometry with neutral atoms
  publication-title: Phys. Rev. Lett
– volume: 83
  start-page: 235427
  year: 2011
  ident: CR49
  article-title: theory of Fano resonances in plasmonic nanostructures and metamaterials
  publication-title: Phys. Rev. B
– volume: 455
  start-page: 1216
  year: 2008
  ident: CR53
  article-title: Squeezing and entanglement in a BoseEinstein condensate
  publication-title: Nature
– volume: 89
  start-page: 011602(R)
  year: 2014
  ident: CR11
  article-title: Cavity-assisted dynamical spin-orbit coupling in cold atoms
  publication-title: Phys. Rev. A
– volume: 108
  start-page: 153603
  year: 2012
  ident: CR26
  article-title: Using Interference for High Fidelity Quantum State Transfer in Optomechanics
  publication-title: Phys. Rev. Lett.
– volume: 413
  start-page: 273
  year: 2001
  ident: CR42
  article-title: Controlling photons using electromagnetically induced transparency
  publication-title: Nature
– ident: CR60
– volume: 8
  start-page: 107
  year: 2006
  ident: CR61
  article-title: Reconstructing the dynamics of a movable mirror in a detuned optical cavity
  publication-title: New J. Phys.
– volume: 471
  start-page: 204
  year: 2011
  ident: CR23
  article-title: Quantum mechanics: A light sounding drum
  publication-title: Nature
– volume: 81
  start-page: 041803(R)
  year: 2010
  ident: CR43
  article-title: Electromagnetically induced transparency in mechanical effects of light
  publication-title: Phys. Rev. A
– volume: 89
  start-page: 022331
  year: 2014
  ident: CR29
  article-title: Continuous-variable-entanglement swapping and its local certification: Entangling distant mechanical-modes
  publication-title: Phys. Rev. A
– volume: 13
  start-page: 013017
  year: 2010
  ident: CR45
  article-title: Proposal for an optomechanical traveling wave phonon-photon translator
  publication-title: New J. Phys.
– volume: 86
  start-page: 060517(R)
  year: 2012
  ident: CR10
  article-title: Frustrated Bose-Einstein condensates with noncollinear orbital ordering
  publication-title: Phys. Rev. B
– volume: 330
  start-page: 1520
  year: 2010
  ident: CR46
  article-title: Optomechanically Induced Transparency
  publication-title: Science
– volume: 83
  start-page: 053821
  year: 2011
  ident: CR57
  article-title: Controllable optical switch using a Bose-Einstein condensate in an optical cavity
  publication-title: Phys. Rev. A
– volume: 478
  start-page: 89
  year: 2011
  ident: CR18
  article-title: Laser cooling of a nanomechanical oscillator into its quantum ground state
  publication-title: Nature
– volume: 99
  start-page: 183602
  year: 2007
  ident: CR35
  article-title: Quantum magnetic dynamics of polarized light in arrays of microcavities
  publication-title: Phys. Rev. Lett.
– ident: CR37
– volume: 85
  start-page: 061605(R)
  year: 2012
  ident: CR9
  article-title: Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices
  publication-title: Phys. Rev. A
– volume: 83
  start-page: 063840
  year: 2011
  ident: CR19
  article-title: Quantum phase transition in an array of coupled dissipative cavities
  publication-title: Phys. Rev. A
– volume: 109
  start-page: 143601
  year: 2012
  ident: CR28
  article-title: Entanglement swapping with local certification: Application to remote micromechanical resonators
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 235402
  year: 2010
  ident: CR31
  article-title: Phase sensitive two-mode squeezing and photon correlations from exciton superfluid in semiconductor electron-hole bilayer systems
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 031608(R)
  year: 2011
  ident: CR63
  article-title: Multistability in an optomechanical system with a two-component Bose-Einstein condensate
  publication-title: Phys. Rev. A
– volume: 460
  start-page: 724
  year: 2009
  ident: CR22
  article-title: Observation of strong coupling between a micromechanical resonator and an optical cavity field
  publication-title: Nature
– volume: 82
  start-page: 2022
  year: 1999
  ident: CR5
  article-title: Bose-Einstein condensates in an optical lattice
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 023812
  year: 2001
  ident: CR62
  article-title: Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion
  publication-title: Phys. Rev. A
– volume: 7
  start-page: 101
  year: 2011
  ident: CR8
  article-title: Optical lattices: Orbital dance
  publication-title: Nat. Phys.
– volume: 86
  start-page: 021801
  year: 2012
  ident: CR27
  article-title: Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror
  publication-title: Phys. Rev. A
– volume: 322
  start-page: 235
  year: 2008
  ident: CR3
  article-title: Cavity optomechanics with a Bose-Einstein condensate
  publication-title: Science
– volume: 51
  start-page: 2537
  year: 1995
  ident: CR59
  article-title: Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation
  publication-title: Phys. Rev. A
– volume: 464
  start-page: 697
  year: 2010
  ident: CR16
  article-title: Quantum ground state and single-phonon control of a mechanical resonator
  publication-title: Nature
– volume: 84
  start-page: 2294
  year: 2000
  ident: CR6
  article-title: Nonlinear effects in interference of Bose-Einstein condensates
  publication-title: Phys Rev. Lett.
– volume: 450
  start-page: 268
  year: 2007
  ident: CR54
  article-title: Cavity QED with a BoseEinstein condensate
  publication-title: Nature
– volume: 81
  start-page: 013802
  year: 2010
  ident: CR25
  article-title: Hamiltonian chaos in a coupled BEC-optomechanical-cavity system
  publication-title: Phys. Rev. A
– volume: 48
  start-page: 065502
  year: 2015
  ident: CR51
  article-title: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics
  publication-title: J. Phys. B
– volume: 66
  start-page: 2593
  year: 1991
  ident: CR40
  article-title: Observation of electromagnetically induced transparency
  publication-title: Phys. Rev. Lett.
– volume: 482
  start-page: 63
  year: 2012
  ident: CR24
  article-title: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
  publication-title: Nature
– volume: 24
  start-page: 115503
  year: 2014
  ident: CR34
  article-title: Dynamical localization of matter waves in optomechanics
  publication-title: Laser Phys.
– volume: 3
  start-page: 987
  year: 2012
  ident: CR47
  article-title: Multimode circuit optomechanics near the quantum limit
  publication-title: Nat. Commun.
– volume: 108
  start-page: 010402
  year: 2012
  ident: CR12
  article-title: Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 153603
  year: 2012
  ident: BFsrep22651_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153603
– volume: 89
  start-page: 022331
  year: 2014
  ident: BFsrep22651_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.022331
– volume: 83
  start-page: 031608(R)
  year: 2011
  ident: BFsrep22651_CR63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.031608
– volume: 82
  start-page: 2022
  year: 1999
  ident: BFsrep22651_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2022
– volume: 124
  start-page: 1866
  year: 1961
  ident: BFsrep22651_CR48
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.1866
– volume: 13
  start-page: 013017
  year: 2010
  ident: BFsrep22651_CR45
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/1/013017
– volume: 5
  start-page: 10612
  year: 2015
  ident: BFsrep22651_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/srep10612
– volume: 48
  start-page: 065502
  year: 2015
  ident: BFsrep22651_CR51
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/48/6/065502
– volume: 3
  start-page: 987
  year: 2012
  ident: BFsrep22651_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1993
– volume: 83
  start-page: 043606
  year: 2011
  ident: BFsrep22651_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.043606
– ident: BFsrep22651_CR37
  doi: 10.1017/CBO9780511813993
– volume: 108
  start-page: 010402
  year: 2012
  ident: BFsrep22651_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.010402
– volume: 109
  start-page: 143601
  year: 2012
  ident: BFsrep22651_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.143601
– volume: 83
  start-page: 235427
  year: 2011
  ident: BFsrep22651_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235427
– volume: 84
  start-page: 2294
  year: 2000
  ident: BFsrep22651_CR6
  publication-title: Phys Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2294
– volume: 66
  start-page: 2593
  year: 1991
  ident: BFsrep22651_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2593
– volume: 450
  start-page: 268
  year: 2007
  ident: BFsrep22651_CR54
  publication-title: Nature
  doi: 10.1038/nature06120
– volume: 482
  start-page: 63
  year: 2012
  ident: BFsrep22651_CR24
  publication-title: Nature
  doi: 10.1038/nature10787
– volume: 61
  start-page: 1318
  year: 2014
  ident: BFsrep22651_CR33
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2014.931476
– volume: 82
  start-page: 5229
  year: 1999
  ident: BFsrep22651_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.5229
– volume: 83
  start-page: 063840
  year: 2011
  ident: BFsrep22651_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.063840
– volume: 413
  start-page: 273
  year: 2001
  ident: BFsrep22651_CR42
  publication-title: Nature
  doi: 10.1038/35095000
– volume: 460
  start-page: 724
  year: 2009
  ident: BFsrep22651_CR22
  publication-title: Nature
  doi: 10.1038/nature08171
– volume: 81
  start-page: 235402
  year: 2010
  ident: BFsrep22651_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.235402
– volume: 7
  start-page: 101
  year: 2011
  ident: BFsrep22651_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1894
– volume: 64
  start-page: 1107
  year: 1990
  ident: BFsrep22651_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.1107
– volume: 86
  start-page: 060517(R)
  year: 2012
  ident: BFsrep22651_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.060517
– volume: 478
  start-page: 89
  year: 2011
  ident: BFsrep22651_CR18
  publication-title: Nature
  doi: 10.1038/nature10461
– volume: 3
  start-page: 3476
  year: 2013
  ident: BFsrep22651_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/srep03476
– volume: 88
  start-page: 120401
  year: 2002
  ident: BFsrep22651_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.120401
– volume: 51
  start-page: 2537
  year: 1995
  ident: BFsrep22651_CR59
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.2537
– volume: 464
  start-page: 697
  year: 2010
  ident: BFsrep22651_CR16
  publication-title: Nature
  doi: 10.1038/nature08967
– volume: 86
  start-page: 1391
  year: 2014
  ident: BFsrep22651_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
– volume: 85
  start-page: 553
  year: 2013
  ident: BFsrep22651_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.553
– volume: 472
  start-page: 69
  year: 2011
  ident: BFsrep22651_CR38
  publication-title: Nature
  doi: 10.1038/nature09933
– volume: 79
  start-page: 033401
  year: 2009
  ident: BFsrep22651_CR56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.033401
– volume: 63
  start-page: 023812
  year: 2001
  ident: BFsrep22651_CR62
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.023812
– volume: 91
  start-page: 010402
  year: 2003
  ident: BFsrep22651_CR32
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.91.010402
– volume: 443
  start-page: 193
  year: 2006
  ident: BFsrep22651_CR15
  publication-title: Nature
  doi: 10.1038/nature05027
– volume: 31
  start-page: 2821
  year: 2014
  ident: BFsrep22651_CR30
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.31.002821
– ident: BFsrep22651_CR60
  doi: 10.1007/978-3-662-09642-0
– volume: 322
  start-page: 235
  year: 2008
  ident: BFsrep22651_CR3
  publication-title: Science
  doi: 10.1126/science.1163218
– volume: 330
  start-page: 1520
  year: 2010
  ident: BFsrep22651_CR46
  publication-title: Science
  doi: 10.1126/science.1195596
– volume: 471
  start-page: 204
  year: 2011
  ident: BFsrep22651_CR23
  publication-title: Nature
  doi: 10.1038/nature09898
– volume: 24
  start-page: 115503
  year: 2014
  ident: BFsrep22651_CR34
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/24/11/115503
– volume: 89
  start-page: 011602(R)
  year: 2014
  ident: BFsrep22651_CR11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.011602
– volume: 104
  start-page: 243602
  year: 2010
  ident: BFsrep22651_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.243602
– volume: 102
  start-page: 023602
  year: 2009
  ident: BFsrep22651_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.023602
– volume: 81
  start-page: 013802
  year: 2010
  ident: BFsrep22651_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.013802
– volume: 99
  start-page: 183602
  year: 2007
  ident: BFsrep22651_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.183602
– volume: 321
  start-page: 1172
  year: 2008
  ident: BFsrep22651_CR1
  publication-title: Science
  doi: 10.1126/science.1156032
– volume: 475
  start-page: 359
  year: 2011
  ident: BFsrep22651_CR17
  publication-title: Nature
  doi: 10.1038/nature10261
– volume: 87
  start-page: 063813
  year: 2013
  ident: BFsrep22651_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.063813
– volume: 455
  start-page: 1216
  year: 2008
  ident: BFsrep22651_CR53
  publication-title: Nature
  doi: 10.1038/nature07332
– volume: 83
  start-page: 053821
  year: 2011
  ident: BFsrep22651_CR57
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.053821
– volume: 110
  start-page: 090402
  year: 2013
  ident: BFsrep22651_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.090402
– volume: 8
  start-page: 107
  year: 2006
  ident: BFsrep22651_CR61
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/8/6/107
– volume: 81
  start-page: 041803(R)
  year: 2010
  ident: BFsrep22651_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.041803
– volume: 34
  start-page: 278
  year: 2013
  ident: BFsrep22651_CR44
  publication-title: J. Russ. Laser. Res.
  doi: 10.1007/s10946-013-9352-9
– volume: 85
  start-page: 061605(R)
  year: 2012
  ident: BFsrep22651_CR9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.061605
– volume: 86
  start-page: 021801
  year: 2012
  ident: BFsrep22651_CR27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.021801
– volume: 79
  start-page: 4056
  year: 1997
  ident: BFsrep22651_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.4056
– volume: 93
  start-page: 266403
  year: 2004
  ident: BFsrep22651_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.266403
– reference: 11018868 - Phys Rev Lett. 2000 Mar 13;84(11):2294-7
– reference: 21071628 - Science. 2010 Dec 10;330(6010):1520-3
– reference: 21734657 - Nature. 2011 Jul 06;475(7356):359-63
– reference: 18787133 - Science. 2008 Oct 10;322(5899):235-8
– reference: 18830245 - Nature. 2008 Oct 30;455(7217):1216-9
– reference: 21412237 - Nature. 2011 Apr 7;472(7341):69-73
– reference: 23496692 - Phys Rev Lett. 2013 Mar 1;110(9):090402
– reference: 17995407 - Phys Rev Lett. 2007 Nov 2;99(18):183602
– reference: 19257273 - Phys Rev Lett. 2009 Jan 16;102(2):023602
– reference: 22297970 - Nature. 2012 Feb 01;482(7383):63-7
– reference: 22304247 - Phys Rev Lett. 2012 Jan 6;108(1):010402
– reference: 24327105 - Sci Rep. 2013 Dec 11;3:3476
– reference: 11909431 - Phys Rev Lett. 2002 Mar 25;88(12):120401
– reference: 16971944 - Nature. 2006 Sep 14;443(7108):193-6
– reference: 10043562 - Phys Rev Lett. 1991 May 20;66(20):2593-2596
– reference: 20237473 - Nature. 2010 Apr 1;464(7289):697-703
– reference: 9911870 - Phys Rev A. 1995 Mar;51(3):2537-2541
– reference: 11565022 - Nature. 2001 Sep 20;413(6853):273-6
– reference: 23083240 - Phys Rev Lett. 2012 Oct 5;109(14):143601
– reference: 22871806 - Nat Commun. 2012;3:987
– reference: 15697998 - Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):266403
– reference: 12906521 - Phys Rev Lett. 2003 Jul 4;91(1):010402
– reference: 10041301 - Phys Rev Lett. 1990 Mar 5;64(10):1107-1110
– reference: 20867301 - Phys Rev Lett. 2010 Jun 18;104(24):243602
– reference: 19661913 - Nature. 2009 Aug 6;460(7256):724-7
– reference: 17994093 - Nature. 2007 Nov 8;450(7167):268-71
– reference: 26035206 - Sci Rep. 2015 Jun 02;5:10612
– reference: 22587252 - Phys Rev Lett. 2012 Apr 13;108(15):153603
– reference: 18755966 - Science. 2008 Aug 29;321(5893):1172-6
– reference: 21979049 - Nature. 2011 Oct 05;478(7367):89-92
– reference: 21390117 - Nature. 2011 Mar 10;471(7337):168-9
SSID ssj0000529419
Score 2.3853056
Snippet Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22651
SubjectTerms 639/766/119/2791
639/766/400/482
Atomic physics
Atoms & subatomic particles
Cigars
Humanities and Social Sciences
Investigations
Laboratories
Lasers
Light effects
multidisciplinary
Optics
Physics
Radiation
Science
Transparence
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VVkhcKqBA0xZkKAcuVuPESexTVVa7WnGAC5X2FvkJlbbOwm4P--_ryQu2RdwSeSRbmbHni2fmG4CPmRZOZULT6E0E5dI5qpznNNWmYCbl3qo2QfZrOb_mXxbFor9wW_dplcOZ2B7UtjF4R37BRPw7Zkg2crn6RbFrFEZX-xYaT-AAqcvQqqtFNd6xYBSLMzkQCuXiIrqdVQQcBdt1Q4-w5eMUyQdx0tb9zJ7DYY8byVWn6Bew58JLeNp1ktzGpzaT06yPwEy65POls2Ta9bi5VT9CV6u43BLs1WHiWMdqjqVgZktUsGSmQkPwNh8pONya3AQy32I9F_k8ndBvq01z67BMOM7yCq5n0--TOe07KVDDc7GhhrnSp8yb0udMsUJnykagojHmUqZCe2atKKzXXmvujUpVxHWKa25zYY2V-WvYD01wx0BYfM_LyknlZYRiXqXepM5brqURVW4S-DR82Nr0NOPY7WJZt-HuXNSjDhL4MIquOm6NfwmdDdqp--21rv8YQwLvx-G4MTDaoYJr7qJM_G9gvMhQ5k2nzHGWrJRFPKpkAtWOmkcBJN3eHQk3P1vybY5lLyVP4HwwiL-W9XDxJ_9f_Ck8i_irbFPa5Bnsb37fubcR42z0u9aQ7wHjoQHe
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQFRIL4k2gIPMYWCLixEntsVStqg4wQKVukZ9QqbgVLUP_PXacBNoyMEa-KJbv4vvsu_sOgLuYE8ViwkPrTUiIqVIhUxqHERcpEhHWkhUJsk9Zf4gHo3RUkkXPy7RKT2lZbNNVdtiD9RczixRcsXTDMbRbk26024OXQX2h4kJWGNGKPSghP--s-pwNILmZD7kWFC18TW8f7JUgEbb9tA7AljKHYMe3jVweAdHx-eUTJWHXt7H5YG_GlyNOltC14xB2zBOXu2ovsYTMSNhjZgrdhb1j2VBzODawv3QlW_Cx2wmfZ4vph3KVwGMxPwbDXve10w_LZgmhwAlZhAKpTEdIi0wniKGUx0xaLMJdWCWLCNdISpJKzTXnWAsWMQvdGOZYJkQKSZMTsG2mRp0BiOxzkrUUZZpatKVZpEWktMScCtJKRADuq-XMRckk7hpaTPIiop2QvF75ANzUojNPn_GXULPSSV7-QfMcEWrPco5cJgDX9bC1fRfQYEZNv6yMPRognMZO5tSrsP5KnNHU7kY0AK0V5dYCjld7dcSM3wt-bewqWzIcgNvKDH5Na33y5_-SugC7FmllRfIabYLtxeeXurRoZsGvSjv-Bp1V-xU
  priority: 102
  providerName: Springer Nature
Title Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics
URI https://link.springer.com/article/10.1038/srep22651
https://www.ncbi.nlm.nih.gov/pubmed/26955789
https://www.proquest.com/docview/1898715902
https://www.proquest.com/docview/1772145202
https://pubmed.ncbi.nlm.nih.gov/PMC4783664
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED-6lsFeyrpPd23QPh724s2yZVt6GCM1CSGwbmwL5M3ocw2kTtqkMP_3kyzbNG33ZGydkdBJ3E-6u98BfIgF1TymIrTWhIaEaR1ybUgYCZliGRGjeBMge55NZmQ6T-d70NXYbCdw8-DRztWTml0vP_29qr_aDf_Fp4zTz9aWrC2KcInUB9Yg5a6QwbcW5XuK75gRzDpeodt_OC7gjKV22bJdw3QPbd4PmrzjOW0M0vgpHLZIEg296o9gT1fP4LGvLVk_B1n4IPSlVmjka91c8j-Vz1lc1sjV7JC2zbObu5QwWSNeKTTm1Qq5W31HxaE3aFGhSe3yutDZqAi_r7erS-3ShRdy8wJm49HvYhK2FRVCSRK6DSXWmYmwkZlJMMepiLmygEU430sWUWGwUjRVRhghiJE84hbfcSKISqiSiiUvYb9aVfo1IGzfkyzXjBtmIZnhkZGRNooIJmmeyAA-dtNZypZu3FW9WJaN2zuhZa-EAN71omvPsfGQ0Emnk7JbJSWmzB74HANNAG_7ZrtBnNeDV3p1Y2Xs-QGTNHYyr7wK-1463QeQ7yi3F3Dk27st1eKiIeEmLv0lIwG875bBrWHdHfzxf3t-A08sBMuaqDZ2Avvb6xt9amHOVgzgUT7PB3AwHE5_Te3zbHT-46f9WmTFoLk6GDTL_B9Yvwa2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqIgQXxJtAgeElcYmaSSbJ5IAQLLva0lIurbS3ME-otE0WdiuUP8VvxE42gW0Rt94SjaUZjT22Z2x_BngZa-lULHWI1kSGonAuVM6LMNIm5SYS3qo2QfYwmx6Lj7N0tgW_-loYSqvsdWKrqG1t6I18l0u8HXMCG3m7-B5S1yiKrvYtNDqx2HfNT7yyLd_sfUD-vorjyfhoNA3XXQVCIxK5Cg13mY-4N5lPuOKpjpVFo60p_pBFUnturUyt115r4Y2KFPo4SmhhE2mNJfAlVPlX0PBGdNnLZ_nwpkNRM8GLHsAokbto5hbo4KR80-xd8GUvpmSei8u25m5yE26s_VT2rhOsW7Dlqttwtetc2eBXmzlqlnfAjLpk97mzbNz11DlVX6uuNnLeMOoNYnCsQ1Gn0jPTMFVZNlFVzSh6QJAfbslOKjZtqH6MvR-Pws-LVX3qqCwZZ7kLx5eyx_dgu6or9wAYx_8ky12hfIGun1eRN5HzVujCyDwxAbzuN7Y0a1hz6q4xL9vweiLLgQcBPB9IFx2Wx7-IdnrulOvjvCz_CF8Az4ZhPIgUXVGVq8-QBu8pXKQx0dzvmDnMEmdFiqqxCCDfYPNAQCDfmyPVybcW7FtQmU0mAnjRC8Rfyzq_-If_X_xTuDY9-nRQHuwd7j-C6-j7ZW06XbED26sfZ-4x-lcr_aQVagZfLvsU_Qbl6EEF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEG8MBZaXxMWK11476wNCNE2UUhQqRKXe3H1CpdQJJBXKX-PXMeMXpEXcerO1I-1qZ2ZndmfmG4BXsZZOxVKHaE1kKHLnQuW8CCNtUm4i4a2qEmSn2eRIfDhOj7fgV1sLQ2mV7ZlYHdR2buiNvM8l3o45gY30fZMWcbg3frf4HlIHKYq0tu00ahE5cOufeH1bvt3fQ16_juPx6MtwEjYdBkIjErkKDXeZj7g3mU-44qmOlUUDrikWkUVSe26tTK3XXmvhjYoU-jtKaGETaY0lICY8_rcHdCvqwfbuaHr4uXvhoRia4HkLZ5TIPhq9Bbo7Kd80gpc828sJmheitJXxG9-Cm43Xyt7XYnYbtlx5B67VfSzX-FXlkZrlXTDDOvV95iwb1R12ztTXsq6UnK0ZdQoxOFZjqlMhmlkzVVo2VuWcUSyBAEDckp2WbLKmajK2OxqGnxar-ZmjImWc5R4cXcku34deOS_dQ2Ac_5Ns4HLlc3QEvYq8iZy3QudGDhITwJt2YwvTgJxTr41ZUQXbE1l0PAjgRUe6qJE9_kW003KnaJR7WfwRxQCed8OolhRrUaWbnyMN3lq4SGOieVAzs5slzvIUD8o8gMEGmzsCgvzeHClPv1XQ34KKbjIRwMtWIP5a1sXFP_r_4p_BddSg4uP-9OAx3EBHMKty6_Id6K1-nLsn6Gyt9NNGqhmcXLUi_QbCCkag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Electromagnetically+Induced+Transparency+and+Fano+Resonances+in+Hybrid+BEC-Optomechanics&rft.jtitle=Scientific+reports&rft.au=Yasir%2C+Kashif+Ammar&rft.au=Liu%2C+Wu-Ming&rft.date=2016-03-09&rft.eissn=2045-2322&rft.volume=6&rft.spage=22651&rft_id=info:doi/10.1038%2Fsrep22651&rft_id=info%3Apmid%2F26955789&rft.externalDocID=26955789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon