Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG
Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1068 - 1078 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects. |
---|---|
AbstractList | Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects. Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects. |
Author | Zhang, Zhi-Qiang Xie, Shengquan Bao, Tianzhe Yang, Pengfei Zaidi, Syed Ali Raza |
Author_xml | – sequence: 1 givenname: Tianzhe orcidid: 0000-0002-1103-2660 surname: Bao fullname: Bao, Tianzhe email: eltb@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 2 givenname: Syed Ali Raza orcidid: 0000-0003-1969-3727 surname: Zaidi fullname: Zaidi, Syed Ali Raza email: s.a.zaidi@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 3 givenname: Shengquan orcidid: 0000-0002-8082-9112 surname: Xie fullname: Xie, Shengquan email: s.q.xie@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 4 givenname: Pengfei orcidid: 0000-0003-4065-4052 surname: Yang fullname: Yang, Pengfei email: pfyang@xidian.edu.cn organization: School of Computer Science and Technology, Xidian University, Xi'an, China – sequence: 5 givenname: Zhi-Qiang orcidid: 0000-0003-0204-3867 surname: Zhang fullname: Zhang, Zhi-Qiang email: z.zhang3@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K |
BookMark | eNp9kM1OAjEURhuDUVBfQDeTuHEz2E5_Z6mIaERMBOJy0hnumBLoYFsWvr3FIS5YuGja3J6vvff0UMc2FhC6JLhPCM5vZ5Pp-7Cf4Yz0KVaCYXKEuoRzlcYS7uzOlKWMZvgU9bxfYkyk4PIEnVIWeS5ZF82ebQCXTrflEqqQPDRrbWxyt9CboINpbFI3LhlMJum99rBIPpzxIXkxFtbxuvLJ0Aezbsm5N_Yz8cPX0Tk6rvXKw8V-P0Pzx-Fs8JSO30bPg7txWjGqQlqR2ALUWJSizgHnRFf1Iuc1ppQTRanWogRJmSQqzzIMJS4VBwW5lCRXpaZn6KZ9d-Oary34UKyNr2C10haarS8yTqWgcbGIXh-gy2brbOwuUowwIaSSkcpaqnKN9w7qYuPieO67ILjYOS9-nRc758XeeQypg1BlWnnBabP6P3rVRg0A_P2VMyYUJ_QHyHCNYA |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1177_00202940221105092 crossref_primary_10_1109_TIM_2022_3227604 crossref_primary_10_1088_1741_2552_accd22 crossref_primary_10_1109_LSENS_2023_3326459 crossref_primary_10_3389_fnbot_2022_978014 crossref_primary_10_3390_s21186147 crossref_primary_10_1109_TIM_2022_3225023 crossref_primary_10_1109_LRA_2023_3317680 crossref_primary_10_1109_TIM_2022_3203453 crossref_primary_10_3390_s22228898 crossref_primary_10_1109_TNSRE_2024_3486444 crossref_primary_10_1109_TNSRE_2022_3226860 crossref_primary_10_3389_fnbot_2023_1185052 crossref_primary_10_1080_09544828_2024_2326111 crossref_primary_10_1109_JBHI_2024_3417236 crossref_primary_10_1109_TNSRE_2023_3333685 crossref_primary_10_1080_10255842_2023_2165068 crossref_primary_10_1109_TNSRE_2024_3459924 crossref_primary_10_1109_TIM_2023_3276522 crossref_primary_10_1109_TIM_2024_3480203 crossref_primary_10_1109_TNSRE_2023_3281455 crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1109_TNSRE_2023_3347540 crossref_primary_10_1109_TNSRE_2023_3345006 crossref_primary_10_1109_TIM_2022_3220286 crossref_primary_10_1109_TIM_2022_3225015 crossref_primary_10_1109_TNSRE_2022_3173708 crossref_primary_10_1146_annurev_bioeng_082222_012531 crossref_primary_10_3390_s24185949 crossref_primary_10_1109_TNSRE_2023_3295453 crossref_primary_10_1016_j_eswa_2023_121224 crossref_primary_10_3389_fnbot_2021_685961 crossref_primary_10_1109_TBME_2023_3239687 crossref_primary_10_1049_cit2_12221 |
Cites_doi | 10.1111/aor.13004 10.1093/bioinformatics/btl242 10.1186/s12984-015-0102-9 10.1109/TNSRE.2011.2178039 10.1016/j.compbiomed.2020.104188 10.1109/TIM.2015.2434097 10.3389/fnhum.2017.00334 10.1109/JBHI.2018.2864335 10.1109/TNSRE.2019.2962189 10.1016/j.bspc.2018.06.012 10.1109/TNSRE.2017.2771273 10.1109/JSEN.2019.2936171 10.1007/s00779-020-01397-0 10.1109/TNNLS.2017.2774288 10.1609/aaai.v33i01.33013296 10.1109/TBME.2013.2250502 10.1109/TNSRE.2014.2304470 10.3389/fnins.2017.00379 10.1109/ROBIO.2018.8664790 10.1088/1741-2552/ab0e2e 10.1111/aor.13153 10.5772/49957 10.1109/TGRS.2017.2769673 10.1109/ICCV.2017.609 10.1109/TNSRE.2019.2896269 10.1126/scirobotics.aat3630 10.1109/TNSRE.2013.2287383 10.1016/j.jbiomech.2010.01.027 10.1109/TBCAS.2019.2914476 10.1109/TPAMI.2017.2773081 10.1109/TNSRE.2019.2946625 10.1109/JAS.2021.1003865 10.1109/TPAMI.2018.2814042 10.1007/s00521-019-04142-8 10.1016/j.bspc.2019.02.011 10.1109/THMS.2019.2953262 10.1016/j.bspc.2019.101572 10.3390/s18103226 10.1109/TBME.2019.2935182 10.1109/RBME.2010.2085429 10.1109/THMS.2019.2925191 10.1109/CVPR.2005.202 10.1016/j.neucom.2018.05.083 10.1109/TNSRE.2018.2826981 10.1109/TNSRE.2020.3038051 10.1145/3108257 10.1016/j.eswa.2013.02.023 10.1109/BHI.2018.8333395 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3086401 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1078 |
ExternalDocumentID | 10_1109_TNSRE_2021_3086401 9446851 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61972302; 61962019 funderid: 10.13039/501100001809 – fundername: School of Electronic and Electrical Engineering, University of Leeds funderid: 10.13039/501100000777 – fundername: Approval of all ethical and experimental procedures and protocols was granted by the MaPS and Engineering Joint Faculty Research Ethics Committee of University of Leeds, U.K. grantid: MEEC 18-002 funderid: 10.13039/501100000777 – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/S019219/1 funderid: 10.13039/501100000266 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c438t-c1574ef06b6f9e091acfd95f03351833aa6be7347189220eb0b85e8e977198ba3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 02:11:25 EDT 2025 Fri Jul 25 06:13:12 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 00:43:23 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-c1574ef06b6f9e091acfd95f03351833aa6be7347189220eb0b85e8e977198ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8082-9112 0000-0003-0204-3867 0000-0002-1103-2660 0000-0003-4065-4052 0000-0003-1969-3727 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9446851 |
PMID | 34086574 |
PQID | 2541466787 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2541466787 crossref_primary_10_1109_TNSRE_2021_3086401 proquest_miscellaneous_2537633764 crossref_citationtrail_10_1109_TNSRE_2021_3086401 ieee_primary_9446851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 morsing (ref37) 2020 ref59 ref15 ref58 long (ref31) 2016 ref53 ref52 ref55 ref11 de luca (ref18) 2002; 10 ref54 ref10 ref17 ref16 hill (ref14) 2016; 16 ref19 tzeng (ref29) 2014 ref51 ref50 zellinger (ref34) 2017 ref46 ref48 ref47 ref42 ref41 yu (ref21) 2020 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref36 sun (ref33) 2016 ref2 ref1 ref39 ref38 bao (ref13) 2021; 70 long (ref30) 2015 long (ref32) 2017 ref24 ref23 ref26 ref25 ref20 ref22 stegeman (ref45) 2007 ref28 ref27 ref60 |
References_xml | – ident: ref12 doi: 10.1111/aor.13004 – ident: ref39 doi: 10.1093/bioinformatics/btl242 – ident: ref15 doi: 10.1186/s12984-015-0102-9 – ident: ref43 doi: 10.1109/TNSRE.2011.2178039 – year: 2020 ident: ref21 article-title: Learning to match distributions for domain adaptation publication-title: arXiv 2007 10791 – ident: ref52 doi: 10.1016/j.compbiomed.2020.104188 – volume: 70 start-page: 1 year: 2021 ident: ref13 article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography publication-title: IEEE Trans Instrum Meas – ident: ref2 doi: 10.1109/TIM.2015.2434097 – ident: ref22 doi: 10.3389/fnhum.2017.00334 – ident: ref17 doi: 10.1109/JBHI.2018.2864335 – year: 2017 ident: ref34 article-title: Central moment discrepancy (CMD) for domain-invariant representation learning publication-title: arXiv 1702 08811 – ident: ref24 doi: 10.1109/TNSRE.2019.2962189 – start-page: 2208 year: 2017 ident: ref32 article-title: Deep transfer learning with joint adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref5 doi: 10.1016/j.bspc.2018.06.012 – ident: ref3 doi: 10.1109/TNSRE.2017.2771273 – ident: ref16 doi: 10.1109/JSEN.2019.2936171 – ident: ref55 doi: 10.1007/s00779-020-01397-0 – ident: ref59 doi: 10.1109/TNNLS.2017.2774288 – ident: ref38 doi: 10.1609/aaai.v33i01.33013296 – ident: ref51 doi: 10.1109/TBME.2013.2250502 – ident: ref53 doi: 10.1109/TNSRE.2014.2304470 – ident: ref56 doi: 10.3389/fnins.2017.00379 – ident: ref10 doi: 10.1109/ROBIO.2018.8664790 – year: 2007 ident: ref45 article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM) – ident: ref9 doi: 10.1088/1741-2552/ab0e2e – ident: ref23 doi: 10.1111/aor.13153 – ident: ref48 doi: 10.5772/49957 – ident: ref41 doi: 10.1109/TGRS.2017.2769673 – year: 2014 ident: ref29 article-title: Deep domain confusion: Maximizing for domain invariance publication-title: arXiv 1412 3474 – ident: ref36 doi: 10.1109/ICCV.2017.609 – ident: ref57 doi: 10.1109/TNSRE.2019.2896269 – ident: ref1 doi: 10.1126/scirobotics.aat3630 – ident: ref50 doi: 10.1109/TNSRE.2013.2287383 – ident: ref46 doi: 10.1016/j.jbiomech.2010.01.027 – ident: ref7 doi: 10.1109/TBCAS.2019.2914476 – year: 2020 ident: ref37 article-title: Supervised domain adaptation using graph embedding publication-title: arXiv 2003 04063 – ident: ref27 doi: 10.1109/TPAMI.2017.2773081 – ident: ref25 doi: 10.1109/TNSRE.2019.2946625 – ident: ref20 doi: 10.1109/JAS.2021.1003865 – ident: ref26 doi: 10.1109/TPAMI.2018.2814042 – ident: ref4 doi: 10.1007/s00521-019-04142-8 – start-page: 97 year: 2015 ident: ref30 article-title: Learning transferable features with deep adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref49 doi: 10.1016/j.bspc.2019.02.011 – ident: ref44 doi: 10.1109/THMS.2019.2953262 – ident: ref54 doi: 10.1016/j.bspc.2019.101572 – ident: ref19 doi: 10.3390/s18103226 – ident: ref6 doi: 10.1109/TBME.2019.2935182 – start-page: 136 year: 2016 ident: ref31 article-title: Unsupervised domain adaptation with residual transfer networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref47 doi: 10.1109/RBME.2010.2085429 – start-page: 443 year: 2016 ident: ref33 article-title: Deep coral: Correlation alignment for deep domain adaptation publication-title: Proc Eur Conf Comput Vis – ident: ref11 doi: 10.1109/THMS.2019.2925191 – ident: ref28 doi: 10.1109/CVPR.2005.202 – volume: 10 start-page: 1 year: 2002 ident: ref18 article-title: Surface electromyography: Detection and recording publication-title: Delsys Incorporated – ident: ref35 doi: 10.1016/j.neucom.2018.05.083 – ident: ref8 doi: 10.1109/TNSRE.2018.2826981 – ident: ref40 doi: 10.1109/TNSRE.2020.3038051 – volume: 16 start-page: 310 year: 2016 ident: ref14 article-title: Effect of sex on torque, recovery, EMG, and MMG responses to fatigue publication-title: J Musculoskel Neuron Interact – ident: ref58 doi: 10.1145/3108257 – ident: ref42 doi: 10.1016/j.eswa.2013.02.023 – ident: ref60 doi: 10.1109/BHI.2018.8333395 |
SSID | ssj0017657 |
Score | 2.4834101 |
Snippet | Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1068 |
SubjectTerms | Adaptation Adaptation models Artificial neural networks CNN Divergence domain adaptation Domains Electromyography Estimation Feature extraction Kinematics Neural networks Regression sEMG Supervised learning Training Transfer learning Wrist wrist kinematics estimation |
Title | Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG |
URI | https://ieeexplore.ieee.org/document/9446851 https://www.proquest.com/docview/2541466787 https://www.proquest.com/docview/2537633764 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SFUh5iy0Ou1PYCWewkTpwjpUsRiD3AIrhFdjKREDSLursXfj0zTjaCUlU9RLKUSRxn7HnZ8w3AF2sKKStlAnQ6Cbi8dmBD5ETgUqtSpRGWHu1zmJzdxOd3-m4BDrtcGET0h8-wz02_l1-OixmHyo4y8l0M50svkuPW5Gp1OwZp4lE9aQHH1GUo5wkyMjsaDa-vBuQKhqofkQVPHsUKLEcxNXUav9FHvsDKO6nsVc3pB7icf2RzwuShP5u6fvH8B37j_45iDVZbm1McN5PkIyxgvQ5fX-MLi1EDLiC-ias30N0bMPIxw4AEDEdsxI_xL3tfi-PSPjUUgqxecTIcBt9JH5biloWGuCDb1WPBTsSAZEiTHin88QQxGVz-3ISb08Ho5CxoSzEEBfFvGhSKfhVWMnFJlSHZGLaoykxXMoo0CYXI2sRhGrGmy8JQopPOaDRI1qXKjLPRFizV4xq3QVSmksrFJtYM_a4rp6zhw1bWYRKnBfZAzRmSF-1guVzGY-79FZnlnp858zNv-dmDg-6Zpwal45_UG8yVjrJlSA9253zP24U8yUMuk56QRk978Lm7TUuQ91VsjeMZ07CUpiv-9Pc378AK999EbnZhafp7hntky0zdvo8B7Pup_AIwUu3I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRYJeeBXElhaMBFwgWzuJE-dYypaFdnMoqegtspOJhGizVXf3wq_vjJONKCDEIZKlTBI7Y8_DnvkG4LU1lZSNMgE6nQRcXjuwIXIicK1VrdIIa4_2mSfTs_jLuT7fgPdDLgwi-uAzHHPTn-XX82rFW2X7GfkuhvOl75De12GXrTWcGaSJx_WkJRzTR0O5TpGR2X6Rfz2dkDMYqnFENjz5FFtwN4qpqdP4lkbyJVb-kMte2Rw9gNm6m12MyY_xaunG1c_fEBz_dxwP4X5vdYqDbpo8gg1sH8ObXxGGRdHBC4i34vQWePc2FH7XMCARw3s24uP80n5vxUFtrzoKQXavOMzz4ANpxFp8Y7Ehjsl69WiwCzEhKdIlSAofoCAWk9mnJ3B2NCkOp0FfjCGoiIPLoFL0q7CRiUuaDMnKsFVTZ7qRUaRJLETWJg7TiHVdFoYSnXRGo0GyL1VmnI2ewmY7b_EZiMY0UrnYxJrB33XjlDUcbmUdJnFa4QjUmiFl1Q-WC2ZclN5jkVnp-VkyP8uenyN4Nzxz1eF0_JN6m7kyUPYMGcHumu9lv5QXZciF0hPS6ekIXg23aRHyyYptcb5iGpbTdMU7f3_zS7g3LWYn5cnn_Pg5bHFfun2cXdhcXq9wjyybpXvhJ_QNJsvwHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-Subject+Domain+Adaptation+for+CNN-Based+Wrist+Kinematics+Estimation+Using+sEMG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Bao%2C+Tianzhe&rft.au=Zaidi%2C+Syed+Ali+Raza&rft.au=Xie%2C+Shengquan&rft.au=Yang%2C+Pengfei&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=1068&rft.epage=1078&rft_id=info:doi/10.1109%2FTNSRE.2021.3086401&rft_id=info%3Apmid%2F34086574&rft.externalDocID=9446851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |