Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1068 - 1078
Main Authors Bao, Tianzhe, Zaidi, Syed Ali Raza, Xie, Shengquan, Yang, Pengfei, Zhang, Zhi-Qiang
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.
AbstractList Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.
Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.
Author Zhang, Zhi-Qiang
Xie, Shengquan
Bao, Tianzhe
Yang, Pengfei
Zaidi, Syed Ali Raza
Author_xml – sequence: 1
  givenname: Tianzhe
  orcidid: 0000-0002-1103-2660
  surname: Bao
  fullname: Bao, Tianzhe
  email: eltb@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 2
  givenname: Syed Ali Raza
  orcidid: 0000-0003-1969-3727
  surname: Zaidi
  fullname: Zaidi, Syed Ali Raza
  email: s.a.zaidi@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 3
  givenname: Shengquan
  orcidid: 0000-0002-8082-9112
  surname: Xie
  fullname: Xie, Shengquan
  email: s.q.xie@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 4
  givenname: Pengfei
  orcidid: 0000-0003-4065-4052
  surname: Yang
  fullname: Yang, Pengfei
  email: pfyang@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
– sequence: 5
  givenname: Zhi-Qiang
  orcidid: 0000-0003-0204-3867
  surname: Zhang
  fullname: Zhang, Zhi-Qiang
  email: z.zhang3@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
BookMark eNp9kM1OAjEURhuDUVBfQDeTuHEz2E5_Z6mIaERMBOJy0hnumBLoYFsWvr3FIS5YuGja3J6vvff0UMc2FhC6JLhPCM5vZ5Pp-7Cf4Yz0KVaCYXKEuoRzlcYS7uzOlKWMZvgU9bxfYkyk4PIEnVIWeS5ZF82ebQCXTrflEqqQPDRrbWxyt9CboINpbFI3LhlMJum99rBIPpzxIXkxFtbxuvLJ0Aezbsm5N_Yz8cPX0Tk6rvXKw8V-P0Pzx-Fs8JSO30bPg7txWjGqQlqR2ALUWJSizgHnRFf1Iuc1ppQTRanWogRJmSQqzzIMJS4VBwW5lCRXpaZn6KZ9d-Oary34UKyNr2C10haarS8yTqWgcbGIXh-gy2brbOwuUowwIaSSkcpaqnKN9w7qYuPieO67ILjYOS9-nRc758XeeQypg1BlWnnBabP6P3rVRg0A_P2VMyYUJ_QHyHCNYA
CODEN ITNSB3
CitedBy_id crossref_primary_10_1177_00202940221105092
crossref_primary_10_1109_TIM_2022_3227604
crossref_primary_10_1088_1741_2552_accd22
crossref_primary_10_1109_LSENS_2023_3326459
crossref_primary_10_3389_fnbot_2022_978014
crossref_primary_10_3390_s21186147
crossref_primary_10_1109_TIM_2022_3225023
crossref_primary_10_1109_LRA_2023_3317680
crossref_primary_10_1109_TIM_2022_3203453
crossref_primary_10_3390_s22228898
crossref_primary_10_1109_TNSRE_2024_3486444
crossref_primary_10_1109_TNSRE_2022_3226860
crossref_primary_10_3389_fnbot_2023_1185052
crossref_primary_10_1080_09544828_2024_2326111
crossref_primary_10_1109_JBHI_2024_3417236
crossref_primary_10_1109_TNSRE_2023_3333685
crossref_primary_10_1080_10255842_2023_2165068
crossref_primary_10_1109_TNSRE_2024_3459924
crossref_primary_10_1109_TIM_2023_3276522
crossref_primary_10_1109_TIM_2024_3480203
crossref_primary_10_1109_TNSRE_2023_3281455
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1109_TNSRE_2023_3347540
crossref_primary_10_1109_TNSRE_2023_3345006
crossref_primary_10_1109_TIM_2022_3220286
crossref_primary_10_1109_TIM_2022_3225015
crossref_primary_10_1109_TNSRE_2022_3173708
crossref_primary_10_1146_annurev_bioeng_082222_012531
crossref_primary_10_3390_s24185949
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1016_j_eswa_2023_121224
crossref_primary_10_3389_fnbot_2021_685961
crossref_primary_10_1109_TBME_2023_3239687
crossref_primary_10_1049_cit2_12221
Cites_doi 10.1111/aor.13004
10.1093/bioinformatics/btl242
10.1186/s12984-015-0102-9
10.1109/TNSRE.2011.2178039
10.1016/j.compbiomed.2020.104188
10.1109/TIM.2015.2434097
10.3389/fnhum.2017.00334
10.1109/JBHI.2018.2864335
10.1109/TNSRE.2019.2962189
10.1016/j.bspc.2018.06.012
10.1109/TNSRE.2017.2771273
10.1109/JSEN.2019.2936171
10.1007/s00779-020-01397-0
10.1109/TNNLS.2017.2774288
10.1609/aaai.v33i01.33013296
10.1109/TBME.2013.2250502
10.1109/TNSRE.2014.2304470
10.3389/fnins.2017.00379
10.1109/ROBIO.2018.8664790
10.1088/1741-2552/ab0e2e
10.1111/aor.13153
10.5772/49957
10.1109/TGRS.2017.2769673
10.1109/ICCV.2017.609
10.1109/TNSRE.2019.2896269
10.1126/scirobotics.aat3630
10.1109/TNSRE.2013.2287383
10.1016/j.jbiomech.2010.01.027
10.1109/TBCAS.2019.2914476
10.1109/TPAMI.2017.2773081
10.1109/TNSRE.2019.2946625
10.1109/JAS.2021.1003865
10.1109/TPAMI.2018.2814042
10.1007/s00521-019-04142-8
10.1016/j.bspc.2019.02.011
10.1109/THMS.2019.2953262
10.1016/j.bspc.2019.101572
10.3390/s18103226
10.1109/TBME.2019.2935182
10.1109/RBME.2010.2085429
10.1109/THMS.2019.2925191
10.1109/CVPR.2005.202
10.1016/j.neucom.2018.05.083
10.1109/TNSRE.2018.2826981
10.1109/TNSRE.2020.3038051
10.1145/3108257
10.1016/j.eswa.2013.02.023
10.1109/BHI.2018.8333395
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3086401
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1078
ExternalDocumentID 10_1109_TNSRE_2021_3086401
9446851
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61972302; 61962019
  funderid: 10.13039/501100001809
– fundername: School of Electronic and Electrical Engineering, University of Leeds
  funderid: 10.13039/501100000777
– fundername: Approval of all ethical and experimental procedures and protocols was granted by the MaPS and Engineering Joint Faculty Research Ethics Committee of University of Leeds, U.K.
  grantid: MEEC 18-002
  funderid: 10.13039/501100000777
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/S019219/1
  funderid: 10.13039/501100000266
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c438t-c1574ef06b6f9e091acfd95f03351833aa6be7347189220eb0b85e8e977198ba3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 02:11:25 EDT 2025
Fri Jul 25 06:13:12 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 00:43:23 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c1574ef06b6f9e091acfd95f03351833aa6be7347189220eb0b85e8e977198ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8082-9112
0000-0003-0204-3867
0000-0002-1103-2660
0000-0003-4065-4052
0000-0003-1969-3727
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9446851
PMID 34086574
PQID 2541466787
PQPubID 85423
PageCount 11
ParticipantIDs proquest_journals_2541466787
crossref_primary_10_1109_TNSRE_2021_3086401
proquest_miscellaneous_2537633764
crossref_citationtrail_10_1109_TNSRE_2021_3086401
ieee_primary_9446851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
morsing (ref37) 2020
ref59
ref15
ref58
long (ref31) 2016
ref53
ref52
ref55
ref11
de luca (ref18) 2002; 10
ref54
ref10
ref17
ref16
hill (ref14) 2016; 16
ref19
tzeng (ref29) 2014
ref51
ref50
zellinger (ref34) 2017
ref46
ref48
ref47
ref42
ref41
yu (ref21) 2020
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref36
sun (ref33) 2016
ref2
ref1
ref39
ref38
bao (ref13) 2021; 70
long (ref30) 2015
long (ref32) 2017
ref24
ref23
ref26
ref25
ref20
ref22
stegeman (ref45) 2007
ref28
ref27
ref60
References_xml – ident: ref12
  doi: 10.1111/aor.13004
– ident: ref39
  doi: 10.1093/bioinformatics/btl242
– ident: ref15
  doi: 10.1186/s12984-015-0102-9
– ident: ref43
  doi: 10.1109/TNSRE.2011.2178039
– year: 2020
  ident: ref21
  article-title: Learning to match distributions for domain adaptation
  publication-title: arXiv 2007 10791
– ident: ref52
  doi: 10.1016/j.compbiomed.2020.104188
– volume: 70
  start-page: 1
  year: 2021
  ident: ref13
  article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography
  publication-title: IEEE Trans Instrum Meas
– ident: ref2
  doi: 10.1109/TIM.2015.2434097
– ident: ref22
  doi: 10.3389/fnhum.2017.00334
– ident: ref17
  doi: 10.1109/JBHI.2018.2864335
– year: 2017
  ident: ref34
  article-title: Central moment discrepancy (CMD) for domain-invariant representation learning
  publication-title: arXiv 1702 08811
– ident: ref24
  doi: 10.1109/TNSRE.2019.2962189
– start-page: 2208
  year: 2017
  ident: ref32
  article-title: Deep transfer learning with joint adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref5
  doi: 10.1016/j.bspc.2018.06.012
– ident: ref3
  doi: 10.1109/TNSRE.2017.2771273
– ident: ref16
  doi: 10.1109/JSEN.2019.2936171
– ident: ref55
  doi: 10.1007/s00779-020-01397-0
– ident: ref59
  doi: 10.1109/TNNLS.2017.2774288
– ident: ref38
  doi: 10.1609/aaai.v33i01.33013296
– ident: ref51
  doi: 10.1109/TBME.2013.2250502
– ident: ref53
  doi: 10.1109/TNSRE.2014.2304470
– ident: ref56
  doi: 10.3389/fnins.2017.00379
– ident: ref10
  doi: 10.1109/ROBIO.2018.8664790
– year: 2007
  ident: ref45
  article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM)
– ident: ref9
  doi: 10.1088/1741-2552/ab0e2e
– ident: ref23
  doi: 10.1111/aor.13153
– ident: ref48
  doi: 10.5772/49957
– ident: ref41
  doi: 10.1109/TGRS.2017.2769673
– year: 2014
  ident: ref29
  article-title: Deep domain confusion: Maximizing for domain invariance
  publication-title: arXiv 1412 3474
– ident: ref36
  doi: 10.1109/ICCV.2017.609
– ident: ref57
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref1
  doi: 10.1126/scirobotics.aat3630
– ident: ref50
  doi: 10.1109/TNSRE.2013.2287383
– ident: ref46
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: ref7
  doi: 10.1109/TBCAS.2019.2914476
– year: 2020
  ident: ref37
  article-title: Supervised domain adaptation using graph embedding
  publication-title: arXiv 2003 04063
– ident: ref27
  doi: 10.1109/TPAMI.2017.2773081
– ident: ref25
  doi: 10.1109/TNSRE.2019.2946625
– ident: ref20
  doi: 10.1109/JAS.2021.1003865
– ident: ref26
  doi: 10.1109/TPAMI.2018.2814042
– ident: ref4
  doi: 10.1007/s00521-019-04142-8
– start-page: 97
  year: 2015
  ident: ref30
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref49
  doi: 10.1016/j.bspc.2019.02.011
– ident: ref44
  doi: 10.1109/THMS.2019.2953262
– ident: ref54
  doi: 10.1016/j.bspc.2019.101572
– ident: ref19
  doi: 10.3390/s18103226
– ident: ref6
  doi: 10.1109/TBME.2019.2935182
– start-page: 136
  year: 2016
  ident: ref31
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref47
  doi: 10.1109/RBME.2010.2085429
– start-page: 443
  year: 2016
  ident: ref33
  article-title: Deep coral: Correlation alignment for deep domain adaptation
  publication-title: Proc Eur Conf Comput Vis
– ident: ref11
  doi: 10.1109/THMS.2019.2925191
– ident: ref28
  doi: 10.1109/CVPR.2005.202
– volume: 10
  start-page: 1
  year: 2002
  ident: ref18
  article-title: Surface electromyography: Detection and recording
  publication-title: Delsys Incorporated
– ident: ref35
  doi: 10.1016/j.neucom.2018.05.083
– ident: ref8
  doi: 10.1109/TNSRE.2018.2826981
– ident: ref40
  doi: 10.1109/TNSRE.2020.3038051
– volume: 16
  start-page: 310
  year: 2016
  ident: ref14
  article-title: Effect of sex on torque, recovery, EMG, and MMG responses to fatigue
  publication-title: J Musculoskel Neuron Interact
– ident: ref58
  doi: 10.1145/3108257
– ident: ref42
  doi: 10.1016/j.eswa.2013.02.023
– ident: ref60
  doi: 10.1109/BHI.2018.8333395
SSID ssj0017657
Score 2.4834101
Snippet Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1068
SubjectTerms Adaptation
Adaptation models
Artificial neural networks
CNN
Divergence
domain adaptation
Domains
Electromyography
Estimation
Feature extraction
Kinematics
Neural networks
Regression
sEMG
Supervised learning
Training
Transfer learning
Wrist
wrist kinematics estimation
Title Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG
URI https://ieeexplore.ieee.org/document/9446851
https://www.proquest.com/docview/2541466787
https://www.proquest.com/docview/2537633764
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SFUh5iy0Ou1PYCWewkTpwjpUsRiD3AIrhFdjKREDSLursXfj0zTjaCUlU9RLKUSRxn7HnZ8w3AF2sKKStlAnQ6Cbi8dmBD5ETgUqtSpRGWHu1zmJzdxOd3-m4BDrtcGET0h8-wz02_l1-OixmHyo4y8l0M50svkuPW5Gp1OwZp4lE9aQHH1GUo5wkyMjsaDa-vBuQKhqofkQVPHsUKLEcxNXUav9FHvsDKO6nsVc3pB7icf2RzwuShP5u6fvH8B37j_45iDVZbm1McN5PkIyxgvQ5fX-MLi1EDLiC-ias30N0bMPIxw4AEDEdsxI_xL3tfi-PSPjUUgqxecTIcBt9JH5biloWGuCDb1WPBTsSAZEiTHin88QQxGVz-3ISb08Ho5CxoSzEEBfFvGhSKfhVWMnFJlSHZGLaoykxXMoo0CYXI2sRhGrGmy8JQopPOaDRI1qXKjLPRFizV4xq3QVSmksrFJtYM_a4rp6zhw1bWYRKnBfZAzRmSF-1guVzGY-79FZnlnp858zNv-dmDg-6Zpwal45_UG8yVjrJlSA9253zP24U8yUMuk56QRk978Lm7TUuQ91VsjeMZ07CUpiv-9Pc378AK999EbnZhafp7hntky0zdvo8B7Pup_AIwUu3I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRYJeeBXElhaMBFwgWzuJE-dYypaFdnMoqegtspOJhGizVXf3wq_vjJONKCDEIZKlTBI7Y8_DnvkG4LU1lZSNMgE6nQRcXjuwIXIicK1VrdIIa4_2mSfTs_jLuT7fgPdDLgwi-uAzHHPTn-XX82rFW2X7GfkuhvOl75De12GXrTWcGaSJx_WkJRzTR0O5TpGR2X6Rfz2dkDMYqnFENjz5FFtwN4qpqdP4lkbyJVb-kMte2Rw9gNm6m12MyY_xaunG1c_fEBz_dxwP4X5vdYqDbpo8gg1sH8ObXxGGRdHBC4i34vQWePc2FH7XMCARw3s24uP80n5vxUFtrzoKQXavOMzz4ANpxFp8Y7Ehjsl69WiwCzEhKdIlSAofoCAWk9mnJ3B2NCkOp0FfjCGoiIPLoFL0q7CRiUuaDMnKsFVTZ7qRUaRJLETWJg7TiHVdFoYSnXRGo0GyL1VmnI2ewmY7b_EZiMY0UrnYxJrB33XjlDUcbmUdJnFa4QjUmiFl1Q-WC2ZclN5jkVnp-VkyP8uenyN4Nzxz1eF0_JN6m7kyUPYMGcHumu9lv5QXZciF0hPS6ekIXg23aRHyyYptcb5iGpbTdMU7f3_zS7g3LWYn5cnn_Pg5bHFfun2cXdhcXq9wjyybpXvhJ_QNJsvwHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-Subject+Domain+Adaptation+for+CNN-Based+Wrist+Kinematics+Estimation+Using+sEMG&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Bao%2C+Tianzhe&rft.au=Zaidi%2C+Syed+Ali+Raza&rft.au=Xie%2C+Shengquan&rft.au=Yang%2C+Pengfei&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=1068&rft.epage=1078&rft_id=info:doi/10.1109%2FTNSRE.2021.3086401&rft_id=info%3Apmid%2F34086574&rft.externalDocID=9446851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon