Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by...
Saved in:
Published in | Water research (Oxford) Vol. 137; pp. 324 - 334 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.
[Display omitted]
•Satisfactory tetracycline degradation (95.8%) on a Ti/Ti4O7 anode.•The tetracycline electrochemical oxidation follows a pseudo-first order kinetics.•First complete pathway of tetracycline electrochemical oxidation.•Toxicity evaluation of 25 intermediates by QSAR explains toxicity reduction delay. |
---|---|
AbstractList | Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. [Display omitted] •Satisfactory tetracycline degradation (95.8%) on a Ti/Ti4O7 anode.•The tetracycline electrochemical oxidation follows a pseudo-first order kinetics.•First complete pathway of tetracycline electrochemical oxidation.•Toxicity evaluation of 25 intermediates by QSAR explains toxicity reduction delay. Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. |
Author | He, Xuwen Zhi, Dan Wang, Jianbing Zhou, Hao Zhang, Dayi |
Author_xml | – sequence: 1 givenname: Jianbing orcidid: 0000-0003-2755-1403 surname: Wang fullname: Wang, Jianbing email: wangjb@cumtb.edu.cn organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China – sequence: 2 givenname: Dan surname: Zhi fullname: Zhi, Dan organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China – sequence: 3 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China – sequence: 4 givenname: Xuwen surname: He fullname: He, Xuwen organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China – sequence: 5 givenname: Dayi orcidid: 0000-0002-4175-5982 surname: Zhang fullname: Zhang, Dayi email: zhangdayi@tsinghua.org.cn organization: School of Environment, Tsinghua University, Beijing 100084, PR China |
BookMark | eNqNkT1vUzEUhi1UJNLCP2DwyHJTf8XxZUBCVfmQKnUJs3Wu73Hj6MYOtpOSrT8dN-nEAEhH8uD3eYb3vSQXMUUk5D1nc864vt7MH6FmLHPBuJkz2Y69IjNuln0nlDIXZMaYkh2XC_WGXJayYYwJIfsZebo9wLSHGuIDrVgzuKObQkQ64kOGsX2kSHdQ149wpBBHGmLFvMUxQEVa06_gQj3ScZ9PhjVSnNDVnNwat8HBRFvkRZMOmCnQVbheBXW_bLo04lvy2sNU8N3Le0V-fLld3Xzr7u6_fr_5fNc5JU3tBtP3OPjBaQ1y8AujHAdjPCAq8Lo3Cye00P0gBqc8LNFINnjnhF9oUGDkFflw9u5y-rnHUu02FIfTBBHTvljB9FIYpvn_RLlhQmrJWlSdoy6nUjJ6u8thC_loObPP29iNPW9zoiyT7Z6xj39grcVTSW2BMP0L_nSGsdV1CJhtcQGja5vkVr0dU_i74DfOnbMC |
CitedBy_id | crossref_primary_10_1007_s10311_019_00945_2 crossref_primary_10_1007_s10934_020_01007_7 crossref_primary_10_1016_j_jtice_2021_04_064 crossref_primary_10_1039_D4EN01157K crossref_primary_10_2166_wst_2020_479 crossref_primary_10_1016_j_molliq_2021_117191 crossref_primary_10_1016_j_electacta_2019_135441 crossref_primary_10_1016_j_jwpe_2024_105802 crossref_primary_10_1039_D0EN01064B crossref_primary_10_1016_j_cej_2023_142558 crossref_primary_10_1016_j_apcatb_2019_117969 crossref_primary_10_3390_chemosensors9070187 crossref_primary_10_1080_09593330_2020_1754472 crossref_primary_10_1016_j_cej_2021_133167 crossref_primary_10_1016_j_seppur_2020_116728 crossref_primary_10_2139_ssrn_3978302 crossref_primary_10_1039_D0EE02550J crossref_primary_10_1021_acsanm_2c01100 crossref_primary_10_5004_dwt_2022_28596 crossref_primary_10_1016_j_molliq_2020_113300 crossref_primary_10_1016_j_jallcom_2021_161960 crossref_primary_10_1016_j_jwpe_2022_103075 crossref_primary_10_1016_j_biortech_2021_125067 crossref_primary_10_1080_01496395_2021_1982978 crossref_primary_10_1016_j_apcatb_2021_119877 crossref_primary_10_1016_j_jece_2024_113655 crossref_primary_10_1016_j_apcatb_2020_119138 crossref_primary_10_1016_j_envres_2024_120265 crossref_primary_10_1016_j_jhazmat_2019_121552 crossref_primary_10_1016_j_apsusc_2022_156017 crossref_primary_10_1016_j_jcis_2021_09_112 crossref_primary_10_1016_j_seppur_2022_122711 crossref_primary_10_1002_chem_202402188 crossref_primary_10_1021_acs_langmuir_2c00907 crossref_primary_10_1039_D3NJ03247G crossref_primary_10_1016_j_seppur_2022_121891 crossref_primary_10_1016_j_cej_2023_142532 crossref_primary_10_1039_D4RA01307G crossref_primary_10_1021_acs_est_3c03711 crossref_primary_10_1016_j_watres_2021_117979 crossref_primary_10_1016_j_envadv_2022_100322 crossref_primary_10_1039_D3MH01348K crossref_primary_10_1021_acs_est_0c03800 crossref_primary_10_1039_D1RA01886H crossref_primary_10_1016_j_ceramint_2022_05_233 crossref_primary_10_1016_j_seppur_2024_126505 crossref_primary_10_1016_j_jphotochem_2023_115322 crossref_primary_10_5004_dwt_2021_27716 crossref_primary_10_1016_j_seppur_2022_121763 crossref_primary_10_1007_s11666_024_01888_z crossref_primary_10_1016_j_jallcom_2022_168635 crossref_primary_10_1016_j_jece_2023_111078 crossref_primary_10_1016_j_jwpe_2023_104765 crossref_primary_10_1016_j_watres_2023_119682 crossref_primary_10_1016_j_apcatb_2018_11_043 crossref_primary_10_1016_j_molliq_2024_124480 crossref_primary_10_1016_j_chemosphere_2023_137970 crossref_primary_10_1016_j_seppur_2024_126976 crossref_primary_10_1021_acsestengg_2c00339 crossref_primary_10_1002_wer_1339 crossref_primary_10_3390_antibiotics12071151 crossref_primary_10_1016_j_scitotenv_2021_147492 crossref_primary_10_1016_j_jece_2025_116058 crossref_primary_10_1016_j_jmst_2022_01_023 crossref_primary_10_1016_j_jes_2024_02_036 crossref_primary_10_1016_j_jenvman_2024_121970 crossref_primary_10_1016_j_cej_2024_150532 crossref_primary_10_1016_j_wasec_2023_100147 crossref_primary_10_1039_C9RA05817F crossref_primary_10_1016_j_cej_2021_134054 crossref_primary_10_1016_j_jece_2024_112537 crossref_primary_10_1016_j_chemosphere_2023_137888 crossref_primary_10_1016_j_chemosphere_2023_138614 crossref_primary_10_1007_s11356_023_31778_w crossref_primary_10_1007_s11270_023_06376_8 crossref_primary_10_1016_j_cej_2019_122842 crossref_primary_10_1016_j_seppur_2024_126843 crossref_primary_10_1016_j_cclet_2025_110996 crossref_primary_10_1007_s10311_021_01295_8 crossref_primary_10_1016_j_jallcom_2021_161760 crossref_primary_10_1080_09593330_2021_1928292 crossref_primary_10_1007_s10971_024_06324_w crossref_primary_10_1016_j_jssc_2020_121200 crossref_primary_10_1007_s10854_025_14320_1 crossref_primary_10_1016_j_envres_2024_118260 crossref_primary_10_1016_j_apcatb_2019_03_017 crossref_primary_10_1038_s41467_024_51878_6 crossref_primary_10_1016_j_cej_2018_12_133 crossref_primary_10_1016_j_jallcom_2024_177714 crossref_primary_10_1016_j_jcat_2024_115821 crossref_primary_10_1039_D4QI00808A crossref_primary_10_1016_j_cej_2019_122970 crossref_primary_10_1016_j_apcatb_2021_120332 crossref_primary_10_1016_j_jhazmat_2021_125600 crossref_primary_10_1016_j_cej_2021_134190 crossref_primary_10_1016_j_envres_2021_111661 crossref_primary_10_3389_fenvs_2024_1467797 crossref_primary_10_1016_j_apcatb_2019_117824 crossref_primary_10_1016_j_psep_2024_11_006 crossref_primary_10_1016_j_clay_2022_106752 crossref_primary_10_1016_j_jece_2022_108932 crossref_primary_10_1016_j_jenvman_2022_114613 crossref_primary_10_1016_j_cej_2022_137505 crossref_primary_10_1016_j_jwpe_2023_104207 crossref_primary_10_1016_j_chemosphere_2023_138994 crossref_primary_10_1016_j_cej_2020_126165 crossref_primary_10_1016_j_cclet_2021_08_008 crossref_primary_10_1016_j_ijoes_2024_100589 crossref_primary_10_1016_j_surfin_2022_102583 crossref_primary_10_1016_j_seppur_2022_120594 crossref_primary_10_1016_j_jhazmat_2019_121656 crossref_primary_10_1016_j_seppur_2023_123808 crossref_primary_10_3390_environments8080085 crossref_primary_10_1016_j_jenvman_2023_119386 crossref_primary_10_1002_jctb_6082 crossref_primary_10_1021_acs_iecr_3c02820 crossref_primary_10_20964_2020_05_16 crossref_primary_10_1039_D2EN00028H crossref_primary_10_1016_j_jwpe_2025_107073 crossref_primary_10_1038_s41598_022_10563_8 crossref_primary_10_1016_j_apsusc_2023_156977 crossref_primary_10_1016_j_scitotenv_2023_165292 crossref_primary_10_1016_j_matchemphys_2023_127554 crossref_primary_10_1016_j_watcyc_2024_06_003 crossref_primary_10_1007_s11356_020_09903_w crossref_primary_10_1016_j_cej_2020_126982 crossref_primary_10_1016_j_cej_2023_147840 crossref_primary_10_1016_j_jiec_2023_07_011 crossref_primary_10_1016_j_jwpe_2024_104799 crossref_primary_10_1039_D3EN00272A crossref_primary_10_1016_j_seppur_2024_128790 crossref_primary_10_1016_j_cej_2021_130283 crossref_primary_10_1016_j_ecoenv_2019_01_040 crossref_primary_10_1016_j_jece_2025_115966 crossref_primary_10_1016_j_watres_2022_118240 crossref_primary_10_1016_j_carbpol_2020_117004 crossref_primary_10_1016_j_jece_2023_109602 crossref_primary_10_2139_ssrn_4186854 crossref_primary_10_3390_catal12060618 crossref_primary_10_1016_j_apsusc_2020_148136 crossref_primary_10_1021_acs_langmuir_2c01625 crossref_primary_10_1002_adma_202307795 crossref_primary_10_1039_D1RA00516B crossref_primary_10_1016_j_colsurfa_2023_132847 crossref_primary_10_1016_j_cej_2023_144685 crossref_primary_10_1016_j_chemosphere_2020_128435 crossref_primary_10_1016_j_jpowsour_2021_229876 crossref_primary_10_1016_j_jwpe_2023_104149 crossref_primary_10_1016_j_scitotenv_2020_141975 crossref_primary_10_1016_j_cej_2022_139154 crossref_primary_10_1016_j_jwpe_2025_107090 crossref_primary_10_1016_j_jcis_2022_02_003 crossref_primary_10_1016_j_cej_2021_132344 crossref_primary_10_1016_j_jece_2022_108345 crossref_primary_10_1016_j_jece_2021_105134 crossref_primary_10_1016_j_seppur_2023_125322 crossref_primary_10_1016_j_cej_2022_134827 crossref_primary_10_1016_j_jhazmat_2023_131604 crossref_primary_10_1016_j_hazadv_2023_100302 crossref_primary_10_1016_j_cej_2025_160480 crossref_primary_10_1016_j_apcatb_2025_125032 crossref_primary_10_1039_C9EN00411D crossref_primary_10_1016_j_jwpe_2023_104139 crossref_primary_10_1016_j_jhazmat_2020_123703 crossref_primary_10_17776_csj_944066 crossref_primary_10_1016_j_chemosphere_2022_134311 crossref_primary_10_1016_j_colsurfa_2024_133196 crossref_primary_10_1016_j_apcatb_2021_120020 crossref_primary_10_1021_acsomega_1c00204 crossref_primary_10_1002_admi_202200271 crossref_primary_10_1016_j_seppur_2024_128881 crossref_primary_10_1039_D0DT00408A crossref_primary_10_1016_j_cej_2021_134316 crossref_primary_10_1016_j_molstruc_2025_141719 crossref_primary_10_1016_j_seppur_2022_120964 crossref_primary_10_1016_j_jenvman_2024_123185 crossref_primary_10_1016_j_apsusc_2023_157478 crossref_primary_10_1016_j_chemosphere_2024_142664 crossref_primary_10_1016_j_watres_2022_118454 crossref_primary_10_1016_j_jcis_2020_12_042 crossref_primary_10_1002_wer_1683 crossref_primary_10_1016_j_cej_2023_147938 crossref_primary_10_1016_j_biortech_2021_126652 crossref_primary_10_1016_j_cej_2021_131045 crossref_primary_10_1016_j_jes_2024_07_023 crossref_primary_10_3390_molecules28093850 crossref_primary_10_1016_j_cej_2022_140048 crossref_primary_10_1016_j_scitotenv_2022_160860 crossref_primary_10_1016_j_jwpe_2024_105748 crossref_primary_10_1016_j_apcatb_2023_122890 crossref_primary_10_1016_j_envres_2023_117539 crossref_primary_10_1016_j_ultsonch_2018_11_012 crossref_primary_10_1007_s12598_021_01731_2 crossref_primary_10_1016_j_cej_2020_126990 crossref_primary_10_1016_j_chemosphere_2024_143509 crossref_primary_10_1016_j_seppur_2024_129724 crossref_primary_10_1016_j_chemosphere_2022_134562 crossref_primary_10_1016_j_cscee_2021_100129 crossref_primary_10_1016_j_jclepro_2024_142788 crossref_primary_10_1016_j_sbsr_2022_100507 crossref_primary_10_1016_j_cej_2023_146718 crossref_primary_10_2139_ssrn_3978865 crossref_primary_10_2139_ssrn_4191048 crossref_primary_10_1016_j_watres_2021_117196 crossref_primary_10_2139_ssrn_4160385 crossref_primary_10_1007_s00339_021_04528_3 crossref_primary_10_1039_D3CY01571H crossref_primary_10_1016_j_jece_2022_108430 crossref_primary_10_1016_j_cej_2022_134732 crossref_primary_10_1016_j_seppur_2023_125598 crossref_primary_10_1002_adsu_202300533 crossref_primary_10_1016_j_chemosphere_2024_141219 crossref_primary_10_2139_ssrn_4012452 crossref_primary_10_1021_acsestwater_3c00771 crossref_primary_10_1016_j_cej_2024_156928 crossref_primary_10_1016_j_cplett_2022_139944 crossref_primary_10_1016_j_seppur_2021_119482 crossref_primary_10_1016_j_psep_2023_12_012 crossref_primary_10_1021_acs_est_8b06130 crossref_primary_10_1016_j_matchemphys_2022_126137 crossref_primary_10_1002_adfm_202403505 crossref_primary_10_1016_j_mssp_2022_107034 crossref_primary_10_1016_j_scitotenv_2020_137560 crossref_primary_10_1016_j_chemosphere_2019_125084 crossref_primary_10_1016_j_cej_2024_153526 crossref_primary_10_1016_j_jhazmat_2021_128166 crossref_primary_10_1016_j_seppur_2024_127404 crossref_primary_10_1016_j_jes_2021_04_031 crossref_primary_10_1039_D3RA07923F crossref_primary_10_1007_s11356_022_22487_x crossref_primary_10_1016_j_apcatb_2023_122993 crossref_primary_10_1016_j_seppur_2024_129704 crossref_primary_10_1016_j_cej_2020_125476 crossref_primary_10_1016_j_cej_2020_127533 crossref_primary_10_1016_j_cej_2023_142694 crossref_primary_10_1016_j_apcatb_2025_125231 crossref_primary_10_1016_j_biortech_2024_131713 crossref_primary_10_1016_j_cej_2020_125118 crossref_primary_10_3390_catal15010014 crossref_primary_10_1016_j_jwpe_2024_106637 crossref_primary_10_1016_j_apt_2023_104186 crossref_primary_10_1016_j_cej_2021_132294 crossref_primary_10_1016_j_jallcom_2024_175848 crossref_primary_10_1016_j_watres_2020_115514 crossref_primary_10_1039_D3TC02493H crossref_primary_10_1016_j_cej_2024_152421 crossref_primary_10_1016_j_seppur_2023_125131 crossref_primary_10_1016_j_cej_2021_134238 crossref_primary_10_1039_D1EW00676B crossref_primary_10_1016_j_cej_2022_141046 crossref_primary_10_1016_j_jhazmat_2022_130524 crossref_primary_10_1016_j_jtice_2020_06_009 crossref_primary_10_1016_j_watcyc_2022_01_001 crossref_primary_10_1039_D1EN00944C crossref_primary_10_1016_j_seppur_2024_128725 crossref_primary_10_1016_j_envres_2022_113075 crossref_primary_10_1016_j_envres_2023_116642 crossref_primary_10_1016_j_colsurfa_2022_130413 crossref_primary_10_1016_j_envres_2023_117971 crossref_primary_10_1016_j_jenvman_2023_119541 crossref_primary_10_1016_j_watres_2023_120753 crossref_primary_10_4491_eer_2024_254 crossref_primary_10_1016_j_envres_2023_117612 crossref_primary_10_1016_j_watres_2022_118259 crossref_primary_10_1016_j_apsusc_2023_158880 crossref_primary_10_1016_j_inoche_2022_110184 crossref_primary_10_1016_j_jclepro_2020_125235 crossref_primary_10_1016_j_jwpe_2024_106641 crossref_primary_10_1016_j_apcatb_2023_122852 crossref_primary_10_1016_j_colsurfa_2024_134374 crossref_primary_10_1016_j_chemosphere_2022_134007 crossref_primary_10_1007_s42773_022_00197_4 crossref_primary_10_1016_j_cej_2022_136702 crossref_primary_10_1016_j_scitotenv_2022_157531 crossref_primary_10_1016_j_seppur_2022_120878 crossref_primary_10_1016_j_cej_2024_154836 crossref_primary_10_1016_j_ese_2021_100127 crossref_primary_10_1016_j_inoche_2024_112600 crossref_primary_10_1016_j_cej_2023_147203 crossref_primary_10_1016_j_jwpe_2024_105242 crossref_primary_10_1007_s42114_022_00462_x crossref_primary_10_1016_j_cej_2022_139542 crossref_primary_10_1016_j_seppur_2020_117257 crossref_primary_10_1016_j_jhazmat_2020_123889 crossref_primary_10_1016_j_jhazmat_2020_122315 crossref_primary_10_1016_j_jssc_2024_124589 crossref_primary_10_1016_j_cej_2024_157650 crossref_primary_10_1021_acsestengg_1c00479 crossref_primary_10_1039_D1RE00091H crossref_primary_10_1039_D2RA07102A crossref_primary_10_1016_j_cej_2019_123290 crossref_primary_10_1007_s11783_024_1846_x crossref_primary_10_1016_j_cej_2019_05_097 crossref_primary_10_1098_rsos_210336 crossref_primary_10_1016_j_jece_2021_105409 crossref_primary_10_1016_j_jece_2024_115153 crossref_primary_10_1016_j_jhazmat_2020_123530 crossref_primary_10_1007_s40097_022_00477_2 crossref_primary_10_1016_j_cej_2022_138100 crossref_primary_10_1016_j_scitotenv_2021_146411 crossref_primary_10_1021_acsomega_2c03675 crossref_primary_10_3390_nano12162827 crossref_primary_10_1016_j_cej_2022_138460 crossref_primary_10_1016_j_jwpe_2021_102364 crossref_primary_10_1016_j_jmst_2023_05_018 crossref_primary_10_1016_j_jssc_2023_124051 crossref_primary_10_1016_j_jallcom_2023_172644 crossref_primary_10_1016_j_jenvman_2020_110125 crossref_primary_10_1039_D3EN00560G crossref_primary_10_1016_j_colsurfa_2024_134114 crossref_primary_10_1016_j_envpol_2023_121922 crossref_primary_10_1080_01496395_2023_2259079 crossref_primary_10_1016_j_seppur_2023_125960 crossref_primary_10_1016_j_watres_2022_118635 crossref_primary_10_1016_j_apcatb_2022_121326 crossref_primary_10_3390_ma16031189 crossref_primary_10_1016_j_mtchem_2022_101003 crossref_primary_10_1016_j_heliyon_2022_e12644 crossref_primary_10_1016_j_compositesb_2022_110082 crossref_primary_10_1016_j_seppur_2023_123319 crossref_primary_10_1021_acs_est_9b07022 crossref_primary_10_1016_j_seppur_2022_122187 crossref_primary_10_1016_j_cej_2022_136052 crossref_primary_10_1016_j_seppur_2021_118600 crossref_primary_10_2147_IJN_S378387 crossref_primary_10_1016_j_jwpe_2022_102671 crossref_primary_10_1016_j_apcatb_2020_119820 crossref_primary_10_1016_j_chemosphere_2021_133340 crossref_primary_10_1016_j_envpol_2019_113801 crossref_primary_10_1080_00202967_2023_2221131 crossref_primary_10_1016_j_cej_2021_132895 crossref_primary_10_1016_j_colsurfa_2024_133477 crossref_primary_10_1016_j_chemosphere_2021_133469 crossref_primary_10_1016_j_chemosphere_2021_132135 crossref_primary_10_1039_D3SC04858F crossref_primary_10_1016_j_seppur_2023_124526 crossref_primary_10_1038_s41598_023_37503_4 crossref_primary_10_1039_D3CY00102D crossref_primary_10_1016_j_cej_2019_03_108 crossref_primary_10_1016_j_gsd_2024_101181 crossref_primary_10_1016_j_seppur_2022_122296 crossref_primary_10_1021_acsestengg_1c00344 crossref_primary_10_1021_acsagscitech_4c00637 crossref_primary_10_1016_j_cej_2022_136061 crossref_primary_10_1016_j_jtice_2019_10_023 crossref_primary_10_1016_j_jwpe_2024_106441 crossref_primary_10_1016_j_mssp_2021_106385 crossref_primary_10_2139_ssrn_4118418 crossref_primary_10_1002_jctb_7817 crossref_primary_10_1016_j_gsd_2023_100905 crossref_primary_10_1021_acs_est_9b07398 crossref_primary_10_1016_j_chemosphere_2021_132362 crossref_primary_10_1016_j_envres_2022_113837 crossref_primary_10_1016_j_scitotenv_2020_139909 crossref_primary_10_1016_j_seppur_2023_124308 crossref_primary_10_1007_s11356_022_21207_9 crossref_primary_10_1016_j_jhazmat_2021_127247 crossref_primary_10_1039_D3RA01997G crossref_primary_10_1007_s11356_023_27731_6 crossref_primary_10_1016_j_apcatb_2019_118465 crossref_primary_10_1016_j_chemosphere_2020_126460 crossref_primary_10_1016_j_scitotenv_2019_133990 crossref_primary_10_1016_j_scitotenv_2021_152283 crossref_primary_10_1002_smll_202407104 crossref_primary_10_1016_j_envpol_2019_113702 crossref_primary_10_1016_j_scitotenv_2023_163469 crossref_primary_10_1016_j_seppur_2024_128587 crossref_primary_10_1016_j_cej_2019_122280 crossref_primary_10_1016_j_jcis_2021_05_124 crossref_primary_10_1016_j_seppur_2022_120904 crossref_primary_10_1007_s11270_023_06568_2 crossref_primary_10_1016_j_seppur_2025_131807 crossref_primary_10_1016_j_electacta_2019_134940 crossref_primary_10_1039_D4TA03613A crossref_primary_10_1371_journal_pone_0271075 crossref_primary_10_1016_j_cej_2023_143283 crossref_primary_10_1016_j_cej_2023_144250 crossref_primary_10_1016_j_apsusc_2022_152547 crossref_primary_10_1007_s12274_022_4640_8 crossref_primary_10_1016_j_cej_2020_124758 crossref_primary_10_3390_w14060910 crossref_primary_10_1016_j_scitotenv_2022_159092 crossref_primary_10_1016_j_snb_2021_129530 crossref_primary_10_1016_j_jwpe_2024_106143 crossref_primary_10_1016_j_ecoenv_2019_109676 crossref_primary_10_1016_j_jes_2019_07_004 crossref_primary_10_1016_j_jhazmat_2019_04_088 crossref_primary_10_1016_j_carbpol_2021_117951 crossref_primary_10_1016_j_cej_2019_122295 crossref_primary_10_1016_j_jece_2023_111728 crossref_primary_10_1016_j_chemosphere_2022_135878 crossref_primary_10_1016_j_jssc_2021_122628 crossref_primary_10_1039_D1CY01850G crossref_primary_10_1016_j_envpol_2022_119031 crossref_primary_10_1016_j_jenvman_2021_112729 crossref_primary_10_2139_ssrn_3961587 crossref_primary_10_1016_j_cej_2019_123149 crossref_primary_10_1002_jctb_6864 crossref_primary_10_1016_j_jallcom_2024_178249 crossref_primary_10_1039_C9RA03353J crossref_primary_10_1002_aic_17654 crossref_primary_10_1016_j_jallcom_2025_179511 crossref_primary_10_2139_ssrn_3988727 crossref_primary_10_1016_j_jhazmat_2020_123460 crossref_primary_10_1149_2_1411906jes crossref_primary_10_3390_catal14100722 crossref_primary_10_1016_j_watres_2022_118545 crossref_primary_10_1007_s11356_023_29828_4 crossref_primary_10_1016_j_apcatb_2019_118204 crossref_primary_10_1021_acsanm_2c05448 crossref_primary_10_1016_j_ecoenv_2022_113704 crossref_primary_10_1016_j_jenvman_2020_110571 crossref_primary_10_1016_j_chemosphere_2021_132050 crossref_primary_10_1016_j_molliq_2021_116837 crossref_primary_10_1016_j_cej_2021_133789 crossref_primary_10_1021_acscatal_2c01418 crossref_primary_10_1016_j_jclepro_2023_138374 crossref_primary_10_1016_j_jwpe_2024_105153 crossref_primary_10_1016_j_chemosphere_2022_135728 crossref_primary_10_1016_j_apcatb_2020_118784 crossref_primary_10_1016_j_jpcs_2020_109903 crossref_primary_10_1016_j_seppur_2024_130516 crossref_primary_10_1016_j_chemosphere_2023_140021 crossref_primary_10_1016_j_rser_2025_115490 crossref_primary_10_1016_j_biortech_2021_124949 crossref_primary_10_1016_j_seppur_2023_123127 crossref_primary_10_1016_j_cej_2019_122276 crossref_primary_10_1016_j_seppur_2022_121598 crossref_primary_10_2139_ssrn_4015364 crossref_primary_10_1016_j_apsusc_2018_10_146 crossref_primary_10_1016_j_coelec_2020_100674 crossref_primary_10_1016_j_jcis_2020_04_077 crossref_primary_10_1016_j_seppur_2020_117413 crossref_primary_10_1016_j_jece_2024_112851 crossref_primary_10_1016_j_jece_2024_112975 crossref_primary_10_1016_j_jwpe_2023_103859 crossref_primary_10_1002_advs_202406381 crossref_primary_10_1016_j_scitotenv_2022_161361 crossref_primary_10_3390_catal12111293 crossref_primary_10_1016_j_cej_2020_125090 crossref_primary_10_1016_j_cej_2022_136439 crossref_primary_10_1016_j_est_2024_113000 crossref_primary_10_1016_j_cej_2020_125091 crossref_primary_10_1016_j_mtchem_2021_100729 crossref_primary_10_1016_j_watres_2021_117314 crossref_primary_10_1016_j_desal_2024_117645 crossref_primary_10_2139_ssrn_3976080 crossref_primary_10_1016_j_inoche_2022_109792 crossref_primary_10_1016_j_molstruc_2023_136330 crossref_primary_10_1021_acs_iecr_1c02147 crossref_primary_10_1016_j_electacta_2020_135972 crossref_primary_10_1016_j_jhazmat_2021_125256 crossref_primary_10_1016_j_ceramint_2023_03_186 crossref_primary_10_1007_s11356_024_33930_6 crossref_primary_10_1016_j_cej_2024_150504 crossref_primary_10_1039_D4RA08989H crossref_primary_10_1016_j_chemosphere_2021_131568 crossref_primary_10_1039_D3NJ01122D crossref_primary_10_1016_j_cej_2021_129503 crossref_primary_10_1021_acscatal_2c02447 crossref_primary_10_1016_j_jece_2023_110045 crossref_primary_10_1016_j_jallcom_2022_167049 crossref_primary_10_1016_j_apcatb_2020_119414 crossref_primary_10_1016_j_jece_2024_112604 crossref_primary_10_1016_j_cej_2022_136567 crossref_primary_10_1016_j_jpcs_2020_109886 crossref_primary_10_3390_ma14154325 crossref_primary_10_1039_D0EN00284D crossref_primary_10_1016_j_jallcom_2021_162528 crossref_primary_10_1016_j_seppur_2022_122438 crossref_primary_10_1016_j_chemosphere_2021_132660 crossref_primary_10_1016_j_jenvman_2024_122403 crossref_primary_10_1016_j_jhazmat_2020_122055 crossref_primary_10_1016_j_seppur_2022_122584 crossref_primary_10_1016_j_cej_2018_08_198 crossref_primary_10_1002_advs_202410306 crossref_primary_10_1016_j_jwpe_2023_103601 crossref_primary_10_1016_j_cclet_2023_109277 crossref_primary_10_1016_j_cej_2023_142813 crossref_primary_10_1016_j_cej_2022_137784 crossref_primary_10_1039_D0EN01276A crossref_primary_10_1016_j_jmrt_2024_10_115 crossref_primary_10_1016_j_cej_2022_137669 crossref_primary_10_1016_j_jece_2024_114808 crossref_primary_10_1089_ees_2019_0004 crossref_primary_10_1016_j_envres_2022_113324 crossref_primary_10_1016_j_ecoenv_2022_113464 crossref_primary_10_1016_j_isci_2022_104342 crossref_primary_10_1016_j_envres_2022_113326 crossref_primary_10_1016_j_surfin_2025_106299 crossref_primary_10_1016_j_ecoenv_2021_113063 crossref_primary_10_1016_j_apsusc_2023_156801 crossref_primary_10_1021_acs_est_1c00349 crossref_primary_10_1016_j_cej_2019_122583 crossref_primary_10_1016_j_cej_2021_132816 crossref_primary_10_1016_j_surfin_2024_104521 crossref_primary_10_1016_j_apt_2021_11_006 crossref_primary_10_1021_acsestengg_3c00164 crossref_primary_10_1016_j_cej_2021_130510 crossref_primary_10_1016_j_optmat_2022_113203 crossref_primary_10_1016_j_apmt_2021_101161 crossref_primary_10_1016_j_chemosphere_2024_143071 crossref_primary_10_1016_j_jece_2023_109274 crossref_primary_10_1021_acs_est_9b05929 crossref_primary_10_1155_2020_1523164 crossref_primary_10_1080_10643389_2024_2310350 crossref_primary_10_1016_j_apsusc_2020_146757 crossref_primary_10_1002_cssc_202301139 crossref_primary_10_1007_s11356_024_32947_1 crossref_primary_10_1016_j_ces_2023_119111 crossref_primary_10_1007_s11356_022_22082_0 crossref_primary_10_1016_j_jenvman_2022_114664 crossref_primary_10_1016_j_chemosphere_2021_130465 crossref_primary_10_1016_j_cej_2021_131710 crossref_primary_10_1016_j_cej_2024_148884 crossref_primary_10_1016_j_cej_2022_138409 crossref_primary_10_1016_j_jhazmat_2020_124361 crossref_primary_10_1016_j_cej_2019_123320 crossref_primary_10_1016_j_seppur_2020_117691 crossref_primary_10_1039_D2EW00353H crossref_primary_10_1016_j_jwpe_2025_107109 crossref_primary_10_1016_j_jhazmat_2021_126313 crossref_primary_10_1016_j_cej_2018_08_011 crossref_primary_10_1016_j_jclepro_2021_126297 crossref_primary_10_1016_j_jece_2023_111567 crossref_primary_10_1016_j_jwpe_2023_104504 crossref_primary_10_1016_j_cej_2019_122568 crossref_primary_10_1016_j_cej_2020_128168 crossref_primary_10_1002_slct_202000816 crossref_primary_10_1016_j_chemosphere_2023_139541 crossref_primary_10_1016_j_apsusc_2018_10_236 crossref_primary_10_1007_s11356_023_27115_w crossref_primary_10_1016_j_jcis_2023_08_048 crossref_primary_10_1016_j_jhazmat_2021_125212 crossref_primary_10_1016_j_psep_2022_01_068 crossref_primary_10_1016_j_jwpe_2021_102040 crossref_primary_10_1016_j_apcatb_2020_119574 crossref_primary_10_1016_j_chemosphere_2019_125525 crossref_primary_10_1016_j_eng_2021_11_017 crossref_primary_10_1016_j_carbpol_2023_120752 crossref_primary_10_1016_j_ijbiomac_2024_139235 crossref_primary_10_1016_j_jwpe_2023_103893 crossref_primary_10_1016_j_seppur_2024_129391 crossref_primary_10_1080_10643389_2020_1717907 crossref_primary_10_2139_ssrn_4010823 crossref_primary_10_1016_j_biortech_2022_128508 crossref_primary_10_1016_j_jece_2023_111329 crossref_primary_10_1016_j_seppur_2024_130495 crossref_primary_10_2139_ssrn_4145559 crossref_primary_10_1016_j_seppur_2024_128059 crossref_primary_10_1016_j_ceramint_2023_01_120 crossref_primary_10_1016_j_chemosphere_2023_138563 crossref_primary_10_1016_j_envint_2023_108158 crossref_primary_10_1016_j_jhazmat_2021_127747 crossref_primary_10_1039_C8NR08162J crossref_primary_10_1016_j_scitotenv_2019_133694 crossref_primary_10_1016_j_apsusc_2023_158197 crossref_primary_10_1016_j_jece_2023_111666 crossref_primary_10_1016_j_cej_2024_154168 crossref_primary_10_1016_j_envres_2021_112117 crossref_primary_10_1039_D2AY00702A crossref_primary_10_1016_j_jclepro_2022_130734 crossref_primary_10_1016_j_jece_2024_112829 crossref_primary_10_1016_j_cej_2021_131403 crossref_primary_10_1016_j_cej_2024_149812 crossref_primary_10_1016_j_colsurfa_2021_126412 crossref_primary_10_1016_j_seppur_2022_121164 crossref_primary_10_3390_ijerph192315632 crossref_primary_10_1016_j_apcatb_2020_119597 crossref_primary_10_1016_j_cej_2022_135173 crossref_primary_10_1016_j_jcis_2022_06_056 crossref_primary_10_2139_ssrn_4177581 crossref_primary_10_1016_j_scitotenv_2021_146912 crossref_primary_10_1021_acsomega_2c07899 crossref_primary_10_1016_j_seppur_2024_129369 crossref_primary_10_1016_j_seppur_2024_129249 crossref_primary_10_1016_j_jhazmat_2022_129091 crossref_primary_10_1016_j_apcatb_2018_08_033 crossref_primary_10_1016_j_jenvman_2024_121111 crossref_primary_10_1039_D3CY00876B |
Cites_doi | 10.1016/j.jhazmat.2010.05.045 10.1021/acs.est.6b03540 10.1021/acs.est.5b02414 10.1002/aic.15093 10.1002/apj.286 10.1007/s10800-008-9676-2 10.1039/C6RA28224E 10.1021/acs.est.6b03548 10.1016/j.scitotenv.2015.03.033 10.1016/j.cej.2016.03.093 10.1016/j.cej.2013.02.088 10.1021/acs.est.6b00688 10.1016/j.aca.2005.01.061 10.1016/j.watres.2012.01.053 10.1016/j.envint.2016.02.005 10.1016/j.chemosphere.2012.01.036 10.1016/j.electacta.2016.08.037 10.1021/acs.analchem.7b01765 10.1016/j.seppur.2017.06.036 10.1016/j.saa.2017.02.001 10.1016/j.watres.2014.02.045 10.18356/4255cc90-en 10.1016/j.electacta.2012.09.020 10.1021/cr9001319 10.1021/es5010472 10.1021/acs.est.5b04366 10.1016/j.jelechem.2008.12.017 10.1016/j.seppur.2003.10.006 10.1134/S1070427208050145 10.1016/j.jhazmat.2010.05.063 10.1016/j.matchemphys.2017.05.042 10.1016/j.watres.2017.07.004 10.1016/j.chemosphere.2013.02.066 10.1021/acs.chemmater.5b00376 10.1016/j.electacta.2018.01.034 10.1016/j.electacta.2013.03.019 10.1016/j.electacta.2012.02.097 10.1016/j.electacta.2016.07.150 10.1016/j.cej.2012.07.112 10.1016/j.chemosphere.2016.01.078 10.1016/j.matlet.2013.09.101 10.1016/j.jasms.2006.12.001 10.1007/s00216-010-3581-3 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2018.03.030 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 334 |
ExternalDocumentID | 10_1016_j_watres_2018_03_030 S0043135418302264 |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-b899ebfbc66a3bf584c1a88faee4af6985c26269b2bc4fa7e830bfcc2f56a4a83 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 10:34:10 EDT 2025 Wed Jul 30 10:51:57 EDT 2025 Tue Jul 01 01:20:52 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Fri Feb 23 02:23:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ti/Ti4O7 anode Toxicity assessment Electrochemical oxidation Degradation pathway Tetracycline |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-b899ebfbc66a3bf584c1a88faee4af6985c26269b2bc4fa7e830bfcc2f56a4a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2755-1403 0000-0002-4175-5982 |
PQID | 2018023630 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2067280618 proquest_miscellaneous_2018023630 crossref_primary_10_1016_j_watres_2018_03_030 crossref_citationtrail_10_1016_j_watres_2018_03_030 elsevier_sciencedirect_doi_10_1016_j_watres_2018_03_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-15 |
PublicationDateYYYYMMDD | 2018-06-15 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Water research (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rossi, Alves, Da Silva, Oliveira, Assis, Santos, De Miranda (bib26) 2008; 39 You, Liu, Gao, Wang, Tang, Huang, Ren (bib41) 2016; 214 Panizza, Cerisola (bib22) 2009; 109 Yang, Hoffmann (bib39) 2016; 50 Palma-Goyesa, Vazquez-Arenasb, Ostosc, Ferrarod, Torres-Palmaa, Gonzalezb (bib21) 2016; 213 Brinzila, Pacheco, Ciríaco, Ciobanu, Lopes (bib4) 2012; 209 Li, Tang, Zhou, Li, Sun, Shen, Wang, Han (bib14) 2016; 149 Santos, Elabd, Jing, Chaplin, Fang (bib29) 2016; 62 Zhu, Wang, Sun, Zhou (bib46) 2013; 92 Jin, Paraskevaidi, Semple, Martin, Zhang (bib12) 2017; 89 United-Nations (bib32) 2011 Lin, Niu, Ding, Zhang (bib16) 2012; 46 Radjenovic, Sedlak (bib24) 2015; 49 Dalmazio, Almeida, Augusti, Alves (bib9) 2007; 18 Tay, Madehi (bib31) 2015; 520 Zhang, Liu, Wu, Zhang, Zhang (bib44) 2009; 4 Al-Anizi, Hellyer, Zhang (bib1) 2014; 56 Vedenyapina, Eremicheva, Pavlov, Vedenyapin (bib33) 2008; 81 Benavides, Barrias, Piro, Arenas, Orrego, Pino, Villegas, Dorta, Aspee, Lopez-Alarcon (bib3) 2017; 178 Khan, Bae, Jung (bib13) 2010; 181 Daghrir, Drogui, El Khakani (bib8) 2013; 87 Hamza, Abdelhedi, Brillas, Sirés (bib11) 2009; 627 Liu, Hou, Yu, Xi, Zhao, Xia (bib18) 2013; 223 Zhang, Liu, Ye, Zhu (bib45) 2014; 114 Saitoh, Shibata, Hiraide (bib28) 2014; 2 Bejan, Guinea, Bunce (bib2) 2012; 69 Nayak, Chaplin (bib19) 2018; 263 Li, Goel (bib15) 2010; 181 Yu, Bai, Ming, Yang, Chen, Hu, Feng, Yang (bib42) 2017; 198 Wang, Xiao, Zhu, Yin, Wang (bib35) 2017; 7 Chen (bib5) 2004; 38 Oliferova, Statkus, Tsysin, Shpigun, Zolotov (bib20) 2005; 538 Cho, Hoffmann (bib6) 2015; 27 Guo, Jing, Chaplin (bib10) 2016; 50 Rice, Baird, Eaton, Clesceri (bib25) 2012 Saitoh, Shibata, Fujimori, Ohtani (bib27) 2017; 187 Wang, Shen, Zhang, Zhang, Yu (bib36) 2016; 296 Sui, Gebhardt, Schroder, Zhao, Lu, Yu (bib30) 2017; 51 Yang, Yang, Wang, Li (bib38) 2014; 32 Christou, Aguera, Bayona, Cytryn, Fotopoulos, Lambropoulou, Manaia, Michael, Revitt, Schroder, Fatta-Kassinos (bib7) 2017; 123 Wang, Wang, Wang, Fang, Fu, Tang, Jiang, Zhou, He, Zhao, Chen, Jiang (bib34) 2016; 89–90 Pena, Paulo, Silva, Seifrtova, Lino, Solich (bib23) 2010; 396 Yang, Shin, Jasper, Hoffmann (bib40) 2016; 50 Wu, Zhang, Oturan, Wang, Chen, Oturan (bib37) 2012; 87 Zaky, Chaplin (bib43) 2014; 48 Lin, Niu, Xu, Li, Pan (bib17) 2013; 97 Cho (10.1016/j.watres.2018.03.030_bib6) 2015; 27 Rice (10.1016/j.watres.2018.03.030_bib25) 2012 Radjenovic (10.1016/j.watres.2018.03.030_bib24) 2015; 49 United-Nations (10.1016/j.watres.2018.03.030_bib32) 2011 Zaky (10.1016/j.watres.2018.03.030_bib43) 2014; 48 Sui (10.1016/j.watres.2018.03.030_bib30) 2017; 51 Brinzila (10.1016/j.watres.2018.03.030_bib4) 2012; 209 Liu (10.1016/j.watres.2018.03.030_bib18) 2013; 223 Vedenyapina (10.1016/j.watres.2018.03.030_bib33) 2008; 81 Wang (10.1016/j.watres.2018.03.030_bib34) 2016; 89–90 Zhang (10.1016/j.watres.2018.03.030_bib44) 2009; 4 Jin (10.1016/j.watres.2018.03.030_bib12) 2017; 89 Christou (10.1016/j.watres.2018.03.030_bib7) 2017; 123 Pena (10.1016/j.watres.2018.03.030_bib23) 2010; 396 Li (10.1016/j.watres.2018.03.030_bib14) 2016; 149 Al-Anizi (10.1016/j.watres.2018.03.030_bib1) 2014; 56 Wang (10.1016/j.watres.2018.03.030_bib35) 2017; 7 Oliferova (10.1016/j.watres.2018.03.030_bib20) 2005; 538 Yang (10.1016/j.watres.2018.03.030_bib38) 2014; 32 Yang (10.1016/j.watres.2018.03.030_bib39) 2016; 50 Guo (10.1016/j.watres.2018.03.030_bib10) 2016; 50 Yang (10.1016/j.watres.2018.03.030_bib40) 2016; 50 Li (10.1016/j.watres.2018.03.030_bib15) 2010; 181 Yu (10.1016/j.watres.2018.03.030_bib42) 2017; 198 Palma-Goyesa (10.1016/j.watres.2018.03.030_bib21) 2016; 213 Tay (10.1016/j.watres.2018.03.030_bib31) 2015; 520 Daghrir (10.1016/j.watres.2018.03.030_bib8) 2013; 87 Rossi (10.1016/j.watres.2018.03.030_bib26) 2008; 39 Santos (10.1016/j.watres.2018.03.030_bib29) 2016; 62 Chen (10.1016/j.watres.2018.03.030_bib5) 2004; 38 Wang (10.1016/j.watres.2018.03.030_bib36) 2016; 296 Khan (10.1016/j.watres.2018.03.030_bib13) 2010; 181 Dalmazio (10.1016/j.watres.2018.03.030_bib9) 2007; 18 Lin (10.1016/j.watres.2018.03.030_bib16) 2012; 46 Saitoh (10.1016/j.watres.2018.03.030_bib27) 2017; 187 Nayak (10.1016/j.watres.2018.03.030_bib19) 2018; 263 Zhu (10.1016/j.watres.2018.03.030_bib46) 2013; 92 You (10.1016/j.watres.2018.03.030_bib41) 2016; 214 Zhang (10.1016/j.watres.2018.03.030_bib45) 2014; 114 Benavides (10.1016/j.watres.2018.03.030_bib3) 2017; 178 Panizza (10.1016/j.watres.2018.03.030_bib22) 2009; 109 Hamza (10.1016/j.watres.2018.03.030_bib11) 2009; 627 Saitoh (10.1016/j.watres.2018.03.030_bib28) 2014; 2 Bejan (10.1016/j.watres.2018.03.030_bib2) 2012; 69 Wu (10.1016/j.watres.2018.03.030_bib37) 2012; 87 Lin (10.1016/j.watres.2018.03.030_bib17) 2013; 97 |
References_xml | – volume: 123 start-page: 448 year: 2017 end-page: 467 ident: bib7 article-title: The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - a review publication-title: Water Res. – volume: 223 start-page: 678 year: 2013 end-page: 687 ident: bib18 article-title: MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution publication-title: Chem. Eng. J. – volume: 49 start-page: 11292 year: 2015 end-page: 11302 ident: bib24 article-title: Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water publication-title: Environ. Sci. Technol. – start-page: 838 year: 2012 end-page: 841 ident: bib25 publication-title: Standard Methods for the Examination of Water and Wastewater (22nd Edition) – volume: 32 start-page: 123 year: 2014 end-page: 127 ident: bib38 article-title: Research progress in pollution status and environmental behavior of tetracycline antibiotics publication-title: Environ. Monit. Assess. – volume: 38 start-page: 11 year: 2004 end-page: 41 ident: bib5 article-title: Electrochemical technologies in wastewater treatment publication-title: Separ. Purif. Technol. – volume: 7 start-page: 21287 year: 2017 end-page: 21297 ident: bib35 article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation publication-title: RSC Adv. – volume: 97 start-page: 167 year: 2013 end-page: 174 ident: bib17 article-title: Electrochemical mineralization of sulfamethoxazole by Ti/SnO publication-title: Electrochim. Acta – volume: 4 start-page: 568 year: 2009 end-page: 573 ident: bib44 article-title: Degradation of tetracycline in aqueous medium by electrochemical method publication-title: Asia Pac. J. Chem. Eng. – volume: 187 start-page: 76 year: 2017 end-page: 83 ident: bib27 article-title: Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions publication-title: Separ. Purif. Technol. – volume: 92 start-page: 925 year: 2013 end-page: 932 ident: bib46 article-title: Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO publication-title: Chemosphere – volume: 89 start-page: 9814 year: 2017 end-page: 9821 ident: bib12 article-title: Infrared spectroscopy coupled with a dispersion model for quantifying the real-time dynamics of kanamycin resistance in artificial microbiota publication-title: Anal. Chem. – volume: 27 start-page: 2224 year: 2015 end-page: 2233 ident: bib6 article-title: Bi publication-title: Chem. Mater. – volume: 48 start-page: 5857 year: 2014 end-page: 5867 ident: bib43 article-title: Mechanism of p-substituted phenol oxidation at a Ti publication-title: Environ. Sci. Technol. – volume: 181 start-page: 521 year: 2010 end-page: 525 ident: bib15 article-title: Role of hydroxyl radical during electrolytic degradation of contaminants publication-title: J. Hazard Mater. – volume: 296 start-page: 79 year: 2016 end-page: 89 ident: bib36 article-title: The electrochemical degradation of ciprofloxacin using a SnO publication-title: Chem. Eng. J. – volume: 114 start-page: 34 year: 2014 end-page: 36 ident: bib45 article-title: Fabrication of Ti publication-title: Mater. Lett. – volume: 46 start-page: 2281 year: 2012 end-page: 2289 ident: bib16 article-title: Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO publication-title: Water Res. – volume: 81 start-page: 800 year: 2008 end-page: 802 ident: bib33 article-title: Electrochemical degradation of tetracycline publication-title: Russ. J. Appl. Chem. – volume: 51 start-page: 2262 year: 2017 end-page: 2270 ident: bib30 article-title: Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation publication-title: Environ. Sci. Technol. – volume: 50 start-page: 8780 year: 2016 end-page: 8787 ident: bib40 article-title: Multilayer heterojunction anodes for saline wastewater treatment: design strategies and reactive species generation mechanisms publication-title: Environ. Sci. Technol. – volume: 178 start-page: 171 year: 2017 end-page: 180 ident: bib3 article-title: Reaction of tetracycline with biologically relevant chloramines publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 50 start-page: 11888 year: 2016 end-page: 11894 ident: bib39 article-title: Synthesis and stabilization of blue-black TiO publication-title: Environ. Sci. Technol. – volume: 396 start-page: 2929 year: 2010 end-page: 2936 ident: bib23 article-title: Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal publication-title: Anal. Bioanal. Chem. – volume: 627 start-page: 41 year: 2009 end-page: 50 ident: bib11 article-title: Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes publication-title: J. Electroanal. Chem. – volume: 56 start-page: 77 year: 2014 end-page: 87 ident: bib1 article-title: Toxicity assessment and modeling of publication-title: Water Res. – volume: 39 start-page: 329 year: 2008 end-page: 337 ident: bib26 article-title: Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO publication-title: J. Appl. Electrochem. – volume: 2 start-page: 1852 year: 2014 end-page: 1858 ident: bib28 article-title: Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method publication-title: J. Environ. Chem. Eng – volume: 62 start-page: 508 year: 2016 end-page: 524 ident: bib29 article-title: Highly porous Ti publication-title: AIChE J. – year: 2011 ident: bib32 article-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS) – volume: 263 start-page: 299 year: 2018 end-page: 310 ident: bib19 article-title: Fabrication and characterization of porous, conductive, monolithic Ti publication-title: Electrochim. Acta – volume: 69 start-page: 275 year: 2012 end-page: 281 ident: bib2 article-title: On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex publication-title: Electrochim. Acta – volume: 87 start-page: 614 year: 2012 end-page: 620 ident: bib37 article-title: Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO publication-title: Chemosphere – volume: 538 start-page: 35 year: 2005 end-page: 40 ident: bib20 article-title: On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents publication-title: Anal. Chim. Acta – volume: 50 start-page: 1428 year: 2016 end-page: 1436 ident: bib10 article-title: Development and characterization of ultrafiltration TiO publication-title: Environ. Sci. Technol. – volume: 209 start-page: 54 year: 2012 end-page: 61 ident: bib4 article-title: Electrodegradation of tetracycline on BDD anode publication-title: Chem. Eng. J. – volume: 214 start-page: 326 year: 2016 end-page: 335 ident: bib41 article-title: Monolithic porous magnéli-phase Ti publication-title: Electrochim. Acta – volume: 149 start-page: 49 year: 2016 end-page: 56 ident: bib14 article-title: Electrochemical degradation of pyridine by Ti/SnO publication-title: Chemosphere – volume: 198 start-page: 283 year: 2017 end-page: 290 ident: bib42 article-title: Adsorption behaviors of tetracycline on magnetic graphene oxide sponge publication-title: Mater. Chem. Phys. – volume: 18 start-page: 679 year: 2007 end-page: 687 ident: bib9 article-title: Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 89–90 start-page: 204 year: 2016 end-page: 211 ident: bib34 article-title: Antibiotics detected in urines and adipogenesis in school children publication-title: Environ. Int. – volume: 181 start-page: 659 year: 2010 end-page: 665 ident: bib13 article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway publication-title: J. Hazard Mater. – volume: 87 start-page: 18 year: 2013 end-page: 31 ident: bib8 article-title: Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO publication-title: Electrochim. Acta – volume: 213 start-page: 740 year: 2016 end-page: 751 ident: bib21 article-title: Microstructural and electrochemical analysis of Sb publication-title: Electrochim. Acta – volume: 520 start-page: 23 year: 2015 end-page: 31 ident: bib31 article-title: Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment publication-title: Sci. Total Environ. – volume: 109 start-page: 6541 year: 2009 end-page: 6569 ident: bib22 article-title: Direct and mediated anodic oxidation of organic pollutants publication-title: Chem. Rev. – volume: 181 start-page: 521 issue: 1 year: 2010 ident: 10.1016/j.watres.2018.03.030_bib15 article-title: Role of hydroxyl radical during electrolytic degradation of contaminants publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.05.045 – volume: 50 start-page: 11888 issue: 21 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib39 article-title: Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03540 – volume: 49 start-page: 11292 issue: 19 year: 2015 ident: 10.1016/j.watres.2018.03.030_bib24 article-title: Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02414 – volume: 62 start-page: 508 issue: 2 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib29 article-title: Highly porous Ti4O7 reactive electrochemical water filtration membranes fabricated via electrospinning/electrospraying publication-title: AIChE J. doi: 10.1002/aic.15093 – volume: 4 start-page: 568 issue: 5 year: 2009 ident: 10.1016/j.watres.2018.03.030_bib44 article-title: Degradation of tetracycline in aqueous medium by electrochemical method publication-title: Asia Pac. J. Chem. Eng. doi: 10.1002/apj.286 – volume: 39 start-page: 329 issue: 3 year: 2008 ident: 10.1016/j.watres.2018.03.030_bib26 article-title: Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-008-9676-2 – volume: 7 start-page: 21287 issue: 34 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib35 article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation publication-title: RSC Adv. doi: 10.1039/C6RA28224E – start-page: 838 year: 2012 ident: 10.1016/j.watres.2018.03.030_bib25 – volume: 51 start-page: 2262 issue: 4 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib30 article-title: Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03548 – volume: 520 start-page: 23 year: 2015 ident: 10.1016/j.watres.2018.03.030_bib31 article-title: Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.03.033 – volume: 296 start-page: 79 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib36 article-title: The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.093 – volume: 223 start-page: 678 issue: 100 year: 2013 ident: 10.1016/j.watres.2018.03.030_bib18 article-title: MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.088 – volume: 50 start-page: 8780 issue: 16 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib40 article-title: Multilayer heterojunction anodes for saline wastewater treatment: design strategies and reactive species generation mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00688 – volume: 538 start-page: 35 issue: 1–2 year: 2005 ident: 10.1016/j.watres.2018.03.030_bib20 article-title: On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.01.061 – volume: 46 start-page: 2281 issue: 7 year: 2012 ident: 10.1016/j.watres.2018.03.030_bib16 article-title: Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes publication-title: Water Res. doi: 10.1016/j.watres.2012.01.053 – volume: 89–90 start-page: 204 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib34 article-title: Antibiotics detected in urines and adipogenesis in school children publication-title: Environ. Int. doi: 10.1016/j.envint.2016.02.005 – volume: 87 start-page: 614 issue: 6 year: 2012 ident: 10.1016/j.watres.2018.03.030_bib37 article-title: Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.01.036 – volume: 214 start-page: 326 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib41 article-title: Monolithic porous magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.037 – volume: 89 start-page: 9814 issue: 18 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib12 article-title: Infrared spectroscopy coupled with a dispersion model for quantifying the real-time dynamics of kanamycin resistance in artificial microbiota publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01765 – volume: 187 start-page: 76 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib27 article-title: Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2017.06.036 – volume: 178 start-page: 171 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib3 article-title: Reaction of tetracycline with biologically relevant chloramines publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.02.001 – volume: 56 start-page: 77 year: 2014 ident: 10.1016/j.watres.2018.03.030_bib1 article-title: Toxicity assessment and modeling of Moringa oleifera seeds in water purification by whole cell bioreporter publication-title: Water Res. doi: 10.1016/j.watres.2014.02.045 – year: 2011 ident: 10.1016/j.watres.2018.03.030_bib32 doi: 10.18356/4255cc90-en – volume: 32 start-page: 123 issue: 2 year: 2014 ident: 10.1016/j.watres.2018.03.030_bib38 article-title: Research progress in pollution status and environmental behavior of tetracycline antibiotics publication-title: Environ. Monit. Assess. – volume: 87 start-page: 18 year: 2013 ident: 10.1016/j.watres.2018.03.030_bib8 article-title: Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.020 – volume: 109 start-page: 6541 issue: 12 year: 2009 ident: 10.1016/j.watres.2018.03.030_bib22 article-title: Direct and mediated anodic oxidation of organic pollutants publication-title: Chem. Rev. doi: 10.1021/cr9001319 – volume: 48 start-page: 5857 issue: 10 year: 2014 ident: 10.1016/j.watres.2018.03.030_bib43 article-title: Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane publication-title: Environ. Sci. Technol. doi: 10.1021/es5010472 – volume: 50 start-page: 1428 issue: 3 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib10 article-title: Development and characterization of ultrafiltration TiO2 magneli phase reactive electrochemical membranes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04366 – volume: 627 start-page: 41 issue: 1–2 year: 2009 ident: 10.1016/j.watres.2018.03.030_bib11 article-title: Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.12.017 – volume: 38 start-page: 11 issue: 1 year: 2004 ident: 10.1016/j.watres.2018.03.030_bib5 article-title: Electrochemical technologies in wastewater treatment publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2003.10.006 – volume: 81 start-page: 800 year: 2008 ident: 10.1016/j.watres.2018.03.030_bib33 article-title: Electrochemical degradation of tetracycline publication-title: Russ. J. Appl. Chem. doi: 10.1134/S1070427208050145 – volume: 181 start-page: 659 issue: 1–3 year: 2010 ident: 10.1016/j.watres.2018.03.030_bib13 article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.05.063 – volume: 198 start-page: 283 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib42 article-title: Adsorption behaviors of tetracycline on magnetic graphene oxide sponge publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.05.042 – volume: 123 start-page: 448 year: 2017 ident: 10.1016/j.watres.2018.03.030_bib7 article-title: The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - a review publication-title: Water Res. doi: 10.1016/j.watres.2017.07.004 – volume: 92 start-page: 925 issue: 8 year: 2013 ident: 10.1016/j.watres.2018.03.030_bib46 article-title: Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.02.066 – volume: 27 start-page: 2224 issue: 6 year: 2015 ident: 10.1016/j.watres.2018.03.030_bib6 article-title: BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00376 – volume: 263 start-page: 299 year: 2018 ident: 10.1016/j.watres.2018.03.030_bib19 article-title: Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.034 – volume: 97 start-page: 167 year: 2013 ident: 10.1016/j.watres.2018.03.030_bib17 article-title: Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.03.019 – volume: 69 start-page: 275 year: 2012 ident: 10.1016/j.watres.2018.03.030_bib2 article-title: On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.02.097 – volume: 213 start-page: 740 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib21 article-title: Microstructural and electrochemical analysis of Sb2O5 doped-Ti/RuO2-ZrO2 to yield active chlorine species for ciprofloxacin degradation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.07.150 – volume: 209 start-page: 54 year: 2012 ident: 10.1016/j.watres.2018.03.030_bib4 article-title: Electrodegradation of tetracycline on BDD anode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.112 – volume: 149 start-page: 49 year: 2016 ident: 10.1016/j.watres.2018.03.030_bib14 article-title: Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.078 – volume: 2 start-page: 1852 issue: 3 year: 2014 ident: 10.1016/j.watres.2018.03.030_bib28 article-title: Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method publication-title: J. Environ. Chem. Eng – volume: 114 start-page: 34 year: 2014 ident: 10.1016/j.watres.2018.03.030_bib45 article-title: Fabrication of Ti4O7 electrodes by spark plasma sintering publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.09.101 – volume: 18 start-page: 679 issue: 4 year: 2007 ident: 10.1016/j.watres.2018.03.030_bib9 article-title: Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2006.12.001 – volume: 396 start-page: 2929 issue: 8 year: 2010 ident: 10.1016/j.watres.2018.03.030_bib23 article-title: Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3581-3 |
SSID | ssj0002239 |
Score | 2.68528 |
Snippet | Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 324 |
SubjectTerms | anodes bacteria bioluminescence carboxylic acids chemical bonding Degradation pathway durability Electrochemical oxidation electrochemistry free radicals gas chromatography high performance liquid chromatography human health hydroxyl radicals oxidation quantitative structure-activity relationships spectrometers spraying Tetracycline Ti/Ti4O7 anode toxicity Toxicity assessment wastewater |
Title | Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode |
URI | https://dx.doi.org/10.1016/j.watres.2018.03.030 https://www.proquest.com/docview/2018023630 https://www.proquest.com/docview/2067280618 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA7iXvQg7q7ir5Us7LXOpEmT9igyMu7C7GUEb-UlfZGKdGTo4HpZ_NPNa1P3B6Ig9NLyEkJemvdCvu97jH1zirDtUicmS6twQLFZAoXICUzllDBOKugAsjM9vVTfr7KrNXY2cGEIVhn3_n5P73br-GUUZ3N0V9fE8Q3BT2ZKkIRV6JsY7MrQKj_5_QfmEcJfMdwyk_VAn-swXvdAhAwCeOWd1ClhoV8OT_9t1F30Od9mWzFt5Kf9yD6yNWw-sc2_xAQ_s8dJFO5urnmL7RLcA9EekVekB9GXTuJUgPgeHjg0FSeliGXHHGmRt4tftQsZOe95izzkhTyWyHFRU4AHk9gN4T458Hk9mtfqpwndLSrcYZfnk_nZNIn1FRKnZN4mNpy10HrrtAZpfUhFnIA894CowOsiz1wazjuFTa1THgyGibbeudRnGhTkcpetN4sG9xgXhUUzBpRYoUrdGLQHn4rKV8KgMWKfyWFaSxfFx6kGxm05oMxuyt4ZJTmjHMvwjPdZ8tzqrhffeMPeDB4r_1lEZYgPb7T8Oji4DP8XXZpAg4tVb0Qq-6_baKrypUV-8O4RHLINeiMUmsiO2Hq7XOGXkO-09rhb0Mfsw-nFj-nsCQT3A_U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5tDmUJqmJemnCrmaXVmyZB9DSNg0yfaygdzESB4Vl-ANi0OaW396NbYc2lASKPhkj4SYkWdG6M0bxva9Imy71Jkp8joeUFyRQSVKAlN5JYyXCnqA7ELPL9TXy-Jygx2OtTAEq0y-f_DpvbdOb6ZJm9PrpqEa3xj8ZKEEUVjFuZ-xTWKnKiZs8-DkdL64d8gxAlbjRTMNGCvoepjXLVBNBmG8yp7tlODQ_45QD3x1H4COX7GXKXPkB8PittkGtq_Z1h98gjvs11Hi7m6_8w67Nfg7qnxEXhMlxNA9iVMP4lu449DWnMgi1n3xSIe8W_1sfEzK-VC6yGNqyFOXHJ9oBXgUSdMQ9JMDXzbTZaO-mTjdqsY37OL4aHk4z1KLhcwrWXaZi8ctdMF5rUG6ELMRL6AsAyAqCLoqC5_HI0_lcudVAINR1y54n4dCg4JSvmWTdtXiLuOicmhmgBJrVLmfgQ4QclGHWhg0RuwxOarV-sQ_Tm0wruwINPthB2NYMoadyfjM9lh2P-p64N94Qt6MFrN_7SMbQ8QTI7-MBrbxF6N7E2hxdTMIEdH-4zKaGn1pUb777xV8Zs_ny_Mze3ayOH3PXtCXAZT2gU269Q1-jOlP5z6l7f0b1-kGoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+tetracycline+degradation+pathway+and+intermediate+toxicity+during+the+electrochemical+oxidation+over+a+Ti%2FTi4O7+anode&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Jianbing&rft.au=Zhi%2C+Dan&rft.au=Zhou%2C+Hao&rft.au=He%2C+Xuwen&rft.date=2018-06-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=137&rft.spage=324&rft_id=info:doi/10.1016%2Fj.watres.2018.03.030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |