Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode

Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 137; pp. 324 - 334
Main Authors Wang, Jianbing, Zhi, Dan, Zhou, Hao, He, Xuwen, Zhang, Dayi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. [Display omitted] •Satisfactory tetracycline degradation (95.8%) on a Ti/Ti4O7 anode.•The tetracycline electrochemical oxidation follows a pseudo-first order kinetics.•First complete pathway of tetracycline electrochemical oxidation.•Toxicity evaluation of 25 intermediates by QSAR explains toxicity reduction delay.
AbstractList Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. [Display omitted] •Satisfactory tetracycline degradation (95.8%) on a Ti/Ti4O7 anode.•The tetracycline electrochemical oxidation follows a pseudo-first order kinetics.•First complete pathway of tetracycline electrochemical oxidation.•Toxicity evaluation of 25 intermediates by QSAR explains toxicity reduction delay.
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.
Author He, Xuwen
Zhi, Dan
Wang, Jianbing
Zhou, Hao
Zhang, Dayi
Author_xml – sequence: 1
  givenname: Jianbing
  orcidid: 0000-0003-2755-1403
  surname: Wang
  fullname: Wang, Jianbing
  email: wangjb@cumtb.edu.cn
  organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
– sequence: 2
  givenname: Dan
  surname: Zhi
  fullname: Zhi, Dan
  organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
– sequence: 3
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
– sequence: 4
  givenname: Xuwen
  surname: He
  fullname: He, Xuwen
  organization: School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
– sequence: 5
  givenname: Dayi
  orcidid: 0000-0002-4175-5982
  surname: Zhang
  fullname: Zhang, Dayi
  email: zhangdayi@tsinghua.org.cn
  organization: School of Environment, Tsinghua University, Beijing 100084, PR China
BookMark eNqNkT1vUzEUhi1UJNLCP2DwyHJTf8XxZUBCVfmQKnUJs3Wu73Hj6MYOtpOSrT8dN-nEAEhH8uD3eYb3vSQXMUUk5D1nc864vt7MH6FmLHPBuJkz2Y69IjNuln0nlDIXZMaYkh2XC_WGXJayYYwJIfsZebo9wLSHGuIDrVgzuKObQkQ64kOGsX2kSHdQ149wpBBHGmLFvMUxQEVa06_gQj3ScZ9PhjVSnNDVnNwat8HBRFvkRZMOmCnQVbheBXW_bLo04lvy2sNU8N3Le0V-fLld3Xzr7u6_fr_5fNc5JU3tBtP3OPjBaQ1y8AujHAdjPCAq8Lo3Cye00P0gBqc8LNFINnjnhF9oUGDkFflw9u5y-rnHUu02FIfTBBHTvljB9FIYpvn_RLlhQmrJWlSdoy6nUjJ6u8thC_loObPP29iNPW9zoiyT7Z6xj39grcVTSW2BMP0L_nSGsdV1CJhtcQGja5vkVr0dU_i74DfOnbMC
CitedBy_id crossref_primary_10_1007_s10311_019_00945_2
crossref_primary_10_1007_s10934_020_01007_7
crossref_primary_10_1016_j_jtice_2021_04_064
crossref_primary_10_1039_D4EN01157K
crossref_primary_10_2166_wst_2020_479
crossref_primary_10_1016_j_molliq_2021_117191
crossref_primary_10_1016_j_electacta_2019_135441
crossref_primary_10_1016_j_jwpe_2024_105802
crossref_primary_10_1039_D0EN01064B
crossref_primary_10_1016_j_cej_2023_142558
crossref_primary_10_1016_j_apcatb_2019_117969
crossref_primary_10_3390_chemosensors9070187
crossref_primary_10_1080_09593330_2020_1754472
crossref_primary_10_1016_j_cej_2021_133167
crossref_primary_10_1016_j_seppur_2020_116728
crossref_primary_10_2139_ssrn_3978302
crossref_primary_10_1039_D0EE02550J
crossref_primary_10_1021_acsanm_2c01100
crossref_primary_10_5004_dwt_2022_28596
crossref_primary_10_1016_j_molliq_2020_113300
crossref_primary_10_1016_j_jallcom_2021_161960
crossref_primary_10_1016_j_jwpe_2022_103075
crossref_primary_10_1016_j_biortech_2021_125067
crossref_primary_10_1080_01496395_2021_1982978
crossref_primary_10_1016_j_apcatb_2021_119877
crossref_primary_10_1016_j_jece_2024_113655
crossref_primary_10_1016_j_apcatb_2020_119138
crossref_primary_10_1016_j_envres_2024_120265
crossref_primary_10_1016_j_jhazmat_2019_121552
crossref_primary_10_1016_j_apsusc_2022_156017
crossref_primary_10_1016_j_jcis_2021_09_112
crossref_primary_10_1016_j_seppur_2022_122711
crossref_primary_10_1002_chem_202402188
crossref_primary_10_1021_acs_langmuir_2c00907
crossref_primary_10_1039_D3NJ03247G
crossref_primary_10_1016_j_seppur_2022_121891
crossref_primary_10_1016_j_cej_2023_142532
crossref_primary_10_1039_D4RA01307G
crossref_primary_10_1021_acs_est_3c03711
crossref_primary_10_1016_j_watres_2021_117979
crossref_primary_10_1016_j_envadv_2022_100322
crossref_primary_10_1039_D3MH01348K
crossref_primary_10_1021_acs_est_0c03800
crossref_primary_10_1039_D1RA01886H
crossref_primary_10_1016_j_ceramint_2022_05_233
crossref_primary_10_1016_j_seppur_2024_126505
crossref_primary_10_1016_j_jphotochem_2023_115322
crossref_primary_10_5004_dwt_2021_27716
crossref_primary_10_1016_j_seppur_2022_121763
crossref_primary_10_1007_s11666_024_01888_z
crossref_primary_10_1016_j_jallcom_2022_168635
crossref_primary_10_1016_j_jece_2023_111078
crossref_primary_10_1016_j_jwpe_2023_104765
crossref_primary_10_1016_j_watres_2023_119682
crossref_primary_10_1016_j_apcatb_2018_11_043
crossref_primary_10_1016_j_molliq_2024_124480
crossref_primary_10_1016_j_chemosphere_2023_137970
crossref_primary_10_1016_j_seppur_2024_126976
crossref_primary_10_1021_acsestengg_2c00339
crossref_primary_10_1002_wer_1339
crossref_primary_10_3390_antibiotics12071151
crossref_primary_10_1016_j_scitotenv_2021_147492
crossref_primary_10_1016_j_jece_2025_116058
crossref_primary_10_1016_j_jmst_2022_01_023
crossref_primary_10_1016_j_jes_2024_02_036
crossref_primary_10_1016_j_jenvman_2024_121970
crossref_primary_10_1016_j_cej_2024_150532
crossref_primary_10_1016_j_wasec_2023_100147
crossref_primary_10_1039_C9RA05817F
crossref_primary_10_1016_j_cej_2021_134054
crossref_primary_10_1016_j_jece_2024_112537
crossref_primary_10_1016_j_chemosphere_2023_137888
crossref_primary_10_1016_j_chemosphere_2023_138614
crossref_primary_10_1007_s11356_023_31778_w
crossref_primary_10_1007_s11270_023_06376_8
crossref_primary_10_1016_j_cej_2019_122842
crossref_primary_10_1016_j_seppur_2024_126843
crossref_primary_10_1016_j_cclet_2025_110996
crossref_primary_10_1007_s10311_021_01295_8
crossref_primary_10_1016_j_jallcom_2021_161760
crossref_primary_10_1080_09593330_2021_1928292
crossref_primary_10_1007_s10971_024_06324_w
crossref_primary_10_1016_j_jssc_2020_121200
crossref_primary_10_1007_s10854_025_14320_1
crossref_primary_10_1016_j_envres_2024_118260
crossref_primary_10_1016_j_apcatb_2019_03_017
crossref_primary_10_1038_s41467_024_51878_6
crossref_primary_10_1016_j_cej_2018_12_133
crossref_primary_10_1016_j_jallcom_2024_177714
crossref_primary_10_1016_j_jcat_2024_115821
crossref_primary_10_1039_D4QI00808A
crossref_primary_10_1016_j_cej_2019_122970
crossref_primary_10_1016_j_apcatb_2021_120332
crossref_primary_10_1016_j_jhazmat_2021_125600
crossref_primary_10_1016_j_cej_2021_134190
crossref_primary_10_1016_j_envres_2021_111661
crossref_primary_10_3389_fenvs_2024_1467797
crossref_primary_10_1016_j_apcatb_2019_117824
crossref_primary_10_1016_j_psep_2024_11_006
crossref_primary_10_1016_j_clay_2022_106752
crossref_primary_10_1016_j_jece_2022_108932
crossref_primary_10_1016_j_jenvman_2022_114613
crossref_primary_10_1016_j_cej_2022_137505
crossref_primary_10_1016_j_jwpe_2023_104207
crossref_primary_10_1016_j_chemosphere_2023_138994
crossref_primary_10_1016_j_cej_2020_126165
crossref_primary_10_1016_j_cclet_2021_08_008
crossref_primary_10_1016_j_ijoes_2024_100589
crossref_primary_10_1016_j_surfin_2022_102583
crossref_primary_10_1016_j_seppur_2022_120594
crossref_primary_10_1016_j_jhazmat_2019_121656
crossref_primary_10_1016_j_seppur_2023_123808
crossref_primary_10_3390_environments8080085
crossref_primary_10_1016_j_jenvman_2023_119386
crossref_primary_10_1002_jctb_6082
crossref_primary_10_1021_acs_iecr_3c02820
crossref_primary_10_20964_2020_05_16
crossref_primary_10_1039_D2EN00028H
crossref_primary_10_1016_j_jwpe_2025_107073
crossref_primary_10_1038_s41598_022_10563_8
crossref_primary_10_1016_j_apsusc_2023_156977
crossref_primary_10_1016_j_scitotenv_2023_165292
crossref_primary_10_1016_j_matchemphys_2023_127554
crossref_primary_10_1016_j_watcyc_2024_06_003
crossref_primary_10_1007_s11356_020_09903_w
crossref_primary_10_1016_j_cej_2020_126982
crossref_primary_10_1016_j_cej_2023_147840
crossref_primary_10_1016_j_jiec_2023_07_011
crossref_primary_10_1016_j_jwpe_2024_104799
crossref_primary_10_1039_D3EN00272A
crossref_primary_10_1016_j_seppur_2024_128790
crossref_primary_10_1016_j_cej_2021_130283
crossref_primary_10_1016_j_ecoenv_2019_01_040
crossref_primary_10_1016_j_jece_2025_115966
crossref_primary_10_1016_j_watres_2022_118240
crossref_primary_10_1016_j_carbpol_2020_117004
crossref_primary_10_1016_j_jece_2023_109602
crossref_primary_10_2139_ssrn_4186854
crossref_primary_10_3390_catal12060618
crossref_primary_10_1016_j_apsusc_2020_148136
crossref_primary_10_1021_acs_langmuir_2c01625
crossref_primary_10_1002_adma_202307795
crossref_primary_10_1039_D1RA00516B
crossref_primary_10_1016_j_colsurfa_2023_132847
crossref_primary_10_1016_j_cej_2023_144685
crossref_primary_10_1016_j_chemosphere_2020_128435
crossref_primary_10_1016_j_jpowsour_2021_229876
crossref_primary_10_1016_j_jwpe_2023_104149
crossref_primary_10_1016_j_scitotenv_2020_141975
crossref_primary_10_1016_j_cej_2022_139154
crossref_primary_10_1016_j_jwpe_2025_107090
crossref_primary_10_1016_j_jcis_2022_02_003
crossref_primary_10_1016_j_cej_2021_132344
crossref_primary_10_1016_j_jece_2022_108345
crossref_primary_10_1016_j_jece_2021_105134
crossref_primary_10_1016_j_seppur_2023_125322
crossref_primary_10_1016_j_cej_2022_134827
crossref_primary_10_1016_j_jhazmat_2023_131604
crossref_primary_10_1016_j_hazadv_2023_100302
crossref_primary_10_1016_j_cej_2025_160480
crossref_primary_10_1016_j_apcatb_2025_125032
crossref_primary_10_1039_C9EN00411D
crossref_primary_10_1016_j_jwpe_2023_104139
crossref_primary_10_1016_j_jhazmat_2020_123703
crossref_primary_10_17776_csj_944066
crossref_primary_10_1016_j_chemosphere_2022_134311
crossref_primary_10_1016_j_colsurfa_2024_133196
crossref_primary_10_1016_j_apcatb_2021_120020
crossref_primary_10_1021_acsomega_1c00204
crossref_primary_10_1002_admi_202200271
crossref_primary_10_1016_j_seppur_2024_128881
crossref_primary_10_1039_D0DT00408A
crossref_primary_10_1016_j_cej_2021_134316
crossref_primary_10_1016_j_molstruc_2025_141719
crossref_primary_10_1016_j_seppur_2022_120964
crossref_primary_10_1016_j_jenvman_2024_123185
crossref_primary_10_1016_j_apsusc_2023_157478
crossref_primary_10_1016_j_chemosphere_2024_142664
crossref_primary_10_1016_j_watres_2022_118454
crossref_primary_10_1016_j_jcis_2020_12_042
crossref_primary_10_1002_wer_1683
crossref_primary_10_1016_j_cej_2023_147938
crossref_primary_10_1016_j_biortech_2021_126652
crossref_primary_10_1016_j_cej_2021_131045
crossref_primary_10_1016_j_jes_2024_07_023
crossref_primary_10_3390_molecules28093850
crossref_primary_10_1016_j_cej_2022_140048
crossref_primary_10_1016_j_scitotenv_2022_160860
crossref_primary_10_1016_j_jwpe_2024_105748
crossref_primary_10_1016_j_apcatb_2023_122890
crossref_primary_10_1016_j_envres_2023_117539
crossref_primary_10_1016_j_ultsonch_2018_11_012
crossref_primary_10_1007_s12598_021_01731_2
crossref_primary_10_1016_j_cej_2020_126990
crossref_primary_10_1016_j_chemosphere_2024_143509
crossref_primary_10_1016_j_seppur_2024_129724
crossref_primary_10_1016_j_chemosphere_2022_134562
crossref_primary_10_1016_j_cscee_2021_100129
crossref_primary_10_1016_j_jclepro_2024_142788
crossref_primary_10_1016_j_sbsr_2022_100507
crossref_primary_10_1016_j_cej_2023_146718
crossref_primary_10_2139_ssrn_3978865
crossref_primary_10_2139_ssrn_4191048
crossref_primary_10_1016_j_watres_2021_117196
crossref_primary_10_2139_ssrn_4160385
crossref_primary_10_1007_s00339_021_04528_3
crossref_primary_10_1039_D3CY01571H
crossref_primary_10_1016_j_jece_2022_108430
crossref_primary_10_1016_j_cej_2022_134732
crossref_primary_10_1016_j_seppur_2023_125598
crossref_primary_10_1002_adsu_202300533
crossref_primary_10_1016_j_chemosphere_2024_141219
crossref_primary_10_2139_ssrn_4012452
crossref_primary_10_1021_acsestwater_3c00771
crossref_primary_10_1016_j_cej_2024_156928
crossref_primary_10_1016_j_cplett_2022_139944
crossref_primary_10_1016_j_seppur_2021_119482
crossref_primary_10_1016_j_psep_2023_12_012
crossref_primary_10_1021_acs_est_8b06130
crossref_primary_10_1016_j_matchemphys_2022_126137
crossref_primary_10_1002_adfm_202403505
crossref_primary_10_1016_j_mssp_2022_107034
crossref_primary_10_1016_j_scitotenv_2020_137560
crossref_primary_10_1016_j_chemosphere_2019_125084
crossref_primary_10_1016_j_cej_2024_153526
crossref_primary_10_1016_j_jhazmat_2021_128166
crossref_primary_10_1016_j_seppur_2024_127404
crossref_primary_10_1016_j_jes_2021_04_031
crossref_primary_10_1039_D3RA07923F
crossref_primary_10_1007_s11356_022_22487_x
crossref_primary_10_1016_j_apcatb_2023_122993
crossref_primary_10_1016_j_seppur_2024_129704
crossref_primary_10_1016_j_cej_2020_125476
crossref_primary_10_1016_j_cej_2020_127533
crossref_primary_10_1016_j_cej_2023_142694
crossref_primary_10_1016_j_apcatb_2025_125231
crossref_primary_10_1016_j_biortech_2024_131713
crossref_primary_10_1016_j_cej_2020_125118
crossref_primary_10_3390_catal15010014
crossref_primary_10_1016_j_jwpe_2024_106637
crossref_primary_10_1016_j_apt_2023_104186
crossref_primary_10_1016_j_cej_2021_132294
crossref_primary_10_1016_j_jallcom_2024_175848
crossref_primary_10_1016_j_watres_2020_115514
crossref_primary_10_1039_D3TC02493H
crossref_primary_10_1016_j_cej_2024_152421
crossref_primary_10_1016_j_seppur_2023_125131
crossref_primary_10_1016_j_cej_2021_134238
crossref_primary_10_1039_D1EW00676B
crossref_primary_10_1016_j_cej_2022_141046
crossref_primary_10_1016_j_jhazmat_2022_130524
crossref_primary_10_1016_j_jtice_2020_06_009
crossref_primary_10_1016_j_watcyc_2022_01_001
crossref_primary_10_1039_D1EN00944C
crossref_primary_10_1016_j_seppur_2024_128725
crossref_primary_10_1016_j_envres_2022_113075
crossref_primary_10_1016_j_envres_2023_116642
crossref_primary_10_1016_j_colsurfa_2022_130413
crossref_primary_10_1016_j_envres_2023_117971
crossref_primary_10_1016_j_jenvman_2023_119541
crossref_primary_10_1016_j_watres_2023_120753
crossref_primary_10_4491_eer_2024_254
crossref_primary_10_1016_j_envres_2023_117612
crossref_primary_10_1016_j_watres_2022_118259
crossref_primary_10_1016_j_apsusc_2023_158880
crossref_primary_10_1016_j_inoche_2022_110184
crossref_primary_10_1016_j_jclepro_2020_125235
crossref_primary_10_1016_j_jwpe_2024_106641
crossref_primary_10_1016_j_apcatb_2023_122852
crossref_primary_10_1016_j_colsurfa_2024_134374
crossref_primary_10_1016_j_chemosphere_2022_134007
crossref_primary_10_1007_s42773_022_00197_4
crossref_primary_10_1016_j_cej_2022_136702
crossref_primary_10_1016_j_scitotenv_2022_157531
crossref_primary_10_1016_j_seppur_2022_120878
crossref_primary_10_1016_j_cej_2024_154836
crossref_primary_10_1016_j_ese_2021_100127
crossref_primary_10_1016_j_inoche_2024_112600
crossref_primary_10_1016_j_cej_2023_147203
crossref_primary_10_1016_j_jwpe_2024_105242
crossref_primary_10_1007_s42114_022_00462_x
crossref_primary_10_1016_j_cej_2022_139542
crossref_primary_10_1016_j_seppur_2020_117257
crossref_primary_10_1016_j_jhazmat_2020_123889
crossref_primary_10_1016_j_jhazmat_2020_122315
crossref_primary_10_1016_j_jssc_2024_124589
crossref_primary_10_1016_j_cej_2024_157650
crossref_primary_10_1021_acsestengg_1c00479
crossref_primary_10_1039_D1RE00091H
crossref_primary_10_1039_D2RA07102A
crossref_primary_10_1016_j_cej_2019_123290
crossref_primary_10_1007_s11783_024_1846_x
crossref_primary_10_1016_j_cej_2019_05_097
crossref_primary_10_1098_rsos_210336
crossref_primary_10_1016_j_jece_2021_105409
crossref_primary_10_1016_j_jece_2024_115153
crossref_primary_10_1016_j_jhazmat_2020_123530
crossref_primary_10_1007_s40097_022_00477_2
crossref_primary_10_1016_j_cej_2022_138100
crossref_primary_10_1016_j_scitotenv_2021_146411
crossref_primary_10_1021_acsomega_2c03675
crossref_primary_10_3390_nano12162827
crossref_primary_10_1016_j_cej_2022_138460
crossref_primary_10_1016_j_jwpe_2021_102364
crossref_primary_10_1016_j_jmst_2023_05_018
crossref_primary_10_1016_j_jssc_2023_124051
crossref_primary_10_1016_j_jallcom_2023_172644
crossref_primary_10_1016_j_jenvman_2020_110125
crossref_primary_10_1039_D3EN00560G
crossref_primary_10_1016_j_colsurfa_2024_134114
crossref_primary_10_1016_j_envpol_2023_121922
crossref_primary_10_1080_01496395_2023_2259079
crossref_primary_10_1016_j_seppur_2023_125960
crossref_primary_10_1016_j_watres_2022_118635
crossref_primary_10_1016_j_apcatb_2022_121326
crossref_primary_10_3390_ma16031189
crossref_primary_10_1016_j_mtchem_2022_101003
crossref_primary_10_1016_j_heliyon_2022_e12644
crossref_primary_10_1016_j_compositesb_2022_110082
crossref_primary_10_1016_j_seppur_2023_123319
crossref_primary_10_1021_acs_est_9b07022
crossref_primary_10_1016_j_seppur_2022_122187
crossref_primary_10_1016_j_cej_2022_136052
crossref_primary_10_1016_j_seppur_2021_118600
crossref_primary_10_2147_IJN_S378387
crossref_primary_10_1016_j_jwpe_2022_102671
crossref_primary_10_1016_j_apcatb_2020_119820
crossref_primary_10_1016_j_chemosphere_2021_133340
crossref_primary_10_1016_j_envpol_2019_113801
crossref_primary_10_1080_00202967_2023_2221131
crossref_primary_10_1016_j_cej_2021_132895
crossref_primary_10_1016_j_colsurfa_2024_133477
crossref_primary_10_1016_j_chemosphere_2021_133469
crossref_primary_10_1016_j_chemosphere_2021_132135
crossref_primary_10_1039_D3SC04858F
crossref_primary_10_1016_j_seppur_2023_124526
crossref_primary_10_1038_s41598_023_37503_4
crossref_primary_10_1039_D3CY00102D
crossref_primary_10_1016_j_cej_2019_03_108
crossref_primary_10_1016_j_gsd_2024_101181
crossref_primary_10_1016_j_seppur_2022_122296
crossref_primary_10_1021_acsestengg_1c00344
crossref_primary_10_1021_acsagscitech_4c00637
crossref_primary_10_1016_j_cej_2022_136061
crossref_primary_10_1016_j_jtice_2019_10_023
crossref_primary_10_1016_j_jwpe_2024_106441
crossref_primary_10_1016_j_mssp_2021_106385
crossref_primary_10_2139_ssrn_4118418
crossref_primary_10_1002_jctb_7817
crossref_primary_10_1016_j_gsd_2023_100905
crossref_primary_10_1021_acs_est_9b07398
crossref_primary_10_1016_j_chemosphere_2021_132362
crossref_primary_10_1016_j_envres_2022_113837
crossref_primary_10_1016_j_scitotenv_2020_139909
crossref_primary_10_1016_j_seppur_2023_124308
crossref_primary_10_1007_s11356_022_21207_9
crossref_primary_10_1016_j_jhazmat_2021_127247
crossref_primary_10_1039_D3RA01997G
crossref_primary_10_1007_s11356_023_27731_6
crossref_primary_10_1016_j_apcatb_2019_118465
crossref_primary_10_1016_j_chemosphere_2020_126460
crossref_primary_10_1016_j_scitotenv_2019_133990
crossref_primary_10_1016_j_scitotenv_2021_152283
crossref_primary_10_1002_smll_202407104
crossref_primary_10_1016_j_envpol_2019_113702
crossref_primary_10_1016_j_scitotenv_2023_163469
crossref_primary_10_1016_j_seppur_2024_128587
crossref_primary_10_1016_j_cej_2019_122280
crossref_primary_10_1016_j_jcis_2021_05_124
crossref_primary_10_1016_j_seppur_2022_120904
crossref_primary_10_1007_s11270_023_06568_2
crossref_primary_10_1016_j_seppur_2025_131807
crossref_primary_10_1016_j_electacta_2019_134940
crossref_primary_10_1039_D4TA03613A
crossref_primary_10_1371_journal_pone_0271075
crossref_primary_10_1016_j_cej_2023_143283
crossref_primary_10_1016_j_cej_2023_144250
crossref_primary_10_1016_j_apsusc_2022_152547
crossref_primary_10_1007_s12274_022_4640_8
crossref_primary_10_1016_j_cej_2020_124758
crossref_primary_10_3390_w14060910
crossref_primary_10_1016_j_scitotenv_2022_159092
crossref_primary_10_1016_j_snb_2021_129530
crossref_primary_10_1016_j_jwpe_2024_106143
crossref_primary_10_1016_j_ecoenv_2019_109676
crossref_primary_10_1016_j_jes_2019_07_004
crossref_primary_10_1016_j_jhazmat_2019_04_088
crossref_primary_10_1016_j_carbpol_2021_117951
crossref_primary_10_1016_j_cej_2019_122295
crossref_primary_10_1016_j_jece_2023_111728
crossref_primary_10_1016_j_chemosphere_2022_135878
crossref_primary_10_1016_j_jssc_2021_122628
crossref_primary_10_1039_D1CY01850G
crossref_primary_10_1016_j_envpol_2022_119031
crossref_primary_10_1016_j_jenvman_2021_112729
crossref_primary_10_2139_ssrn_3961587
crossref_primary_10_1016_j_cej_2019_123149
crossref_primary_10_1002_jctb_6864
crossref_primary_10_1016_j_jallcom_2024_178249
crossref_primary_10_1039_C9RA03353J
crossref_primary_10_1002_aic_17654
crossref_primary_10_1016_j_jallcom_2025_179511
crossref_primary_10_2139_ssrn_3988727
crossref_primary_10_1016_j_jhazmat_2020_123460
crossref_primary_10_1149_2_1411906jes
crossref_primary_10_3390_catal14100722
crossref_primary_10_1016_j_watres_2022_118545
crossref_primary_10_1007_s11356_023_29828_4
crossref_primary_10_1016_j_apcatb_2019_118204
crossref_primary_10_1021_acsanm_2c05448
crossref_primary_10_1016_j_ecoenv_2022_113704
crossref_primary_10_1016_j_jenvman_2020_110571
crossref_primary_10_1016_j_chemosphere_2021_132050
crossref_primary_10_1016_j_molliq_2021_116837
crossref_primary_10_1016_j_cej_2021_133789
crossref_primary_10_1021_acscatal_2c01418
crossref_primary_10_1016_j_jclepro_2023_138374
crossref_primary_10_1016_j_jwpe_2024_105153
crossref_primary_10_1016_j_chemosphere_2022_135728
crossref_primary_10_1016_j_apcatb_2020_118784
crossref_primary_10_1016_j_jpcs_2020_109903
crossref_primary_10_1016_j_seppur_2024_130516
crossref_primary_10_1016_j_chemosphere_2023_140021
crossref_primary_10_1016_j_rser_2025_115490
crossref_primary_10_1016_j_biortech_2021_124949
crossref_primary_10_1016_j_seppur_2023_123127
crossref_primary_10_1016_j_cej_2019_122276
crossref_primary_10_1016_j_seppur_2022_121598
crossref_primary_10_2139_ssrn_4015364
crossref_primary_10_1016_j_apsusc_2018_10_146
crossref_primary_10_1016_j_coelec_2020_100674
crossref_primary_10_1016_j_jcis_2020_04_077
crossref_primary_10_1016_j_seppur_2020_117413
crossref_primary_10_1016_j_jece_2024_112851
crossref_primary_10_1016_j_jece_2024_112975
crossref_primary_10_1016_j_jwpe_2023_103859
crossref_primary_10_1002_advs_202406381
crossref_primary_10_1016_j_scitotenv_2022_161361
crossref_primary_10_3390_catal12111293
crossref_primary_10_1016_j_cej_2020_125090
crossref_primary_10_1016_j_cej_2022_136439
crossref_primary_10_1016_j_est_2024_113000
crossref_primary_10_1016_j_cej_2020_125091
crossref_primary_10_1016_j_mtchem_2021_100729
crossref_primary_10_1016_j_watres_2021_117314
crossref_primary_10_1016_j_desal_2024_117645
crossref_primary_10_2139_ssrn_3976080
crossref_primary_10_1016_j_inoche_2022_109792
crossref_primary_10_1016_j_molstruc_2023_136330
crossref_primary_10_1021_acs_iecr_1c02147
crossref_primary_10_1016_j_electacta_2020_135972
crossref_primary_10_1016_j_jhazmat_2021_125256
crossref_primary_10_1016_j_ceramint_2023_03_186
crossref_primary_10_1007_s11356_024_33930_6
crossref_primary_10_1016_j_cej_2024_150504
crossref_primary_10_1039_D4RA08989H
crossref_primary_10_1016_j_chemosphere_2021_131568
crossref_primary_10_1039_D3NJ01122D
crossref_primary_10_1016_j_cej_2021_129503
crossref_primary_10_1021_acscatal_2c02447
crossref_primary_10_1016_j_jece_2023_110045
crossref_primary_10_1016_j_jallcom_2022_167049
crossref_primary_10_1016_j_apcatb_2020_119414
crossref_primary_10_1016_j_jece_2024_112604
crossref_primary_10_1016_j_cej_2022_136567
crossref_primary_10_1016_j_jpcs_2020_109886
crossref_primary_10_3390_ma14154325
crossref_primary_10_1039_D0EN00284D
crossref_primary_10_1016_j_jallcom_2021_162528
crossref_primary_10_1016_j_seppur_2022_122438
crossref_primary_10_1016_j_chemosphere_2021_132660
crossref_primary_10_1016_j_jenvman_2024_122403
crossref_primary_10_1016_j_jhazmat_2020_122055
crossref_primary_10_1016_j_seppur_2022_122584
crossref_primary_10_1016_j_cej_2018_08_198
crossref_primary_10_1002_advs_202410306
crossref_primary_10_1016_j_jwpe_2023_103601
crossref_primary_10_1016_j_cclet_2023_109277
crossref_primary_10_1016_j_cej_2023_142813
crossref_primary_10_1016_j_cej_2022_137784
crossref_primary_10_1039_D0EN01276A
crossref_primary_10_1016_j_jmrt_2024_10_115
crossref_primary_10_1016_j_cej_2022_137669
crossref_primary_10_1016_j_jece_2024_114808
crossref_primary_10_1089_ees_2019_0004
crossref_primary_10_1016_j_envres_2022_113324
crossref_primary_10_1016_j_ecoenv_2022_113464
crossref_primary_10_1016_j_isci_2022_104342
crossref_primary_10_1016_j_envres_2022_113326
crossref_primary_10_1016_j_surfin_2025_106299
crossref_primary_10_1016_j_ecoenv_2021_113063
crossref_primary_10_1016_j_apsusc_2023_156801
crossref_primary_10_1021_acs_est_1c00349
crossref_primary_10_1016_j_cej_2019_122583
crossref_primary_10_1016_j_cej_2021_132816
crossref_primary_10_1016_j_surfin_2024_104521
crossref_primary_10_1016_j_apt_2021_11_006
crossref_primary_10_1021_acsestengg_3c00164
crossref_primary_10_1016_j_cej_2021_130510
crossref_primary_10_1016_j_optmat_2022_113203
crossref_primary_10_1016_j_apmt_2021_101161
crossref_primary_10_1016_j_chemosphere_2024_143071
crossref_primary_10_1016_j_jece_2023_109274
crossref_primary_10_1021_acs_est_9b05929
crossref_primary_10_1155_2020_1523164
crossref_primary_10_1080_10643389_2024_2310350
crossref_primary_10_1016_j_apsusc_2020_146757
crossref_primary_10_1002_cssc_202301139
crossref_primary_10_1007_s11356_024_32947_1
crossref_primary_10_1016_j_ces_2023_119111
crossref_primary_10_1007_s11356_022_22082_0
crossref_primary_10_1016_j_jenvman_2022_114664
crossref_primary_10_1016_j_chemosphere_2021_130465
crossref_primary_10_1016_j_cej_2021_131710
crossref_primary_10_1016_j_cej_2024_148884
crossref_primary_10_1016_j_cej_2022_138409
crossref_primary_10_1016_j_jhazmat_2020_124361
crossref_primary_10_1016_j_cej_2019_123320
crossref_primary_10_1016_j_seppur_2020_117691
crossref_primary_10_1039_D2EW00353H
crossref_primary_10_1016_j_jwpe_2025_107109
crossref_primary_10_1016_j_jhazmat_2021_126313
crossref_primary_10_1016_j_cej_2018_08_011
crossref_primary_10_1016_j_jclepro_2021_126297
crossref_primary_10_1016_j_jece_2023_111567
crossref_primary_10_1016_j_jwpe_2023_104504
crossref_primary_10_1016_j_cej_2019_122568
crossref_primary_10_1016_j_cej_2020_128168
crossref_primary_10_1002_slct_202000816
crossref_primary_10_1016_j_chemosphere_2023_139541
crossref_primary_10_1016_j_apsusc_2018_10_236
crossref_primary_10_1007_s11356_023_27115_w
crossref_primary_10_1016_j_jcis_2023_08_048
crossref_primary_10_1016_j_jhazmat_2021_125212
crossref_primary_10_1016_j_psep_2022_01_068
crossref_primary_10_1016_j_jwpe_2021_102040
crossref_primary_10_1016_j_apcatb_2020_119574
crossref_primary_10_1016_j_chemosphere_2019_125525
crossref_primary_10_1016_j_eng_2021_11_017
crossref_primary_10_1016_j_carbpol_2023_120752
crossref_primary_10_1016_j_ijbiomac_2024_139235
crossref_primary_10_1016_j_jwpe_2023_103893
crossref_primary_10_1016_j_seppur_2024_129391
crossref_primary_10_1080_10643389_2020_1717907
crossref_primary_10_2139_ssrn_4010823
crossref_primary_10_1016_j_biortech_2022_128508
crossref_primary_10_1016_j_jece_2023_111329
crossref_primary_10_1016_j_seppur_2024_130495
crossref_primary_10_2139_ssrn_4145559
crossref_primary_10_1016_j_seppur_2024_128059
crossref_primary_10_1016_j_ceramint_2023_01_120
crossref_primary_10_1016_j_chemosphere_2023_138563
crossref_primary_10_1016_j_envint_2023_108158
crossref_primary_10_1016_j_jhazmat_2021_127747
crossref_primary_10_1039_C8NR08162J
crossref_primary_10_1016_j_scitotenv_2019_133694
crossref_primary_10_1016_j_apsusc_2023_158197
crossref_primary_10_1016_j_jece_2023_111666
crossref_primary_10_1016_j_cej_2024_154168
crossref_primary_10_1016_j_envres_2021_112117
crossref_primary_10_1039_D2AY00702A
crossref_primary_10_1016_j_jclepro_2022_130734
crossref_primary_10_1016_j_jece_2024_112829
crossref_primary_10_1016_j_cej_2021_131403
crossref_primary_10_1016_j_cej_2024_149812
crossref_primary_10_1016_j_colsurfa_2021_126412
crossref_primary_10_1016_j_seppur_2022_121164
crossref_primary_10_3390_ijerph192315632
crossref_primary_10_1016_j_apcatb_2020_119597
crossref_primary_10_1016_j_cej_2022_135173
crossref_primary_10_1016_j_jcis_2022_06_056
crossref_primary_10_2139_ssrn_4177581
crossref_primary_10_1016_j_scitotenv_2021_146912
crossref_primary_10_1021_acsomega_2c07899
crossref_primary_10_1016_j_seppur_2024_129369
crossref_primary_10_1016_j_seppur_2024_129249
crossref_primary_10_1016_j_jhazmat_2022_129091
crossref_primary_10_1016_j_apcatb_2018_08_033
crossref_primary_10_1016_j_jenvman_2024_121111
crossref_primary_10_1039_D3CY00876B
Cites_doi 10.1016/j.jhazmat.2010.05.045
10.1021/acs.est.6b03540
10.1021/acs.est.5b02414
10.1002/aic.15093
10.1002/apj.286
10.1007/s10800-008-9676-2
10.1039/C6RA28224E
10.1021/acs.est.6b03548
10.1016/j.scitotenv.2015.03.033
10.1016/j.cej.2016.03.093
10.1016/j.cej.2013.02.088
10.1021/acs.est.6b00688
10.1016/j.aca.2005.01.061
10.1016/j.watres.2012.01.053
10.1016/j.envint.2016.02.005
10.1016/j.chemosphere.2012.01.036
10.1016/j.electacta.2016.08.037
10.1021/acs.analchem.7b01765
10.1016/j.seppur.2017.06.036
10.1016/j.saa.2017.02.001
10.1016/j.watres.2014.02.045
10.18356/4255cc90-en
10.1016/j.electacta.2012.09.020
10.1021/cr9001319
10.1021/es5010472
10.1021/acs.est.5b04366
10.1016/j.jelechem.2008.12.017
10.1016/j.seppur.2003.10.006
10.1134/S1070427208050145
10.1016/j.jhazmat.2010.05.063
10.1016/j.matchemphys.2017.05.042
10.1016/j.watres.2017.07.004
10.1016/j.chemosphere.2013.02.066
10.1021/acs.chemmater.5b00376
10.1016/j.electacta.2018.01.034
10.1016/j.electacta.2013.03.019
10.1016/j.electacta.2012.02.097
10.1016/j.electacta.2016.07.150
10.1016/j.cej.2012.07.112
10.1016/j.chemosphere.2016.01.078
10.1016/j.matlet.2013.09.101
10.1016/j.jasms.2006.12.001
10.1007/s00216-010-3581-3
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2018.03.030
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 334
ExternalDocumentID 10_1016_j_watres_2018_03_030
S0043135418302264
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c438t-b899ebfbc66a3bf584c1a88faee4af6985c26269b2bc4fa7e830bfcc2f56a4a83
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 10:34:10 EDT 2025
Wed Jul 30 10:51:57 EDT 2025
Tue Jul 01 01:20:52 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Fri Feb 23 02:23:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ti/Ti4O7 anode
Toxicity assessment
Electrochemical oxidation
Degradation pathway
Tetracycline
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b899ebfbc66a3bf584c1a88faee4af6985c26269b2bc4fa7e830bfcc2f56a4a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2755-1403
0000-0002-4175-5982
PQID 2018023630
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2067280618
proquest_miscellaneous_2018023630
crossref_primary_10_1016_j_watres_2018_03_030
crossref_citationtrail_10_1016_j_watres_2018_03_030
elsevier_sciencedirect_doi_10_1016_j_watres_2018_03_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Water research (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rossi, Alves, Da Silva, Oliveira, Assis, Santos, De Miranda (bib26) 2008; 39
You, Liu, Gao, Wang, Tang, Huang, Ren (bib41) 2016; 214
Panizza, Cerisola (bib22) 2009; 109
Yang, Hoffmann (bib39) 2016; 50
Palma-Goyesa, Vazquez-Arenasb, Ostosc, Ferrarod, Torres-Palmaa, Gonzalezb (bib21) 2016; 213
Brinzila, Pacheco, Ciríaco, Ciobanu, Lopes (bib4) 2012; 209
Li, Tang, Zhou, Li, Sun, Shen, Wang, Han (bib14) 2016; 149
Santos, Elabd, Jing, Chaplin, Fang (bib29) 2016; 62
Zhu, Wang, Sun, Zhou (bib46) 2013; 92
Jin, Paraskevaidi, Semple, Martin, Zhang (bib12) 2017; 89
United-Nations (bib32) 2011
Lin, Niu, Ding, Zhang (bib16) 2012; 46
Radjenovic, Sedlak (bib24) 2015; 49
Dalmazio, Almeida, Augusti, Alves (bib9) 2007; 18
Tay, Madehi (bib31) 2015; 520
Zhang, Liu, Wu, Zhang, Zhang (bib44) 2009; 4
Al-Anizi, Hellyer, Zhang (bib1) 2014; 56
Vedenyapina, Eremicheva, Pavlov, Vedenyapin (bib33) 2008; 81
Benavides, Barrias, Piro, Arenas, Orrego, Pino, Villegas, Dorta, Aspee, Lopez-Alarcon (bib3) 2017; 178
Khan, Bae, Jung (bib13) 2010; 181
Daghrir, Drogui, El Khakani (bib8) 2013; 87
Hamza, Abdelhedi, Brillas, Sirés (bib11) 2009; 627
Liu, Hou, Yu, Xi, Zhao, Xia (bib18) 2013; 223
Zhang, Liu, Ye, Zhu (bib45) 2014; 114
Saitoh, Shibata, Hiraide (bib28) 2014; 2
Bejan, Guinea, Bunce (bib2) 2012; 69
Nayak, Chaplin (bib19) 2018; 263
Li, Goel (bib15) 2010; 181
Yu, Bai, Ming, Yang, Chen, Hu, Feng, Yang (bib42) 2017; 198
Wang, Xiao, Zhu, Yin, Wang (bib35) 2017; 7
Chen (bib5) 2004; 38
Oliferova, Statkus, Tsysin, Shpigun, Zolotov (bib20) 2005; 538
Cho, Hoffmann (bib6) 2015; 27
Guo, Jing, Chaplin (bib10) 2016; 50
Rice, Baird, Eaton, Clesceri (bib25) 2012
Saitoh, Shibata, Fujimori, Ohtani (bib27) 2017; 187
Wang, Shen, Zhang, Zhang, Yu (bib36) 2016; 296
Sui, Gebhardt, Schroder, Zhao, Lu, Yu (bib30) 2017; 51
Yang, Yang, Wang, Li (bib38) 2014; 32
Christou, Aguera, Bayona, Cytryn, Fotopoulos, Lambropoulou, Manaia, Michael, Revitt, Schroder, Fatta-Kassinos (bib7) 2017; 123
Wang, Wang, Wang, Fang, Fu, Tang, Jiang, Zhou, He, Zhao, Chen, Jiang (bib34) 2016; 89–90
Pena, Paulo, Silva, Seifrtova, Lino, Solich (bib23) 2010; 396
Yang, Shin, Jasper, Hoffmann (bib40) 2016; 50
Wu, Zhang, Oturan, Wang, Chen, Oturan (bib37) 2012; 87
Zaky, Chaplin (bib43) 2014; 48
Lin, Niu, Xu, Li, Pan (bib17) 2013; 97
Cho (10.1016/j.watres.2018.03.030_bib6) 2015; 27
Rice (10.1016/j.watres.2018.03.030_bib25) 2012
Radjenovic (10.1016/j.watres.2018.03.030_bib24) 2015; 49
United-Nations (10.1016/j.watres.2018.03.030_bib32) 2011
Zaky (10.1016/j.watres.2018.03.030_bib43) 2014; 48
Sui (10.1016/j.watres.2018.03.030_bib30) 2017; 51
Brinzila (10.1016/j.watres.2018.03.030_bib4) 2012; 209
Liu (10.1016/j.watres.2018.03.030_bib18) 2013; 223
Vedenyapina (10.1016/j.watres.2018.03.030_bib33) 2008; 81
Wang (10.1016/j.watres.2018.03.030_bib34) 2016; 89–90
Zhang (10.1016/j.watres.2018.03.030_bib44) 2009; 4
Jin (10.1016/j.watres.2018.03.030_bib12) 2017; 89
Christou (10.1016/j.watres.2018.03.030_bib7) 2017; 123
Pena (10.1016/j.watres.2018.03.030_bib23) 2010; 396
Li (10.1016/j.watres.2018.03.030_bib14) 2016; 149
Al-Anizi (10.1016/j.watres.2018.03.030_bib1) 2014; 56
Wang (10.1016/j.watres.2018.03.030_bib35) 2017; 7
Oliferova (10.1016/j.watres.2018.03.030_bib20) 2005; 538
Yang (10.1016/j.watres.2018.03.030_bib38) 2014; 32
Yang (10.1016/j.watres.2018.03.030_bib39) 2016; 50
Guo (10.1016/j.watres.2018.03.030_bib10) 2016; 50
Yang (10.1016/j.watres.2018.03.030_bib40) 2016; 50
Li (10.1016/j.watres.2018.03.030_bib15) 2010; 181
Yu (10.1016/j.watres.2018.03.030_bib42) 2017; 198
Palma-Goyesa (10.1016/j.watres.2018.03.030_bib21) 2016; 213
Tay (10.1016/j.watres.2018.03.030_bib31) 2015; 520
Daghrir (10.1016/j.watres.2018.03.030_bib8) 2013; 87
Rossi (10.1016/j.watres.2018.03.030_bib26) 2008; 39
Santos (10.1016/j.watres.2018.03.030_bib29) 2016; 62
Chen (10.1016/j.watres.2018.03.030_bib5) 2004; 38
Wang (10.1016/j.watres.2018.03.030_bib36) 2016; 296
Khan (10.1016/j.watres.2018.03.030_bib13) 2010; 181
Dalmazio (10.1016/j.watres.2018.03.030_bib9) 2007; 18
Lin (10.1016/j.watres.2018.03.030_bib16) 2012; 46
Saitoh (10.1016/j.watres.2018.03.030_bib27) 2017; 187
Nayak (10.1016/j.watres.2018.03.030_bib19) 2018; 263
Zhu (10.1016/j.watres.2018.03.030_bib46) 2013; 92
You (10.1016/j.watres.2018.03.030_bib41) 2016; 214
Zhang (10.1016/j.watres.2018.03.030_bib45) 2014; 114
Benavides (10.1016/j.watres.2018.03.030_bib3) 2017; 178
Panizza (10.1016/j.watres.2018.03.030_bib22) 2009; 109
Hamza (10.1016/j.watres.2018.03.030_bib11) 2009; 627
Saitoh (10.1016/j.watres.2018.03.030_bib28) 2014; 2
Bejan (10.1016/j.watres.2018.03.030_bib2) 2012; 69
Wu (10.1016/j.watres.2018.03.030_bib37) 2012; 87
Lin (10.1016/j.watres.2018.03.030_bib17) 2013; 97
References_xml – volume: 123
  start-page: 448
  year: 2017
  end-page: 467
  ident: bib7
  article-title: The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - a review
  publication-title: Water Res.
– volume: 223
  start-page: 678
  year: 2013
  end-page: 687
  ident: bib18
  article-title: MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 11292
  year: 2015
  end-page: 11302
  ident: bib24
  article-title: Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water
  publication-title: Environ. Sci. Technol.
– start-page: 838
  year: 2012
  end-page: 841
  ident: bib25
  publication-title: Standard Methods for the Examination of Water and Wastewater (22nd Edition)
– volume: 32
  start-page: 123
  year: 2014
  end-page: 127
  ident: bib38
  article-title: Research progress in pollution status and environmental behavior of tetracycline antibiotics
  publication-title: Environ. Monit. Assess.
– volume: 38
  start-page: 11
  year: 2004
  end-page: 41
  ident: bib5
  article-title: Electrochemical technologies in wastewater treatment
  publication-title: Separ. Purif. Technol.
– volume: 7
  start-page: 21287
  year: 2017
  end-page: 21297
  ident: bib35
  article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation
  publication-title: RSC Adv.
– volume: 97
  start-page: 167
  year: 2013
  end-page: 174
  ident: bib17
  article-title: Electrochemical mineralization of sulfamethoxazole by Ti/SnO
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 568
  year: 2009
  end-page: 573
  ident: bib44
  article-title: Degradation of tetracycline in aqueous medium by electrochemical method
  publication-title: Asia Pac. J. Chem. Eng.
– volume: 187
  start-page: 76
  year: 2017
  end-page: 83
  ident: bib27
  article-title: Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions
  publication-title: Separ. Purif. Technol.
– volume: 92
  start-page: 925
  year: 2013
  end-page: 932
  ident: bib46
  article-title: Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO
  publication-title: Chemosphere
– volume: 89
  start-page: 9814
  year: 2017
  end-page: 9821
  ident: bib12
  article-title: Infrared spectroscopy coupled with a dispersion model for quantifying the real-time dynamics of kanamycin resistance in artificial microbiota
  publication-title: Anal. Chem.
– volume: 27
  start-page: 2224
  year: 2015
  end-page: 2233
  ident: bib6
  article-title: Bi
  publication-title: Chem. Mater.
– volume: 48
  start-page: 5857
  year: 2014
  end-page: 5867
  ident: bib43
  article-title: Mechanism of p-substituted phenol oxidation at a Ti
  publication-title: Environ. Sci. Technol.
– volume: 181
  start-page: 521
  year: 2010
  end-page: 525
  ident: bib15
  article-title: Role of hydroxyl radical during electrolytic degradation of contaminants
  publication-title: J. Hazard Mater.
– volume: 296
  start-page: 79
  year: 2016
  end-page: 89
  ident: bib36
  article-title: The electrochemical degradation of ciprofloxacin using a SnO
  publication-title: Chem. Eng. J.
– volume: 114
  start-page: 34
  year: 2014
  end-page: 36
  ident: bib45
  article-title: Fabrication of Ti
  publication-title: Mater. Lett.
– volume: 46
  start-page: 2281
  year: 2012
  end-page: 2289
  ident: bib16
  article-title: Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO
  publication-title: Water Res.
– volume: 81
  start-page: 800
  year: 2008
  end-page: 802
  ident: bib33
  article-title: Electrochemical degradation of tetracycline
  publication-title: Russ. J. Appl. Chem.
– volume: 51
  start-page: 2262
  year: 2017
  end-page: 2270
  ident: bib30
  article-title: Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 8780
  year: 2016
  end-page: 8787
  ident: bib40
  article-title: Multilayer heterojunction anodes for saline wastewater treatment: design strategies and reactive species generation mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 178
  start-page: 171
  year: 2017
  end-page: 180
  ident: bib3
  article-title: Reaction of tetracycline with biologically relevant chloramines
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 50
  start-page: 11888
  year: 2016
  end-page: 11894
  ident: bib39
  article-title: Synthesis and stabilization of blue-black TiO
  publication-title: Environ. Sci. Technol.
– volume: 396
  start-page: 2929
  year: 2010
  end-page: 2936
  ident: bib23
  article-title: Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal
  publication-title: Anal. Bioanal. Chem.
– volume: 627
  start-page: 41
  year: 2009
  end-page: 50
  ident: bib11
  article-title: Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes
  publication-title: J. Electroanal. Chem.
– volume: 56
  start-page: 77
  year: 2014
  end-page: 87
  ident: bib1
  article-title: Toxicity assessment and modeling of
  publication-title: Water Res.
– volume: 39
  start-page: 329
  year: 2008
  end-page: 337
  ident: bib26
  article-title: Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO
  publication-title: J. Appl. Electrochem.
– volume: 2
  start-page: 1852
  year: 2014
  end-page: 1858
  ident: bib28
  article-title: Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method
  publication-title: J. Environ. Chem. Eng
– volume: 62
  start-page: 508
  year: 2016
  end-page: 524
  ident: bib29
  article-title: Highly porous Ti
  publication-title: AIChE J.
– year: 2011
  ident: bib32
  article-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
– volume: 263
  start-page: 299
  year: 2018
  end-page: 310
  ident: bib19
  article-title: Fabrication and characterization of porous, conductive, monolithic Ti
  publication-title: Electrochim. Acta
– volume: 69
  start-page: 275
  year: 2012
  end-page: 281
  ident: bib2
  article-title: On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 614
  year: 2012
  end-page: 620
  ident: bib37
  article-title: Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO
  publication-title: Chemosphere
– volume: 538
  start-page: 35
  year: 2005
  end-page: 40
  ident: bib20
  article-title: On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents
  publication-title: Anal. Chim. Acta
– volume: 50
  start-page: 1428
  year: 2016
  end-page: 1436
  ident: bib10
  article-title: Development and characterization of ultrafiltration TiO
  publication-title: Environ. Sci. Technol.
– volume: 209
  start-page: 54
  year: 2012
  end-page: 61
  ident: bib4
  article-title: Electrodegradation of tetracycline on BDD anode
  publication-title: Chem. Eng. J.
– volume: 214
  start-page: 326
  year: 2016
  end-page: 335
  ident: bib41
  article-title: Monolithic porous magnéli-phase Ti
  publication-title: Electrochim. Acta
– volume: 149
  start-page: 49
  year: 2016
  end-page: 56
  ident: bib14
  article-title: Electrochemical degradation of pyridine by Ti/SnO
  publication-title: Chemosphere
– volume: 198
  start-page: 283
  year: 2017
  end-page: 290
  ident: bib42
  article-title: Adsorption behaviors of tetracycline on magnetic graphene oxide sponge
  publication-title: Mater. Chem. Phys.
– volume: 18
  start-page: 679
  year: 2007
  end-page: 687
  ident: bib9
  article-title: Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 89–90
  start-page: 204
  year: 2016
  end-page: 211
  ident: bib34
  article-title: Antibiotics detected in urines and adipogenesis in school children
  publication-title: Environ. Int.
– volume: 181
  start-page: 659
  year: 2010
  end-page: 665
  ident: bib13
  article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway
  publication-title: J. Hazard Mater.
– volume: 87
  start-page: 18
  year: 2013
  end-page: 31
  ident: bib8
  article-title: Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO
  publication-title: Electrochim. Acta
– volume: 213
  start-page: 740
  year: 2016
  end-page: 751
  ident: bib21
  article-title: Microstructural and electrochemical analysis of Sb
  publication-title: Electrochim. Acta
– volume: 520
  start-page: 23
  year: 2015
  end-page: 31
  ident: bib31
  article-title: Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment
  publication-title: Sci. Total Environ.
– volume: 109
  start-page: 6541
  year: 2009
  end-page: 6569
  ident: bib22
  article-title: Direct and mediated anodic oxidation of organic pollutants
  publication-title: Chem. Rev.
– volume: 181
  start-page: 521
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2018.03.030_bib15
  article-title: Role of hydroxyl radical during electrolytic degradation of contaminants
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.05.045
– volume: 50
  start-page: 11888
  issue: 21
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib39
  article-title: Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03540
– volume: 49
  start-page: 11292
  issue: 19
  year: 2015
  ident: 10.1016/j.watres.2018.03.030_bib24
  article-title: Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02414
– volume: 62
  start-page: 508
  issue: 2
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib29
  article-title: Highly porous Ti4O7 reactive electrochemical water filtration membranes fabricated via electrospinning/electrospraying
  publication-title: AIChE J.
  doi: 10.1002/aic.15093
– volume: 4
  start-page: 568
  issue: 5
  year: 2009
  ident: 10.1016/j.watres.2018.03.030_bib44
  article-title: Degradation of tetracycline in aqueous medium by electrochemical method
  publication-title: Asia Pac. J. Chem. Eng.
  doi: 10.1002/apj.286
– volume: 39
  start-page: 329
  issue: 3
  year: 2008
  ident: 10.1016/j.watres.2018.03.030_bib26
  article-title: Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-008-9676-2
– volume: 7
  start-page: 21287
  issue: 34
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib35
  article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28224E
– start-page: 838
  year: 2012
  ident: 10.1016/j.watres.2018.03.030_bib25
– volume: 51
  start-page: 2262
  issue: 4
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib30
  article-title: Identification of new oxidation products of bezafibrate for better understanding of its toxicity evolution and oxidation mechanisms during ozonation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03548
– volume: 520
  start-page: 23
  year: 2015
  ident: 10.1016/j.watres.2018.03.030_bib31
  article-title: Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.03.033
– volume: 296
  start-page: 79
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib36
  article-title: The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.093
– volume: 223
  start-page: 678
  issue: 100
  year: 2013
  ident: 10.1016/j.watres.2018.03.030_bib18
  article-title: MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.088
– volume: 50
  start-page: 8780
  issue: 16
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib40
  article-title: Multilayer heterojunction anodes for saline wastewater treatment: design strategies and reactive species generation mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00688
– volume: 538
  start-page: 35
  issue: 1–2
  year: 2005
  ident: 10.1016/j.watres.2018.03.030_bib20
  article-title: On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.01.061
– volume: 46
  start-page: 2281
  issue: 7
  year: 2012
  ident: 10.1016/j.watres.2018.03.030_bib16
  article-title: Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.01.053
– volume: 89–90
  start-page: 204
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib34
  article-title: Antibiotics detected in urines and adipogenesis in school children
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.02.005
– volume: 87
  start-page: 614
  issue: 6
  year: 2012
  ident: 10.1016/j.watres.2018.03.030_bib37
  article-title: Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.01.036
– volume: 214
  start-page: 326
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib41
  article-title: Monolithic porous magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.037
– volume: 89
  start-page: 9814
  issue: 18
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib12
  article-title: Infrared spectroscopy coupled with a dispersion model for quantifying the real-time dynamics of kanamycin resistance in artificial microbiota
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01765
– volume: 187
  start-page: 76
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib27
  article-title: Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2017.06.036
– volume: 178
  start-page: 171
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib3
  article-title: Reaction of tetracycline with biologically relevant chloramines
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.02.001
– volume: 56
  start-page: 77
  year: 2014
  ident: 10.1016/j.watres.2018.03.030_bib1
  article-title: Toxicity assessment and modeling of Moringa oleifera seeds in water purification by whole cell bioreporter
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.02.045
– year: 2011
  ident: 10.1016/j.watres.2018.03.030_bib32
  doi: 10.18356/4255cc90-en
– volume: 32
  start-page: 123
  issue: 2
  year: 2014
  ident: 10.1016/j.watres.2018.03.030_bib38
  article-title: Research progress in pollution status and environmental behavior of tetracycline antibiotics
  publication-title: Environ. Monit. Assess.
– volume: 87
  start-page: 18
  year: 2013
  ident: 10.1016/j.watres.2018.03.030_bib8
  article-title: Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.020
– volume: 109
  start-page: 6541
  issue: 12
  year: 2009
  ident: 10.1016/j.watres.2018.03.030_bib22
  article-title: Direct and mediated anodic oxidation of organic pollutants
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001319
– volume: 48
  start-page: 5857
  issue: 10
  year: 2014
  ident: 10.1016/j.watres.2018.03.030_bib43
  article-title: Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5010472
– volume: 50
  start-page: 1428
  issue: 3
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib10
  article-title: Development and characterization of ultrafiltration TiO2 magneli phase reactive electrochemical membranes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04366
– volume: 627
  start-page: 41
  issue: 1–2
  year: 2009
  ident: 10.1016/j.watres.2018.03.030_bib11
  article-title: Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.12.017
– volume: 38
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.watres.2018.03.030_bib5
  article-title: Electrochemical technologies in wastewater treatment
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2003.10.006
– volume: 81
  start-page: 800
  year: 2008
  ident: 10.1016/j.watres.2018.03.030_bib33
  article-title: Electrochemical degradation of tetracycline
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S1070427208050145
– volume: 181
  start-page: 659
  issue: 1–3
  year: 2010
  ident: 10.1016/j.watres.2018.03.030_bib13
  article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.05.063
– volume: 198
  start-page: 283
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib42
  article-title: Adsorption behaviors of tetracycline on magnetic graphene oxide sponge
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.05.042
– volume: 123
  start-page: 448
  year: 2017
  ident: 10.1016/j.watres.2018.03.030_bib7
  article-title: The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.07.004
– volume: 92
  start-page: 925
  issue: 8
  year: 2013
  ident: 10.1016/j.watres.2018.03.030_bib46
  article-title: Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.02.066
– volume: 27
  start-page: 2224
  issue: 6
  year: 2015
  ident: 10.1016/j.watres.2018.03.030_bib6
  article-title: BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00376
– volume: 263
  start-page: 299
  year: 2018
  ident: 10.1016/j.watres.2018.03.030_bib19
  article-title: Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.034
– volume: 97
  start-page: 167
  year: 2013
  ident: 10.1016/j.watres.2018.03.030_bib17
  article-title: Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.03.019
– volume: 69
  start-page: 275
  year: 2012
  ident: 10.1016/j.watres.2018.03.030_bib2
  article-title: On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.02.097
– volume: 213
  start-page: 740
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib21
  article-title: Microstructural and electrochemical analysis of Sb2O5 doped-Ti/RuO2-ZrO2 to yield active chlorine species for ciprofloxacin degradation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.07.150
– volume: 209
  start-page: 54
  year: 2012
  ident: 10.1016/j.watres.2018.03.030_bib4
  article-title: Electrodegradation of tetracycline on BDD anode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.07.112
– volume: 149
  start-page: 49
  year: 2016
  ident: 10.1016/j.watres.2018.03.030_bib14
  article-title: Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.078
– volume: 2
  start-page: 1852
  issue: 3
  year: 2014
  ident: 10.1016/j.watres.2018.03.030_bib28
  article-title: Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method
  publication-title: J. Environ. Chem. Eng
– volume: 114
  start-page: 34
  year: 2014
  ident: 10.1016/j.watres.2018.03.030_bib45
  article-title: Fabrication of Ti4O7 electrodes by spark plasma sintering
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.09.101
– volume: 18
  start-page: 679
  issue: 4
  year: 2007
  ident: 10.1016/j.watres.2018.03.030_bib9
  article-title: Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2006.12.001
– volume: 396
  start-page: 2929
  issue: 8
  year: 2010
  ident: 10.1016/j.watres.2018.03.030_bib23
  article-title: Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3581-3
SSID ssj0002239
Score 2.68528
Snippet Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 324
SubjectTerms anodes
bacteria
bioluminescence
carboxylic acids
chemical bonding
Degradation pathway
durability
Electrochemical oxidation
electrochemistry
free radicals
gas chromatography
high performance liquid chromatography
human health
hydroxyl radicals
oxidation
quantitative structure-activity relationships
spectrometers
spraying
Tetracycline
Ti/Ti4O7 anode
toxicity
Toxicity assessment
wastewater
Title Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode
URI https://dx.doi.org/10.1016/j.watres.2018.03.030
https://www.proquest.com/docview/2018023630
https://www.proquest.com/docview/2067280618
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA7iXvQg7q7ir5Us7LXOpEmT9igyMu7C7GUEb-UlfZGKdGTo4HpZ_NPNa1P3B6Ig9NLyEkJemvdCvu97jH1zirDtUicmS6twQLFZAoXICUzllDBOKugAsjM9vVTfr7KrNXY2cGEIVhn3_n5P73br-GUUZ3N0V9fE8Q3BT2ZKkIRV6JsY7MrQKj_5_QfmEcJfMdwyk_VAn-swXvdAhAwCeOWd1ClhoV8OT_9t1F30Od9mWzFt5Kf9yD6yNWw-sc2_xAQ_s8dJFO5urnmL7RLcA9EekVekB9GXTuJUgPgeHjg0FSeliGXHHGmRt4tftQsZOe95izzkhTyWyHFRU4AHk9gN4T458Hk9mtfqpwndLSrcYZfnk_nZNIn1FRKnZN4mNpy10HrrtAZpfUhFnIA894CowOsiz1wazjuFTa1THgyGibbeudRnGhTkcpetN4sG9xgXhUUzBpRYoUrdGLQHn4rKV8KgMWKfyWFaSxfFx6kGxm05oMxuyt4ZJTmjHMvwjPdZ8tzqrhffeMPeDB4r_1lEZYgPb7T8Oji4DP8XXZpAg4tVb0Qq-6_baKrypUV-8O4RHLINeiMUmsiO2Hq7XOGXkO-09rhb0Mfsw-nFj-nsCQT3A_U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5tDmUJqmJemnCrmaXVmyZB9DSNg0yfaygdzESB4Vl-ANi0OaW396NbYc2lASKPhkj4SYkWdG6M0bxva9Imy71Jkp8joeUFyRQSVKAlN5JYyXCnqA7ELPL9TXy-Jygx2OtTAEq0y-f_DpvbdOb6ZJm9PrpqEa3xj8ZKEEUVjFuZ-xTWKnKiZs8-DkdL64d8gxAlbjRTMNGCvoepjXLVBNBmG8yp7tlODQ_45QD3x1H4COX7GXKXPkB8PittkGtq_Z1h98gjvs11Hi7m6_8w67Nfg7qnxEXhMlxNA9iVMP4lu449DWnMgi1n3xSIe8W_1sfEzK-VC6yGNqyFOXHJ9oBXgUSdMQ9JMDXzbTZaO-mTjdqsY37OL4aHk4z1KLhcwrWXaZi8ctdMF5rUG6ELMRL6AsAyAqCLoqC5_HI0_lcudVAINR1y54n4dCg4JSvmWTdtXiLuOicmhmgBJrVLmfgQ4QclGHWhg0RuwxOarV-sQ_Tm0wruwINPthB2NYMoadyfjM9lh2P-p64N94Qt6MFrN_7SMbQ8QTI7-MBrbxF6N7E2hxdTMIEdH-4zKaGn1pUb777xV8Zs_ny_Mze3ayOH3PXtCXAZT2gU269Q1-jOlP5z6l7f0b1-kGoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+tetracycline+degradation+pathway+and+intermediate+toxicity+during+the+electrochemical+oxidation+over+a+Ti%2FTi4O7+anode&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Jianbing&rft.au=Zhi%2C+Dan&rft.au=Zhou%2C+Hao&rft.au=He%2C+Xuwen&rft.date=2018-06-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=137&rft.spage=324&rft_id=info:doi/10.1016%2Fj.watres.2018.03.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon