Phosphate adsorption on metal oxides and metal hydroxides: A comparative review
Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper pre...
Saved in:
Published in | Environmental reviews Vol. 24; no. 3; pp. 319 - 332 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
NRC Research Press
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost–benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested. |
---|---|
AbstractList | Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost–benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested. Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost-benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested.Original Abstract: L'elimination du phosphore des eaux usees est une maniere importante de controler l'eutrophisation des plans d'eau. Les oxydes metalliques et les hydroxydes metalliques ont toujours ete developpes et examines aux fins de l'elimination du phosphore, en raison de leur abondance, leur cout minime, leur respect de l'environnement et leur stabilite chimique. Cet article presente une revue comparative des litteratures sur les methodes de preparation, les comportements d'adsorption, les mecanismes d'adsorption et la regeneration des hydr(oxydes) metalliques (p. ex., Fe, Zn et Al) en ce qui concerne l'elimination du phosphate. Les differences de resultats ont montre que les hydroxydes metalliques peuvent offrir une alternative efficace et economique aux oxydes metalliques, en raison de leurs methodes de synthese a cout avantageux, leurs fortes capacites d'adsorption et leur temps d'atteinte d'equilibre d'adsorption plus court. Cependant, la surface specifique des oxydes metalliques est plus grande que celle des hydroxydes metalliques en raison du procede de calcination. Les oxydes metalliques ayant un pH au point de charge nulle plus eleve ont une gamme de pH plus large pour l'adsorption optimale qu'en ont les hydroxydes en raison de leur precipitation de surface dans les solutions alcalines. La regeneration des oxydes metalliques au moyen d'acides, de bases et de sels et celle des hydroxydes au moyen d'acides et de bases ont fait l'objet d'examens critiques. On propose de plus amples recherches sur les (hydr)oxydes metalliques uniformes ayant une petite dimension de la particule, une haute stabilite, un cout avantageux et etant facilement regeneres a l'aide de desorbants prometteurs. De plus, on suggere aussi une etude quantitative des mecanismes et l'application d'essais de colonne en mode continue (<< continuous-mode column trials >>). [Traduit par la Redaction] |
Abstract_FL | L’élimination du phosphore des eaux usées est une manière importante de contrôler l’eutrophisation des plans d’eau. Les oxydes métalliques et les hydroxydes métalliques ont toujours été développés et examinés aux fins de l’élimination du phosphore, en raison de leur abondance, leur coût minime, leur respect de l’environnement et leur stabilité chimique. Cet article présente une revue comparative des littératures sur les méthodes de préparation, les comportements d’adsorption, les mécanismes d’adsorption et la régénération des hydr(oxydes) métalliques (p. ex., Fe, Zn et Al) en ce qui concerne l’élimination du phosphate. Les différences de résultats ont montré que les hydroxydes métalliques peuvent offrir une alternative efficace et économique aux oxydes métalliques, en raison de leurs méthodes de synthèse à coût avantageux, leurs fortes capacités d’adsorption et leur temps d’atteinte d’équilibre d’adsorption plus court. Cependant, la surface spécifique des oxydes métalliques est plus grande que celle des hydroxydes métalliques en raison du procédé de calcination. Les oxydes métalliques ayant un pH au point de charge nulle plus élevé ont une gamme de pH plus large pour l’adsorption optimale qu’en ont les hydroxydes en raison de leur précipitation de surface dans les solutions alcalines. La régénération des oxydes métalliques au moyen d’acides, de bases et de sels et celle des hydroxydes au moyen d’acides et de bases ont fait l’objet d’examens critiques. On propose de plus amples recherches sur les (hydr)oxydes métalliques uniformes ayant une petite dimension de la particule, une haute stabilité, un coût avantageux et étant facilement régénérés à l’aide de désorbants prometteurs. De plus, on suggère aussi une étude quantitative des mécanismes et l’application d’essais de colonne en mode continue (« continuous-mode column trials »). [Traduit par la Rédaction] |
Author | Mengxue Li Yunfeng Xu Guangren Qian Jianyong Liu |
Author_xml | – sequence: 1 givenname: Mengxue surname: Li fullname: Li, Mengxue organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China – sequence: 2 givenname: Jianyong surname: Liu fullname: Liu, Jianyong organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China – sequence: 3 givenname: Yunfeng surname: Xu fullname: Xu, Yunfeng organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China – sequence: 4 givenname: Guangren surname: Qian fullname: Qian, Guangren organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China |
BookMark | eNqFkF1LwzAUhoNMcJve-QN6JV5YPWmyJvVuDL9AmBd6HbL0lGV0TU3i1H9vS4cXggwO5PDyvAl5JmTUuAYJOadwTSkrbtCnGdBZCiDhiIxpBjLNYcZG3U4lTaUAOCGTEDYAMOOUj8nyZe1Cu9YRE10G59toXZN0s8Wo68R92RJDoptyH6y_Sz-Et8k8MW7baq-j3WHicWfx85QcV7oOeLY_p-Tt_u518Zg-Lx-eFvPn1HAmY7oSWsiyWpVS6lznFROiMJxWokSTG5iBFCyvKC0zWBm2gkJz2hOi4FnHIpuSy-He1rv3DwxRbW0wWNe6QfcRVNb9kImcM34Q7cwUlMm8yDr0akCNdyF4rFTr7Vb7b0VB9YoVetUrVr3iDs_-4MZG3RuMXtv6v9LNUGq88RhQe7M-9MzF0NiE6Pwvi83O9tJVxhVTjBbsBwTJncM |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112571 crossref_primary_10_1016_j_jclepro_2020_124753 crossref_primary_10_1016_j_scitotenv_2024_177548 crossref_primary_10_1371_journal_pwat_0000048 crossref_primary_10_3390_su11236787 crossref_primary_10_1016_j_jwpe_2024_105923 crossref_primary_10_1016_j_talanta_2020_122028 crossref_primary_10_1007_s11104_023_06266_2 crossref_primary_10_1039_D3VA00024A crossref_primary_10_1016_j_dibe_2024_100469 crossref_primary_10_1016_j_jssc_2021_122688 crossref_primary_10_1007_s10653_017_9986_6 crossref_primary_10_1016_j_ecoenv_2020_111345 crossref_primary_10_1016_j_jwpe_2020_101675 crossref_primary_10_1007_s42114_024_00941_3 crossref_primary_10_1016_j_jclepro_2021_128045 crossref_primary_10_1007_s41204_021_00214_0 crossref_primary_10_1016_j_jconhyd_2024_104364 crossref_primary_10_1016_j_colsurfa_2019_123680 crossref_primary_10_1016_j_scitotenv_2022_159207 crossref_primary_10_1039_D2EN00391K crossref_primary_10_1007_s11356_020_10886_x crossref_primary_10_1016_j_desal_2023_116677 crossref_primary_10_1016_j_jclepro_2023_136451 crossref_primary_10_1016_j_eti_2022_102651 crossref_primary_10_3390_nano13030587 crossref_primary_10_3390_w11081549 crossref_primary_10_4491_eer_2021_602 crossref_primary_10_1016_j_jenvman_2021_113699 crossref_primary_10_1021_acs_est_3c04151 crossref_primary_10_1039_D3NA01085F crossref_primary_10_62520_fujece_1432277 crossref_primary_10_1016_j_jia_2024_07_022 crossref_primary_10_1016_j_chemosphere_2022_134987 crossref_primary_10_1016_j_jenvman_2021_112245 crossref_primary_10_1021_acsnano_4c03053 crossref_primary_10_3390_pr8111397 crossref_primary_10_3390_pr11020331 crossref_primary_10_1016_j_seppur_2024_128936 crossref_primary_10_1039_D3DT03615D crossref_primary_10_1016_j_cej_2017_01_066 crossref_primary_10_1016_j_jece_2020_104147 crossref_primary_10_1016_j_seppur_2022_122713 crossref_primary_10_1080_10643389_2018_1551300 crossref_primary_10_1016_j_jenvman_2020_111909 crossref_primary_10_1016_j_scitotenv_2024_170571 crossref_primary_10_1016_j_psep_2023_04_005 crossref_primary_10_1016_j_watres_2023_120300 crossref_primary_10_3389_fchem_2024_1472640 crossref_primary_10_4236_jacen_2020_91002 crossref_primary_10_1016_j_cej_2024_153154 crossref_primary_10_1073_pnas_2407501121 crossref_primary_10_3390_molecules26216684 crossref_primary_10_1021_acs_est_9b07944 crossref_primary_10_1016_j_jwpe_2022_102666 crossref_primary_10_1016_j_scitotenv_2022_160334 crossref_primary_10_1016_j_watres_2018_08_040 crossref_primary_10_1016_j_colsurfa_2024_133476 crossref_primary_10_2166_ws_2020_123 crossref_primary_10_1016_j_seppur_2023_125611 crossref_primary_10_1080_09593330_2023_2215457 crossref_primary_10_1016_j_colsurfa_2021_128095 crossref_primary_10_1007_s13762_021_03201_9 crossref_primary_10_1016_j_cej_2023_143057 crossref_primary_10_1021_acsestengg_2c00333 crossref_primary_10_1016_j_jhazmat_2019_121457 crossref_primary_10_1016_j_enmm_2018_10_003 crossref_primary_10_1039_D2AY00608A crossref_primary_10_2166_wst_2021_069 crossref_primary_10_2134_jeq2019_02_0080 crossref_primary_10_1016_j_envres_2023_117816 crossref_primary_10_3389_fpls_2024_1515584 crossref_primary_10_1016_j_micromeso_2023_112941 crossref_primary_10_1007_s11270_023_06441_2 crossref_primary_10_1016_j_envpol_2020_115210 crossref_primary_10_1039_D1RA04279C crossref_primary_10_1007_s10562_025_04979_w crossref_primary_10_1021_acssuschemeng_8b01809 crossref_primary_10_1016_j_chemosphere_2021_130205 crossref_primary_10_1002_eap_3007 crossref_primary_10_1016_j_scitotenv_2024_172331 crossref_primary_10_1016_j_apsusc_2017_12_236 crossref_primary_10_1016_j_apsusc_2020_147910 crossref_primary_10_3390_molecules26216615 crossref_primary_10_1016_j_jece_2023_110875 crossref_primary_10_1016_j_ccr_2021_214376 crossref_primary_10_1016_j_envpol_2025_125938 crossref_primary_10_1007_s11270_022_05916_y crossref_primary_10_1007_s10661_019_7565_2 crossref_primary_10_1007_s13399_023_04284_9 crossref_primary_10_1016_j_colsurfa_2019_123881 crossref_primary_10_1016_j_jallcom_2020_158372 crossref_primary_10_1007_s11783_022_1526_7 crossref_primary_10_3390_w13192709 crossref_primary_10_35193_bseufbd_878902 crossref_primary_10_1016_j_seppur_2024_128453 crossref_primary_10_1007_s11356_022_19662_5 crossref_primary_10_1016_j_watres_2020_116653 crossref_primary_10_3390_agronomy11081608 crossref_primary_10_1007_s11356_019_07510_y crossref_primary_10_1080_09593330_2020_1720311 crossref_primary_10_1016_j_cej_2020_126494 crossref_primary_10_1016_j_wasman_2018_05_047 crossref_primary_10_1039_C9NR09274A crossref_primary_10_1016_j_cej_2020_126960 crossref_primary_10_1016_j_jece_2023_111385 crossref_primary_10_2139_ssrn_4017724 crossref_primary_10_5004_dwt_2023_29997 crossref_primary_10_1016_j_chemosphere_2020_129276 crossref_primary_10_1016_j_jenvman_2022_115157 crossref_primary_10_1016_j_jwpe_2020_101187 crossref_primary_10_1021_acsomega_3c07014 crossref_primary_10_1002_jeq2_20331 crossref_primary_10_1007_s10811_020_02196_z crossref_primary_10_1021_acs_est_9b05569 crossref_primary_10_1016_j_jenvman_2021_114214 crossref_primary_10_1016_j_seppur_2024_127598 crossref_primary_10_1002_chem_201805950 crossref_primary_10_1016_j_jes_2020_10_011 crossref_primary_10_1016_j_geoderma_2018_03_036 crossref_primary_10_1007_s11356_022_21536_9 crossref_primary_10_1007_s13399_022_02948_6 crossref_primary_10_1016_j_chemosphere_2022_136133 crossref_primary_10_1016_j_biombioe_2024_107493 crossref_primary_10_1039_C8TA10518A crossref_primary_10_1016_j_ceramint_2025_03_007 crossref_primary_10_1016_j_matchemphys_2022_126195 crossref_primary_10_1016_j_jmrt_2021_01_054 crossref_primary_10_1016_j_surfin_2024_104326 crossref_primary_10_1016_j_surfin_2024_104566 crossref_primary_10_1016_j_jwpe_2022_102641 crossref_primary_10_1016_j_colsurfa_2021_126813 crossref_primary_10_1016_j_rineng_2025_104517 crossref_primary_10_2166_aqua_2021_146 crossref_primary_10_1007_s10311_021_01328_2 crossref_primary_10_1016_j_ijbiomac_2019_02_100 crossref_primary_10_1016_j_clay_2018_08_018 crossref_primary_10_1016_j_psep_2020_08_048 crossref_primary_10_1021_acs_langmuir_4c01109 crossref_primary_10_1016_j_chemosphere_2022_135972 crossref_primary_10_1016_j_mtcomm_2022_104564 crossref_primary_10_1016_j_watres_2020_116434 crossref_primary_10_1016_j_psep_2022_02_034 crossref_primary_10_1038_s41598_024_84604_9 crossref_primary_10_1016_j_jwpe_2020_101508 crossref_primary_10_1016_j_cej_2020_128211 crossref_primary_10_1016_j_scitotenv_2021_152124 crossref_primary_10_1016_j_jece_2024_112172 crossref_primary_10_1021_acsami_0c16477 crossref_primary_10_1016_j_cej_2022_137081 crossref_primary_10_1016_j_jece_2025_116012 crossref_primary_10_1016_j_jece_2024_113703 crossref_primary_10_1080_03067319_2021_1963714 crossref_primary_10_1016_j_cej_2020_126748 crossref_primary_10_15541_jim20200340 crossref_primary_10_2166_wrd_2024_142 crossref_primary_10_1016_j_chemosphere_2023_140846 crossref_primary_10_1016_j_jclepro_2024_142590 crossref_primary_10_1016_j_chemosphere_2024_141416 crossref_primary_10_1016_j_psep_2022_01_008 crossref_primary_10_1016_j_jece_2021_105247 crossref_primary_10_1016_j_jhazmat_2023_131716 crossref_primary_10_3389_fsufs_2021_617157 crossref_primary_10_1007_s10098_023_02490_7 crossref_primary_10_1007_s11696_021_01840_3 crossref_primary_10_1016_j_chemosphere_2021_130239 crossref_primary_10_3390_gels8100675 crossref_primary_10_1039_C7EN00705A crossref_primary_10_1016_j_chemosphere_2020_128551 crossref_primary_10_1016_j_cej_2021_131381 crossref_primary_10_1016_j_jmrt_2024_09_256 crossref_primary_10_1016_j_jclepro_2020_122191 crossref_primary_10_1016_j_colsurfa_2018_09_016 crossref_primary_10_1016_j_ijbiomac_2023_123995 crossref_primary_10_1016_j_seppur_2022_122557 crossref_primary_10_1016_j_cej_2023_144310 crossref_primary_10_1016_j_jwpe_2023_104253 crossref_primary_10_1021_acsanm_9b01512 crossref_primary_10_1021_acs_estlett_4c00164 crossref_primary_10_1016_j_envc_2023_100733 crossref_primary_10_1080_10889868_2020_1811631 crossref_primary_10_1016_j_resconrec_2023_106867 crossref_primary_10_1016_j_chemosphere_2024_144031 crossref_primary_10_1016_j_gca_2024_08_005 crossref_primary_10_1016_j_cej_2020_126649 crossref_primary_10_1016_j_scitotenv_2020_142618 crossref_primary_10_1016_j_clay_2024_107448 crossref_primary_10_1016_j_jenvman_2021_112877 crossref_primary_10_1016_j_jiec_2020_02_018 crossref_primary_10_1016_j_scitotenv_2020_144246 crossref_primary_10_1016_j_seppur_2019_03_044 crossref_primary_10_1002_lno_12329 crossref_primary_10_1021_acs_est_8b02324 crossref_primary_10_1016_j_colsurfa_2019_05_046 crossref_primary_10_1016_j_envres_2022_113448 crossref_primary_10_1016_j_seppur_2024_127677 crossref_primary_10_3390_bioengineering9090416 crossref_primary_10_1007_s13762_021_03545_2 crossref_primary_10_1016_j_biteb_2024_101870 crossref_primary_10_1016_j_eti_2022_102717 crossref_primary_10_1016_j_watres_2024_121301 crossref_primary_10_1016_j_envres_2020_109309 crossref_primary_10_1002_wer_1321 crossref_primary_10_1007_s11356_024_35444_7 crossref_primary_10_1080_10426507_2022_2157828 crossref_primary_10_1016_j_jece_2024_114926 crossref_primary_10_1016_j_cej_2024_150284 crossref_primary_10_1016_j_cej_2022_136461 crossref_primary_10_1016_j_cej_2018_12_073 crossref_primary_10_1016_j_coche_2021_100720 crossref_primary_10_3390_su152316510 crossref_primary_10_1016_j_cej_2022_140048 crossref_primary_10_1007_s42729_020_00407_7 crossref_primary_10_1002_jeq2_20278 crossref_primary_10_1016_j_jece_2024_112372 crossref_primary_10_1007_s10163_023_01836_z crossref_primary_10_1007_s10853_019_04324_8 crossref_primary_10_1016_j_jwpe_2023_104073 crossref_primary_10_1063_1_5047056 crossref_primary_10_5004_dwt_2019_23584 crossref_primary_10_1016_j_jenvman_2017_02_030 crossref_primary_10_1021_acsapm_0c00699 crossref_primary_10_1061_JSWBAY_0000980 crossref_primary_10_1038_s41598_019_39035_2 crossref_primary_10_1016_j_jece_2021_107103 crossref_primary_10_1016_j_matchemphys_2022_126828 crossref_primary_10_1007_s11356_023_28226_0 crossref_primary_10_1016_j_ceramint_2025_02_049 crossref_primary_10_1016_j_arabjc_2022_104512 crossref_primary_10_1016_j_scitotenv_2019_04_244 crossref_primary_10_1016_j_cej_2021_129775 crossref_primary_10_1021_acsestwater_2c00443 crossref_primary_10_1016_j_chemosphere_2021_130055 crossref_primary_10_3390_agronomy10050617 crossref_primary_10_1016_j_jiec_2023_03_029 crossref_primary_10_1016_j_psep_2022_10_003 crossref_primary_10_1021_acsestwater_0c00001 crossref_primary_10_1016_j_susmat_2018_e00080 crossref_primary_10_1016_j_scitotenv_2021_145364 crossref_primary_10_1080_10643389_2019_1694820 crossref_primary_10_1016_j_jclepro_2021_127255 crossref_primary_10_1016_j_molliq_2023_121366 crossref_primary_10_1039_C9RA04865K crossref_primary_10_1016_j_isci_2020_101065 crossref_primary_10_1016_j_tibtech_2020_03_012 crossref_primary_10_1002_advs_202000192 crossref_primary_10_1007_s11356_023_27894_2 crossref_primary_10_1016_j_jece_2022_108786 crossref_primary_10_1021_acs_langmuir_9b02708 crossref_primary_10_1007_s42452_021_04843_7 crossref_primary_10_1021_acs_jpcc_8b05594 crossref_primary_10_1016_j_apsusc_2023_156359 crossref_primary_10_14770_jgsk_2021_57_3_353 crossref_primary_10_1016_j_watres_2020_115968 crossref_primary_10_3390_w12061784 crossref_primary_10_1177_0263617420942709 crossref_primary_10_1021_acs_iecr_3c01342 crossref_primary_10_1016_j_chemosphere_2024_143664 crossref_primary_10_1007_s11356_021_15724_2 crossref_primary_10_1016_j_watres_2018_05_029 crossref_primary_10_1002_jeq2_20292 crossref_primary_10_3390_w15122231 crossref_primary_10_1016_j_eti_2023_103114 crossref_primary_10_1021_acs_iecr_4c02763 crossref_primary_10_1016_j_pmatsci_2023_101169 crossref_primary_10_1007_s11356_022_20029_z crossref_primary_10_1016_j_jnoncrysol_2023_122656 crossref_primary_10_1016_j_molliq_2018_04_100 crossref_primary_10_1016_j_jece_2020_104131 crossref_primary_10_1016_j_seppur_2024_127515 crossref_primary_10_1016_j_biortech_2024_130750 crossref_primary_10_1016_j_jhazmat_2019_121815 crossref_primary_10_1016_j_micromeso_2024_113341 crossref_primary_10_1016_j_cej_2021_128913 crossref_primary_10_1021_acsomega_3c08610 crossref_primary_10_2166_wst_2020_467 crossref_primary_10_1016_j_jenvman_2021_114056 crossref_primary_10_1016_j_cej_2022_136147 crossref_primary_10_1016_j_jwpe_2024_106080 crossref_primary_10_1016_j_scitotenv_2022_157533 crossref_primary_10_1016_j_watres_2019_03_077 crossref_primary_10_1016_j_seppur_2021_120213 crossref_primary_10_1038_s41598_023_35149_w crossref_primary_10_1039_C7EW00421D crossref_primary_10_1016_j_cej_2019_122431 |
Cites_doi | 10.1016/j.powtec.2015.02.055 10.1016/j.biortech.2014.06.075 10.1007/s11270-013-1683-1 10.1016/j.powtec.2012.08.024 10.1021/ie00006a013 10.1016/j.colsurfa.2007.05.027 10.1016/S0167-8809(01)00147-5 10.1080/10643389.2012.741311 10.1016/j.colsurfa.2015.01.002 10.1016/j.cej.2015.01.070 10.4195/jnrlse.2010.0001se 10.14233/ajchem.2014.16227 10.2136/sssaj1977.03615995004100040015x 10.1021/la063744k 10.1016/S0043-1354(03)00231-8 10.1016/j.jhazmat.2008.01.061 10.1016/j.cej.2012.11.067 10.1016/j.jhazmat.2009.04.052 10.1016/j.watres.2009.06.055 10.1016/j.watres.2005.04.033 10.1016/j.cej.2012.03.058 10.1080/09593330.2011.632651 10.1016/j.jhazmat.2007.06.103 10.1016/j.watres.2007.10.043 10.1016/j.clay.2012.04.020 10.1016/j.jcis.2012.12.077 10.1016/j.jhazmat.2006.02.011 10.1021/es030488e 10.1016/j.geoderma.2006.10.011 10.1016/j.jcis.2005.12.054 10.1016/j.jhazmat.2008.10.035 10.1246/bcsj.76.847 10.1002/jbm.a.10395 10.1016/j.jhazmat.2008.05.131 10.1021/es100787m 10.23986/afsci.4806 10.1007/s11671-008-9174-9 10.1016/j.cej.2008.06.024 10.1021/es801626d 10.1016/s1001-0742(09)60141-8 10.1016/j.watres.2003.12.009 10.1021/es970908y 10.1016/s1001-0742(08)62111-7 10.1016/j.scitotenv.2012.02.023 10.1201/9781420042832.ch5 10.1016/j.jhazmat.2008.12.045 10.1016/j.watres.2004.09.011 10.1111/j.1365-2389.1978.tb00794.x 10.1016/j.clay.2009.09.009 10.1016/j.cej.2013.04.033 10.1016/s1001-0742(10)60393-2 10.1016/j.cej.2015.08.114 10.1016/j.chemosphere.2005.04.015 10.1016/s0045-6535(02)00847-0 10.1016/S0043-1354(98)00314-5 10.1016/j.micromeso.2014.05.008 10.1016/j.scitotenv.2007.08.040 10.1016/j.marpolbul.2010.03.032 10.1016/s0021-9797(02)00008-5 10.1016/j.jhazmat.2010.08.102 10.1016/j.jhazmat.2011.04.021 10.1016/j.jtice.2014.09.016 10.1021/es950290x 10.1007/BF01416093 10.1016/j.jhazmat.2010.02.086 10.1007/s12598-011-0197-5 10.1016/j.jhazmat.2008.02.123 10.1016/s0009-2541(03)00119-0 10.1002/app.10579 10.1016/j.jhazmat.2010.08.128 10.1007/s11356-013-1937-x 10.1021/la047736k 10.1016/s0016-7061(01)00026-x 10.1016/j.jhazmat.2007.10.090 10.1016/s0273-1223(97)00116-9 10.1016/j.jhazmat.2007.05.057 10.1016/j.cej.2009.02.006 10.1080/19443994.2014.905974 10.1016/j.jhazmat.2009.02.025 10.1016/j.cej.2012.01.066 10.1080/10601325.2014.906271 10.1016/j.jcis.2009.03.019 10.1109/ESIAT. 2009.172 10.1016/j.ijbiomac.2014.05.043 10.1016/j.desal.2011.07.028 10.1016/j.jtice.2012.04.003 10.1016/j.seppur.2005.12.004 10.1016/j.clay.2007.03.008 10.1016/j.jcis.2014.12.056 10.1016/j.desal.2011.02.054 10.1016/j.micromeso.2012.10.027 10.1016/j.jhazmat.2011.10.072 10.1016/j.jcis.2005.11.011 10.1016/j.apsusc.2013.04.013 10.1016/j.cej.2012.08.080 10.1016/j.cej.2012.06.123 10.1016/s0043-1354(02)00096-9 10.1016/0269-7491(92)90116-r 10.1016/j.chemosphere.2014.02.024 10.1016/S0045-6535(99)00417-8 10.1016/j.jece.2015.05.028 10.1016/j.colsurfa.2006.10.028 10.1016/j.cej.2014.05.113 10.1002/ep.11917 10.1039/c0jm02718a 10.1016/s0016-7037(01)00589-0 10.1016/j.watres.2009.02.012 10.1016/S0043-1354(00)00368-7 10.1021/ie051076c 10.1016/j.colsurfa.2008.10.023 10.1016/j.watres.2007.01.008 10.1016/j.colsurfa.2005.04.016 10.1016/j.jhazmat.2006.01.058 10.2136/sssaj1980.03615995004400020013x 10.1016/j.colsurfa.2004.12.015 10.1146/annurev.py.13.090175.001455 10.1021/la00038a036 10.2134/jeq2008.0192 10.1016/j.geoderma.2004.12.011 10.1016/j.cej.2012.01.031 10.1016/j.chemosphere.2007.04.022 10.1016/j.colsurfa.2013.07.025 10.1016/j.desal.2010.06.030 10.1016/j.cej.2011.03.102 10.1021/es048018n 10.1016/j.chemosphere.2011.02.001 10.1016/j.jcis.2004.08.015 10.1016/j.jhazmat.2007.06.033 10.1039/C5RA25280F 10.1016/j.jcis.2011.08.067 10.1016/j.jhazmat.2005.03.037 10.1016/j.jhazmat.2009.11.098 10.1139/s04-056 10.1016/0168-3659(94)00116-C 10.1002/jctb.4710 10.1016/j.envpol.2012.10.011 |
ContentType | Journal Article |
Copyright | 2016 Canadian Science Publishing |
Copyright_xml | – notice: 2016 Canadian Science Publishing |
DBID | AAYXX CITATION 7ST C1K SOI 7S9 L.6 |
DOI | 10.1139/er-2015-0080 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1208-6053 |
EndPage | 332 |
ExternalDocumentID | 10_1139_er_2015_0080 er-2015-0080 envirevi.24.3.319 |
GroupedDBID | 00T 0R~ 29G 2QL 2XV 4.4 4IJ 4P2 53G 5GY 5RP 8GL AAEFR AAHBH ABBHK ABDBF ABJNI ABXSQ ACGFS ACGOD ACIWK ACUHS ADULT AEGXH AEKFB AENEX AEUPB AFRAH AIFVT ALMA_UNASSIGNED_HOLDINGS APEBS CS3 D8U DATHI DU5 EAD EAP EBD EBS ECC ECGQY EDH EJD EMK EPL ESX GICCO HZ~ I-F IAG IAO ICQ IEP IOF IPNFZ ISN ISR ITC IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST ML. MV1 NRXXU NYCZX O9- ONR P2P PV9 QF4 QM4 QN7 QO4 RIG RRP RZL SA0 SWMRO TUS U5U 0R 1AW 3V. 7X2 7XC 88I 8AF 8AO 8FE 8FG 8FH 8FQ 8G5 ABJCF ABPTK ABUWG AFKRA AIRJO ATCPS AZQEC BCR BENPR BGLVJ BHPHI BLC BPHCQ CAG COF DWQXO EQZMY GNUQQ GUQSH HCIFZ HZ JSODD L6V LA8 M0K M2O M2P M2Q M3G M7S MBDVC NMEPN OVD PADUT PATMY PQEST PQQKQ PQUKI PRINS PROAC PTHSS PYCSY RRCRK RVL AAYXX AEUYN CCPQU CITATION PHGZM PHGZT PQGLB TEORI VQG YR5 7ST C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-b7a78dfbd88a6a6f3779c41f7dec6c0508736f11d20bc3b09a4179c47942377e3 |
ISSN | 1181-8700 1208-6053 |
IngestDate | Fri Jul 11 15:09:20 EDT 2025 Fri Jul 11 12:10:16 EDT 2025 Thu Aug 14 00:06:38 EDT 2025 Thu Apr 24 22:51:46 EDT 2025 Wed Nov 11 00:34:18 EST 2020 Fri May 30 11:46:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-b7a78dfbd88a6a6f3779c41f7dec6c0508736f11d20bc3b09a4179c47942377e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1819138692 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2000376434 crossref_citationtrail_10_1139_er_2015_0080 proquest_miscellaneous_1819138692 crossref_primary_10_1139_er_2015_0080 jstor_primary_envirevi_24_3_319 nrcresearch_primary_10_1139_er_2015_0080 |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Environmental reviews |
PublicationYear | 2016 |
Publisher | NRC Research Press |
Publisher_xml | – name: NRC Research Press |
References | refg18/ref18 refg22/ref22 refg83/ref83 refg76/ref76 refg25/ref25 refg15/ref15 refg80/ref80 refg79/ref79 refg54/ref54 refg57/ref57 refg37/ref37 refg93/ref93 refg10/ref10 refg32/ref32 refg86/ref86 refg89/ref89 refg141/ref141 refg35/ref35 refg59/ref59 Manju G.N. (refg67/ref67) 2000; 59 refg61/ref61 refg42/ref42 refg64/ref64 refg13/ref13 refg27/ref27 refg90/ref90 refg56/ref56 refg38/ref38 refg130/ref130 refg131/ref131 refg45/ref45 refg49/ref49 refg99/ref99 refg134/ref134 refg135/ref135 refg92/ref92 refg9/ref9 refg138/ref138 refg34/ref34 refg71/ref71 refg88/ref88 refg60/ref60 refg77/ref77 refg23/ref23 refg17/ref17 refg108/ref108 refg66/ref66 refg123/ref123 refg12/ref12 refg28/ref28 refg127/ref127 refg55/ref55 refg39/ref39 refg3/ref3 refg139/ref139 refg87/ref87 refg44/ref44 refg81/ref81 refg100/ref100 refg33/ref33 refg70/ref70 refg98/ref98 refg104/ref104 refg113/ref113 refg114/ref114 refg40/ref40 refg65/ref65 refg115/ref115 refg116/ref116 refg117/ref117 refg36/ref36 refg118/ref118 refg119/ref119 refg72/ref72 refg11/ref11 refg6/ref6 refg29/ref29 refg43/ref43 refg97/ref97 refg26/ref26 refg14/ref14 refg91/ref91 refg5/ref5 refg68/ref68 refg94/ref94 refg110/ref110 refg111/ref111 refg112/ref112 refg19/ref19 refg107/ref107 refg21/ref21 refg120/ref120 refg75/ref75 refg109/ref109 refg122/ref122 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg124/ref124 refg82/ref82 refg126/ref126 refg128/ref128 refg53/ref53 refg78/ref78 refg24/ref24 refg16/ref16 refg101/ref101 refg50/ref50 refg103/ref103 refg105/ref105 refg74/ref74 refg20/ref20 refg85/ref85 refg132/ref132 refg133/ref133 refg31/ref31 refg96/ref96 refg136/ref136 refg137/ref137 refg52/ref52 refg8/ref8 refg63/ref63 refg2/ref2 refg30/ref30 refg84/ref84 refg121/ref121 refg125/ref125 refg41/ref41 refg95/ref95 refg140/ref140 refg129/ref129 refg69/ref69 Klimeski A. (refg51/ref51) 2012; 21 refg62/ref62 refg58/ref58 refg73/ref73 refg102/ref102 refg106/ref106 |
References_xml | – ident: refg62/ref62 doi: 10.1016/j.powtec.2015.02.055 – ident: refg95/ref95 – ident: refg73/ref73 doi: 10.1016/j.biortech.2014.06.075 – ident: refg36/ref36 doi: 10.1007/s11270-013-1683-1 – ident: refg65/ref65 doi: 10.1016/j.powtec.2012.08.024 – ident: refg104/ref104 doi: 10.1021/ie00006a013 – ident: refg78/ref78 doi: 10.1016/j.colsurfa.2007.05.027 – ident: refg31/ref31 doi: 10.1016/S0167-8809(01)00147-5 – ident: refg63/ref63 doi: 10.1080/10643389.2012.741311 – ident: refg107/ref107 doi: 10.1016/j.colsurfa.2015.01.002 – ident: refg96/ref96 doi: 10.1016/j.cej.2015.01.070 – ident: refg58/ref58 doi: 10.4195/jnrlse.2010.0001se – ident: refg69/ref69 doi: 10.14233/ajchem.2014.16227 – ident: refg105/ref105 doi: 10.2136/sssaj1977.03615995004100040015x – ident: refg49/ref49 doi: 10.1021/la063744k – ident: refg28/ref28 doi: 10.1016/S0043-1354(03)00231-8 – ident: refg42/ref42 doi: 10.1016/j.jhazmat.2008.01.061 – ident: refg61/ref61 doi: 10.1016/j.cej.2012.11.067 – ident: refg17/ref17 doi: 10.1016/j.jhazmat.2009.04.052 – ident: refg81/ref81 doi: 10.1016/j.watres.2009.06.055 – ident: refg141/ref141 doi: 10.1016/j.watres.2005.04.033 – ident: refg110/ref110 doi: 10.1016/j.cej.2012.03.058 – ident: refg89/ref89 doi: 10.1080/09593330.2011.632651 – ident: refg114/ref114 doi: 10.1016/j.jhazmat.2007.06.103 – ident: refg38/ref38 doi: 10.1016/j.watres.2007.10.043 – ident: refg130/ref130 doi: 10.1016/j.clay.2012.04.020 – ident: refg120/ref120 doi: 10.1016/j.jcis.2012.12.077 – ident: refg56/ref56 doi: 10.1016/j.jhazmat.2006.02.011 – ident: refg90/ref90 doi: 10.1021/es030488e – ident: refg4/ref4 doi: 10.1016/j.geoderma.2006.10.011 – ident: refg20/ref20 doi: 10.1016/j.jcis.2005.12.054 – ident: refg140/ref140 doi: 10.1016/j.jhazmat.2008.10.035 – ident: refg125/ref125 doi: 10.1246/bcsj.76.847 – ident: refg25/ref25 doi: 10.1002/jbm.a.10395 – ident: refg117/ref117 doi: 10.1016/j.jhazmat.2008.05.131 – ident: refg22/ref22 doi: 10.1021/es100787m – volume: 21 start-page: 206 issue: 3 year: 2012 ident: refg51/ref51 publication-title: Agri. Food Sci. doi: 10.23986/afsci.4806 – ident: refg108/ref108 doi: 10.1007/s11671-008-9174-9 – ident: refg68/ref68 doi: 10.1016/j.cej.2008.06.024 – ident: refg14/ref14 doi: 10.1021/es801626d – ident: refg133/ref133 doi: 10.1016/s1001-0742(09)60141-8 – ident: refg131/ref131 doi: 10.1016/j.watres.2003.12.009 – ident: refg37/ref37 doi: 10.1021/es970908y – ident: refg74/ref74 doi: 10.1016/s1001-0742(08)62111-7 – ident: refg115/ref115 doi: 10.1016/j.scitotenv.2012.02.023 – ident: refg32/ref32 doi: 10.1201/9781420042832.ch5 – ident: refg44/ref44 doi: 10.1016/j.jhazmat.2008.12.045 – ident: refg106/ref106 doi: 10.1016/j.watres.2004.09.011 – ident: refg8/ref8 doi: 10.1111/j.1365-2389.1978.tb00794.x – ident: refg40/ref40 doi: 10.1016/j.clay.2009.09.009 – ident: refg116/ref116 doi: 10.1016/j.cej.2013.04.033 – ident: refg134/ref134 doi: 10.1016/s1001-0742(10)60393-2 – ident: refg53/ref53 doi: 10.1016/j.cej.2015.08.114 – ident: refg52/ref52 doi: 10.1016/j.chemosphere.2005.04.015 – ident: refg79/ref79 doi: 10.1016/s0045-6535(02)00847-0 – ident: refg82/ref82 doi: 10.1016/S0043-1354(98)00314-5 – ident: refg3/ref3 doi: 10.1016/j.micromeso.2014.05.008 – ident: refg27/ref27 doi: 10.1016/j.scitotenv.2007.08.040 – ident: refg6/ref6 doi: 10.1016/j.marpolbul.2010.03.032 – ident: refg97/ref97 doi: 10.1016/s0021-9797(02)00008-5 – ident: refg7/ref7 doi: 10.1016/j.jhazmat.2010.08.102 – ident: refg136/ref136 doi: 10.1016/j.jhazmat.2011.04.021 – ident: refg102/ref102 doi: 10.1016/j.jtice.2014.09.016 – ident: refg122/ref122 doi: 10.1021/es950290x – ident: refg41/ref41 doi: 10.1007/BF01416093 – ident: refg118/ref118 doi: 10.1016/j.jhazmat.2010.02.086 – ident: refg39/ref39 doi: 10.1007/s12598-011-0197-5 – ident: refg66/ref66 doi: 10.1016/j.jhazmat.2008.02.123 – ident: refg35/ref35 doi: 10.1016/s0009-2541(03)00119-0 – ident: refg103/ref103 doi: 10.1002/app.10579 – ident: refg29/ref29 doi: 10.1016/j.jhazmat.2010.08.128 – ident: refg84/ref84 – ident: refg111/ref111 doi: 10.1007/s11356-013-1937-x – ident: refg135/ref135 doi: 10.1021/la047736k – ident: refg94/ref94 doi: 10.1016/s0016-7061(01)00026-x – volume: 59 start-page: 144 issue: 2 year: 2000 ident: refg67/ref67 publication-title: J. Sci. Ind. Res. India. – ident: refg83/ref83 doi: 10.1016/j.jhazmat.2007.10.090 – ident: refg101/ref101 doi: 10.1016/s0273-1223(97)00116-9 – ident: refg13/ref13 doi: 10.1016/j.jhazmat.2007.05.057 – ident: refg99/ref99 doi: 10.1016/j.cej.2009.02.006 – ident: refg128/ref128 doi: 10.1080/19443994.2014.905974 – ident: refg55/ref55 doi: 10.1016/j.jhazmat.2009.02.025 – ident: refg137/ref137 doi: 10.1016/j.cej.2012.01.066 – ident: refg85/ref85 doi: 10.1080/10601325.2014.906271 – ident: refg132/ref132 doi: 10.1016/j.jcis.2009.03.019 – ident: refg54/ref54 doi: 10.1109/ESIAT. 2009.172 – ident: refg93/ref93 doi: 10.1016/j.ijbiomac.2014.05.043 – ident: refg92/ref92 doi: 10.1016/j.desal.2011.07.028 – ident: refg16/ref16 doi: 10.1016/j.jtice.2012.04.003 – ident: refg123/ref123 doi: 10.1016/j.seppur.2005.12.004 – ident: refg126/ref126 doi: 10.1016/j.clay.2007.03.008 – ident: refg127/ref127 doi: 10.1016/j.jcis.2014.12.056 – ident: refg48/ref48 doi: 10.1016/j.desal.2011.02.054 – ident: refg43/ref43 doi: 10.1016/j.micromeso.2012.10.027 – ident: refg124/ref124 doi: 10.1016/j.jhazmat.2011.10.072 – ident: refg21/ref21 doi: 10.1016/j.jcis.2005.11.011 – ident: refg46/ref46 doi: 10.1016/j.apsusc.2013.04.013 – ident: refg33/ref33 doi: 10.1016/j.cej.2012.08.080 – ident: refg139/ref139 doi: 10.1016/j.cej.2012.06.123 – ident: refg50/ref50 doi: 10.1016/s0043-1354(02)00096-9 – ident: refg10/ref10 doi: 10.1016/0269-7491(92)90116-r – ident: refg2/ref2 doi: 10.1016/j.chemosphere.2014.02.024 – ident: refg18/ref18 doi: 10.1016/S0045-6535(99)00417-8 – ident: refg76/ref76 doi: 10.1016/j.jece.2015.05.028 – ident: refg121/ref121 doi: 10.1016/j.colsurfa.2006.10.028 – ident: refg113/ref113 doi: 10.1016/j.cej.2014.05.113 – ident: refg70/ref70 doi: 10.1002/ep.11917 – ident: refg119/ref119 doi: 10.1039/c0jm02718a – ident: refg34/ref34 doi: 10.1016/s0016-7037(01)00589-0 – ident: refg23/ref23 doi: 10.1016/j.watres.2009.02.012 – ident: refg5/ref5 doi: 10.1016/S0043-1354(00)00368-7 – ident: refg57/ref57 doi: 10.1021/ie051076c – ident: refg87/ref87 doi: 10.1016/j.colsurfa.2008.10.023 – ident: refg11/ref11 doi: 10.1016/j.watres.2007.01.008 – ident: refg77/ref77 doi: 10.1016/j.colsurfa.2005.04.016 – ident: refg80/ref80 doi: 10.1016/j.jhazmat.2006.01.058 – ident: refg19/ref19 doi: 10.2136/sssaj1980.03615995004400020013x – ident: refg24/ref24 doi: 10.1016/j.colsurfa.2004.12.015 – ident: refg9/ref9 doi: 10.1146/annurev.py.13.090175.001455 – ident: refg98/ref98 doi: 10.1021/la00038a036 – ident: refg26/ref26 doi: 10.2134/jeq2008.0192 – ident: refg12/ref12 doi: 10.1016/j.geoderma.2004.12.011 – ident: refg30/ref30 doi: 10.1016/j.cej.2012.01.031 – ident: refg112/ref112 doi: 10.1016/j.chemosphere.2007.04.022 – ident: refg45/ref45 doi: 10.1016/j.colsurfa.2013.07.025 – ident: refg88/ref88 doi: 10.1016/j.desal.2010.06.030 – ident: refg64/ref64 doi: 10.1016/j.cej.2011.03.102 – ident: refg91/ref91 doi: 10.1021/es048018n – ident: refg86/ref86 doi: 10.1016/j.chemosphere.2011.02.001 – ident: refg72/ref72 doi: 10.1016/j.jcis.2004.08.015 – ident: refg59/ref59 doi: 10.1016/j.jhazmat.2007.06.033 – ident: refg100/ref100 doi: 10.1039/C5RA25280F – ident: refg60/ref60 doi: 10.1016/j.jcis.2011.08.067 – ident: refg71/ref71 doi: 10.1016/j.jhazmat.2005.03.037 – ident: refg129/ref129 doi: 10.1016/j.jhazmat.2009.11.098 – ident: refg109/ref109 doi: 10.1139/s04-056 – ident: refg75/ref75 doi: 10.1016/0168-3659(94)00116-C – ident: refg138/ref138 doi: 10.1002/jctb.4710 – ident: refg15/ref15 doi: 10.1016/j.envpol.2012.10.011 |
SSID | ssj0005414 |
Score | 2.5573826 |
SecondaryResourceType | review_article |
Snippet | Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and... |
SourceID | proquest crossref nrcresearch jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 319 |
SubjectTerms | acids adsorption adsorption du phosphate aluminum chemical bases eutrophication hydroxides hydroxydes métalliques iron metal hydroxides metal oxides oxides oxydes métalliques particle size phosphate adsorption phosphates phosphorus surface area surface water wastewater zinc |
Title | Phosphate adsorption on metal oxides and metal hydroxides: A comparative review |
URI | https://www.jstor.org/stable/envirevi.24.3.319 http://www.nrcresearchpress.com/doi/abs/10.1139/er-2015-0080 https://www.proquest.com/docview/1819138692 https://www.proquest.com/docview/2000376434 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBajfVkfRncpy7qLBhsMgrNYUmR5b2m3Uga70kLehC3LzWCzixNDu1-_o4tlZ13pNjAmHIRj9H06PpLOd4TQCybSJFczGuWCzyLGUhhzWckiLjQlJVGccaNG_vCRH5-y94vZ4jd1yTqfqJ9_1JX8D6pgA1yNSvYfkA0PBQP8BnzhDgjD_a8w_rysV-dLiBbHWbGqGzf64fqhjcSxvvhWaFeC2RmWl0XjjE6PrgaVv5t-j6Bbp-8lcLb4v61aGvDR1dlFq2FKH1JwgGeXtZVMtcGVtFUJDceLYAFGVmdGO_6lo6VfcXBSSJeK8fUwJARupIgYzwmhArjWqdtk0c5GpiKC-RIdulsnmfa0ogPfSb3vdJ9h6pY9r3p4agqk6gaIEM8iE_D2X7KQX2hFgtAvE8ImdEJNWdhtAvMI8Nzb84O3B0d9FhCz5d_D23faCJq-Hv7HRtTiEld30E7VKF-SaXnlU27jk5NddMdPLPDcseQuuqWre2hvA0TsHfnqPvoUqIN76mC4LFOwYwkG6nhDT503eI4HxMGOGA_Q6dG7k8PjyJ-tESlGxTrKkywRRZkXQmQ846WpO6lYXCaFVlxNIWxPKC_juCDTXNF8mmbmqDplziMg0FbTPbRV1ZV-iLBWNI0LLuJEMaZilhU6SbXxAEVCaFmO0LjrO6l84Xlz_sl3aSegNJW6kaanpenpEXoZWp-7givXtHtmYQiNOswlYZJKwHyEXg0AuuFhzzv0JLhXs2eWVbpuVzI2CxpU8JRc34bYKk4Q2rNHN77UPrpthpRbxHuMttZNq59AWLvOn3pq_gL-uqix |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphate+adsorption+on+metal+oxides+and+metal+hydroxides%3A+A+comparative+review&rft.jtitle=Environmental+reviews&rft.au=Mengxue+Li&rft.au=Jianyong+Liu&rft.au=Yunfeng+Xu&rft.au=Guangren+Qian&rft.date=2016&rft.pub=NRC+Research+Press&rft.issn=1181-8700&rft.eissn=1208-6053&rft.volume=24&rft.issue=3&rft.spage=319&rft.epage=332&rft_id=info:doi/10.1139%2Fer-2015-0080&rft.externalDocID=envirevi.24.3.319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1181-8700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1181-8700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1181-8700&client=summon |