Phosphate adsorption on metal oxides and metal hydroxides: A comparative review

Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper pre...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental reviews Vol. 24; no. 3; pp. 319 - 332
Main Authors Li, Mengxue, Liu, Jianyong, Xu, Yunfeng, Qian, Guangren
Format Journal Article
LanguageEnglish
Published NRC Research Press 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost–benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested.
AbstractList Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost–benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested.
Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and investigated for phosphorus removal, because of their abundance, low cost, environmental friendliness, and chemically stability. This paper presents a comparative review of the literature on the preparation methods, adsorption behaviors, adsorption mechanisms, and the regeneration of metal (hydr)oxides (e.g., Fe, Zn, Al, etc.) with regard to phosphate removal. The contrasting results showed that metal hydroxides could offer an effective and economic alternative to metal oxides, because of their cost-benefit synthesis methods, higher adsorption capacities, and shorter adsorption equilibrium times. However, the specific surface area of metal oxides is larger than that of metal hydroxides because of the calcination process. Metal oxides with a higher pH at the zero point of charge have wider optimal adsorption pH ranges than metal hydroxides because of their surface precipitation in alkaline solutions. The regeneration of metal oxides using acids, bases, and salts and that of metal hydroxides using acids and bases has been critically examined. Further research on uniform metal (hydr)oxides with small particle size, high stabilities, low cost, and that are easily regenerated with promising desorbents are proposed. In addition, quantitative mechanism study and application in continuous-mode column trials are also suggested.Original Abstract: L'elimination du phosphore des eaux usees est une maniere importante de controler l'eutrophisation des plans d'eau. Les oxydes metalliques et les hydroxydes metalliques ont toujours ete developpes et examines aux fins de l'elimination du phosphore, en raison de leur abondance, leur cout minime, leur respect de l'environnement et leur stabilite chimique. Cet article presente une revue comparative des litteratures sur les methodes de preparation, les comportements d'adsorption, les mecanismes d'adsorption et la regeneration des hydr(oxydes) metalliques (p. ex., Fe, Zn et Al) en ce qui concerne l'elimination du phosphate. Les differences de resultats ont montre que les hydroxydes metalliques peuvent offrir une alternative efficace et economique aux oxydes metalliques, en raison de leurs methodes de synthese a cout avantageux, leurs fortes capacites d'adsorption et leur temps d'atteinte d'equilibre d'adsorption plus court. Cependant, la surface specifique des oxydes metalliques est plus grande que celle des hydroxydes metalliques en raison du procede de calcination. Les oxydes metalliques ayant un pH au point de charge nulle plus eleve ont une gamme de pH plus large pour l'adsorption optimale qu'en ont les hydroxydes en raison de leur precipitation de surface dans les solutions alcalines. La regeneration des oxydes metalliques au moyen d'acides, de bases et de sels et celle des hydroxydes au moyen d'acides et de bases ont fait l'objet d'examens critiques. On propose de plus amples recherches sur les (hydr)oxydes metalliques uniformes ayant une petite dimension de la particule, une haute stabilite, un cout avantageux et etant facilement regeneres a l'aide de desorbants prometteurs. De plus, on suggere aussi une etude quantitative des mecanismes et l'application d'essais de colonne en mode continue (<< continuous-mode column trials >>). [Traduit par la Redaction]
Abstract_FL L’élimination du phosphore des eaux usées est une manière importante de contrôler l’eutrophisation des plans d’eau. Les oxydes métalliques et les hydroxydes métalliques ont toujours été développés et examinés aux fins de l’élimination du phosphore, en raison de leur abondance, leur coût minime, leur respect de l’environnement et leur stabilité chimique. Cet article présente une revue comparative des littératures sur les méthodes de préparation, les comportements d’adsorption, les mécanismes d’adsorption et la régénération des hydr(oxydes) métalliques (p. ex., Fe, Zn et Al) en ce qui concerne l’élimination du phosphate. Les différences de résultats ont montré que les hydroxydes métalliques peuvent offrir une alternative efficace et économique aux oxydes métalliques, en raison de leurs méthodes de synthèse à coût avantageux, leurs fortes capacités d’adsorption et leur temps d’atteinte d’équilibre d’adsorption plus court. Cependant, la surface spécifique des oxydes métalliques est plus grande que celle des hydroxydes métalliques en raison du procédé de calcination. Les oxydes métalliques ayant un pH au point de charge nulle plus élevé ont une gamme de pH plus large pour l’adsorption optimale qu’en ont les hydroxydes en raison de leur précipitation de surface dans les solutions alcalines. La régénération des oxydes métalliques au moyen d’acides, de bases et de sels et celle des hydroxydes au moyen d’acides et de bases ont fait l’objet d’examens critiques. On propose de plus amples recherches sur les (hydr)oxydes métalliques uniformes ayant une petite dimension de la particule, une haute stabilité, un coût avantageux et étant facilement régénérés à l’aide de désorbants prometteurs. De plus, on suggère aussi une étude quantitative des mécanismes et l’application d’essais de colonne en mode continue (« continuous-mode column trials »). [Traduit par la Rédaction]
Author Mengxue Li
Yunfeng Xu
Guangren Qian
Jianyong Liu
Author_xml – sequence: 1
  givenname: Mengxue
  surname: Li
  fullname: Li, Mengxue
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China
– sequence: 2
  givenname: Jianyong
  surname: Liu
  fullname: Liu, Jianyong
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China
– sequence: 3
  givenname: Yunfeng
  surname: Xu
  fullname: Xu, Yunfeng
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China
– sequence: 4
  givenname: Guangren
  surname: Qian
  fullname: Qian, Guangren
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, P.R. China
BookMark eNqFkF1LwzAUhoNMcJve-QN6JV5YPWmyJvVuDL9AmBd6HbL0lGV0TU3i1H9vS4cXggwO5PDyvAl5JmTUuAYJOadwTSkrbtCnGdBZCiDhiIxpBjLNYcZG3U4lTaUAOCGTEDYAMOOUj8nyZe1Cu9YRE10G59toXZN0s8Wo68R92RJDoptyH6y_Sz-Et8k8MW7baq-j3WHicWfx85QcV7oOeLY_p-Tt_u518Zg-Lx-eFvPn1HAmY7oSWsiyWpVS6lznFROiMJxWokSTG5iBFCyvKC0zWBm2gkJz2hOi4FnHIpuSy-He1rv3DwxRbW0wWNe6QfcRVNb9kImcM34Q7cwUlMm8yDr0akCNdyF4rFTr7Vb7b0VB9YoVetUrVr3iDs_-4MZG3RuMXtv6v9LNUGq88RhQe7M-9MzF0NiE6Pwvi83O9tJVxhVTjBbsBwTJncM
CitedBy_id crossref_primary_10_1016_j_jece_2024_112571
crossref_primary_10_1016_j_jclepro_2020_124753
crossref_primary_10_1016_j_scitotenv_2024_177548
crossref_primary_10_1371_journal_pwat_0000048
crossref_primary_10_3390_su11236787
crossref_primary_10_1016_j_jwpe_2024_105923
crossref_primary_10_1016_j_talanta_2020_122028
crossref_primary_10_1007_s11104_023_06266_2
crossref_primary_10_1039_D3VA00024A
crossref_primary_10_1016_j_dibe_2024_100469
crossref_primary_10_1016_j_jssc_2021_122688
crossref_primary_10_1007_s10653_017_9986_6
crossref_primary_10_1016_j_ecoenv_2020_111345
crossref_primary_10_1016_j_jwpe_2020_101675
crossref_primary_10_1007_s42114_024_00941_3
crossref_primary_10_1016_j_jclepro_2021_128045
crossref_primary_10_1007_s41204_021_00214_0
crossref_primary_10_1016_j_jconhyd_2024_104364
crossref_primary_10_1016_j_colsurfa_2019_123680
crossref_primary_10_1016_j_scitotenv_2022_159207
crossref_primary_10_1039_D2EN00391K
crossref_primary_10_1007_s11356_020_10886_x
crossref_primary_10_1016_j_desal_2023_116677
crossref_primary_10_1016_j_jclepro_2023_136451
crossref_primary_10_1016_j_eti_2022_102651
crossref_primary_10_3390_nano13030587
crossref_primary_10_3390_w11081549
crossref_primary_10_4491_eer_2021_602
crossref_primary_10_1016_j_jenvman_2021_113699
crossref_primary_10_1021_acs_est_3c04151
crossref_primary_10_1039_D3NA01085F
crossref_primary_10_62520_fujece_1432277
crossref_primary_10_1016_j_jia_2024_07_022
crossref_primary_10_1016_j_chemosphere_2022_134987
crossref_primary_10_1016_j_jenvman_2021_112245
crossref_primary_10_1021_acsnano_4c03053
crossref_primary_10_3390_pr8111397
crossref_primary_10_3390_pr11020331
crossref_primary_10_1016_j_seppur_2024_128936
crossref_primary_10_1039_D3DT03615D
crossref_primary_10_1016_j_cej_2017_01_066
crossref_primary_10_1016_j_jece_2020_104147
crossref_primary_10_1016_j_seppur_2022_122713
crossref_primary_10_1080_10643389_2018_1551300
crossref_primary_10_1016_j_jenvman_2020_111909
crossref_primary_10_1016_j_scitotenv_2024_170571
crossref_primary_10_1016_j_psep_2023_04_005
crossref_primary_10_1016_j_watres_2023_120300
crossref_primary_10_3389_fchem_2024_1472640
crossref_primary_10_4236_jacen_2020_91002
crossref_primary_10_1016_j_cej_2024_153154
crossref_primary_10_1073_pnas_2407501121
crossref_primary_10_3390_molecules26216684
crossref_primary_10_1021_acs_est_9b07944
crossref_primary_10_1016_j_jwpe_2022_102666
crossref_primary_10_1016_j_scitotenv_2022_160334
crossref_primary_10_1016_j_watres_2018_08_040
crossref_primary_10_1016_j_colsurfa_2024_133476
crossref_primary_10_2166_ws_2020_123
crossref_primary_10_1016_j_seppur_2023_125611
crossref_primary_10_1080_09593330_2023_2215457
crossref_primary_10_1016_j_colsurfa_2021_128095
crossref_primary_10_1007_s13762_021_03201_9
crossref_primary_10_1016_j_cej_2023_143057
crossref_primary_10_1021_acsestengg_2c00333
crossref_primary_10_1016_j_jhazmat_2019_121457
crossref_primary_10_1016_j_enmm_2018_10_003
crossref_primary_10_1039_D2AY00608A
crossref_primary_10_2166_wst_2021_069
crossref_primary_10_2134_jeq2019_02_0080
crossref_primary_10_1016_j_envres_2023_117816
crossref_primary_10_3389_fpls_2024_1515584
crossref_primary_10_1016_j_micromeso_2023_112941
crossref_primary_10_1007_s11270_023_06441_2
crossref_primary_10_1016_j_envpol_2020_115210
crossref_primary_10_1039_D1RA04279C
crossref_primary_10_1007_s10562_025_04979_w
crossref_primary_10_1021_acssuschemeng_8b01809
crossref_primary_10_1016_j_chemosphere_2021_130205
crossref_primary_10_1002_eap_3007
crossref_primary_10_1016_j_scitotenv_2024_172331
crossref_primary_10_1016_j_apsusc_2017_12_236
crossref_primary_10_1016_j_apsusc_2020_147910
crossref_primary_10_3390_molecules26216615
crossref_primary_10_1016_j_jece_2023_110875
crossref_primary_10_1016_j_ccr_2021_214376
crossref_primary_10_1016_j_envpol_2025_125938
crossref_primary_10_1007_s11270_022_05916_y
crossref_primary_10_1007_s10661_019_7565_2
crossref_primary_10_1007_s13399_023_04284_9
crossref_primary_10_1016_j_colsurfa_2019_123881
crossref_primary_10_1016_j_jallcom_2020_158372
crossref_primary_10_1007_s11783_022_1526_7
crossref_primary_10_3390_w13192709
crossref_primary_10_35193_bseufbd_878902
crossref_primary_10_1016_j_seppur_2024_128453
crossref_primary_10_1007_s11356_022_19662_5
crossref_primary_10_1016_j_watres_2020_116653
crossref_primary_10_3390_agronomy11081608
crossref_primary_10_1007_s11356_019_07510_y
crossref_primary_10_1080_09593330_2020_1720311
crossref_primary_10_1016_j_cej_2020_126494
crossref_primary_10_1016_j_wasman_2018_05_047
crossref_primary_10_1039_C9NR09274A
crossref_primary_10_1016_j_cej_2020_126960
crossref_primary_10_1016_j_jece_2023_111385
crossref_primary_10_2139_ssrn_4017724
crossref_primary_10_5004_dwt_2023_29997
crossref_primary_10_1016_j_chemosphere_2020_129276
crossref_primary_10_1016_j_jenvman_2022_115157
crossref_primary_10_1016_j_jwpe_2020_101187
crossref_primary_10_1021_acsomega_3c07014
crossref_primary_10_1002_jeq2_20331
crossref_primary_10_1007_s10811_020_02196_z
crossref_primary_10_1021_acs_est_9b05569
crossref_primary_10_1016_j_jenvman_2021_114214
crossref_primary_10_1016_j_seppur_2024_127598
crossref_primary_10_1002_chem_201805950
crossref_primary_10_1016_j_jes_2020_10_011
crossref_primary_10_1016_j_geoderma_2018_03_036
crossref_primary_10_1007_s11356_022_21536_9
crossref_primary_10_1007_s13399_022_02948_6
crossref_primary_10_1016_j_chemosphere_2022_136133
crossref_primary_10_1016_j_biombioe_2024_107493
crossref_primary_10_1039_C8TA10518A
crossref_primary_10_1016_j_ceramint_2025_03_007
crossref_primary_10_1016_j_matchemphys_2022_126195
crossref_primary_10_1016_j_jmrt_2021_01_054
crossref_primary_10_1016_j_surfin_2024_104326
crossref_primary_10_1016_j_surfin_2024_104566
crossref_primary_10_1016_j_jwpe_2022_102641
crossref_primary_10_1016_j_colsurfa_2021_126813
crossref_primary_10_1016_j_rineng_2025_104517
crossref_primary_10_2166_aqua_2021_146
crossref_primary_10_1007_s10311_021_01328_2
crossref_primary_10_1016_j_ijbiomac_2019_02_100
crossref_primary_10_1016_j_clay_2018_08_018
crossref_primary_10_1016_j_psep_2020_08_048
crossref_primary_10_1021_acs_langmuir_4c01109
crossref_primary_10_1016_j_chemosphere_2022_135972
crossref_primary_10_1016_j_mtcomm_2022_104564
crossref_primary_10_1016_j_watres_2020_116434
crossref_primary_10_1016_j_psep_2022_02_034
crossref_primary_10_1038_s41598_024_84604_9
crossref_primary_10_1016_j_jwpe_2020_101508
crossref_primary_10_1016_j_cej_2020_128211
crossref_primary_10_1016_j_scitotenv_2021_152124
crossref_primary_10_1016_j_jece_2024_112172
crossref_primary_10_1021_acsami_0c16477
crossref_primary_10_1016_j_cej_2022_137081
crossref_primary_10_1016_j_jece_2025_116012
crossref_primary_10_1016_j_jece_2024_113703
crossref_primary_10_1080_03067319_2021_1963714
crossref_primary_10_1016_j_cej_2020_126748
crossref_primary_10_15541_jim20200340
crossref_primary_10_2166_wrd_2024_142
crossref_primary_10_1016_j_chemosphere_2023_140846
crossref_primary_10_1016_j_jclepro_2024_142590
crossref_primary_10_1016_j_chemosphere_2024_141416
crossref_primary_10_1016_j_psep_2022_01_008
crossref_primary_10_1016_j_jece_2021_105247
crossref_primary_10_1016_j_jhazmat_2023_131716
crossref_primary_10_3389_fsufs_2021_617157
crossref_primary_10_1007_s10098_023_02490_7
crossref_primary_10_1007_s11696_021_01840_3
crossref_primary_10_1016_j_chemosphere_2021_130239
crossref_primary_10_3390_gels8100675
crossref_primary_10_1039_C7EN00705A
crossref_primary_10_1016_j_chemosphere_2020_128551
crossref_primary_10_1016_j_cej_2021_131381
crossref_primary_10_1016_j_jmrt_2024_09_256
crossref_primary_10_1016_j_jclepro_2020_122191
crossref_primary_10_1016_j_colsurfa_2018_09_016
crossref_primary_10_1016_j_ijbiomac_2023_123995
crossref_primary_10_1016_j_seppur_2022_122557
crossref_primary_10_1016_j_cej_2023_144310
crossref_primary_10_1016_j_jwpe_2023_104253
crossref_primary_10_1021_acsanm_9b01512
crossref_primary_10_1021_acs_estlett_4c00164
crossref_primary_10_1016_j_envc_2023_100733
crossref_primary_10_1080_10889868_2020_1811631
crossref_primary_10_1016_j_resconrec_2023_106867
crossref_primary_10_1016_j_chemosphere_2024_144031
crossref_primary_10_1016_j_gca_2024_08_005
crossref_primary_10_1016_j_cej_2020_126649
crossref_primary_10_1016_j_scitotenv_2020_142618
crossref_primary_10_1016_j_clay_2024_107448
crossref_primary_10_1016_j_jenvman_2021_112877
crossref_primary_10_1016_j_jiec_2020_02_018
crossref_primary_10_1016_j_scitotenv_2020_144246
crossref_primary_10_1016_j_seppur_2019_03_044
crossref_primary_10_1002_lno_12329
crossref_primary_10_1021_acs_est_8b02324
crossref_primary_10_1016_j_colsurfa_2019_05_046
crossref_primary_10_1016_j_envres_2022_113448
crossref_primary_10_1016_j_seppur_2024_127677
crossref_primary_10_3390_bioengineering9090416
crossref_primary_10_1007_s13762_021_03545_2
crossref_primary_10_1016_j_biteb_2024_101870
crossref_primary_10_1016_j_eti_2022_102717
crossref_primary_10_1016_j_watres_2024_121301
crossref_primary_10_1016_j_envres_2020_109309
crossref_primary_10_1002_wer_1321
crossref_primary_10_1007_s11356_024_35444_7
crossref_primary_10_1080_10426507_2022_2157828
crossref_primary_10_1016_j_jece_2024_114926
crossref_primary_10_1016_j_cej_2024_150284
crossref_primary_10_1016_j_cej_2022_136461
crossref_primary_10_1016_j_cej_2018_12_073
crossref_primary_10_1016_j_coche_2021_100720
crossref_primary_10_3390_su152316510
crossref_primary_10_1016_j_cej_2022_140048
crossref_primary_10_1007_s42729_020_00407_7
crossref_primary_10_1002_jeq2_20278
crossref_primary_10_1016_j_jece_2024_112372
crossref_primary_10_1007_s10163_023_01836_z
crossref_primary_10_1007_s10853_019_04324_8
crossref_primary_10_1016_j_jwpe_2023_104073
crossref_primary_10_1063_1_5047056
crossref_primary_10_5004_dwt_2019_23584
crossref_primary_10_1016_j_jenvman_2017_02_030
crossref_primary_10_1021_acsapm_0c00699
crossref_primary_10_1061_JSWBAY_0000980
crossref_primary_10_1038_s41598_019_39035_2
crossref_primary_10_1016_j_jece_2021_107103
crossref_primary_10_1016_j_matchemphys_2022_126828
crossref_primary_10_1007_s11356_023_28226_0
crossref_primary_10_1016_j_ceramint_2025_02_049
crossref_primary_10_1016_j_arabjc_2022_104512
crossref_primary_10_1016_j_scitotenv_2019_04_244
crossref_primary_10_1016_j_cej_2021_129775
crossref_primary_10_1021_acsestwater_2c00443
crossref_primary_10_1016_j_chemosphere_2021_130055
crossref_primary_10_3390_agronomy10050617
crossref_primary_10_1016_j_jiec_2023_03_029
crossref_primary_10_1016_j_psep_2022_10_003
crossref_primary_10_1021_acsestwater_0c00001
crossref_primary_10_1016_j_susmat_2018_e00080
crossref_primary_10_1016_j_scitotenv_2021_145364
crossref_primary_10_1080_10643389_2019_1694820
crossref_primary_10_1016_j_jclepro_2021_127255
crossref_primary_10_1016_j_molliq_2023_121366
crossref_primary_10_1039_C9RA04865K
crossref_primary_10_1016_j_isci_2020_101065
crossref_primary_10_1016_j_tibtech_2020_03_012
crossref_primary_10_1002_advs_202000192
crossref_primary_10_1007_s11356_023_27894_2
crossref_primary_10_1016_j_jece_2022_108786
crossref_primary_10_1021_acs_langmuir_9b02708
crossref_primary_10_1007_s42452_021_04843_7
crossref_primary_10_1021_acs_jpcc_8b05594
crossref_primary_10_1016_j_apsusc_2023_156359
crossref_primary_10_14770_jgsk_2021_57_3_353
crossref_primary_10_1016_j_watres_2020_115968
crossref_primary_10_3390_w12061784
crossref_primary_10_1177_0263617420942709
crossref_primary_10_1021_acs_iecr_3c01342
crossref_primary_10_1016_j_chemosphere_2024_143664
crossref_primary_10_1007_s11356_021_15724_2
crossref_primary_10_1016_j_watres_2018_05_029
crossref_primary_10_1002_jeq2_20292
crossref_primary_10_3390_w15122231
crossref_primary_10_1016_j_eti_2023_103114
crossref_primary_10_1021_acs_iecr_4c02763
crossref_primary_10_1016_j_pmatsci_2023_101169
crossref_primary_10_1007_s11356_022_20029_z
crossref_primary_10_1016_j_jnoncrysol_2023_122656
crossref_primary_10_1016_j_molliq_2018_04_100
crossref_primary_10_1016_j_jece_2020_104131
crossref_primary_10_1016_j_seppur_2024_127515
crossref_primary_10_1016_j_biortech_2024_130750
crossref_primary_10_1016_j_jhazmat_2019_121815
crossref_primary_10_1016_j_micromeso_2024_113341
crossref_primary_10_1016_j_cej_2021_128913
crossref_primary_10_1021_acsomega_3c08610
crossref_primary_10_2166_wst_2020_467
crossref_primary_10_1016_j_jenvman_2021_114056
crossref_primary_10_1016_j_cej_2022_136147
crossref_primary_10_1016_j_jwpe_2024_106080
crossref_primary_10_1016_j_scitotenv_2022_157533
crossref_primary_10_1016_j_watres_2019_03_077
crossref_primary_10_1016_j_seppur_2021_120213
crossref_primary_10_1038_s41598_023_35149_w
crossref_primary_10_1039_C7EW00421D
crossref_primary_10_1016_j_cej_2019_122431
Cites_doi 10.1016/j.powtec.2015.02.055
10.1016/j.biortech.2014.06.075
10.1007/s11270-013-1683-1
10.1016/j.powtec.2012.08.024
10.1021/ie00006a013
10.1016/j.colsurfa.2007.05.027
10.1016/S0167-8809(01)00147-5
10.1080/10643389.2012.741311
10.1016/j.colsurfa.2015.01.002
10.1016/j.cej.2015.01.070
10.4195/jnrlse.2010.0001se
10.14233/ajchem.2014.16227
10.2136/sssaj1977.03615995004100040015x
10.1021/la063744k
10.1016/S0043-1354(03)00231-8
10.1016/j.jhazmat.2008.01.061
10.1016/j.cej.2012.11.067
10.1016/j.jhazmat.2009.04.052
10.1016/j.watres.2009.06.055
10.1016/j.watres.2005.04.033
10.1016/j.cej.2012.03.058
10.1080/09593330.2011.632651
10.1016/j.jhazmat.2007.06.103
10.1016/j.watres.2007.10.043
10.1016/j.clay.2012.04.020
10.1016/j.jcis.2012.12.077
10.1016/j.jhazmat.2006.02.011
10.1021/es030488e
10.1016/j.geoderma.2006.10.011
10.1016/j.jcis.2005.12.054
10.1016/j.jhazmat.2008.10.035
10.1246/bcsj.76.847
10.1002/jbm.a.10395
10.1016/j.jhazmat.2008.05.131
10.1021/es100787m
10.23986/afsci.4806
10.1007/s11671-008-9174-9
10.1016/j.cej.2008.06.024
10.1021/es801626d
10.1016/s1001-0742(09)60141-8
10.1016/j.watres.2003.12.009
10.1021/es970908y
10.1016/s1001-0742(08)62111-7
10.1016/j.scitotenv.2012.02.023
10.1201/9781420042832.ch5
10.1016/j.jhazmat.2008.12.045
10.1016/j.watres.2004.09.011
10.1111/j.1365-2389.1978.tb00794.x
10.1016/j.clay.2009.09.009
10.1016/j.cej.2013.04.033
10.1016/s1001-0742(10)60393-2
10.1016/j.cej.2015.08.114
10.1016/j.chemosphere.2005.04.015
10.1016/s0045-6535(02)00847-0
10.1016/S0043-1354(98)00314-5
10.1016/j.micromeso.2014.05.008
10.1016/j.scitotenv.2007.08.040
10.1016/j.marpolbul.2010.03.032
10.1016/s0021-9797(02)00008-5
10.1016/j.jhazmat.2010.08.102
10.1016/j.jhazmat.2011.04.021
10.1016/j.jtice.2014.09.016
10.1021/es950290x
10.1007/BF01416093
10.1016/j.jhazmat.2010.02.086
10.1007/s12598-011-0197-5
10.1016/j.jhazmat.2008.02.123
10.1016/s0009-2541(03)00119-0
10.1002/app.10579
10.1016/j.jhazmat.2010.08.128
10.1007/s11356-013-1937-x
10.1021/la047736k
10.1016/s0016-7061(01)00026-x
10.1016/j.jhazmat.2007.10.090
10.1016/s0273-1223(97)00116-9
10.1016/j.jhazmat.2007.05.057
10.1016/j.cej.2009.02.006
10.1080/19443994.2014.905974
10.1016/j.jhazmat.2009.02.025
10.1016/j.cej.2012.01.066
10.1080/10601325.2014.906271
10.1016/j.jcis.2009.03.019
10.1109/ESIAT. 2009.172
10.1016/j.ijbiomac.2014.05.043
10.1016/j.desal.2011.07.028
10.1016/j.jtice.2012.04.003
10.1016/j.seppur.2005.12.004
10.1016/j.clay.2007.03.008
10.1016/j.jcis.2014.12.056
10.1016/j.desal.2011.02.054
10.1016/j.micromeso.2012.10.027
10.1016/j.jhazmat.2011.10.072
10.1016/j.jcis.2005.11.011
10.1016/j.apsusc.2013.04.013
10.1016/j.cej.2012.08.080
10.1016/j.cej.2012.06.123
10.1016/s0043-1354(02)00096-9
10.1016/0269-7491(92)90116-r
10.1016/j.chemosphere.2014.02.024
10.1016/S0045-6535(99)00417-8
10.1016/j.jece.2015.05.028
10.1016/j.colsurfa.2006.10.028
10.1016/j.cej.2014.05.113
10.1002/ep.11917
10.1039/c0jm02718a
10.1016/s0016-7037(01)00589-0
10.1016/j.watres.2009.02.012
10.1016/S0043-1354(00)00368-7
10.1021/ie051076c
10.1016/j.colsurfa.2008.10.023
10.1016/j.watres.2007.01.008
10.1016/j.colsurfa.2005.04.016
10.1016/j.jhazmat.2006.01.058
10.2136/sssaj1980.03615995004400020013x
10.1016/j.colsurfa.2004.12.015
10.1146/annurev.py.13.090175.001455
10.1021/la00038a036
10.2134/jeq2008.0192
10.1016/j.geoderma.2004.12.011
10.1016/j.cej.2012.01.031
10.1016/j.chemosphere.2007.04.022
10.1016/j.colsurfa.2013.07.025
10.1016/j.desal.2010.06.030
10.1016/j.cej.2011.03.102
10.1021/es048018n
10.1016/j.chemosphere.2011.02.001
10.1016/j.jcis.2004.08.015
10.1016/j.jhazmat.2007.06.033
10.1039/C5RA25280F
10.1016/j.jcis.2011.08.067
10.1016/j.jhazmat.2005.03.037
10.1016/j.jhazmat.2009.11.098
10.1139/s04-056
10.1016/0168-3659(94)00116-C
10.1002/jctb.4710
10.1016/j.envpol.2012.10.011
ContentType Journal Article
Copyright 2016 Canadian Science Publishing
Copyright_xml – notice: 2016 Canadian Science Publishing
DBID AAYXX
CITATION
7ST
C1K
SOI
7S9
L.6
DOI 10.1139/er-2015-0080
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
CrossRef
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1208-6053
EndPage 332
ExternalDocumentID 10_1139_er_2015_0080
er-2015-0080
envirevi.24.3.319
GroupedDBID 00T
0R~
29G
2QL
2XV
4.4
4IJ
4P2
53G
5GY
5RP
8GL
AAEFR
AAHBH
ABBHK
ABDBF
ABJNI
ABXSQ
ACGFS
ACGOD
ACIWK
ACUHS
ADULT
AEGXH
AEKFB
AENEX
AEUPB
AFRAH
AIFVT
ALMA_UNASSIGNED_HOLDINGS
APEBS
CS3
D8U
DATHI
DU5
EAD
EAP
EBD
EBS
ECC
ECGQY
EDH
EJD
EMK
EPL
ESX
GICCO
HZ~
I-F
IAG
IAO
ICQ
IEP
IOF
IPNFZ
ISN
ISR
ITC
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
ML.
MV1
NRXXU
NYCZX
O9-
ONR
P2P
PV9
QF4
QM4
QN7
QO4
RIG
RRP
RZL
SA0
SWMRO
TUS
U5U
0R
1AW
3V.
7X2
7XC
88I
8AF
8AO
8FE
8FG
8FH
8FQ
8G5
ABJCF
ABPTK
ABUWG
AFKRA
AIRJO
ATCPS
AZQEC
BCR
BENPR
BGLVJ
BHPHI
BLC
BPHCQ
CAG
COF
DWQXO
EQZMY
GNUQQ
GUQSH
HCIFZ
HZ
JSODD
L6V
LA8
M0K
M2O
M2P
M2Q
M3G
M7S
MBDVC
NMEPN
OVD
PADUT
PATMY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
RRCRK
RVL
AAYXX
AEUYN
CCPQU
CITATION
PHGZM
PHGZT
PQGLB
TEORI
VQG
YR5
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c438t-b7a78dfbd88a6a6f3779c41f7dec6c0508736f11d20bc3b09a4179c47942377e3
ISSN 1181-8700
1208-6053
IngestDate Fri Jul 11 15:09:20 EDT 2025
Fri Jul 11 12:10:16 EDT 2025
Thu Aug 14 00:06:38 EDT 2025
Thu Apr 24 22:51:46 EDT 2025
Wed Nov 11 00:34:18 EST 2020
Fri May 30 11:46:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-b7a78dfbd88a6a6f3779c41f7dec6c0508736f11d20bc3b09a4179c47942377e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1819138692
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_2000376434
crossref_citationtrail_10_1139_er_2015_0080
proquest_miscellaneous_1819138692
crossref_primary_10_1139_er_2015_0080
jstor_primary_envirevi_24_3_319
nrcresearch_primary_10_1139_er_2015_0080
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationTitle Environmental reviews
PublicationYear 2016
Publisher NRC Research Press
Publisher_xml – name: NRC Research Press
References refg18/ref18
refg22/ref22
refg83/ref83
refg76/ref76
refg25/ref25
refg15/ref15
refg80/ref80
refg79/ref79
refg54/ref54
refg57/ref57
refg37/ref37
refg93/ref93
refg10/ref10
refg32/ref32
refg86/ref86
refg89/ref89
refg141/ref141
refg35/ref35
refg59/ref59
Manju G.N. (refg67/ref67) 2000; 59
refg61/ref61
refg42/ref42
refg64/ref64
refg13/ref13
refg27/ref27
refg90/ref90
refg56/ref56
refg38/ref38
refg130/ref130
refg131/ref131
refg45/ref45
refg49/ref49
refg99/ref99
refg134/ref134
refg135/ref135
refg92/ref92
refg9/ref9
refg138/ref138
refg34/ref34
refg71/ref71
refg88/ref88
refg60/ref60
refg77/ref77
refg23/ref23
refg17/ref17
refg108/ref108
refg66/ref66
refg123/ref123
refg12/ref12
refg28/ref28
refg127/ref127
refg55/ref55
refg39/ref39
refg3/ref3
refg139/ref139
refg87/ref87
refg44/ref44
refg81/ref81
refg100/ref100
refg33/ref33
refg70/ref70
refg98/ref98
refg104/ref104
refg113/ref113
refg114/ref114
refg40/ref40
refg65/ref65
refg115/ref115
refg116/ref116
refg117/ref117
refg36/ref36
refg118/ref118
refg119/ref119
refg72/ref72
refg11/ref11
refg6/ref6
refg29/ref29
refg43/ref43
refg97/ref97
refg26/ref26
refg14/ref14
refg91/ref91
refg5/ref5
refg68/ref68
refg94/ref94
refg110/ref110
refg111/ref111
refg112/ref112
refg19/ref19
refg107/ref107
refg21/ref21
refg120/ref120
refg75/ref75
refg109/ref109
refg122/ref122
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg124/ref124
refg82/ref82
refg126/ref126
refg128/ref128
refg53/ref53
refg78/ref78
refg24/ref24
refg16/ref16
refg101/ref101
refg50/ref50
refg103/ref103
refg105/ref105
refg74/ref74
refg20/ref20
refg85/ref85
refg132/ref132
refg133/ref133
refg31/ref31
refg96/ref96
refg136/ref136
refg137/ref137
refg52/ref52
refg8/ref8
refg63/ref63
refg2/ref2
refg30/ref30
refg84/ref84
refg121/ref121
refg125/ref125
refg41/ref41
refg95/ref95
refg140/ref140
refg129/ref129
refg69/ref69
Klimeski A. (refg51/ref51) 2012; 21
refg62/ref62
refg58/ref58
refg73/ref73
refg102/ref102
refg106/ref106
References_xml – ident: refg62/ref62
  doi: 10.1016/j.powtec.2015.02.055
– ident: refg95/ref95
– ident: refg73/ref73
  doi: 10.1016/j.biortech.2014.06.075
– ident: refg36/ref36
  doi: 10.1007/s11270-013-1683-1
– ident: refg65/ref65
  doi: 10.1016/j.powtec.2012.08.024
– ident: refg104/ref104
  doi: 10.1021/ie00006a013
– ident: refg78/ref78
  doi: 10.1016/j.colsurfa.2007.05.027
– ident: refg31/ref31
  doi: 10.1016/S0167-8809(01)00147-5
– ident: refg63/ref63
  doi: 10.1080/10643389.2012.741311
– ident: refg107/ref107
  doi: 10.1016/j.colsurfa.2015.01.002
– ident: refg96/ref96
  doi: 10.1016/j.cej.2015.01.070
– ident: refg58/ref58
  doi: 10.4195/jnrlse.2010.0001se
– ident: refg69/ref69
  doi: 10.14233/ajchem.2014.16227
– ident: refg105/ref105
  doi: 10.2136/sssaj1977.03615995004100040015x
– ident: refg49/ref49
  doi: 10.1021/la063744k
– ident: refg28/ref28
  doi: 10.1016/S0043-1354(03)00231-8
– ident: refg42/ref42
  doi: 10.1016/j.jhazmat.2008.01.061
– ident: refg61/ref61
  doi: 10.1016/j.cej.2012.11.067
– ident: refg17/ref17
  doi: 10.1016/j.jhazmat.2009.04.052
– ident: refg81/ref81
  doi: 10.1016/j.watres.2009.06.055
– ident: refg141/ref141
  doi: 10.1016/j.watres.2005.04.033
– ident: refg110/ref110
  doi: 10.1016/j.cej.2012.03.058
– ident: refg89/ref89
  doi: 10.1080/09593330.2011.632651
– ident: refg114/ref114
  doi: 10.1016/j.jhazmat.2007.06.103
– ident: refg38/ref38
  doi: 10.1016/j.watres.2007.10.043
– ident: refg130/ref130
  doi: 10.1016/j.clay.2012.04.020
– ident: refg120/ref120
  doi: 10.1016/j.jcis.2012.12.077
– ident: refg56/ref56
  doi: 10.1016/j.jhazmat.2006.02.011
– ident: refg90/ref90
  doi: 10.1021/es030488e
– ident: refg4/ref4
  doi: 10.1016/j.geoderma.2006.10.011
– ident: refg20/ref20
  doi: 10.1016/j.jcis.2005.12.054
– ident: refg140/ref140
  doi: 10.1016/j.jhazmat.2008.10.035
– ident: refg125/ref125
  doi: 10.1246/bcsj.76.847
– ident: refg25/ref25
  doi: 10.1002/jbm.a.10395
– ident: refg117/ref117
  doi: 10.1016/j.jhazmat.2008.05.131
– ident: refg22/ref22
  doi: 10.1021/es100787m
– volume: 21
  start-page: 206
  issue: 3
  year: 2012
  ident: refg51/ref51
  publication-title: Agri. Food Sci.
  doi: 10.23986/afsci.4806
– ident: refg108/ref108
  doi: 10.1007/s11671-008-9174-9
– ident: refg68/ref68
  doi: 10.1016/j.cej.2008.06.024
– ident: refg14/ref14
  doi: 10.1021/es801626d
– ident: refg133/ref133
  doi: 10.1016/s1001-0742(09)60141-8
– ident: refg131/ref131
  doi: 10.1016/j.watres.2003.12.009
– ident: refg37/ref37
  doi: 10.1021/es970908y
– ident: refg74/ref74
  doi: 10.1016/s1001-0742(08)62111-7
– ident: refg115/ref115
  doi: 10.1016/j.scitotenv.2012.02.023
– ident: refg32/ref32
  doi: 10.1201/9781420042832.ch5
– ident: refg44/ref44
  doi: 10.1016/j.jhazmat.2008.12.045
– ident: refg106/ref106
  doi: 10.1016/j.watres.2004.09.011
– ident: refg8/ref8
  doi: 10.1111/j.1365-2389.1978.tb00794.x
– ident: refg40/ref40
  doi: 10.1016/j.clay.2009.09.009
– ident: refg116/ref116
  doi: 10.1016/j.cej.2013.04.033
– ident: refg134/ref134
  doi: 10.1016/s1001-0742(10)60393-2
– ident: refg53/ref53
  doi: 10.1016/j.cej.2015.08.114
– ident: refg52/ref52
  doi: 10.1016/j.chemosphere.2005.04.015
– ident: refg79/ref79
  doi: 10.1016/s0045-6535(02)00847-0
– ident: refg82/ref82
  doi: 10.1016/S0043-1354(98)00314-5
– ident: refg3/ref3
  doi: 10.1016/j.micromeso.2014.05.008
– ident: refg27/ref27
  doi: 10.1016/j.scitotenv.2007.08.040
– ident: refg6/ref6
  doi: 10.1016/j.marpolbul.2010.03.032
– ident: refg97/ref97
  doi: 10.1016/s0021-9797(02)00008-5
– ident: refg7/ref7
  doi: 10.1016/j.jhazmat.2010.08.102
– ident: refg136/ref136
  doi: 10.1016/j.jhazmat.2011.04.021
– ident: refg102/ref102
  doi: 10.1016/j.jtice.2014.09.016
– ident: refg122/ref122
  doi: 10.1021/es950290x
– ident: refg41/ref41
  doi: 10.1007/BF01416093
– ident: refg118/ref118
  doi: 10.1016/j.jhazmat.2010.02.086
– ident: refg39/ref39
  doi: 10.1007/s12598-011-0197-5
– ident: refg66/ref66
  doi: 10.1016/j.jhazmat.2008.02.123
– ident: refg35/ref35
  doi: 10.1016/s0009-2541(03)00119-0
– ident: refg103/ref103
  doi: 10.1002/app.10579
– ident: refg29/ref29
  doi: 10.1016/j.jhazmat.2010.08.128
– ident: refg84/ref84
– ident: refg111/ref111
  doi: 10.1007/s11356-013-1937-x
– ident: refg135/ref135
  doi: 10.1021/la047736k
– ident: refg94/ref94
  doi: 10.1016/s0016-7061(01)00026-x
– volume: 59
  start-page: 144
  issue: 2
  year: 2000
  ident: refg67/ref67
  publication-title: J. Sci. Ind. Res. India.
– ident: refg83/ref83
  doi: 10.1016/j.jhazmat.2007.10.090
– ident: refg101/ref101
  doi: 10.1016/s0273-1223(97)00116-9
– ident: refg13/ref13
  doi: 10.1016/j.jhazmat.2007.05.057
– ident: refg99/ref99
  doi: 10.1016/j.cej.2009.02.006
– ident: refg128/ref128
  doi: 10.1080/19443994.2014.905974
– ident: refg55/ref55
  doi: 10.1016/j.jhazmat.2009.02.025
– ident: refg137/ref137
  doi: 10.1016/j.cej.2012.01.066
– ident: refg85/ref85
  doi: 10.1080/10601325.2014.906271
– ident: refg132/ref132
  doi: 10.1016/j.jcis.2009.03.019
– ident: refg54/ref54
  doi: 10.1109/ESIAT. 2009.172
– ident: refg93/ref93
  doi: 10.1016/j.ijbiomac.2014.05.043
– ident: refg92/ref92
  doi: 10.1016/j.desal.2011.07.028
– ident: refg16/ref16
  doi: 10.1016/j.jtice.2012.04.003
– ident: refg123/ref123
  doi: 10.1016/j.seppur.2005.12.004
– ident: refg126/ref126
  doi: 10.1016/j.clay.2007.03.008
– ident: refg127/ref127
  doi: 10.1016/j.jcis.2014.12.056
– ident: refg48/ref48
  doi: 10.1016/j.desal.2011.02.054
– ident: refg43/ref43
  doi: 10.1016/j.micromeso.2012.10.027
– ident: refg124/ref124
  doi: 10.1016/j.jhazmat.2011.10.072
– ident: refg21/ref21
  doi: 10.1016/j.jcis.2005.11.011
– ident: refg46/ref46
  doi: 10.1016/j.apsusc.2013.04.013
– ident: refg33/ref33
  doi: 10.1016/j.cej.2012.08.080
– ident: refg139/ref139
  doi: 10.1016/j.cej.2012.06.123
– ident: refg50/ref50
  doi: 10.1016/s0043-1354(02)00096-9
– ident: refg10/ref10
  doi: 10.1016/0269-7491(92)90116-r
– ident: refg2/ref2
  doi: 10.1016/j.chemosphere.2014.02.024
– ident: refg18/ref18
  doi: 10.1016/S0045-6535(99)00417-8
– ident: refg76/ref76
  doi: 10.1016/j.jece.2015.05.028
– ident: refg121/ref121
  doi: 10.1016/j.colsurfa.2006.10.028
– ident: refg113/ref113
  doi: 10.1016/j.cej.2014.05.113
– ident: refg70/ref70
  doi: 10.1002/ep.11917
– ident: refg119/ref119
  doi: 10.1039/c0jm02718a
– ident: refg34/ref34
  doi: 10.1016/s0016-7037(01)00589-0
– ident: refg23/ref23
  doi: 10.1016/j.watres.2009.02.012
– ident: refg5/ref5
  doi: 10.1016/S0043-1354(00)00368-7
– ident: refg57/ref57
  doi: 10.1021/ie051076c
– ident: refg87/ref87
  doi: 10.1016/j.colsurfa.2008.10.023
– ident: refg11/ref11
  doi: 10.1016/j.watres.2007.01.008
– ident: refg77/ref77
  doi: 10.1016/j.colsurfa.2005.04.016
– ident: refg80/ref80
  doi: 10.1016/j.jhazmat.2006.01.058
– ident: refg19/ref19
  doi: 10.2136/sssaj1980.03615995004400020013x
– ident: refg24/ref24
  doi: 10.1016/j.colsurfa.2004.12.015
– ident: refg9/ref9
  doi: 10.1146/annurev.py.13.090175.001455
– ident: refg98/ref98
  doi: 10.1021/la00038a036
– ident: refg26/ref26
  doi: 10.2134/jeq2008.0192
– ident: refg12/ref12
  doi: 10.1016/j.geoderma.2004.12.011
– ident: refg30/ref30
  doi: 10.1016/j.cej.2012.01.031
– ident: refg112/ref112
  doi: 10.1016/j.chemosphere.2007.04.022
– ident: refg45/ref45
  doi: 10.1016/j.colsurfa.2013.07.025
– ident: refg88/ref88
  doi: 10.1016/j.desal.2010.06.030
– ident: refg64/ref64
  doi: 10.1016/j.cej.2011.03.102
– ident: refg91/ref91
  doi: 10.1021/es048018n
– ident: refg86/ref86
  doi: 10.1016/j.chemosphere.2011.02.001
– ident: refg72/ref72
  doi: 10.1016/j.jcis.2004.08.015
– ident: refg59/ref59
  doi: 10.1016/j.jhazmat.2007.06.033
– ident: refg100/ref100
  doi: 10.1039/C5RA25280F
– ident: refg60/ref60
  doi: 10.1016/j.jcis.2011.08.067
– ident: refg71/ref71
  doi: 10.1016/j.jhazmat.2005.03.037
– ident: refg129/ref129
  doi: 10.1016/j.jhazmat.2009.11.098
– ident: refg109/ref109
  doi: 10.1139/s04-056
– ident: refg75/ref75
  doi: 10.1016/0168-3659(94)00116-C
– ident: refg138/ref138
  doi: 10.1002/jctb.4710
– ident: refg15/ref15
  doi: 10.1016/j.envpol.2012.10.011
SSID ssj0005414
Score 2.5573826
SecondaryResourceType review_article
Snippet Phosphorus removal from wastewater is important for eutrophication control of water bodies. Metal oxides and metal hydroxides have always been developed and...
SourceID proquest
crossref
nrcresearch
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms acids
adsorption
adsorption du phosphate
aluminum
chemical bases
eutrophication
hydroxides
hydroxydes métalliques
iron
metal hydroxides
metal oxides
oxides
oxydes métalliques
particle size
phosphate adsorption
phosphates
phosphorus
surface area
surface water
wastewater
zinc
Title Phosphate adsorption on metal oxides and metal hydroxides: A comparative review
URI https://www.jstor.org/stable/envirevi.24.3.319
http://www.nrcresearchpress.com/doi/abs/10.1139/er-2015-0080
https://www.proquest.com/docview/1819138692
https://www.proquest.com/docview/2000376434
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBajfVkfRncpy7qLBhsMgrNYUmR5b2m3Uga70kLehC3LzWCzixNDu1-_o4tlZ13pNjAmHIRj9H06PpLOd4TQCybSJFczGuWCzyLGUhhzWckiLjQlJVGccaNG_vCRH5-y94vZ4jd1yTqfqJ9_1JX8D6pgA1yNSvYfkA0PBQP8BnzhDgjD_a8w_rysV-dLiBbHWbGqGzf64fqhjcSxvvhWaFeC2RmWl0XjjE6PrgaVv5t-j6Bbp-8lcLb4v61aGvDR1dlFq2FKH1JwgGeXtZVMtcGVtFUJDceLYAFGVmdGO_6lo6VfcXBSSJeK8fUwJARupIgYzwmhArjWqdtk0c5GpiKC-RIdulsnmfa0ogPfSb3vdJ9h6pY9r3p4agqk6gaIEM8iE_D2X7KQX2hFgtAvE8ImdEJNWdhtAvMI8Nzb84O3B0d9FhCz5d_D23faCJq-Hv7HRtTiEld30E7VKF-SaXnlU27jk5NddMdPLPDcseQuuqWre2hvA0TsHfnqPvoUqIN76mC4LFOwYwkG6nhDT503eI4HxMGOGA_Q6dG7k8PjyJ-tESlGxTrKkywRRZkXQmQ846WpO6lYXCaFVlxNIWxPKC_juCDTXNF8mmbmqDplziMg0FbTPbRV1ZV-iLBWNI0LLuJEMaZilhU6SbXxAEVCaFmO0LjrO6l84Xlz_sl3aSegNJW6kaanpenpEXoZWp-7givXtHtmYQiNOswlYZJKwHyEXg0AuuFhzzv0JLhXs2eWVbpuVzI2CxpU8JRc34bYKk4Q2rNHN77UPrpthpRbxHuMttZNq59AWLvOn3pq_gL-uqix
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphate+adsorption+on+metal+oxides+and+metal+hydroxides%3A+A+comparative+review&rft.jtitle=Environmental+reviews&rft.au=Mengxue+Li&rft.au=Jianyong+Liu&rft.au=Yunfeng+Xu&rft.au=Guangren+Qian&rft.date=2016&rft.pub=NRC+Research+Press&rft.issn=1181-8700&rft.eissn=1208-6053&rft.volume=24&rft.issue=3&rft.spage=319&rft.epage=332&rft_id=info:doi/10.1139%2Fer-2015-0080&rft.externalDocID=envirevi.24.3.319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1181-8700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1181-8700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1181-8700&client=summon