The changes of microplastics’ behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment

•MPs’ specific surface area increased while relative crystallinity decreased after HTP.•Poor thermal stability groups of MPs were converted to ketone or carboxyl groups.•HTP resulted in blocking the adsorption of a variety of MPs for pollutants.•HTP enhanced the inhibitory effect of MPs on AD by acc...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 221; p. 118744
Main Authors Jiang, Chao, Ni, Bing-Jie, Zheng, Xiaowei, Lu, Bei, Chen, Zheng, Gao, Yang, Zhang, Yalei, Zhang, Shicheng, Luo, Gang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •MPs’ specific surface area increased while relative crystallinity decreased after HTP.•Poor thermal stability groups of MPs were converted to ketone or carboxyl groups.•HTP resulted in blocking the adsorption of a variety of MPs for pollutants.•HTP enhanced the inhibitory effect of MPs on AD by accelerating TOC release.•Leachate of MPs reduced the abundance of vital anaerobes. Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs’ specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg−1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg−1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs’ behaviors during the combined HTP-AD process. [Display omitted]
AbstractList •MPs’ specific surface area increased while relative crystallinity decreased after HTP.•Poor thermal stability groups of MPs were converted to ketone or carboxyl groups.•HTP resulted in blocking the adsorption of a variety of MPs for pollutants.•HTP enhanced the inhibitory effect of MPs on AD by accelerating TOC release.•Leachate of MPs reduced the abundance of vital anaerobes. Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs’ specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg−1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg−1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs’ behaviors during the combined HTP-AD process. [Display omitted]
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg-1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg-1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg-1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg-1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs’ specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg⁻¹ VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg⁻¹ VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs’ behaviors during the combined HTP-AD process.
ArticleNumber 118744
Author Ni, Bing-Jie
Lu, Bei
Luo, Gang
Jiang, Chao
Zhang, Shicheng
Zheng, Xiaowei
Gao, Yang
Chen, Zheng
Zhang, Yalei
Author_xml – sequence: 1
  givenname: Chao
  surname: Jiang
  fullname: Jiang, Chao
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Bing-Jie
  surname: Ni
  fullname: Ni, Bing-Jie
  email: Bingjie.Ni@uts.edu.au
  organization: Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
– sequence: 3
  givenname: Xiaowei
  surname: Zheng
  fullname: Zheng, Xiaowei
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
– sequence: 4
  givenname: Bei
  surname: Lu
  fullname: Lu, Bei
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
– sequence: 5
  givenname: Zheng
  surname: Chen
  fullname: Chen, Zheng
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
– sequence: 6
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
  organization: Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
– sequence: 7
  givenname: Yalei
  surname: Zhang
  fullname: Zhang, Yalei
  organization: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
– sequence: 8
  givenname: Shicheng
  orcidid: 0000-0001-9994-1385
  surname: Zhang
  fullname: Zhang, Shicheng
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
– sequence: 9
  givenname: Gang
  surname: Luo
  fullname: Luo, Gang
  email: gangl@fudan.edu.cn
  organization: Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
BookMark eNqFkTtu3DAQhonABrx2fAMXLNNow5deKQIERh4GDKRxamJEjiwuJFEhuWtslwvkALleThJu5CpFXBDDIf5vMPz_S3I2-xkJueFsyxmv3u62T5ACxq1gQmw5b2qlXpFNrm0hlGrOyIYxJQsuS3VBLmPcMZaVst2Qnw8DUjPA_IiR-p5OzgS_jBCTM_H3j1-0wwEOzgfqZgo2-rAk5_N1tvkABt85Q63L-N_3POIpw0jBJHeAhJbGcW8fMfN2b3LbHelwtMGnAcMEI10C5t0hTTin1-S8hzHi9XO9It8-fXy4_VLcf_18d_vhvjBKNqno8v96kLKXtZJ1Y3sjG8utrKBSXdm1jZKmgrJusDS1wgo7zlgFXdW1JRdGyCvyZp27BP99n1fXk4sGxxFm9PuoRc0bUdalaF6WVnVbM16WKkvfrdJsYYwBe21cgpMtKYAbNWf6FJfe6TUufYpLr3FlWP0DL8FNEI4vYe9XDLNdB4dBR-Nwzka7gCZp693_B_wByZy3hw
CitedBy_id crossref_primary_10_1016_j_watres_2022_119473
crossref_primary_10_1016_j_watres_2024_122368
crossref_primary_10_1016_j_envres_2022_114532
crossref_primary_10_1016_j_envpol_2023_122113
crossref_primary_10_3390_w16111529
crossref_primary_10_1016_j_envpol_2024_124498
crossref_primary_10_1016_j_cej_2024_157634
crossref_primary_10_1016_j_cej_2025_160029
crossref_primary_10_1016_j_jhazmat_2024_134124
crossref_primary_10_1016_j_seppur_2023_125530
crossref_primary_10_1016_j_biombioe_2022_106570
crossref_primary_10_1016_j_jenvman_2024_123562
crossref_primary_10_1016_j_scitotenv_2024_171338
crossref_primary_10_1016_j_cej_2023_145653
crossref_primary_10_1016_j_psep_2024_01_067
crossref_primary_10_1021_acsestengg_3c00325
crossref_primary_10_3390_en17112555
crossref_primary_10_1016_j_scca_2023_100020
crossref_primary_10_2166_wst_2025_023
crossref_primary_10_1007_s40201_024_00910_4
crossref_primary_10_1016_j_bej_2023_109012
crossref_primary_10_1016_j_jhazmat_2024_136299
crossref_primary_10_1016_j_cej_2022_138163
crossref_primary_10_1016_j_jece_2025_115517
crossref_primary_10_1016_j_watres_2024_121669
crossref_primary_10_1016_j_jece_2023_111408
crossref_primary_10_1016_j_envres_2024_119061
crossref_primary_10_1016_j_chemosphere_2023_140435
crossref_primary_10_1016_j_envpol_2023_121426
crossref_primary_10_1016_j_emcon_2025_100486
crossref_primary_10_1016_j_envres_2024_120046
crossref_primary_10_1016_j_watres_2022_118876
crossref_primary_10_1016_j_cej_2022_141212
crossref_primary_10_1016_j_watres_2024_122395
Cites_doi 10.1021/acs.est.6b04048
10.1021/acs.est.8b07069
10.1016/j.eehl.2022.02.001
10.1021/es403605f
10.1186/s13068-017-0830-0
10.1016/j.jhazmat.2019.121065
10.1016/j.marpolbul.2016.06.048
10.1016/j.eti.2020.101301
10.1080/10643389.2019.1694822
10.1021/acs.est.9b03269
10.1016/j.watres.2019.04.060
10.1016/j.envpol.2019.06.030
10.1016/j.chemosphere.2020.126064
10.1021/acssuschemeng.8b05147
10.1016/j.watres.2020.116704
10.1021/acs.est.9b01131
10.1016/j.watres.2018.04.003
10.1021/acs.est.6b00003
10.1016/j.marpolbul.2018.09.048
10.1021/acs.est.5b05416
10.1016/j.watres.2006.12.036
10.1016/j.cej.2020.124201
10.1016/j.chemosphere.2018.09.174
10.1186/1754-6834-6-116
10.1073/pnas.1504135112
10.1016/j.chemosphere.2018.05.156
10.1021/acs.est.9b00493
10.1016/j.renene.2011.05.002
10.1007/s11157-018-9480-3
10.1098/rstb.2008.0284
10.1016/j.watres.2020.115634
10.1016/j.watres.2015.04.002
10.1016/j.envpol.2020.115755
10.1021/acs.estlett.0c00740
10.1016/j.wasman.2019.08.042
10.1021/acs.est.9b02971
10.1016/j.envpol.2021.116554
10.1021/jf048978t
10.1016/j.envpol.2016.04.018
10.1016/j.jclepro.2022.130383
10.1016/j.watres.2019.03.069
10.1038/s41467-020-14538-z
10.1021/es405721v
10.1016/j.cej.2018.09.180
10.1126/science.aar7734
10.1021/acs.est.5b01931
10.1038/s41586-020-2495-2
10.1126/science.1094559
10.1007/s11157-004-2502-3
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2022.118744
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2022_118744
S0043135422006972
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
7X8
7S9
L.6
ID FETCH-LOGICAL-c438t-b744fa33f374378dfc38d1d36a64b5b9843c6a578e5c74e6eb1006ab6b9512c23
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Thu Jul 10 22:07:21 EDT 2025
Fri Jul 11 09:46:30 EDT 2025
Tue Jul 01 01:21:14 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Fri Feb 23 02:40:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Waste activated sludge
Microplastics
Hydrothermal pretreatment
Adsorption
Physicochemical property
Anaerobic digestion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b744fa33f374378dfc38d1d36a64b5b9843c6a578e5c74e6eb1006ab6b9512c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9994-1385
PQID 2679701554
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718257528
proquest_miscellaneous_2679701554
crossref_citationtrail_10_1016_j_watres_2022_118744
crossref_primary_10_1016_j_watres_2022_118744
elsevier_sciencedirect_doi_10_1016_j_watres_2022_118744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Thompson, Olson, Mitchell, Davis, Rowland, John, McGonigle, Russell (bib0040) 2004; 304
Ding, Mao, Ma, Guo, Zhu (bib0014) 2020; 174
Angelidaki, Sanders (bib0004) 2004
Luo, Chen, Feng (bib0025) 2016; 50
Yang, Zhang, Wang (bib0049) 2015
Velzeboer, Kwadijk, Koelmans (bib0043) 2014; 48
Li, Mei, Chen, Zhang, Dong, Dai, He, Zhou (bib0022) 2019; 157
Zhang, Hamidian, Tubić, Zhang, Fang, Wu, Lam (bib0050) 2021; 274
Rochman, Manzano, Hentschel, Simonich, Hoh (bib0036) 2013; 47
Staples, Adams, Parkerton, Gorsuch, Biddinger, Reinert (bib0038) 1997
Liu, Qian, Wang, Zhan, Lu, Gu, Gao (bib0024) 2019; 53
Zhang, Lu, Li (bib0051) 2021; 21
Murphy, Ewins, Carbonnier, Quinn (bib0028) 2016; 50
Teuten, Saquing, Knappe, Barlaz, Jonsson, Björn, Rowland, Thompson, Galloway, Yamashita, Ochi, Watanuki, Moore, Viet, Tana, Prudente, Boonyatumanond, Zakaria, Akkhavong, Ogata, Hirai, Iwasa, Mizukawa, Hagino, Imamura, Saha, Takada (bib0039) 2009; 364
Chen, Chen, Nasikai, Luo, Zhang (bib0010) 2021; 190
Feng, Duan, Sun, Ma, Wang, Li, Tian, Wang, Yuan (bib0016) 2021; 275
Zhang, Chen (bib0053) 2020
Zhao, Zhan, Xie, Gao (bib0055) 2018; 207
Arthur, Baker, Bamford (bib0006) 2009
Shieh, Zhang, Husted, Kristufek, Xiong, Lundberg, Lem, Veysset, Sun, Nelson, Plata, Johnson (bib0037) 2020; 583
Usman, Ren, Ji, O-Thong, Qian, Luo, Zhang (bib0042) 2020; 388
Chand, Kohansal, Toor, Pedersen, Vollertsen (bib0009) 2022; 335
Wang, Wong, Chen, Lu, Wang, Zeng (bib0044) 2018; 139
Fang, Huang, Dykstra, Jiang, Pavlostathis, Tang (bib0015) 2019; 54
Pascall, Zabik, Zabik, Hernandez (bib0001) 2004; 53
Zhu, Zhao, Bittar, Stubbins, Li (bib0056) 2020; 383
Chen, Rao, Cao, Shi, Hao, Luo, Zhang (bib0011) 2019; 357
Rochman (bib0035) 2018; 360
Katsnelson (bib0020) 2015
Qiao, Yan, Ye, Sun, Wang, Zhang (bib0032) 2011; 36
Ariesyady, Ito, Okabe (bib0005) 2007; 41
Zhang, Peng, Peng, Wang, Lu, He, Wang (bib0052) 2021
Hüffer, Hofmann (bib0019) 2016; 214
Tourinho, Kočí, Loureiro, van Gestel (bib0041) 2019; 252
Peccia, Westerhoff (bib0031) 2015; 49
Zhang, Hu, Lee, Chang, Lee (bib0017) 2017
Mahon, O'Connell, Healy, O'Connor, Officer, Nash, Morrison (bib0026) 2017; 51
Min, Cuiffi, Mathers (bib0027) 2020; 11
Wei, Huang, Sun, Dai, Ni (bib0046) 2019; 53
Liu, Liu, Zhu, Wang, Zhao (bib0023) 2019; 214
Chen, Zhang, Rao, Jing, Luo, Zhang (bib0012) 2017; 10
Zhao, Xia, Zhan, Xie, Gao, Wang (bib0054) 2018; 7
Ambye-Jensen, Thomsen, Kádár, Meyer (bib0003) 2013; 6
Wang, Xie, Ning, Liu, Wang (bib0045) 2019; 99
Lassen, Hansen, Magnusson, Hartmann, Jensen, Nielsen, Brinch (bib0021) 2015
Zou, Liu, Zhang, Yuan (bib0057) 2020; 248
He, Chen, Shao, Zhang, Lü (bib0018) 2019; 159
Brandon, Goldstein, Ohman (bib0008) 2016; 110
Raju, Carbery, Kuttykattil, Senathirajah, Subashchandrabose, Evans, Thavamani (bib0033) 2018
Wei, Huang, Sun, Wang, Wu, Ni (bib0047) 2019; 53
Ni, Zhu, Li, Yan, Wei, Xu, Xia, Dai, Sun (bib0029) 2020; 7
Razanajatovo, Ding, Zhang, Jiang, Zou (bib0034) 2018; 136
Eaton, A.D., Clesceri, L.S., Greenberg, A.E., 2014. Standard methods: for the examination of water and wastewater.
Oberoi, Jia, Zhang, Khanal, Lu (bib0030) 2019; 53
Dang, Wang, Huang, Wang, Xing (bib0013) 2022; 1
Xu, Liu, Cryder, Huang, Lu, He, Wang, Lu, Brookes, Tang, Gan, Xu (bib0048) 2019; 50
Alsewailem, Almutabaqani (bib0002) 2013; 3
Liu (10.1016/j.watres.2022.118744_bib0023) 2019; 214
Razanajatovo (10.1016/j.watres.2022.118744_bib0034) 2018; 136
Mahon (10.1016/j.watres.2022.118744_bib0026) 2017; 51
Yang (10.1016/j.watres.2022.118744_bib0049) 2015
Zhang (10.1016/j.watres.2022.118744_bib0017) 2017
Rochman (10.1016/j.watres.2022.118744_bib0036) 2013; 47
Tourinho (10.1016/j.watres.2022.118744_bib0041) 2019; 252
He (10.1016/j.watres.2022.118744_bib0018) 2019; 159
Chen (10.1016/j.watres.2022.118744_bib0012) 2017; 10
Katsnelson (10.1016/j.watres.2022.118744_bib0020) 2015
Qiao (10.1016/j.watres.2022.118744_bib0032) 2011; 36
Staples (10.1016/j.watres.2022.118744_bib0038) 1997
Brandon (10.1016/j.watres.2022.118744_bib0008) 2016; 110
Ni (10.1016/j.watres.2022.118744_bib0029) 2020; 7
Raju (10.1016/j.watres.2022.118744_bib0033) 2018
Wei (10.1016/j.watres.2022.118744_bib0047) 2019; 53
Chen (10.1016/j.watres.2022.118744_bib0011) 2019; 357
10.1016/j.watres.2022.118744_bib0007
Li (10.1016/j.watres.2022.118744_bib0022) 2019; 157
Velzeboer (10.1016/j.watres.2022.118744_bib0043) 2014; 48
Fang (10.1016/j.watres.2022.118744_bib0015) 2019; 54
Zhang (10.1016/j.watres.2022.118744_bib0051) 2021; 21
Wang (10.1016/j.watres.2022.118744_bib0045) 2019; 99
Chand (10.1016/j.watres.2022.118744_bib0009) 2022; 335
Oberoi (10.1016/j.watres.2022.118744_bib0030) 2019; 53
Zhang (10.1016/j.watres.2022.118744_bib0053) 2020
Teuten (10.1016/j.watres.2022.118744_bib0039) 2009; 364
Zhao (10.1016/j.watres.2022.118744_bib0054) 2018; 7
Dang (10.1016/j.watres.2022.118744_bib0013) 2022; 1
Zhang (10.1016/j.watres.2022.118744_bib0050) 2021; 274
Xu (10.1016/j.watres.2022.118744_bib0048) 2019; 50
Chen (10.1016/j.watres.2022.118744_bib0010) 2021; 190
Liu (10.1016/j.watres.2022.118744_bib0024) 2019; 53
Angelidaki (10.1016/j.watres.2022.118744_bib0004) 2004
Peccia (10.1016/j.watres.2022.118744_bib0031) 2015; 49
Alsewailem (10.1016/j.watres.2022.118744_bib0002) 2013; 3
Usman (10.1016/j.watres.2022.118744_bib0042) 2020; 388
Feng (10.1016/j.watres.2022.118744_bib0016) 2021; 275
Hüffer (10.1016/j.watres.2022.118744_bib0019) 2016; 214
Min (10.1016/j.watres.2022.118744_bib0027) 2020; 11
Rochman (10.1016/j.watres.2022.118744_bib0035) 2018; 360
Ariesyady (10.1016/j.watres.2022.118744_bib0005) 2007; 41
Arthur (10.1016/j.watres.2022.118744_bib0006) 2009
Ambye-Jensen (10.1016/j.watres.2022.118744_bib0003) 2013; 6
Ding (10.1016/j.watres.2022.118744_bib0014) 2020; 174
Wang (10.1016/j.watres.2022.118744_bib0044) 2018; 139
Zhang (10.1016/j.watres.2022.118744_bib0052) 2021
Zhu (10.1016/j.watres.2022.118744_bib0056) 2020; 383
Pascall (10.1016/j.watres.2022.118744_bib0001) 2004; 53
Murphy (10.1016/j.watres.2022.118744_bib0028) 2016; 50
Lassen (10.1016/j.watres.2022.118744_bib0021) 2015
Shieh (10.1016/j.watres.2022.118744_bib0037) 2020; 583
Zou (10.1016/j.watres.2022.118744_bib0057) 2020; 248
Zhao (10.1016/j.watres.2022.118744_bib0055) 2018; 207
Thompson (10.1016/j.watres.2022.118744_bib0040) 2004; 304
Wei (10.1016/j.watres.2022.118744_bib0046) 2019; 53
Luo (10.1016/j.watres.2022.118744_bib0025) 2016; 50
References_xml – volume: 207
  start-page: 742
  year: 2018
  end-page: 752
  ident: bib0055
  article-title: Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: characterization and potential applications
  publication-title: Chemosphere
– volume: 50
  start-page: 5800
  year: 2016
  end-page: 5808
  ident: bib0028
  article-title: Wastewater treatment Works (WwTW) as a source of microplastics in the aquatic environment
  publication-title: Environ. Sci. Technol.
– volume: 383
  year: 2020
  ident: bib0056
  article-title: Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts
  publication-title: J. Hazard. Mater.
– volume: 364
  start-page: 2027
  year: 2009
  end-page: 2045
  ident: bib0039
  article-title: Transport and release of chemicals from plastics to the environment and to wildlife
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
– volume: 53
  start-page: 164
  year: 2004
  end-page: 169
  ident: bib0001
  article-title: Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films
  publication-title: J. Agric. Food Chem.
– volume: 388
  year: 2020
  ident: bib0042
  article-title: Characterization and biogas production potentials of aqueous phase produced from hydrothermal carbonization of biomass – major components and their binary mixtures
  publication-title: Chem. Eng. J.
– volume: 21
  year: 2021
  ident: bib0051
  article-title: Isolation and identification of a novel allelochemical from ruppia maritima extract against the cyanobacteria microcystis aeruginosa
  publication-title: Environ. Technol. Innov.
– year: 2009
  ident: bib0006
  publication-title: Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris
– year: 2004
  ident: bib0004
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 136
  start-page: 516
  year: 2018
  end-page: 523
  ident: bib0034
  article-title: Sorption and desorption of selected pharmaceuticals by polyethylene microplastics
  publication-title: Mar. Pollut. Bull.
– volume: 47
  start-page: 13976
  year: 2013
  end-page: 13984
  ident: bib0036
  article-title: Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment
  publication-title: Environ. Sci. Technol.
– volume: 304
  start-page: 838
  year: 2004
  ident: bib0040
  article-title: Lost at sea: where is all the plastic?
  publication-title: Science
– volume: 11
  start-page: 727
  year: 2020
  ident: bib0027
  article-title: Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure
  publication-title: Nat. Commun.
– volume: 50
  start-page: 2175
  year: 2019
  end-page: 2222
  ident: bib0048
  article-title: Microplastics in the soil environment: occurrence, risks, interactions and fate-a review view supplementary material microplastics in the soil environment: occurrence, risks, interactions and fate-a review
  publication-title: Environ. Sci. Technol.
– volume: 157
  start-page: 228
  year: 2019
  end-page: 237
  ident: bib0022
  article-title: Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process
  publication-title: Water Res.
– volume: 248
  year: 2020
  ident: bib0057
  article-title: Adsorption of three bivalent metals by four chemical distinct microplastics
  publication-title: Chemosphere
– year: 2015
  ident: bib0020
  article-title: News feature: microplastics present pollution puzzle
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 11
  year: 2022
  end-page: 22
  ident: bib0013
  article-title: Key knowledge gaps for One Health approach to mitigate nanoplastic risks
  publication-title: Eco Environ. Health
– year: 2018
  ident: bib0033
  article-title: Transport and fate of microplastics in wastewater treatment plants: implications to environmental health
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 357
  start-page: 367
  year: 2019
  end-page: 375
  ident: bib0011
  article-title: Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields
  publication-title: Chem. Eng. J.
– volume: 335
  year: 2022
  ident: bib0009
  article-title: Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge
  publication-title: J. Clean. Prod.
– volume: 214
  start-page: 194
  year: 2016
  end-page: 201
  ident: bib0019
  article-title: Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution
  publication-title: Environ. Pollut.
– volume: 41
  start-page: 1554
  year: 2007
  end-page: 1568
  ident: bib0005
  article-title: Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester
  publication-title: Water Res.
– year: 1997
  ident: bib0038
  article-title: Aquatic toxicity of eighteen phthalate esters
  publication-title: Environmental Toxicology and Chemistry
– volume: 3
  start-page: 93
  year: 2013
  end-page: 97
  ident: bib0002
  article-title: Activation energy for the pyrolysis of polymer wastes
  publication-title: Eur. Chem. Bull.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib0012
  article-title: Methane potentials of wastewater generated from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and microbial community compositions
  publication-title: Biotechnol. Biofuels
– volume: 174
  year: 2020
  ident: bib0014
  article-title: High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants
  publication-title: Water Res.
– reference: Eaton, A.D., Clesceri, L.S., Greenberg, A.E., 2014. Standard methods: for the examination of water and wastewater.
– volume: 7
  start-page: 961
  year: 2020
  end-page: 967
  ident: bib0029
  article-title: Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature
  publication-title: Environ. Sci. Technol. Lett.
– volume: 252
  start-page: 1246
  year: 2019
  end-page: 1256
  ident: bib0041
  article-title: Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation
  publication-title: Environ. Pollut.
– volume: 7
  start-page: 1464
  year: 2018
  end-page: 1473
  ident: bib0054
  article-title: Hydrothermal treatment of e-waste plastics for tertiary recycling: product slate and decomposition mechanisms
  publication-title: ACS Sustain. Chem. & Eng.
– volume: 159
  start-page: 38
  year: 2019
  end-page: 45
  ident: bib0018
  article-title: Municipal solid waste (MSW)landfill: a source of microplastics? -Evidence of microplastics in landfill leachate
  publication-title: Water Res.
– volume: 50
  start-page: 6921
  year: 2016
  end-page: 6929
  ident: bib0025
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
– year: 2017
  ident: bib0017
  article-title: Sludge treatment: current research trends
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 146
  year: 2019
  end-page: 153
  ident: bib0045
  article-title: Thermal degradation kinetics study of polyvinyl chloride (PVC) sheath for new and aged cables
  publication-title: Waste Manag.
– volume: 190
  year: 2021
  ident: bib0010
  article-title: Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM)
  publication-title: Water Res.
– volume: 214
  start-page: 688
  year: 2019
  end-page: 694
  ident: bib0023
  article-title: Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry
  publication-title: Chemosphere
– year: 2020
  ident: bib0053
  article-title: Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 8271
  year: 2015
  end-page: 8276
  ident: bib0031
  article-title: We should expect more out of our sewage sludge
  publication-title: Environ. Sci. Technol.
– volume: 274
  year: 2021
  ident: bib0050
  article-title: Understanding plastic degradation and microplastic formation in the environment: a review
  publication-title: Environ. Pollut.
– volume: 54
  start-page: 1147
  year: 2019
  end-page: 1156
  ident: bib0015
  article-title: Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 2509
  year: 2019
  end-page: 2517
  ident: bib0047
  article-title: Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 7234
  year: 2019
  end-page: 7264
  ident: bib0030
  article-title: Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 9604
  year: 2019
  end-page: 9613
  ident: bib0046
  article-title: Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge
  publication-title: Environ. Sci. Technol.
– year: 2021
  ident: bib0052
  article-title: Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2013
  ident: bib0003
  article-title: Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment
  publication-title: Biotechnol. Biofuels
– volume: 48
  start-page: 4869
  year: 2014
  end-page: 4876
  ident: bib0043
  article-title: Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes
  publication-title: Environ. Sci. Technol.
– volume: 360
  start-page: 28
  year: 2018
  end-page: 29
  ident: bib0035
  article-title: Microplastics research—from sink to source
  publication-title: Science
– volume: 275
  year: 2021
  ident: bib0016
  article-title: Insights on the inhibition of anaerobic digestion performances under short-term exposure of metal-doped nanoplastics via Methanosarcina acetivorans
  publication-title: Environ. Pollut.
– year: 2015
  ident: bib0021
  article-title: Microplastics - Occurrence, Effects and Sources of Releases to the Environment in Denmark
– volume: 53
  start-page: 3579
  year: 2019
  end-page: 3588
  ident: bib0024
  article-title: New insights into the aging behavior of microplastics accelerated by advanced oxidation processes
  publication-title: Environ. Sci. Technol.
– volume: 583
  start-page: 542
  year: 2020
  end-page: 547
  ident: bib0037
  article-title: Cleavable comonomers enable degradable, recyclable thermoset plastics
  publication-title: Nature
– volume: 36
  start-page: 3313
  year: 2011
  end-page: 3318
  ident: bib0032
  article-title: Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment
  publication-title: Renew. Energy
– volume: 110
  start-page: 299
  year: 2016
  end-page: 308
  ident: bib0008
  article-title: Long-term aging and degradation of microplastic particles: comparing
  publication-title: Mar. Pollut. Bull.
– volume: 139
  start-page: 208
  year: 2018
  end-page: 219
  ident: bib0044
  article-title: Interaction of toxic chemicals with microplastics: a critical review
  publication-title: Water Res.
– volume: 51
  start-page: 810
  year: 2017
  end-page: 818
  ident: bib0026
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
– year: 2015
  ident: bib0049
  article-title: Current state of sludge production, management, treatment and disposal in China
  publication-title: Water Res.
– volume: 51
  start-page: 810
  year: 2017
  ident: 10.1016/j.watres.2022.118744_bib0026
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04048
– volume: 53
  start-page: 2509
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0047
  article-title: Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07069
– volume: 1
  start-page: 11
  year: 2022
  ident: 10.1016/j.watres.2022.118744_bib0013
  article-title: Key knowledge gaps for One Health approach to mitigate nanoplastic risks
  publication-title: Eco Environ. Health
  doi: 10.1016/j.eehl.2022.02.001
– volume: 47
  start-page: 13976
  year: 2013
  ident: 10.1016/j.watres.2022.118744_bib0036
  article-title: Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403605f
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.watres.2022.118744_bib0012
  article-title: Methane potentials of wastewater generated from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and microbial community compositions
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0830-0
– volume: 383
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0056
  article-title: Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121065
– volume: 110
  start-page: 299
  year: 2016
  ident: 10.1016/j.watres.2022.118744_bib0008
  article-title: Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.06.048
– volume: 21
  year: 2021
  ident: 10.1016/j.watres.2022.118744_bib0051
  article-title: Isolation and identification of a novel allelochemical from ruppia maritima extract against the cyanobacteria microcystis aeruginosa
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2020.101301
– volume: 50
  start-page: 2175
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0048
  article-title: Microplastics in the soil environment: occurrence, risks, interactions and fate-a review view supplementary material microplastics in the soil environment: occurrence, risks, interactions and fate-a review
  publication-title: Environ. Sci. Technol.
  doi: 10.1080/10643389.2019.1694822
– volume: 54
  start-page: 1147
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0015
  article-title: Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03269
– volume: 159
  start-page: 38
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0018
  article-title: Municipal solid waste (MSW)landfill: a source of microplastics? -Evidence of microplastics in landfill leachate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.060
– volume: 252
  start-page: 1246
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0041
  article-title: Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.06.030
– volume: 248
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0057
  article-title: Adsorption of three bivalent metals by four chemical distinct microplastics
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126064
– volume: 7
  start-page: 1464
  year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0054
  article-title: Hydrothermal treatment of e-waste plastics for tertiary recycling: product slate and decomposition mechanisms
  publication-title: ACS Sustain. Chem. & Eng.
  doi: 10.1021/acssuschemeng.8b05147
– volume: 190
  year: 2021
  ident: 10.1016/j.watres.2022.118744_bib0010
  article-title: Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116704
– volume: 53
  start-page: 7234
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0030
  article-title: Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01131
– volume: 139
  start-page: 208
  year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0044
  article-title: Interaction of toxic chemicals with microplastics: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.04.003
– volume: 50
  start-page: 6921
  year: 2016
  ident: 10.1016/j.watres.2022.118744_bib0025
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00003
– volume: 136
  start-page: 516
  year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0034
  article-title: Sorption and desorption of selected pharmaceuticals by polyethylene microplastics
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.09.048
– volume: 50
  start-page: 5800
  year: 2016
  ident: 10.1016/j.watres.2022.118744_bib0028
  article-title: Wastewater treatment Works (WwTW) as a source of microplastics in the aquatic environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05416
– volume: 41
  start-page: 1554
  year: 2007
  ident: 10.1016/j.watres.2022.118744_bib0005
  article-title: Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.12.036
– volume: 388
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0042
  article-title: Characterization and biogas production potentials of aqueous phase produced from hydrothermal carbonization of biomass – major components and their binary mixtures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124201
– year: 1997
  ident: 10.1016/j.watres.2022.118744_bib0038
  article-title: Aquatic toxicity of eighteen phthalate esters
– volume: 214
  start-page: 688
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0023
  article-title: Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.174
– volume: 6
  year: 2013
  ident: 10.1016/j.watres.2022.118744_bib0003
  article-title: Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-116
– year: 2015
  ident: 10.1016/j.watres.2022.118744_bib0020
  article-title: News feature: microplastics present pollution puzzle
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504135112
– volume: 207
  start-page: 742
  year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0055
  article-title: Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: characterization and potential applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.156
– volume: 53
  start-page: 3579
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0024
  article-title: New insights into the aging behavior of microplastics accelerated by advanced oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00493
– volume: 36
  start-page: 3313
  year: 2011
  ident: 10.1016/j.watres.2022.118744_bib0032
  article-title: Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.05.002
– year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0033
  article-title: Transport and fate of microplastics in wastewater treatment plants: implications to environmental health
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-018-9480-3
– volume: 364
  start-page: 2027
  year: 2009
  ident: 10.1016/j.watres.2022.118744_bib0039
  article-title: Transport and release of chemicals from plastics to the environment and to wildlife
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
  doi: 10.1098/rstb.2008.0284
– year: 2009
  ident: 10.1016/j.watres.2022.118744_bib0006
– volume: 174
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0014
  article-title: High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115634
– year: 2015
  ident: 10.1016/j.watres.2022.118744_bib0049
  article-title: Current state of sludge production, management, treatment and disposal in China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.002
– year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0053
  article-title: Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review
  publication-title: Chem. Eng. J.
– volume: 275
  year: 2021
  ident: 10.1016/j.watres.2022.118744_bib0016
  article-title: Insights on the inhibition of anaerobic digestion performances under short-term exposure of metal-doped nanoplastics via Methanosarcina acetivorans
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115755
– year: 2015
  ident: 10.1016/j.watres.2022.118744_bib0021
– volume: 7
  start-page: 961
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0029
  article-title: Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.0c00740
– volume: 99
  start-page: 146
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0045
  article-title: Thermal degradation kinetics study of polyvinyl chloride (PVC) sheath for new and aged cables
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.08.042
– volume: 53
  start-page: 9604
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0046
  article-title: Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02971
– volume: 274
  year: 2021
  ident: 10.1016/j.watres.2022.118744_bib0050
  article-title: Understanding plastic degradation and microplastic formation in the environment: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116554
– volume: 53
  start-page: 164
  year: 2004
  ident: 10.1016/j.watres.2022.118744_bib0001
  article-title: Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf048978t
– volume: 214
  start-page: 194
  year: 2016
  ident: 10.1016/j.watres.2022.118744_bib0019
  article-title: Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.04.018
– volume: 335
  year: 2022
  ident: 10.1016/j.watres.2022.118744_bib0009
  article-title: Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130383
– year: 2021
  ident: 10.1016/j.watres.2022.118744_bib0052
  article-title: Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes
  publication-title: Environ. Sci. Technol.
– volume: 157
  start-page: 228
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0022
  article-title: Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.069
– volume: 11
  start-page: 727
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0027
  article-title: Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14538-z
– volume: 48
  start-page: 4869
  year: 2014
  ident: 10.1016/j.watres.2022.118744_bib0043
  article-title: Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405721v
– volume: 357
  start-page: 367
  year: 2019
  ident: 10.1016/j.watres.2022.118744_bib0011
  article-title: Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.180
– ident: 10.1016/j.watres.2022.118744_bib0007
– volume: 360
  start-page: 28
  year: 2018
  ident: 10.1016/j.watres.2022.118744_bib0035
  article-title: Microplastics research—from sink to source
  publication-title: Science
  doi: 10.1126/science.aar7734
– volume: 49
  start-page: 8271
  year: 2015
  ident: 10.1016/j.watres.2022.118744_bib0031
  article-title: We should expect more out of our sewage sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01931
– volume: 583
  start-page: 542
  year: 2020
  ident: 10.1016/j.watres.2022.118744_bib0037
  article-title: Cleavable comonomers enable degradable, recyclable thermoset plastics
  publication-title: Nature
  doi: 10.1038/s41586-020-2495-2
– volume: 304
  start-page: 838
  year: 2004
  ident: 10.1016/j.watres.2022.118744_bib0040
  article-title: Lost at sea: where is all the plastic?
  publication-title: Science
  doi: 10.1126/science.1094559
– volume: 3
  start-page: 93
  issue: 1
  year: 2013
  ident: 10.1016/j.watres.2022.118744_bib0002
  article-title: Activation energy for the pyrolysis of polymer wastes
  publication-title: Eur. Chem. Bull.
– year: 2004
  ident: 10.1016/j.watres.2022.118744_bib0004
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-004-2502-3
– year: 2017
  ident: 10.1016/j.watres.2022.118744_bib0017
  article-title: Sludge treatment: current research trends
  publication-title: Bioresour. Technol.
SSID ssj0002239
Score 2.545291
Snippet •MPs’ specific surface area increased while relative crystallinity decreased after HTP.•Poor thermal stability groups of MPs were converted to ketone or...
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118744
SubjectTerms activated sludge
Adsorption
anaerobes
Anaerobic digestion
bisphenol A
crystal structure
dechlorination
dibutyl phthalate
dimethyl phthalate
gas production (biological)
hot water treatment
hydrophilicity
Hydrothermal pretreatment
methane production
methanogens
Methanosaeta
Microplastics
ofloxacin
Physicochemical property
pollution
poly(vinyl chloride)
polyethylene
polystyrenes
proteolysis
surface area
toxicity
transportation
Waste activated sludge
water
Title The changes of microplastics’ behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment
URI https://dx.doi.org/10.1016/j.watres.2022.118744
https://www.proquest.com/docview/2679701554
https://www.proquest.com/docview/2718257528
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsUwEA2iG12IT3wTwW21No-mSxHlquhKwV3Jq3pFey_34cWN-AN-gL_nlzjTNr5ABRddNMyUNJPMTMg5E0K2RGJNbJSMtBMy4sb5KGOxi7iIE51lxvKKFHZ6JlsX_PhSXI6R_cCFQVhl4_trn15566ZlpxnNnW67jRxfCH5M8AR3xVmKfpjzFGf59uMHzAPCXxZOmVE60OcqjNdIIyEDdolJso33bnP-U3j65qir6HM4Q6abtJHu1T2bJWO-nCNTn4oJzpNnsDitebx92inoHULtupAcYyHm16cXGhj5tF1S7fqdXuUtqC4dPNpjQSZLXXXghO3wiREoe4rUh3tISR3t3w7dlQd9BxPCUfNArx9cr-Jw3UHvELsYcOsL5OLw4Hy_FTWXLUSWMzWIDPx8oRkrGOQUqXKFZcrtOia15EaYTHFmpYb17YVNuZfg42HYtZEGcrTEJmyRjJed0i8RqrgVsYmdVbHiTguNxZCLWBeQPGofq2XCwhjntqlEjhdi3OYBcnaT15bJ0TJ5bZllEr1rdetKHH_Ip8F8-ZcZlUOw-ENzM1g7h8WGJyi69J0hCMk0SzHL_E0Goj34QZGolX_3YJVM4lsNNFwj44Pe0K9D8jMwG9Xs3iATe0cnrbM3HAUIhQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLXQzAK6qIBSlUKLkdgG0vgRZ4kQaHjNCiR2ll9pp4LMaB6g2fEDfEB_r1_CvUmMClJBYpFN4hs5vs65x_I914TsiMzZ1CqZGC9kwq0PScFSn3CRZqYorOO1KOy8L3uX_ORKXC2Qg6iFwbTKFvsbTK_Rur2z147m3mgwQI0vBD8meIar4iIHHO5idSrRId3949Ne_wmQIQIWcaMZDaKCrk7zujOoyYCFYpbt4tHbnP8vQr3A6joAHS2Tjy1zpPtN51bIQqhWyYd_6gl-Ig_gdNpIeSd0WNIbzLYbAT_GWsx_7__QKMqng4oaPxmOa8CgpvJwmYA1mRz19Z4T3odX3IFxoKh-uAVW6unkeuZ_BrD3MCc8tXP6a-7HtYzrBnqH6YsxdX2NXB4dXhz0kva8hcRxpqaJhY8vDWMlA1qRK186pvwPz6SR3ApbKM6cNPCLB-FyHiTAPIy8sdICTctcxj6TTjWswhdCFXcital3KlXcG2GwHnKZmhL4owmpWicsjrF2bTFyPBPjWsess9-68YxGz-jGM-skebIaNcU43mifR_fpZ5NKQ7x4w3I7elvD_4abKKYKwxk0knmRI9F8rQ0EfIBCkamv7-7BFlnsXZyf6bPj_ukGWcInTd7hJulMx7PwDbjQ1H5v5_ojGAkLNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+changes+of+microplastics%E2%80%99+behavior+in+adsorption+and+anaerobic+digestion+of+waste+activated+sludge+induced+by+hydrothermal+pretreatment&rft.jtitle=Water+research+%28Oxford%29&rft.au=Jiang%2C+Chao&rft.au=Ni%2C+Bing-Jie&rft.au=Zheng%2C+Xiaowei&rft.au=Lu%2C+Bei&rft.date=2022-08-01&rft.issn=0043-1354&rft.volume=221+p.118744-&rft_id=info:doi/10.1016%2Fj.watres.2022.118744&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon