Temporal acclimation of Microchloropsis gaditana CCMP526 in response to hypersalinity

•Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stres...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 254; pp. 23 - 30
Main Authors Karthikaichamy, Anbarasu, Deore, Pranali, Srivastava, Sanjeeva, Coppel, Ross, Bulach, Dieter, Beardall, John, Noronha, Santosh
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stress. Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.
AbstractList Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.
Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fᵥ/Fₘ, rETRₘₐₓ and Iₖ) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.
•Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stress. Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.
Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (F /F , rETR and I ) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.
Author Beardall, John
Noronha, Santosh
Karthikaichamy, Anbarasu
Coppel, Ross
Deore, Pranali
Srivastava, Sanjeeva
Bulach, Dieter
Author_xml – sequence: 1
  givenname: Anbarasu
  surname: Karthikaichamy
  fullname: Karthikaichamy, Anbarasu
  organization: IITB-Monash Research Academy, IIT Bombay, Mumbai 400076, India
– sequence: 2
  givenname: Pranali
  surname: Deore
  fullname: Deore, Pranali
  organization: IITB-Monash Research Academy, IIT Bombay, Mumbai 400076, India
– sequence: 3
  givenname: Sanjeeva
  surname: Srivastava
  fullname: Srivastava, Sanjeeva
  organization: Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
– sequence: 4
  givenname: Ross
  surname: Coppel
  fullname: Coppel, Ross
  organization: Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
– sequence: 5
  givenname: Dieter
  surname: Bulach
  fullname: Bulach, Dieter
  organization: Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia
– sequence: 6
  givenname: John
  surname: Beardall
  fullname: Beardall, John
  organization: School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
– sequence: 7
  givenname: Santosh
  surname: Noronha
  fullname: Noronha, Santosh
  email: noronha@iitb.ac.in
  organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29413927$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1v2zAQhokiReO4_QsBxy5S-SFRJNChhdEvIEE7JDNBUceahkyqJF3A_740HC9dPN3yPneH571DNyEGQOiekpYSKj7s2tHHVMBuW0aobAltiWCv0IrKgTdMDeIGrYgSpJE9627RXc47QginA3uDbpnqKFdsWKHnJ9gvMZkZG2tnvzfFx4Cjw4_epmi3c0xxyT7j32byxQSDN5vHXz0T2AecIC8xZMAl4u1xgZTN7IMvx7fotTNzhncvc42ev3552nxvHn5--7H5_NDYjsvSjHyywghHhZLQmfr55MjolFHSqs4wR9gwOWoNH50brJHGUOA9UxMdXC8dX6P3571Lin8OkIve-2xhnk2AeMiaka6XVFZBV6NUKSUkp9XRGt2_RA_jHia9pOolHfXFWg18PAeqopwTOG2rm5O5koyfNSX6VJLe6UtJ-lSSJlTXkiou_sMvF66Cn84gVKd_PSSdrYdgYfIJbNFT9NdW_AOEw7C0
CitedBy_id crossref_primary_10_1016_j_rser_2019_109621
crossref_primary_10_1021_acsomega_1c02786
crossref_primary_10_1016_j_jclepro_2024_143091
crossref_primary_10_1080_09670262_2021_1970234
crossref_primary_10_1111_jpy_12965
crossref_primary_10_3390_biology13090712
crossref_primary_10_1016_j_scitotenv_2024_171909
crossref_primary_10_1111_raq_12592
crossref_primary_10_1016_j_biortech_2019_121945
crossref_primary_10_1080_26388081_2019_1651218
Cites_doi 10.1021/ac60111a017
10.1016/j.bbabio.2012.02.002
10.1016/j.plantsci.2004.07.002
10.1080/09670269910001736172
10.1104/pp.111.4.1293
10.1016/j.fuproc.2014.01.017
10.1007/s00425-009-1097-x
10.1104/pp.73.3.643
10.1007/s10811-013-0060-1
10.3389/fmicb.2014.00060
10.1016/j.nbt.2011.12.002
10.1146/annurev.pp.30.060179.001445
10.1016/j.fuproc.2015.10.035
10.1046/j.1529-8817.1999.3520403.x
10.1016/j.biortech.2011.02.100
10.2216/15-60.1
10.2216/i0031-8884-14-4-205.1
10.1093/mp/sst120
10.1007/BF00393515
10.1016/j.biortech.2014.12.001
10.1146/annurev.pp.41.060190.000321
10.1016/j.plaphy.2007.05.009
10.1016/j.biombioe.2013.03.026
10.1111/j.0022-3646.1989.00686.x
10.1111/jpy.12300
10.1111/1462-2920.13493
10.1016/j.biotechadv.2013.07.011
10.1016/S0144-8609(99)00038-2
10.1128/EC.00183-14
10.3354/meps160035
10.1016/S0005-2728(01)00157-8
10.1263/jbb.101.223
10.1002/elsc.201100204
10.1016/S0021-9258(19)52451-6
10.3389/fbioe.2015.00053
10.1016/j.renene.2015.02.002
10.1042/bst0110591
10.5483/BMBRep.2005.38.4.481
10.1016/j.jchromb.2016.01.050
10.1007/s00253-011-3170-1
10.1007/BF01869700
10.1016/S0176-1617(97)80030-2
10.1128/JB.95.4.1461-1468.1968
10.1111/j.1749-7345.2011.00538.x
10.1104/pp.82.2.594
10.1007/s00253-004-1647-x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2018.01.062
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 30
ExternalDocumentID 29413927
10_1016_j_biortech_2018_01_062
S0960852418300762
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c438t-b3dc6a6f1698e4a873df0bf9a98c94a2f027df1ca3bff7ca8aa1e3529d17f58f3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 01:05:45 EDT 2025
Thu Jul 10 18:12:52 EDT 2025
Thu Apr 03 08:16:56 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 02:06:55 EDT 2025
Fri Feb 23 02:46:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microchloropsis gaditana
Carbohydrate
Temporal
Growth
Lipid
Salinity
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b3dc6a6f1698e4a873df0bf9a98c94a2f027df1ca3bff7ca8aa1e3529d17f58f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29413927
PQID 1999683100
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2045818018
proquest_miscellaneous_1999683100
pubmed_primary_29413927
crossref_citationtrail_10_1016_j_biortech_2018_01_062
crossref_primary_10_1016_j_biortech_2018_01_062
elsevier_sciencedirect_doi_10_1016_j_biortech_2018_01_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Subramanyam, Jolley, Thangaraj, Nellaepalli, Webber, Fromme (b0225) 2010; 231
Guillard (b0085) 1975
Sukenik, Carmeli, Berner (b0235) 1989; 25
Takagi, Yoshida (b0240) 2006; 101
Corteggiani Carpinelli, Telatin, Vitulo, Forcato, D'Angelo, Schiavon, Vezzi, Giacometti, Morosinotto, Valle (b0030) 2014; 7
Campbell, Oquist (b0025) 1996; 111
Hillebrand, Sommer (b0100) 1997
Sudhir, Pogoryelov, Kovacs, Garab, Murthy (b0230) 2005; 38
Lambrev, Miloslavina, Jahns, Holzwarth (b0130) 2012; 1817
Markou, Nerantzis (b0155) 2013; 31
Katz, Pick (b0120) 2001; 1504
Hastings, Gutknecht (b0090) 1976; 28
Avron (b0010) 1992; vol. 1
Šoštarič, Klinar, Bricelj, Golob, Berovič, Likozar (b0210) 2012; 29
Paasche, Johansson, Evensen (b0170) 1975; 14
Specht, Mayfield (b0215) 2014; 5
Huertas, Montero, Lubián (b0105) 2000; 22
Smith, Raven (b0205) 1979; 30
Simionato, Sforza, Corteggiani Carpinelli, Bertucco, Giacometti, Morosinotto (b0200) 2011; 102
Bartley, Boeing, Corcoran, Holguin, Schaub (b0015) 2013; 54
Hillebrand, Dürselen, Kirschtel, Pollingher, Zohary (b0095) 1999; 35
Martínez-Roldán, Perales-Vela, Cañizares-Villanueva, Torzillo (b0160) 2014; 26
Scholz, Weiss, Jinkerson, Jing, Roth, Goodenough, Posewitz, Gerken (b0195) 2014; 13
Dubois, Gilles, Hamilton, Roberts, Smith (b0035) 1956; 28
Goyal (b0070) 2007; 45
Yoshida, Igarashi, Wakatsuki, Miyamoto, Hirata (b0250) 2004; 167
Satoh, Smith, Fork (b0190) 1983; 73
Bérubé, Dodge, Ford (b0020) 1999; 34
Wang, Chen, Huynh, Chang (b0245) 2015; 184
Fawley, Jameson, Fawley (b0050) 2015; 54
Husic, Tolbert (b0110) 1986; 82
Figueroa, Jiménez, Lubián, Montero, Lebert, Häder (b0055) 1997; 151
Kirst (b0125) 1990; 41
Gu, Lin, Li, Qin, Lin, Huang (b0075) 2012; 43
Gilmour, Hipkins, Webber, Baker, Boney (b0065) 1985; 163
Angell, Mata, Nys, Paul (b0005) 2015; 51
Ra, Kang, Kim, Lee, Kim (b0185) 2015; 80
Lichtenthaler (b0135) 1983; 11
Gessner (b0060) 1971
Likozar, Levec (b0140) 2014; 122
Pal, Khozin-Goldberg, Cohen, Boussiba (b0175) 2011; 90
Lowry, Rosebrough, Farr, Randall (b0150) 1951; 193
Oren (b0165) 2017; 19
Pulz, Gross (b0180) 2004; 65
Likozar, Pohar, Levec (b0145) 2016; 142
Stranska-Zachariasova, Kastanek, Dzuman, Rubert, Godula, Hajslova (b0220) 2016; 1015–1016
Duong, Ahmed, Thomas-Hall, Quigley, Nowak, Schenk (b0040) 2015; 3
Gu, Lin, Li, Tan, Huang, Lin (b0080) 2012; 12
Johnson, Johnson, MacElroy, Speer, Bruff (b0115) 1968; 95
Šoštarič (10.1016/j.biortech.2018.01.062_b0210) 2012; 29
Martínez-Roldán (10.1016/j.biortech.2018.01.062_b0160) 2014; 26
Johnson (10.1016/j.biortech.2018.01.062_b0115) 1968; 95
Avron (10.1016/j.biortech.2018.01.062_b0010) 1992; vol. 1
Duong (10.1016/j.biortech.2018.01.062_b0040) 2015; 3
Gu (10.1016/j.biortech.2018.01.062_b0080) 2012; 12
Guillard (10.1016/j.biortech.2018.01.062_b0085) 1975
Hillebrand (10.1016/j.biortech.2018.01.062_b0100) 1997
Simionato (10.1016/j.biortech.2018.01.062_b0200) 2011; 102
Scholz (10.1016/j.biortech.2018.01.062_b0195) 2014; 13
Katz (10.1016/j.biortech.2018.01.062_b0120) 2001; 1504
Wang (10.1016/j.biortech.2018.01.062_b0245) 2015; 184
Gu (10.1016/j.biortech.2018.01.062_b0075) 2012; 43
Pulz (10.1016/j.biortech.2018.01.062_b0180) 2004; 65
Angell (10.1016/j.biortech.2018.01.062_b0005) 2015; 51
Specht (10.1016/j.biortech.2018.01.062_b0215) 2014; 5
Corteggiani Carpinelli (10.1016/j.biortech.2018.01.062_b0030) 2014; 7
Yoshida (10.1016/j.biortech.2018.01.062_b0250) 2004; 167
Hastings (10.1016/j.biortech.2018.01.062_b0090) 1976; 28
Smith (10.1016/j.biortech.2018.01.062_b0205) 1979; 30
Kirst (10.1016/j.biortech.2018.01.062_b0125) 1990; 41
Markou (10.1016/j.biortech.2018.01.062_b0155) 2013; 31
Figueroa (10.1016/j.biortech.2018.01.062_b0055) 1997; 151
Husic (10.1016/j.biortech.2018.01.062_b0110) 1986; 82
Bérubé (10.1016/j.biortech.2018.01.062_b0020) 1999; 34
Pal (10.1016/j.biortech.2018.01.062_b0175) 2011; 90
Likozar (10.1016/j.biortech.2018.01.062_b0140) 2014; 122
Sukenik (10.1016/j.biortech.2018.01.062_b0235) 1989; 25
Goyal (10.1016/j.biortech.2018.01.062_b0070) 2007; 45
Lichtenthaler (10.1016/j.biortech.2018.01.062_b0135) 1983; 11
Dubois (10.1016/j.biortech.2018.01.062_b0035) 1956; 28
Campbell (10.1016/j.biortech.2018.01.062_b0025) 1996; 111
Lambrev (10.1016/j.biortech.2018.01.062_b0130) 2012; 1817
Fawley (10.1016/j.biortech.2018.01.062_b0050) 2015; 54
Huertas (10.1016/j.biortech.2018.01.062_b0105) 2000; 22
Ra (10.1016/j.biortech.2018.01.062_b0185) 2015; 80
Satoh (10.1016/j.biortech.2018.01.062_b0190) 1983; 73
Stranska-Zachariasova (10.1016/j.biortech.2018.01.062_b0220) 2016; 1015–1016
Subramanyam (10.1016/j.biortech.2018.01.062_b0225) 2010; 231
Paasche (10.1016/j.biortech.2018.01.062_b0170) 1975; 14
Bartley (10.1016/j.biortech.2018.01.062_b0015) 2013; 54
Lowry (10.1016/j.biortech.2018.01.062_b0150) 1951; 193
Hillebrand (10.1016/j.biortech.2018.01.062_b0095) 1999; 35
Gessner (10.1016/j.biortech.2018.01.062_b0060) 1971
Gilmour (10.1016/j.biortech.2018.01.062_b0065) 1985; 163
Oren (10.1016/j.biortech.2018.01.062_b0165) 2017; 19
Sudhir (10.1016/j.biortech.2018.01.062_b0230) 2005; 38
Takagi (10.1016/j.biortech.2018.01.062_b0240) 2006; 101
Likozar (10.1016/j.biortech.2018.01.062_b0145) 2016; 142
References_xml – volume: 65
  start-page: 635
  year: 2004
  end-page: 648
  ident: b0180
  article-title: Valuable products from biotechnology of microalgae
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 167
  start-page: 1335
  year: 2004
  end-page: 1341
  ident: b0250
  article-title: Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in
  publication-title: Plant Sci.
– volume: 31
  start-page: 1532
  year: 2013
  end-page: 1542
  ident: b0155
  article-title: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions
  publication-title: Biotechnol. Adv.
– start-page: 29
  year: 1975
  ident: b0085
  article-title: Culture of phytoplankton for feeding marine invertebrates
  publication-title: Culture of Marine Invertebrate Animals
– volume: 90
  start-page: 1429
  year: 2011
  end-page: 1441
  ident: b0175
  article-title: The effect of light, salinity, and nitrogen availability on lipid production by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 5
  start-page: 60
  year: 2014
  ident: b0215
  article-title: Algae-based oral recombinant vaccines
  publication-title: Front. Microbiol.
– volume: 12
  start-page: 631
  year: 2012
  end-page: 637
  ident: b0080
  article-title: Effect of salinity on growth, biochemical composition, and lipid productivity of
  publication-title: Eng. Life Sci.
– volume: 25
  start-page: 686
  year: 1989
  end-page: 692
  ident: b0235
  article-title: Regulation of fatty acid composition by irradiance level in the eustigmatophyte
  publication-title: J. Phycol.
– volume: 151
  start-page: 6
  year: 1997
  end-page: 15
  ident: b0055
  article-title: Effects of high irradiance and temperature on photosynthesis and photoinhibition in
  publication-title: J. Plant Physiol.
– volume: 82
  start-page: 594
  year: 1986
  end-page: 596
  ident: b0110
  article-title: Effect of osmotic stress on carbon metabolism in
  publication-title: Plant Physiol.
– volume: 142
  start-page: 326
  year: 2016
  end-page: 336
  ident: b0145
  article-title: Transesterification of oil to biodiesel in a continuous tubular reactor with static mixers: modelling reaction kinetics, mass transfer, scale-up and optimization considering fatty acid composition
  publication-title: Fuel Process. Technol.
– volume: 29
  start-page: 325
  year: 2012
  end-page: 331
  ident: b0210
  article-title: Growth, lipid extraction and thermal degradation of the microalga
  publication-title: New Biotechnol.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  ident: b0150
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 591
  year: 1983
  end-page: 592
  ident: b0135
  article-title: Determinations of total carotenoids and chlorophylls
  publication-title: Biochem. Soc. Trans.
– volume: 95
  start-page: 1461
  year: 1968
  end-page: 1468
  ident: b0115
  article-title: Effects of salts on the halophilic alga
  publication-title: J. Bacteriol.
– volume: 41
  start-page: 21
  year: 1990
  end-page: 53
  ident: b0125
  article-title: Salinity tolerance of eukaryotic marine algae
  publication-title: Annu. Rev. Plant Biol.
– volume: 1504
  start-page: 423
  year: 2001
  end-page: 431
  ident: b0120
  article-title: Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga
  publication-title: Biochim. Biophys. Acta
– volume: 111
  start-page: 1293
  year: 1996
  end-page: 1298
  ident: b0025
  article-title: Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms
  publication-title: Plant Physiol.
– volume: 28
  start-page: 263
  year: 1976
  end-page: 275
  ident: b0090
  article-title: Ionic relations and the regulation of turgor pressure in the marine alga,
  publication-title: J. Membr. Biol.
– volume: vol. 1
  start-page: 135
  year: 1992
  end-page: 164
  ident: b0010
  article-title: Osmoregulation
  publication-title: Dunaliella: Physiology, Biochemistry, and Biotechnology
– volume: 54
  start-page: 83
  year: 2013
  end-page: 88
  ident: b0015
  article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga
  publication-title: Biomass Bioenergy
– volume: 73
  start-page: 643
  year: 1983
  end-page: 647
  ident: b0190
  article-title: Effects of salinity on primary processes of photosynthesis in the red alga
  publication-title: Plant Physiol.
– volume: 34
  start-page: 117
  year: 1999
  end-page: 123
  ident: b0020
  article-title: Effects of chronic salt stress on the ultrastructure of
  publication-title: Eur. J. Phycol.
– volume: 43
  start-page: 97
  year: 2012
  end-page: 106
  ident: b0075
  article-title: Effect of salinity change on biomass and biochemical composition of
  publication-title: J. World Aquacult. Soc.
– volume: 19
  start-page: 851
  year: 2017
  end-page: 863
  ident: b0165
  article-title: Glycerol metabolism in hypersaline environments
  publication-title: Environ. Microbiol.
– volume: 51
  start-page: 536
  year: 2015
  end-page: 545
  ident: b0005
  article-title: Indirect and direct effects of salinity on the quantity and quality of total amino acids in
  publication-title: J. Phycol.
– volume: 1015–1016
  start-page: 22
  year: 2016
  end-page: 33
  ident: b0220
  article-title: Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization
  publication-title: J. Chromatogr. B
– volume: 13
  start-page: 1450
  year: 2014
  end-page: 1464
  ident: b0195
  article-title: Ultrastructure and composition of the
  publication-title: Eukaryot. Cell
– volume: 1817
  start-page: 760
  year: 2012
  end-page: 769
  ident: b0130
  article-title: On the relationship between non-photochemical quenching and photoprotection of Photosystem II
  publication-title: Biochim. Biophys. Acta
– volume: 14
  start-page: 205
  year: 1975
  end-page: 211
  ident: b0170
  article-title: An effect of osmotic pressure on the valve morphology of the diatom
  publication-title: Phycologia
– volume: 45
  start-page: 705
  year: 2007
  end-page: 710
  ident: b0070
  article-title: Osmoregulation in
  publication-title: Plant Physiol. Biochem.
– volume: 7
  start-page: 323
  year: 2014
  end-page: 335
  ident: b0030
  article-title: Chromosome scale genome assembly and transcriptome profiling of
  publication-title: Mol. Plant
– volume: 3
  start-page: 53
  year: 2015
  ident: b0040
  article-title: High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel
  publication-title: Front. Bioeng. Biotechnol.
– start-page: 35
  year: 1997
  end-page: 46
  ident: b0100
  article-title: Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 26
  start-page: 115
  year: 2014
  end-page: 121
  ident: b0160
  article-title: Physiological response of
  publication-title: J. Appl. Phycol.
– volume: 122
  start-page: 30
  year: 2014
  end-page: 41
  ident: b0140
  article-title: Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: experimental and modeling based on fatty acid composition
  publication-title: Fuel Process. Technol.
– volume: 184
  start-page: 355
  year: 2015
  end-page: 362
  ident: b0245
  article-title: Exploring the potential of using algae in cosmetics
  publication-title: Bioresour. Technol.
– volume: 231
  start-page: 913
  year: 2010
  end-page: 922
  ident: b0225
  article-title: Structural and functional changes of PSI-LHCI supercomplexes of
  publication-title: Planta
– start-page: 705
  year: 1971
  end-page: 820
  ident: b0060
  article-title: Salinity: plants
  publication-title: Mar. Ecol.
– volume: 80
  start-page: 117
  year: 2015
  end-page: 122
  ident: b0185
  article-title: Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress
  publication-title: Renewable Energy
– volume: 54
  start-page: 545
  year: 2015
  end-page: 552
  ident: b0050
  article-title: The phylogeny of the genus
  publication-title: Phycologia
– volume: 28
  start-page: 350
  year: 1956
  end-page: 359
  ident: b0035
  article-title: Phenol sulphuric acid method for carbohydrate determination
  publication-title: Ann. Chem
– volume: 163
  start-page: 250
  year: 1985
  end-page: 256
  ident: b0065
  article-title: The effect of ionic stress on photosynthesis in
  publication-title: Planta
– volume: 35
  start-page: 403
  year: 1999
  end-page: 424
  ident: b0095
  article-title: Biovolume calculation for pelagic and benthic microalgae
  publication-title: J. Phycol.
– volume: 102
  start-page: 6026
  year: 2011
  end-page: 6032
  ident: b0200
  article-title: Acclimation of
  publication-title: Bioresour. Technol.
– volume: 38
  start-page: 481
  year: 2005
  end-page: 485
  ident: b0230
  article-title: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium
  publication-title: BMB Rep.
– volume: 101
  start-page: 223
  year: 2006
  end-page: 226
  ident: b0240
  article-title: Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae
  publication-title: J. Biosci. Bioeng.
– volume: 30
  start-page: 289
  year: 1979
  end-page: 311
  ident: b0205
  article-title: Intracellular pH and its regulation
  publication-title: Annu. Rev. Plant Physiol.
– volume: 22
  start-page: 181
  year: 2000
  end-page: 197
  ident: b0105
  article-title: Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae
  publication-title: Aquacult. Eng.
– volume: 28
  start-page: 350
  year: 1956
  ident: 10.1016/j.biortech.2018.01.062_b0035
  article-title: Phenol sulphuric acid method for carbohydrate determination
  publication-title: Ann. Chem
  doi: 10.1021/ac60111a017
– volume: 1817
  start-page: 760
  issue: 5
  year: 2012
  ident: 10.1016/j.biortech.2018.01.062_b0130
  article-title: On the relationship between non-photochemical quenching and photoprotection of Photosystem II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.02.002
– volume: 167
  start-page: 1335
  issue: 6
  year: 2004
  ident: 10.1016/j.biortech.2018.01.062_b0250
  article-title: Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.07.002
– start-page: 705
  year: 1971
  ident: 10.1016/j.biortech.2018.01.062_b0060
  article-title: Salinity: plants
  publication-title: Mar. Ecol.
– volume: 34
  start-page: 117
  issue: 2
  year: 1999
  ident: 10.1016/j.biortech.2018.01.062_b0020
  article-title: Effects of chronic salt stress on the ultrastructure of Dunaliella bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery
  publication-title: Eur. J. Phycol.
  doi: 10.1080/09670269910001736172
– volume: 111
  start-page: 1293
  issue: 4
  year: 1996
  ident: 10.1016/j.biortech.2018.01.062_b0025
  article-title: Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.4.1293
– volume: 122
  start-page: 30
  issue: Supplement C
  year: 2014
  ident: 10.1016/j.biortech.2018.01.062_b0140
  article-title: Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: experimental and modeling based on fatty acid composition
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.01.017
– volume: 231
  start-page: 913
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2018.01.062_b0225
  article-title: Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions
  publication-title: Planta
  doi: 10.1007/s00425-009-1097-x
– volume: 73
  start-page: 643
  issue: 3
  year: 1983
  ident: 10.1016/j.biortech.2018.01.062_b0190
  article-title: Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata
  publication-title: Plant Physiol.
  doi: 10.1104/pp.73.3.643
– volume: 26
  start-page: 115
  issue: 1
  year: 2014
  ident: 10.1016/j.biortech.2018.01.062_b0160
  article-title: Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-013-0060-1
– volume: 5
  start-page: 60
  year: 2014
  ident: 10.1016/j.biortech.2018.01.062_b0215
  article-title: Algae-based oral recombinant vaccines
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00060
– volume: 29
  start-page: 325
  issue: 3
  year: 2012
  ident: 10.1016/j.biortech.2018.01.062_b0210
  article-title: Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2011.12.002
– volume: 30
  start-page: 289
  issue: 1
  year: 1979
  ident: 10.1016/j.biortech.2018.01.062_b0205
  article-title: Intracellular pH and its regulation
  publication-title: Annu. Rev. Plant Physiol.
  doi: 10.1146/annurev.pp.30.060179.001445
– volume: 142
  start-page: 326
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.biortech.2018.01.062_b0145
  article-title: Transesterification of oil to biodiesel in a continuous tubular reactor with static mixers: modelling reaction kinetics, mass transfer, scale-up and optimization considering fatty acid composition
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.10.035
– volume: 35
  start-page: 403
  issue: 2
  year: 1999
  ident: 10.1016/j.biortech.2018.01.062_b0095
  article-title: Biovolume calculation for pelagic and benthic microalgae
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.1999.3520403.x
– volume: 102
  start-page: 6026
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2018.01.062_b0200
  article-title: Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.100
– volume: 54
  start-page: 545
  issue: 5
  year: 2015
  ident: 10.1016/j.biortech.2018.01.062_b0050
  article-title: The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov
  publication-title: Phycologia
  doi: 10.2216/15-60.1
– volume: 14
  start-page: 205
  issue: 4
  year: 1975
  ident: 10.1016/j.biortech.2018.01.062_b0170
  article-title: An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum (A. Cleve) Bethge
  publication-title: Phycologia
  doi: 10.2216/i0031-8884-14-4-205.1
– volume: 7
  start-page: 323
  issue: 2
  year: 2014
  ident: 10.1016/j.biortech.2018.01.062_b0030
  article-title: Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst120
– volume: 163
  start-page: 250
  issue: 2
  year: 1985
  ident: 10.1016/j.biortech.2018.01.062_b0065
  article-title: The effect of ionic stress on photosynthesis in Dunaliella tertiolecta
  publication-title: Planta
  doi: 10.1007/BF00393515
– volume: 184
  start-page: 355
  year: 2015
  ident: 10.1016/j.biortech.2018.01.062_b0245
  article-title: Exploring the potential of using algae in cosmetics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.001
– volume: 41
  start-page: 21
  issue: 1
  year: 1990
  ident: 10.1016/j.biortech.2018.01.062_b0125
  article-title: Salinity tolerance of eukaryotic marine algae
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.pp.41.060190.000321
– volume: 45
  start-page: 705
  issue: 9
  year: 2007
  ident: 10.1016/j.biortech.2018.01.062_b0070
  article-title: Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2007.05.009
– volume: 54
  start-page: 83
  year: 2013
  ident: 10.1016/j.biortech.2018.01.062_b0015
  article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.03.026
– volume: 25
  start-page: 686
  issue: 4
  year: 1989
  ident: 10.1016/j.biortech.2018.01.062_b0235
  article-title: Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp.1
  publication-title: J. Phycol.
  doi: 10.1111/j.0022-3646.1989.00686.x
– volume: 51
  start-page: 536
  issue: 3
  year: 2015
  ident: 10.1016/j.biortech.2018.01.062_b0005
  article-title: Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta)
  publication-title: J. Phycol.
  doi: 10.1111/jpy.12300
– volume: 19
  start-page: 851
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2018.01.062_b0165
  article-title: Glycerol metabolism in hypersaline environments
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13493
– volume: 31
  start-page: 1532
  issue: 8
  year: 2013
  ident: 10.1016/j.biortech.2018.01.062_b0155
  article-title: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.07.011
– volume: 22
  start-page: 181
  issue: 3
  year: 2000
  ident: 10.1016/j.biortech.2018.01.062_b0105
  article-title: Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae
  publication-title: Aquacult. Eng.
  doi: 10.1016/S0144-8609(99)00038-2
– volume: 13
  start-page: 1450
  issue: 11
  year: 2014
  ident: 10.1016/j.biortech.2018.01.062_b0195
  article-title: Ultrastructure and composition of the Nannochloropsis gaditana cell wall
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00183-14
– start-page: 35
  year: 1997
  ident: 10.1016/j.biortech.2018.01.062_b0100
  article-title: Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps160035
– volume: 1504
  start-page: 423
  issue: 2
  year: 2001
  ident: 10.1016/j.biortech.2018.01.062_b0120
  article-title: Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2728(01)00157-8
– volume: 101
  start-page: 223
  issue: 3
  year: 2006
  ident: 10.1016/j.biortech.2018.01.062_b0240
  article-title: Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.101.223
– volume: 12
  start-page: 631
  issue: 6
  year: 2012
  ident: 10.1016/j.biortech.2018.01.062_b0080
  article-title: Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201100204
– volume: vol. 1
  start-page: 135
  year: 1992
  ident: 10.1016/j.biortech.2018.01.062_b0010
  article-title: Osmoregulation
– volume: 193
  start-page: 265
  issue: 1
  year: 1951
  ident: 10.1016/j.biortech.2018.01.062_b0150
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)52451-6
– volume: 3
  start-page: 53
  year: 2015
  ident: 10.1016/j.biortech.2018.01.062_b0040
  article-title: High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00053
– volume: 80
  start-page: 117
  issue: Supplement C
  year: 2015
  ident: 10.1016/j.biortech.2018.01.062_b0185
  article-title: Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.02.002
– volume: 11
  start-page: 591
  year: 1983
  ident: 10.1016/j.biortech.2018.01.062_b0135
  article-title: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0110591
– volume: 38
  start-page: 481
  issue: 4
  year: 2005
  ident: 10.1016/j.biortech.2018.01.062_b0230
  article-title: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2005.38.4.481
– start-page: 29
  year: 1975
  ident: 10.1016/j.biortech.2018.01.062_b0085
  article-title: Culture of phytoplankton for feeding marine invertebrates
– volume: 1015–1016
  start-page: 22
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.biortech.2018.01.062_b0220
  article-title: Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2016.01.050
– volume: 90
  start-page: 1429
  issue: 4
  year: 2011
  ident: 10.1016/j.biortech.2018.01.062_b0175
  article-title: The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3170-1
– volume: 28
  start-page: 263
  issue: 1
  year: 1976
  ident: 10.1016/j.biortech.2018.01.062_b0090
  article-title: Ionic relations and the regulation of turgor pressure in the marine alga, Valonia macrophysa
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01869700
– volume: 151
  start-page: 6
  issue: 1
  year: 1997
  ident: 10.1016/j.biortech.2018.01.062_b0055
  article-title: Effects of high irradiance and temperature on photosynthesis and photoinhibition in Nannochloropsis gaditana Lubián (Eustigmatophyceae)
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(97)80030-2
– volume: 95
  start-page: 1461
  issue: 4
  year: 1968
  ident: 10.1016/j.biortech.2018.01.062_b0115
  article-title: Effects of salts on the halophilic alga Dunaliella viridis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.95.4.1461-1468.1968
– volume: 43
  start-page: 97
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2018.01.062_b0075
  article-title: Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata
  publication-title: J. World Aquacult. Soc.
  doi: 10.1111/j.1749-7345.2011.00538.x
– volume: 82
  start-page: 594
  issue: 2
  year: 1986
  ident: 10.1016/j.biortech.2018.01.062_b0110
  article-title: Effect of osmotic stress on carbon metabolism in Chlamydomonas reinhardtii accumulation of glycerol as an osmoregulatory solute
  publication-title: Plant Physiol.
  doi: 10.1104/pp.82.2.594
– volume: 65
  start-page: 635
  issue: 6
  year: 2004
  ident: 10.1016/j.biortech.2018.01.062_b0180
  article-title: Valuable products from biotechnology of microalgae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1647-x
SSID ssj0003172
Score 2.323493
Snippet •Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of...
Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms acclimation
Carbohydrate
carbohydrates
cell growth
cosmetics
evaporation
global warming
Growth
Lipid
lipids
microalgae
Microchloropsis gaditana
osmotic stress
photosynthesis
raceways
Salinity
specific growth rate
Temporal
Title Temporal acclimation of Microchloropsis gaditana CCMP526 in response to hypersalinity
URI https://dx.doi.org/10.1016/j.biortech.2018.01.062
https://www.ncbi.nlm.nih.gov/pubmed/29413927
https://www.proquest.com/docview/1999683100
https://www.proquest.com/docview/2045818018
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcEJTXFqiMxDXdjeP4cVxFVAtoKyS6Um-W7dhtqlWy2k0PXPjt9eRRymHVA8cktmV5JjOfNd_MAHxxuWDeOp_koRQJU9Ykkosy_vGUySyzQnSU_-U5X6zY98v88gCKMRcGaZWD7e9temethzfT4TSnm6qa_kLwLfPogWSG8SS0w4wJ1PLTP39pHtE_dpGEODjB0Q-yhG9ObYWM1i4okcqufCen-xzUPgDaOaKzl_BiQJBk3m_yFRz4-giez6-2QxUNfwRPi7GNW_zyoOLga1hd9KWo1sQ4t676vEXSBLJEYp67jrf3ZrOrduTKlFXEjYYUxfJnTjmparLt-bSetA25jvfX7c5gXmX7-w2szr5eFItk6KyQOJbJNrFZ6bjhIeVKemakyMows0EZJZ1ihoZ4WS1D6kxmQxDOSGNSH6GaKlMRchmyt3BYN7V_D4QHO7Meo6URWlHbpR_SuHyOwMBRPoF8PE7thrLj2P1irUd-2Y0exaBRDHqW6rjYBKb38zZ94Y1HZ6hRWvofFdLROzw69_MoXh3lg0ETU_vmdqexTAPHbmyz_WOwpD_mzKdyAu963bjfM1URJigqjv9jdx_gGT71hKGPcNhub_2niIVae9Ip-wk8mX_7sTi_AzoVCVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4EzpB2KNr0EadtwgJdVVuU-BoNoYHzsFGgNpCNICkyUWBIhq0M_fch9TDSwciQVeQRBI-6-4i7-w7gpyEstdrYiLicRanQKuKU5f6PxylPEs1Yk_I_m9PpMr26JbcHkPW1MCGtsrP9rU1vrHX3ZdSd5mhdFKO_AXxz4j0QT0I8ydvhw8BORQZwOLm8ns53Btm7yCaY4OdHQeBZofDDL12EpNYmLhHzhsGT4n0-ah8GbXzRxXt414FINGn3-QEObHkMbyd3m45Iwx7DUdZ3cvMjz0gHP8Jy0bJRrZAyZlW0pYuocmgWcvPMvX_AV-ttsUV3Ki88dFQoy2Z_CKaoKNGmTam1qK7QvX_CbrYqlFbW_z7B8uL3IptGXXOFyKQJryOd5IYq6mIquE0VZ0nuxtoJJbgRqcLOv1dzFxuVaOeYUVyp2Hq0JvKYOcJd8hkGZVXaE0DU6bG2IWDq0RXWTQUi9suTgA0MpkMg_XFK0zGPhwYYK9mnmD3IXg0yqEGOY-kXG8JoJ7duuTdelBC9tuR_t0h6B_Gi7I9evdLrJ8RNVGmrx60MTA00NGQb758TWP1D2XzMh_ClvRu7PWPhkYLA7PQVuzuHo-lidiNvLufXX-FNGGnzh77BoN482u8eGtX6rLv6T0ZpDAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+acclimation+of+Microchloropsis+gaditana+CCMP526+in+response+to+hypersalinity&rft.jtitle=Bioresource+technology&rft.au=Karthikaichamy%2C+Anbarasu&rft.au=Deore%2C+Pranali&rft.au=Srivastava%2C+Sanjeeva&rft.au=Coppel%2C+Ross&rft.date=2018-04-01&rft.issn=0960-8524&rft.volume=254&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.biortech.2018.01.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2018_01_062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon