Temporal acclimation of Microchloropsis gaditana CCMP526 in response to hypersalinity
•Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stres...
Saved in:
Published in | Bioresource technology Vol. 254; pp. 23 - 30 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stress.
Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications. |
---|---|
AbstractList | Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications.Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications. Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fᵥ/Fₘ, rETRₘₐₓ and Iₖ) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications. •Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of neutral lipid increased by ∼4.6-fold in response to salinity.•Insights into photosynthetic acclimation of M. gaditana during hypersaline stress. Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (Fv/Fm, rETRmax and Ik) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications. Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of salinity on a marine microalga, Microchloropsis gaditana, which is of industrial significance because of its high lipid-accumulating capability. Both short-term (hours) and medium-term (days) effects of salinity were studied across various salinities (37.5, 55, 70 and 100 PSU). Salinity above 55 PSU suppressed cell growth and specific growth rate was significantly reduced at 100 PSU. Photosynthesis (F /F , rETR and I ) was severely affected at high salinity conditions. Total carbohydrate per cell increased ∼1.7-fold after 24 h, which is consistent with previous findings that salinity induces osmolyte production to counter osmotic shock. In addition, accumulation of lipid increased by ∼4.6-fold in response to salinity. Our findings indicate a possible mechanism of acclimation to salinity, opening up new frontiers for osmolytes in pharmacological and cosmetics applications. |
Author | Beardall, John Noronha, Santosh Karthikaichamy, Anbarasu Coppel, Ross Deore, Pranali Srivastava, Sanjeeva Bulach, Dieter |
Author_xml | – sequence: 1 givenname: Anbarasu surname: Karthikaichamy fullname: Karthikaichamy, Anbarasu organization: IITB-Monash Research Academy, IIT Bombay, Mumbai 400076, India – sequence: 2 givenname: Pranali surname: Deore fullname: Deore, Pranali organization: IITB-Monash Research Academy, IIT Bombay, Mumbai 400076, India – sequence: 3 givenname: Sanjeeva surname: Srivastava fullname: Srivastava, Sanjeeva organization: Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India – sequence: 4 givenname: Ross surname: Coppel fullname: Coppel, Ross organization: Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia – sequence: 5 givenname: Dieter surname: Bulach fullname: Bulach, Dieter organization: Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia – sequence: 6 givenname: John surname: Beardall fullname: Beardall, John organization: School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia – sequence: 7 givenname: Santosh surname: Noronha fullname: Noronha, Santosh email: noronha@iitb.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29413927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1v2zAQhokiReO4_QsBxy5S-SFRJNChhdEvIEE7JDNBUceahkyqJF3A_740HC9dPN3yPneH571DNyEGQOiekpYSKj7s2tHHVMBuW0aobAltiWCv0IrKgTdMDeIGrYgSpJE9627RXc47QginA3uDbpnqKFdsWKHnJ9gvMZkZG2tnvzfFx4Cjw4_epmi3c0xxyT7j32byxQSDN5vHXz0T2AecIC8xZMAl4u1xgZTN7IMvx7fotTNzhncvc42ev3552nxvHn5--7H5_NDYjsvSjHyywghHhZLQmfr55MjolFHSqs4wR9gwOWoNH50brJHGUOA9UxMdXC8dX6P3571Lin8OkIve-2xhnk2AeMiaka6XVFZBV6NUKSUkp9XRGt2_RA_jHia9pOolHfXFWg18PAeqopwTOG2rm5O5koyfNSX6VJLe6UtJ-lSSJlTXkiou_sMvF66Cn84gVKd_PSSdrYdgYfIJbNFT9NdW_AOEw7C0 |
CitedBy_id | crossref_primary_10_1016_j_rser_2019_109621 crossref_primary_10_1021_acsomega_1c02786 crossref_primary_10_1016_j_jclepro_2024_143091 crossref_primary_10_1080_09670262_2021_1970234 crossref_primary_10_1111_jpy_12965 crossref_primary_10_3390_biology13090712 crossref_primary_10_1016_j_scitotenv_2024_171909 crossref_primary_10_1111_raq_12592 crossref_primary_10_1016_j_biortech_2019_121945 crossref_primary_10_1080_26388081_2019_1651218 |
Cites_doi | 10.1021/ac60111a017 10.1016/j.bbabio.2012.02.002 10.1016/j.plantsci.2004.07.002 10.1080/09670269910001736172 10.1104/pp.111.4.1293 10.1016/j.fuproc.2014.01.017 10.1007/s00425-009-1097-x 10.1104/pp.73.3.643 10.1007/s10811-013-0060-1 10.3389/fmicb.2014.00060 10.1016/j.nbt.2011.12.002 10.1146/annurev.pp.30.060179.001445 10.1016/j.fuproc.2015.10.035 10.1046/j.1529-8817.1999.3520403.x 10.1016/j.biortech.2011.02.100 10.2216/15-60.1 10.2216/i0031-8884-14-4-205.1 10.1093/mp/sst120 10.1007/BF00393515 10.1016/j.biortech.2014.12.001 10.1146/annurev.pp.41.060190.000321 10.1016/j.plaphy.2007.05.009 10.1016/j.biombioe.2013.03.026 10.1111/j.0022-3646.1989.00686.x 10.1111/jpy.12300 10.1111/1462-2920.13493 10.1016/j.biotechadv.2013.07.011 10.1016/S0144-8609(99)00038-2 10.1128/EC.00183-14 10.3354/meps160035 10.1016/S0005-2728(01)00157-8 10.1263/jbb.101.223 10.1002/elsc.201100204 10.1016/S0021-9258(19)52451-6 10.3389/fbioe.2015.00053 10.1016/j.renene.2015.02.002 10.1042/bst0110591 10.5483/BMBRep.2005.38.4.481 10.1016/j.jchromb.2016.01.050 10.1007/s00253-011-3170-1 10.1007/BF01869700 10.1016/S0176-1617(97)80030-2 10.1128/JB.95.4.1461-1468.1968 10.1111/j.1749-7345.2011.00538.x 10.1104/pp.82.2.594 10.1007/s00253-004-1647-x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2018.01.062 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 30 |
ExternalDocumentID | 29413927 10_1016_j_biortech_2018_01_062 S0960852418300762 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-b3dc6a6f1698e4a873df0bf9a98c94a2f027df1ca3bff7ca8aa1e3529d17f58f3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 01:05:45 EDT 2025 Thu Jul 10 18:12:52 EDT 2025 Thu Apr 03 08:16:56 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 02:06:55 EDT 2025 Fri Feb 23 02:46:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microchloropsis gaditana Carbohydrate Temporal Growth Lipid Salinity |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-b3dc6a6f1698e4a873df0bf9a98c94a2f027df1ca3bff7ca8aa1e3529d17f58f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29413927 |
PQID | 1999683100 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2045818018 proquest_miscellaneous_1999683100 pubmed_primary_29413927 crossref_citationtrail_10_1016_j_biortech_2018_01_062 crossref_primary_10_1016_j_biortech_2018_01_062 elsevier_sciencedirect_doi_10_1016_j_biortech_2018_01_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Subramanyam, Jolley, Thangaraj, Nellaepalli, Webber, Fromme (b0225) 2010; 231 Guillard (b0085) 1975 Sukenik, Carmeli, Berner (b0235) 1989; 25 Takagi, Yoshida (b0240) 2006; 101 Corteggiani Carpinelli, Telatin, Vitulo, Forcato, D'Angelo, Schiavon, Vezzi, Giacometti, Morosinotto, Valle (b0030) 2014; 7 Campbell, Oquist (b0025) 1996; 111 Hillebrand, Sommer (b0100) 1997 Sudhir, Pogoryelov, Kovacs, Garab, Murthy (b0230) 2005; 38 Lambrev, Miloslavina, Jahns, Holzwarth (b0130) 2012; 1817 Markou, Nerantzis (b0155) 2013; 31 Katz, Pick (b0120) 2001; 1504 Hastings, Gutknecht (b0090) 1976; 28 Avron (b0010) 1992; vol. 1 Šoštarič, Klinar, Bricelj, Golob, Berovič, Likozar (b0210) 2012; 29 Paasche, Johansson, Evensen (b0170) 1975; 14 Specht, Mayfield (b0215) 2014; 5 Huertas, Montero, Lubián (b0105) 2000; 22 Smith, Raven (b0205) 1979; 30 Simionato, Sforza, Corteggiani Carpinelli, Bertucco, Giacometti, Morosinotto (b0200) 2011; 102 Bartley, Boeing, Corcoran, Holguin, Schaub (b0015) 2013; 54 Hillebrand, Dürselen, Kirschtel, Pollingher, Zohary (b0095) 1999; 35 Martínez-Roldán, Perales-Vela, Cañizares-Villanueva, Torzillo (b0160) 2014; 26 Scholz, Weiss, Jinkerson, Jing, Roth, Goodenough, Posewitz, Gerken (b0195) 2014; 13 Dubois, Gilles, Hamilton, Roberts, Smith (b0035) 1956; 28 Goyal (b0070) 2007; 45 Yoshida, Igarashi, Wakatsuki, Miyamoto, Hirata (b0250) 2004; 167 Satoh, Smith, Fork (b0190) 1983; 73 Bérubé, Dodge, Ford (b0020) 1999; 34 Wang, Chen, Huynh, Chang (b0245) 2015; 184 Fawley, Jameson, Fawley (b0050) 2015; 54 Husic, Tolbert (b0110) 1986; 82 Figueroa, Jiménez, Lubián, Montero, Lebert, Häder (b0055) 1997; 151 Kirst (b0125) 1990; 41 Gu, Lin, Li, Qin, Lin, Huang (b0075) 2012; 43 Gilmour, Hipkins, Webber, Baker, Boney (b0065) 1985; 163 Angell, Mata, Nys, Paul (b0005) 2015; 51 Ra, Kang, Kim, Lee, Kim (b0185) 2015; 80 Lichtenthaler (b0135) 1983; 11 Gessner (b0060) 1971 Likozar, Levec (b0140) 2014; 122 Pal, Khozin-Goldberg, Cohen, Boussiba (b0175) 2011; 90 Lowry, Rosebrough, Farr, Randall (b0150) 1951; 193 Oren (b0165) 2017; 19 Pulz, Gross (b0180) 2004; 65 Likozar, Pohar, Levec (b0145) 2016; 142 Stranska-Zachariasova, Kastanek, Dzuman, Rubert, Godula, Hajslova (b0220) 2016; 1015–1016 Duong, Ahmed, Thomas-Hall, Quigley, Nowak, Schenk (b0040) 2015; 3 Gu, Lin, Li, Tan, Huang, Lin (b0080) 2012; 12 Johnson, Johnson, MacElroy, Speer, Bruff (b0115) 1968; 95 Šoštarič (10.1016/j.biortech.2018.01.062_b0210) 2012; 29 Martínez-Roldán (10.1016/j.biortech.2018.01.062_b0160) 2014; 26 Johnson (10.1016/j.biortech.2018.01.062_b0115) 1968; 95 Avron (10.1016/j.biortech.2018.01.062_b0010) 1992; vol. 1 Duong (10.1016/j.biortech.2018.01.062_b0040) 2015; 3 Gu (10.1016/j.biortech.2018.01.062_b0080) 2012; 12 Guillard (10.1016/j.biortech.2018.01.062_b0085) 1975 Hillebrand (10.1016/j.biortech.2018.01.062_b0100) 1997 Simionato (10.1016/j.biortech.2018.01.062_b0200) 2011; 102 Scholz (10.1016/j.biortech.2018.01.062_b0195) 2014; 13 Katz (10.1016/j.biortech.2018.01.062_b0120) 2001; 1504 Wang (10.1016/j.biortech.2018.01.062_b0245) 2015; 184 Gu (10.1016/j.biortech.2018.01.062_b0075) 2012; 43 Pulz (10.1016/j.biortech.2018.01.062_b0180) 2004; 65 Angell (10.1016/j.biortech.2018.01.062_b0005) 2015; 51 Specht (10.1016/j.biortech.2018.01.062_b0215) 2014; 5 Corteggiani Carpinelli (10.1016/j.biortech.2018.01.062_b0030) 2014; 7 Yoshida (10.1016/j.biortech.2018.01.062_b0250) 2004; 167 Hastings (10.1016/j.biortech.2018.01.062_b0090) 1976; 28 Smith (10.1016/j.biortech.2018.01.062_b0205) 1979; 30 Kirst (10.1016/j.biortech.2018.01.062_b0125) 1990; 41 Markou (10.1016/j.biortech.2018.01.062_b0155) 2013; 31 Figueroa (10.1016/j.biortech.2018.01.062_b0055) 1997; 151 Husic (10.1016/j.biortech.2018.01.062_b0110) 1986; 82 Bérubé (10.1016/j.biortech.2018.01.062_b0020) 1999; 34 Pal (10.1016/j.biortech.2018.01.062_b0175) 2011; 90 Likozar (10.1016/j.biortech.2018.01.062_b0140) 2014; 122 Sukenik (10.1016/j.biortech.2018.01.062_b0235) 1989; 25 Goyal (10.1016/j.biortech.2018.01.062_b0070) 2007; 45 Lichtenthaler (10.1016/j.biortech.2018.01.062_b0135) 1983; 11 Dubois (10.1016/j.biortech.2018.01.062_b0035) 1956; 28 Campbell (10.1016/j.biortech.2018.01.062_b0025) 1996; 111 Lambrev (10.1016/j.biortech.2018.01.062_b0130) 2012; 1817 Fawley (10.1016/j.biortech.2018.01.062_b0050) 2015; 54 Huertas (10.1016/j.biortech.2018.01.062_b0105) 2000; 22 Ra (10.1016/j.biortech.2018.01.062_b0185) 2015; 80 Satoh (10.1016/j.biortech.2018.01.062_b0190) 1983; 73 Stranska-Zachariasova (10.1016/j.biortech.2018.01.062_b0220) 2016; 1015–1016 Subramanyam (10.1016/j.biortech.2018.01.062_b0225) 2010; 231 Paasche (10.1016/j.biortech.2018.01.062_b0170) 1975; 14 Bartley (10.1016/j.biortech.2018.01.062_b0015) 2013; 54 Lowry (10.1016/j.biortech.2018.01.062_b0150) 1951; 193 Hillebrand (10.1016/j.biortech.2018.01.062_b0095) 1999; 35 Gessner (10.1016/j.biortech.2018.01.062_b0060) 1971 Gilmour (10.1016/j.biortech.2018.01.062_b0065) 1985; 163 Oren (10.1016/j.biortech.2018.01.062_b0165) 2017; 19 Sudhir (10.1016/j.biortech.2018.01.062_b0230) 2005; 38 Takagi (10.1016/j.biortech.2018.01.062_b0240) 2006; 101 Likozar (10.1016/j.biortech.2018.01.062_b0145) 2016; 142 |
References_xml | – volume: 65 start-page: 635 year: 2004 end-page: 648 ident: b0180 article-title: Valuable products from biotechnology of microalgae publication-title: Appl. Microbiol. Biotechnol. – volume: 167 start-page: 1335 year: 2004 end-page: 1341 ident: b0250 article-title: Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in publication-title: Plant Sci. – volume: 31 start-page: 1532 year: 2013 end-page: 1542 ident: b0155 article-title: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions publication-title: Biotechnol. Adv. – start-page: 29 year: 1975 ident: b0085 article-title: Culture of phytoplankton for feeding marine invertebrates publication-title: Culture of Marine Invertebrate Animals – volume: 90 start-page: 1429 year: 2011 end-page: 1441 ident: b0175 article-title: The effect of light, salinity, and nitrogen availability on lipid production by publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 60 year: 2014 ident: b0215 article-title: Algae-based oral recombinant vaccines publication-title: Front. Microbiol. – volume: 12 start-page: 631 year: 2012 end-page: 637 ident: b0080 article-title: Effect of salinity on growth, biochemical composition, and lipid productivity of publication-title: Eng. Life Sci. – volume: 25 start-page: 686 year: 1989 end-page: 692 ident: b0235 article-title: Regulation of fatty acid composition by irradiance level in the eustigmatophyte publication-title: J. Phycol. – volume: 151 start-page: 6 year: 1997 end-page: 15 ident: b0055 article-title: Effects of high irradiance and temperature on photosynthesis and photoinhibition in publication-title: J. Plant Physiol. – volume: 82 start-page: 594 year: 1986 end-page: 596 ident: b0110 article-title: Effect of osmotic stress on carbon metabolism in publication-title: Plant Physiol. – volume: 142 start-page: 326 year: 2016 end-page: 336 ident: b0145 article-title: Transesterification of oil to biodiesel in a continuous tubular reactor with static mixers: modelling reaction kinetics, mass transfer, scale-up and optimization considering fatty acid composition publication-title: Fuel Process. Technol. – volume: 29 start-page: 325 year: 2012 end-page: 331 ident: b0210 article-title: Growth, lipid extraction and thermal degradation of the microalga publication-title: New Biotechnol. – volume: 193 start-page: 265 year: 1951 end-page: 275 ident: b0150 article-title: Protein measurement with the Folin phenol reagent publication-title: J. Biol. Chem. – volume: 11 start-page: 591 year: 1983 end-page: 592 ident: b0135 article-title: Determinations of total carotenoids and chlorophylls publication-title: Biochem. Soc. Trans. – volume: 95 start-page: 1461 year: 1968 end-page: 1468 ident: b0115 article-title: Effects of salts on the halophilic alga publication-title: J. Bacteriol. – volume: 41 start-page: 21 year: 1990 end-page: 53 ident: b0125 article-title: Salinity tolerance of eukaryotic marine algae publication-title: Annu. Rev. Plant Biol. – volume: 1504 start-page: 423 year: 2001 end-page: 431 ident: b0120 article-title: Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga publication-title: Biochim. Biophys. Acta – volume: 111 start-page: 1293 year: 1996 end-page: 1298 ident: b0025 article-title: Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms publication-title: Plant Physiol. – volume: 28 start-page: 263 year: 1976 end-page: 275 ident: b0090 article-title: Ionic relations and the regulation of turgor pressure in the marine alga, publication-title: J. Membr. Biol. – volume: vol. 1 start-page: 135 year: 1992 end-page: 164 ident: b0010 article-title: Osmoregulation publication-title: Dunaliella: Physiology, Biochemistry, and Biotechnology – volume: 54 start-page: 83 year: 2013 end-page: 88 ident: b0015 article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga publication-title: Biomass Bioenergy – volume: 73 start-page: 643 year: 1983 end-page: 647 ident: b0190 article-title: Effects of salinity on primary processes of photosynthesis in the red alga publication-title: Plant Physiol. – volume: 34 start-page: 117 year: 1999 end-page: 123 ident: b0020 article-title: Effects of chronic salt stress on the ultrastructure of publication-title: Eur. J. Phycol. – volume: 43 start-page: 97 year: 2012 end-page: 106 ident: b0075 article-title: Effect of salinity change on biomass and biochemical composition of publication-title: J. World Aquacult. Soc. – volume: 19 start-page: 851 year: 2017 end-page: 863 ident: b0165 article-title: Glycerol metabolism in hypersaline environments publication-title: Environ. Microbiol. – volume: 51 start-page: 536 year: 2015 end-page: 545 ident: b0005 article-title: Indirect and direct effects of salinity on the quantity and quality of total amino acids in publication-title: J. Phycol. – volume: 1015–1016 start-page: 22 year: 2016 end-page: 33 ident: b0220 article-title: Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization publication-title: J. Chromatogr. B – volume: 13 start-page: 1450 year: 2014 end-page: 1464 ident: b0195 article-title: Ultrastructure and composition of the publication-title: Eukaryot. Cell – volume: 1817 start-page: 760 year: 2012 end-page: 769 ident: b0130 article-title: On the relationship between non-photochemical quenching and photoprotection of Photosystem II publication-title: Biochim. Biophys. Acta – volume: 14 start-page: 205 year: 1975 end-page: 211 ident: b0170 article-title: An effect of osmotic pressure on the valve morphology of the diatom publication-title: Phycologia – volume: 45 start-page: 705 year: 2007 end-page: 710 ident: b0070 article-title: Osmoregulation in publication-title: Plant Physiol. Biochem. – volume: 7 start-page: 323 year: 2014 end-page: 335 ident: b0030 article-title: Chromosome scale genome assembly and transcriptome profiling of publication-title: Mol. Plant – volume: 3 start-page: 53 year: 2015 ident: b0040 article-title: High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel publication-title: Front. Bioeng. Biotechnol. – start-page: 35 year: 1997 end-page: 46 ident: b0100 article-title: Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment publication-title: Mar. Ecol. Prog. Ser. – volume: 26 start-page: 115 year: 2014 end-page: 121 ident: b0160 article-title: Physiological response of publication-title: J. Appl. Phycol. – volume: 122 start-page: 30 year: 2014 end-page: 41 ident: b0140 article-title: Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: experimental and modeling based on fatty acid composition publication-title: Fuel Process. Technol. – volume: 184 start-page: 355 year: 2015 end-page: 362 ident: b0245 article-title: Exploring the potential of using algae in cosmetics publication-title: Bioresour. Technol. – volume: 231 start-page: 913 year: 2010 end-page: 922 ident: b0225 article-title: Structural and functional changes of PSI-LHCI supercomplexes of publication-title: Planta – start-page: 705 year: 1971 end-page: 820 ident: b0060 article-title: Salinity: plants publication-title: Mar. Ecol. – volume: 80 start-page: 117 year: 2015 end-page: 122 ident: b0185 article-title: Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress publication-title: Renewable Energy – volume: 54 start-page: 545 year: 2015 end-page: 552 ident: b0050 article-title: The phylogeny of the genus publication-title: Phycologia – volume: 28 start-page: 350 year: 1956 end-page: 359 ident: b0035 article-title: Phenol sulphuric acid method for carbohydrate determination publication-title: Ann. Chem – volume: 163 start-page: 250 year: 1985 end-page: 256 ident: b0065 article-title: The effect of ionic stress on photosynthesis in publication-title: Planta – volume: 35 start-page: 403 year: 1999 end-page: 424 ident: b0095 article-title: Biovolume calculation for pelagic and benthic microalgae publication-title: J. Phycol. – volume: 102 start-page: 6026 year: 2011 end-page: 6032 ident: b0200 article-title: Acclimation of publication-title: Bioresour. Technol. – volume: 38 start-page: 481 year: 2005 end-page: 485 ident: b0230 article-title: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium publication-title: BMB Rep. – volume: 101 start-page: 223 year: 2006 end-page: 226 ident: b0240 article-title: Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae publication-title: J. Biosci. Bioeng. – volume: 30 start-page: 289 year: 1979 end-page: 311 ident: b0205 article-title: Intracellular pH and its regulation publication-title: Annu. Rev. Plant Physiol. – volume: 22 start-page: 181 year: 2000 end-page: 197 ident: b0105 article-title: Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae publication-title: Aquacult. Eng. – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.biortech.2018.01.062_b0035 article-title: Phenol sulphuric acid method for carbohydrate determination publication-title: Ann. Chem doi: 10.1021/ac60111a017 – volume: 1817 start-page: 760 issue: 5 year: 2012 ident: 10.1016/j.biortech.2018.01.062_b0130 article-title: On the relationship between non-photochemical quenching and photoprotection of Photosystem II publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.02.002 – volume: 167 start-page: 1335 issue: 6 year: 2004 ident: 10.1016/j.biortech.2018.01.062_b0250 article-title: Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.07.002 – start-page: 705 year: 1971 ident: 10.1016/j.biortech.2018.01.062_b0060 article-title: Salinity: plants publication-title: Mar. Ecol. – volume: 34 start-page: 117 issue: 2 year: 1999 ident: 10.1016/j.biortech.2018.01.062_b0020 article-title: Effects of chronic salt stress on the ultrastructure of Dunaliella bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery publication-title: Eur. J. Phycol. doi: 10.1080/09670269910001736172 – volume: 111 start-page: 1293 issue: 4 year: 1996 ident: 10.1016/j.biortech.2018.01.062_b0025 article-title: Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms publication-title: Plant Physiol. doi: 10.1104/pp.111.4.1293 – volume: 122 start-page: 30 issue: Supplement C year: 2014 ident: 10.1016/j.biortech.2018.01.062_b0140 article-title: Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: experimental and modeling based on fatty acid composition publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.01.017 – volume: 231 start-page: 913 issue: 4 year: 2010 ident: 10.1016/j.biortech.2018.01.062_b0225 article-title: Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions publication-title: Planta doi: 10.1007/s00425-009-1097-x – volume: 73 start-page: 643 issue: 3 year: 1983 ident: 10.1016/j.biortech.2018.01.062_b0190 article-title: Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata publication-title: Plant Physiol. doi: 10.1104/pp.73.3.643 – volume: 26 start-page: 115 issue: 1 year: 2014 ident: 10.1016/j.biortech.2018.01.062_b0160 article-title: Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures publication-title: J. Appl. Phycol. doi: 10.1007/s10811-013-0060-1 – volume: 5 start-page: 60 year: 2014 ident: 10.1016/j.biortech.2018.01.062_b0215 article-title: Algae-based oral recombinant vaccines publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00060 – volume: 29 start-page: 325 issue: 3 year: 2012 ident: 10.1016/j.biortech.2018.01.062_b0210 article-title: Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris publication-title: New Biotechnol. doi: 10.1016/j.nbt.2011.12.002 – volume: 30 start-page: 289 issue: 1 year: 1979 ident: 10.1016/j.biortech.2018.01.062_b0205 article-title: Intracellular pH and its regulation publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.30.060179.001445 – volume: 142 start-page: 326 issue: Supplement C year: 2016 ident: 10.1016/j.biortech.2018.01.062_b0145 article-title: Transesterification of oil to biodiesel in a continuous tubular reactor with static mixers: modelling reaction kinetics, mass transfer, scale-up and optimization considering fatty acid composition publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.10.035 – volume: 35 start-page: 403 issue: 2 year: 1999 ident: 10.1016/j.biortech.2018.01.062_b0095 article-title: Biovolume calculation for pelagic and benthic microalgae publication-title: J. Phycol. doi: 10.1046/j.1529-8817.1999.3520403.x – volume: 102 start-page: 6026 issue: 10 year: 2011 ident: 10.1016/j.biortech.2018.01.062_b0200 article-title: Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.100 – volume: 54 start-page: 545 issue: 5 year: 2015 ident: 10.1016/j.biortech.2018.01.062_b0050 article-title: The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov publication-title: Phycologia doi: 10.2216/15-60.1 – volume: 14 start-page: 205 issue: 4 year: 1975 ident: 10.1016/j.biortech.2018.01.062_b0170 article-title: An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum (A. Cleve) Bethge publication-title: Phycologia doi: 10.2216/i0031-8884-14-4-205.1 – volume: 7 start-page: 323 issue: 2 year: 2014 ident: 10.1016/j.biortech.2018.01.062_b0030 article-title: Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion publication-title: Mol. Plant doi: 10.1093/mp/sst120 – volume: 163 start-page: 250 issue: 2 year: 1985 ident: 10.1016/j.biortech.2018.01.062_b0065 article-title: The effect of ionic stress on photosynthesis in Dunaliella tertiolecta publication-title: Planta doi: 10.1007/BF00393515 – volume: 184 start-page: 355 year: 2015 ident: 10.1016/j.biortech.2018.01.062_b0245 article-title: Exploring the potential of using algae in cosmetics publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.001 – volume: 41 start-page: 21 issue: 1 year: 1990 ident: 10.1016/j.biortech.2018.01.062_b0125 article-title: Salinity tolerance of eukaryotic marine algae publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.pp.41.060190.000321 – volume: 45 start-page: 705 issue: 9 year: 2007 ident: 10.1016/j.biortech.2018.01.062_b0070 article-title: Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2007.05.009 – volume: 54 start-page: 83 year: 2013 ident: 10.1016/j.biortech.2018.01.062_b0015 article-title: Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.03.026 – volume: 25 start-page: 686 issue: 4 year: 1989 ident: 10.1016/j.biortech.2018.01.062_b0235 article-title: Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp.1 publication-title: J. Phycol. doi: 10.1111/j.0022-3646.1989.00686.x – volume: 51 start-page: 536 issue: 3 year: 2015 ident: 10.1016/j.biortech.2018.01.062_b0005 article-title: Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta) publication-title: J. Phycol. doi: 10.1111/jpy.12300 – volume: 19 start-page: 851 issue: 3 year: 2017 ident: 10.1016/j.biortech.2018.01.062_b0165 article-title: Glycerol metabolism in hypersaline environments publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13493 – volume: 31 start-page: 1532 issue: 8 year: 2013 ident: 10.1016/j.biortech.2018.01.062_b0155 article-title: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.07.011 – volume: 22 start-page: 181 issue: 3 year: 2000 ident: 10.1016/j.biortech.2018.01.062_b0105 article-title: Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae publication-title: Aquacult. Eng. doi: 10.1016/S0144-8609(99)00038-2 – volume: 13 start-page: 1450 issue: 11 year: 2014 ident: 10.1016/j.biortech.2018.01.062_b0195 article-title: Ultrastructure and composition of the Nannochloropsis gaditana cell wall publication-title: Eukaryot. Cell doi: 10.1128/EC.00183-14 – start-page: 35 year: 1997 ident: 10.1016/j.biortech.2018.01.062_b0100 article-title: Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps160035 – volume: 1504 start-page: 423 issue: 2 year: 2001 ident: 10.1016/j.biortech.2018.01.062_b0120 article-title: Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2728(01)00157-8 – volume: 101 start-page: 223 issue: 3 year: 2006 ident: 10.1016/j.biortech.2018.01.062_b0240 article-title: Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.101.223 – volume: 12 start-page: 631 issue: 6 year: 2012 ident: 10.1016/j.biortech.2018.01.062_b0080 article-title: Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179 publication-title: Eng. Life Sci. doi: 10.1002/elsc.201100204 – volume: vol. 1 start-page: 135 year: 1992 ident: 10.1016/j.biortech.2018.01.062_b0010 article-title: Osmoregulation – volume: 193 start-page: 265 issue: 1 year: 1951 ident: 10.1016/j.biortech.2018.01.062_b0150 article-title: Protein measurement with the Folin phenol reagent publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)52451-6 – volume: 3 start-page: 53 year: 2015 ident: 10.1016/j.biortech.2018.01.062_b0040 article-title: High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00053 – volume: 80 start-page: 117 issue: Supplement C year: 2015 ident: 10.1016/j.biortech.2018.01.062_b0185 article-title: Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress publication-title: Renewable Energy doi: 10.1016/j.renene.2015.02.002 – volume: 11 start-page: 591 year: 1983 ident: 10.1016/j.biortech.2018.01.062_b0135 article-title: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0110591 – volume: 38 start-page: 481 issue: 4 year: 2005 ident: 10.1016/j.biortech.2018.01.062_b0230 article-title: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis publication-title: BMB Rep. doi: 10.5483/BMBRep.2005.38.4.481 – start-page: 29 year: 1975 ident: 10.1016/j.biortech.2018.01.062_b0085 article-title: Culture of phytoplankton for feeding marine invertebrates – volume: 1015–1016 start-page: 22 issue: Supplement C year: 2016 ident: 10.1016/j.biortech.2018.01.062_b0220 article-title: Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2016.01.050 – volume: 90 start-page: 1429 issue: 4 year: 2011 ident: 10.1016/j.biortech.2018.01.062_b0175 article-title: The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3170-1 – volume: 28 start-page: 263 issue: 1 year: 1976 ident: 10.1016/j.biortech.2018.01.062_b0090 article-title: Ionic relations and the regulation of turgor pressure in the marine alga, Valonia macrophysa publication-title: J. Membr. Biol. doi: 10.1007/BF01869700 – volume: 151 start-page: 6 issue: 1 year: 1997 ident: 10.1016/j.biortech.2018.01.062_b0055 article-title: Effects of high irradiance and temperature on photosynthesis and photoinhibition in Nannochloropsis gaditana Lubián (Eustigmatophyceae) publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(97)80030-2 – volume: 95 start-page: 1461 issue: 4 year: 1968 ident: 10.1016/j.biortech.2018.01.062_b0115 article-title: Effects of salts on the halophilic alga Dunaliella viridis publication-title: J. Bacteriol. doi: 10.1128/JB.95.4.1461-1468.1968 – volume: 43 start-page: 97 issue: 1 year: 2012 ident: 10.1016/j.biortech.2018.01.062_b0075 article-title: Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata publication-title: J. World Aquacult. Soc. doi: 10.1111/j.1749-7345.2011.00538.x – volume: 82 start-page: 594 issue: 2 year: 1986 ident: 10.1016/j.biortech.2018.01.062_b0110 article-title: Effect of osmotic stress on carbon metabolism in Chlamydomonas reinhardtii accumulation of glycerol as an osmoregulatory solute publication-title: Plant Physiol. doi: 10.1104/pp.82.2.594 – volume: 65 start-page: 635 issue: 6 year: 2004 ident: 10.1016/j.biortech.2018.01.062_b0180 article-title: Valuable products from biotechnology of microalgae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1647-x |
SSID | ssj0003172 |
Score | 2.323493 |
Snippet | •Growth of Microchloropsis gaditana was affected at high saline condition.•Salinity stress induced accumulation of carbohydrate by ∼1.7-fold.•Accumulation of... Evaporation from culture ponds and raceways can subject algae to hypersalinity stress, and this is exacerbated by global warming. We investigated the effect of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | acclimation Carbohydrate carbohydrates cell growth cosmetics evaporation global warming Growth Lipid lipids microalgae Microchloropsis gaditana osmotic stress photosynthesis raceways Salinity specific growth rate Temporal |
Title | Temporal acclimation of Microchloropsis gaditana CCMP526 in response to hypersalinity |
URI | https://dx.doi.org/10.1016/j.biortech.2018.01.062 https://www.ncbi.nlm.nih.gov/pubmed/29413927 https://www.proquest.com/docview/1999683100 https://www.proquest.com/docview/2045818018 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcEJTXFqiMxDXdjeP4cVxFVAtoKyS6Um-W7dhtqlWy2k0PXPjt9eRRymHVA8cktmV5JjOfNd_MAHxxuWDeOp_koRQJU9Ykkosy_vGUySyzQnSU_-U5X6zY98v88gCKMRcGaZWD7e9temethzfT4TSnm6qa_kLwLfPogWSG8SS0w4wJ1PLTP39pHtE_dpGEODjB0Q-yhG9ObYWM1i4okcqufCen-xzUPgDaOaKzl_BiQJBk3m_yFRz4-giez6-2QxUNfwRPi7GNW_zyoOLga1hd9KWo1sQ4t676vEXSBLJEYp67jrf3ZrOrduTKlFXEjYYUxfJnTjmparLt-bSetA25jvfX7c5gXmX7-w2szr5eFItk6KyQOJbJNrFZ6bjhIeVKemakyMows0EZJZ1ihoZ4WS1D6kxmQxDOSGNSH6GaKlMRchmyt3BYN7V_D4QHO7Meo6URWlHbpR_SuHyOwMBRPoF8PE7thrLj2P1irUd-2Y0exaBRDHqW6rjYBKb38zZ94Y1HZ6hRWvofFdLROzw69_MoXh3lg0ETU_vmdqexTAPHbmyz_WOwpD_mzKdyAu963bjfM1URJigqjv9jdx_gGT71hKGPcNhub_2niIVae9Ip-wk8mX_7sTi_AzoVCVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4EzpB2KNr0EadtwgJdVVuU-BoNoYHzsFGgNpCNICkyUWBIhq0M_fch9TDSwciQVeQRBI-6-4i7-w7gpyEstdrYiLicRanQKuKU5f6PxylPEs1Yk_I_m9PpMr26JbcHkPW1MCGtsrP9rU1vrHX3ZdSd5mhdFKO_AXxz4j0QT0I8ydvhw8BORQZwOLm8ns53Btm7yCaY4OdHQeBZofDDL12EpNYmLhHzhsGT4n0-ah8GbXzRxXt414FINGn3-QEObHkMbyd3m45Iwx7DUdZ3cvMjz0gHP8Jy0bJRrZAyZlW0pYuocmgWcvPMvX_AV-ttsUV3Ki88dFQoy2Z_CKaoKNGmTam1qK7QvX_CbrYqlFbW_z7B8uL3IptGXXOFyKQJryOd5IYq6mIquE0VZ0nuxtoJJbgRqcLOv1dzFxuVaOeYUVyp2Hq0JvKYOcJd8hkGZVXaE0DU6bG2IWDq0RXWTQUi9suTgA0MpkMg_XFK0zGPhwYYK9mnmD3IXg0yqEGOY-kXG8JoJ7duuTdelBC9tuR_t0h6B_Gi7I9evdLrJ8RNVGmrx60MTA00NGQb758TWP1D2XzMh_ClvRu7PWPhkYLA7PQVuzuHo-lidiNvLufXX-FNGGnzh77BoN482u8eGtX6rLv6T0ZpDAk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+acclimation+of+Microchloropsis+gaditana+CCMP526+in+response+to+hypersalinity&rft.jtitle=Bioresource+technology&rft.au=Karthikaichamy%2C+Anbarasu&rft.au=Deore%2C+Pranali&rft.au=Srivastava%2C+Sanjeeva&rft.au=Coppel%2C+Ross&rft.date=2018-04-01&rft.issn=0960-8524&rft.volume=254&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.biortech.2018.01.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2018_01_062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |