EEGSym: Overcoming Inter-subject Variability in Motor Imagery Based BCIs with Deep Learning

In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI ineffi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; p. 1
Main Authors Perez-Velasco, Sergio, Santamaria-Vazquez, Eduardo, Martinez-Cagigal, Victor, Marcos-Martinez, Diego, Hornero, Roberto
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym 's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym , which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification.
AbstractList In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification.In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification.
In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification.
Author Perez-Velasco, Sergio
Santamaria-Vazquez, Eduardo
Hornero, Roberto
Martinez-Cagigal, Victor
Marcos-Martinez, Diego
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0002-2999-3216
  surname: Perez-Velasco
  fullname: Perez-Velasco, Sergio
  organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain
– sequence: 2
  givenname: Eduardo
  orcidid: 0000-0002-7688-4258
  surname: Santamaria-Vazquez
  fullname: Santamaria-Vazquez, Eduardo
  organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain
– sequence: 3
  givenname: Victor
  orcidid: 0000-0002-3822-1787
  surname: Martinez-Cagigal
  fullname: Martinez-Cagigal, Victor
  organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain
– sequence: 4
  givenname: Diego
  orcidid: 0000-0002-7493-5242
  surname: Marcos-Martinez
  fullname: Marcos-Martinez, Diego
  organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain
– sequence: 5
  givenname: Roberto
  orcidid: 0000-0001-9915-2570
  surname: Hornero
  fullname: Hornero, Roberto
  organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain
BookMark eNp9kU9vEzEQxVeoSLSFLwAXS1y4bPC_tXe50RDalQKVaOHCwZr1joOjzTq1HVC-fTdN1UMPnGY0-r03M3pnxckYRiyKt4zOGKPNx9vvNz8WM045nwlWKyn5i-KUVVVdUs7oyaEXspSC01fFWUprSplWlT4tfi8Wlzf7zSdy_RejDRs_rkg7Zoxl2nVrtJn8guih84PPe-JH8i3kEEm7gRXGPbmAhD25mLeJ_PP5D_mCuCVLhDhORq-Llw6GhG8e63nx8-vidn5VLq8v2_nnZWmlqHPZ8Z4Lp63qVUdBQlX1vOs66ZSoOIKVXHJkDe2tc9bSRqmmA2kr7dBqXktxXrRH3z7A2myj30DcmwDePAxCXBmI2dsBDdWgrBOKYt1J7aABTqm11mkmFOhm8vpw9NrGcLfDlM3GJ4vDACOGXTJc1axmrBZsQt8_Q9dhF8fp0wNVMTVRdKL4kbIxpBTRPR3IqDlkZx6yM4fszGN2k6h-JrI-Q_ZhzBH88H_pu6PUI-LTrqamWnAh7gHvPKgv
CODEN ITNSB3
CitedBy_id crossref_primary_10_1088_1361_6579_ad4e95
crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_3390_s23084164
crossref_primary_10_1109_TNSRE_2023_3314679
crossref_primary_10_1109_TPAMI_2023_3299568
crossref_primary_10_1016_j_cmpb_2024_108048
crossref_primary_10_1016_j_compbiomed_2023_107901
crossref_primary_10_1016_j_knosys_2025_113315
crossref_primary_10_1109_TETCI_2024_3359097
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1177_15500594241312450
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_3389_fnins_2025_1469244
crossref_primary_10_1016_j_heliyon_2024_e37343
crossref_primary_10_16984_saufenbilder_1190493
crossref_primary_10_1016_j_ipm_2024_104012
crossref_primary_10_1016_j_knosys_2024_111855
crossref_primary_10_3390_computers12070145
crossref_primary_10_1016_j_patcog_2024_110726
crossref_primary_10_1016_j_cmpb_2023_107357
crossref_primary_10_1016_j_bspc_2024_106401
crossref_primary_10_1109_JSEN_2024_3510059
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_3389_fnhum_2024_1320457
crossref_primary_10_1109_TNSRE_2022_3228216
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1088_1741_2552_adbfc1
crossref_primary_10_1142_S0218001423540204
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_4015_S1016237224500194
Cites_doi 10.1109/TNNLS.2020.3015505
10.1109/IJCNN.2008.4634130
10.1016/S1388-2457(02)00057-3
10.3389/fnhum.2019.00244
10.1109/TBME.2018.2872855
10.1016/j.neunet.2020.11.002
10.3389/fnhum.2019.00128
10.1093/gigascience/giz002
10.1109/TNSRE.2020.3048106
10.1161/01.CIR.101.23.e215
10.1109/CVPR.2015.7298594
10.3389/fncom.2019.00087
10.1093/acprof:oso/9780195388855.001.0001
10.1609/aaai.v34i07.7000
10.3390/s120201211
10.5507/ag.2014.001
10.1016/j.neucli.2018.10.068
10.1371/journal.pone.0047048
10.1093/cercor/bhaa234
10.1109/CVPR.2017.634
10.2307/3001968
10.1080/2326263X.2017.1297192
10.1088/1741-2552/ab260c
10.1088/1741-2552/aace8c
10.1007/s11571-020-09649-8
10.1016/j.neunet.2019.07.008
10.1016/j.brainres.2017.08.025
10.1161/STROKEAHA.116.016304
10.3389/fnins.2017.00400
10.1016/j.neuroscience.2016.12.050
10.1371/journal.pone.0148886
10.1088/1741-2552/abb7a7
10.1016/j.brainres.2008.05.089
10.1002/hbm.23730
10.1016/j.neunet.2020.12.013
10.1016/j.neuroimage.2018.04.005
10.1109/TNSRE.2019.2914916
10.3389/fnins.2020.591435
10.1109/TNNLS.2019.2946869
10.1109/ACCESS.2018.2886271
10.1038/s41467-020-18360-5
10.1109/CVPR.2016.90
10.1111/j.2517-6161.1995.tb02031.x
10.1109/CVPR.2017.243
10.1016/j.eswa.2018.08.031
10.1016/j.eswa.2018.11.026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3186442
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79
10_1109_TNSRE_2022_3186442
9807323
Genre orig-research
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovaci?n
  grantid: PID2020- 115468RB-I00; RTC2019-007350-1
  funderid: 10.13039/501100004837
– fundername: Centro de Investigaci?n Biom?dica en Red en Bioingenier?a, Biomateriales y Nanomedicina
  grantid: CB19/01/00012
  funderid: 10.13039/501100005053
– fundername: Instituto de Salud Carlos III
  funderid: 10.13039/501100004587
– fundername: European Regional Development Fund
  grantid: An?lisis y correlaci?n entre la epigen?tica y l
  funderid: 10.13039/501100008530
– fundername: Consejer?a de Educaci?n, Junta de Castilla y Le?n
  grantid: PIF grant
  funderid: 10.13039/501100008431
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c438t-b2d23f7c6d6b0a4a55d2bbb4f6352eac4242e190dcffcc09669ba4c57fec72843
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:30:37 EDT 2025
Thu Jul 10 16:46:19 EDT 2025
Fri Jul 25 07:34:05 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 00:43:25 EDT 2025
Wed Aug 27 02:23:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b2d23f7c6d6b0a4a55d2bbb4f6352eac4242e190dcffcc09669ba4c57fec72843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3822-1787
0000-0002-7493-5242
0000-0002-7688-4258
0000-0002-2999-3216
0000-0001-9915-2570
OpenAccessLink https://doaj.org/article/07a6cf360e8b47fa9a200cccf7136a79
PQID 2685161830
PQPubID 85423
PageCount 1
ParticipantIDs crossref_primary_10_1109_TNSRE_2022_3186442
proquest_journals_2685161830
crossref_citationtrail_10_1109_TNSRE_2022_3186442
ieee_primary_9807323
proquest_miscellaneous_2681811831
doaj_primary_oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
chollet (ref45) 2021
ref22
ref21
kaya (ref38) 2018; 5
ref28
ref27
ref29
vaswani (ref31) 2017
References_xml – ident: ref18
  doi: 10.1109/TNNLS.2020.3015505
– ident: ref19
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref2
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref13
  doi: 10.3389/fnhum.2019.00244
– ident: ref4
  doi: 10.1109/TBME.2018.2872855
– ident: ref49
  doi: 10.1016/j.neunet.2020.11.002
– ident: ref37
  doi: 10.3389/fnhum.2019.00128
– ident: ref27
  doi: 10.1093/gigascience/giz002
– ident: ref5
  doi: 10.1109/TNSRE.2020.3048106
– year: 2021
  ident: ref45
  publication-title: Deep Learning with Python
– ident: ref26
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref28
  doi: 10.1109/CVPR.2015.7298594
– ident: ref21
  doi: 10.3389/fncom.2019.00087
– ident: ref8
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– ident: ref41
  doi: 10.1609/aaai.v34i07.7000
– ident: ref1
  doi: 10.3390/s120201211
– ident: ref42
  doi: 10.5507/ag.2014.001
– start-page: 5999
  year: 2017
  ident: ref31
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref48
  doi: 10.1016/j.neucli.2018.10.068
– ident: ref7
  doi: 10.1371/journal.pone.0047048
– ident: ref39
  doi: 10.1093/cercor/bhaa234
– ident: ref43
  doi: 10.1109/CVPR.2017.634
– ident: ref46
  doi: 10.2307/3001968
– ident: ref20
  doi: 10.1080/2326263X.2017.1297192
– ident: ref40
  doi: 10.1088/1741-2552/ab260c
– ident: ref23
  doi: 10.1088/1741-2552/aace8c
– volume: 5
  year: 2018
  ident: ref38
  article-title: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
  publication-title: Data Science Journal
– ident: ref29
  doi: 10.1007/s11571-020-09649-8
– ident: ref17
  doi: 10.1016/j.neunet.2019.07.008
– ident: ref10
  doi: 10.1016/j.brainres.2017.08.025
– ident: ref14
  doi: 10.1161/STROKEAHA.116.016304
– ident: ref11
  doi: 10.3389/fnins.2017.00400
– ident: ref36
  doi: 10.1016/j.neuroscience.2016.12.050
– ident: ref35
  doi: 10.1371/journal.pone.0148886
– ident: ref32
  doi: 10.1088/1741-2552/abb7a7
– ident: ref9
  doi: 10.1016/j.brainres.2008.05.089
– ident: ref22
  doi: 10.1002/hbm.23730
– ident: ref25
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref12
  doi: 10.1016/j.neuroimage.2018.04.005
– ident: ref6
  doi: 10.1109/TNSRE.2019.2914916
– ident: ref16
  doi: 10.3389/fnins.2020.591435
– ident: ref34
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref15
  doi: 10.1109/ACCESS.2018.2886271
– ident: ref44
  doi: 10.1038/s41467-020-18360-5
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– ident: ref47
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref33
  doi: 10.1109/CVPR.2017.243
– ident: ref24
  doi: 10.1016/j.eswa.2018.08.031
– ident: ref3
  doi: 10.1016/j.eswa.2018.11.026
SSID ssj0017657
Score 2.529675
Snippet In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our...
In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Brain Computer Interface (BCI)
Brain modeling
Classification
Computer architecture
Convolutional neural networks
Datasets
Decoding
Deep learning
Deep Learning (DL)
EEG
Electrodes
Electroencephalography
Feature extraction
Human-computer interface
Imagery
Inter-subject
Interfaces
Machine learning
Mental task performance
Model accuracy
Motor Imagery
Motor skill learning
Neural networks
Transfer learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQkGEFmQk4ALZeh3HSbixZUuL1CK1W1SJg-VPhKDZit0cll_P2PFGFBDiFiW2FWvGM_Nm7GeAZ7RU1JnAh-d9mXOE17lqap8LynlZuFDsixtkT8XRBX9_WV5uwKvhLIxzLm4-c6PwGGv5dm66kCrbb2pUSFZswiYCt_6s1lAxqERk9cQFzHNeMLo-IEOb_dnp-dkUoSBjiFBrDADYDScUufrT5Sp_WOToZg7vwMn6B_vdJV9H3VKPzI_fuBv_dwbbcDvFm-RNryB3YcO19-D5r9zCZNYTC5AX5OwGbfcOfJpO352vrl6TD6jwqJro5khMIeaLTocEDvmIULvvsiJfWnIyRwhPjq8CMcaKTNBDWjI5OF6QkO4lb527JonQ9fN9uDiczg6O8nQbQ254US9zzSwrfGWEFZoqrsrSMq019xiyMDTfHJ29w_DCGu-NQWQkGq24KSvvTIVOsHgAW-28dQ-BWIfm2daIPceKUzvWJoRVSrtwhVHFywzGa_FIk-Ycbsz4JiNkoY2MIpVBpDKJNIOXQ5_rnqjjn60nQepDy0CyHV-gtGRas5JWShhfCOpqzSuvGoUmxRjjEdgLVTUZ7AQJD4Mk4Wawt9YhmQzCQjKBoa1A-0kzeDp8xqUc6jOqdfMutsF4C9uMH_195F24FSbRZ4D2YGv5vXOPMSZa6idxMfwE7hQGlA
  priority: 102
  providerName: IEEE
Title EEGSym: Overcoming Inter-subject Variability in Motor Imagery Based BCIs with Deep Learning
URI https://ieeexplore.ieee.org/document/9807323
https://www.proquest.com/docview/2685161830
https://www.proquest.com/docview/2681811831
https://doaj.org/article/07a6cf360e8b47fa9a200cccf7136a79
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQJy6ohSKWpshILRe0wvH6scuNQCggARIkFImDZXvtNlKzQRAO-feMvU4UVKm99Lo7Xnk945n5_PgGoa-Ea-Js4MPznucM4HWuq9LngjDGCxc2--IB2WtxPmSXD_xhqdRXOBPW0gO3A3dIpBbWF4K40jDpdaVBr9ZaD-hKaBmv7kHMm4OptH8gBZfzKzKkOhxc3932AQxSChi1hBSAvgtDka0_lVf5wyfHQHP2Aa2nDBEftz37iFZcs4G-LbMB40FLBYD38e07ou1N9Njvf7-bjY_wDZgoGBMEJhwX_XLwEGHJBd8DOG6bzPCowVcTAN34YhyoLGa4BzGtxr2Tixf8YzT9hU-de8KJgvXnJzQ86w9OzvNUPyG3rCinuaE1Lby0ohaGaKY5r6kxhnlIMig4XAbh2UFCUFvvrQUsIyqjmeXSOyshbBVbaLWZNG4b4dqBQ61LQItdzUjdNTYkQtq4UHRIMp6h7nw4lU3_HGpc_FYRZJBKRRWooAKVVJChg0Wbp5Za46_SvaClhWSgxY4PwFhUMhb1L2PJ0GbQ8eIjVQkejhYZ6sx1rtIUflFUQDIqwOORDO0tXsPkCzsqunGT1ygDGRLIdHf-R_c-o7Xwy-0KTwetTp9f3RfIeaZmN5r3brye-AZbd_xl
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcoALXwWxUMBIlAva1Ov1eneROJA2JaFtkNq0qsTB2F4bIWhSNYlQ-C38Ff4bY-9mRQFxq8QtSryWvHkzb2ZsvwF4RjNFrfF6eM5lMcf0OlZl4WJBOc9S6zf7wgHZoegf8bcn2ckKfG_vwlhrw-Ez2_Efw15-NTFzXyrbLAsEJFu2qt61i6-YoE1fDbbx39xgbKc32urHTQ-B2PC0mMWaVSx1uRGV0FRxlWUV01pzh0TL0OlwpCiLpFgZ54zBeF6UWnGT5c6aHF13ivNegasYZ2Ssvh3W7lHkIuiIosvgMU8ZXV7JoeXmaHh40MPkkzHMiQsMOdgF2gvdAZp2Ln9wQCC2nZvwY_lK6vMsnzvzme6Yb7-pRf6v7-wW3GgiavK6NoHbsGLHd2DjV_VkMqqlE8hzcnBBmHwN3vd6bw4Xpy_JOzRpND4kchKKpPF0rn2JihwrNNHwyIJ8GpP9yWxyTganXvpjQboYA1SkuzWYEl_QJtvWnpFGsvbjXTi6lHXfg9XxZGzvA6ksElBVYHadKE6rRBsfOCptfZOmnGcRJEs4SNOs2fcE-SJDUkZLGSAkPYRkA6EIXrTPnNVSJP8c3fUoa0d6GfHwBaJDNl5J0lwJ41JBbaF57lSp0GkaY1yepELlZQRrHlHtJA2YIlhfYlY2Lm8qmcDgXSBD0Aietj-js_I7UGpsJ_MwBiNKHJM8-PvMT-Baf7S_J_cGw92HcN0vqK53rcPq7HxuH2EEONOPgyES-HDZKP4JAKVmdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGSym%3A+Overcoming+Inter-Subject+Variability+in+Motor+Imagery+Based+BCIs+With+Deep+Learning&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sergio+Perez-Velasco&rft.au=Eduardo+Santamaria-Vazquez&rft.au=Victor+Martinez-Cagigal&rft.au=Diego+Marcos-Martinez&rft.date=2022&rft.pub=IEEE&rft.eissn=1558-0210&rft.volume=30&rft.spage=1766&rft.epage=1775&rft_id=info:doi/10.1109%2FTNSRE.2022.3186442&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon