EEGSym: Overcoming Inter-subject Variability in Motor Imagery Based BCIs with Deep Learning
In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI ineffi...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym 's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym , which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification. |
---|---|
AbstractList | In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification.In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification. In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain through the mid-sagittal plane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym's performance on inter-subject MI classification with ShallowConvNet, DeepConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control (≥70% accuracy). Furthermore, these results are achieved using only 16 electrodes of the more than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on inter-subject MI classification. |
Author | Perez-Velasco, Sergio Santamaria-Vazquez, Eduardo Hornero, Roberto Martinez-Cagigal, Victor Marcos-Martinez, Diego |
Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0002-2999-3216 surname: Perez-Velasco fullname: Perez-Velasco, Sergio organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain – sequence: 2 givenname: Eduardo orcidid: 0000-0002-7688-4258 surname: Santamaria-Vazquez fullname: Santamaria-Vazquez, Eduardo organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain – sequence: 3 givenname: Victor orcidid: 0000-0002-3822-1787 surname: Martinez-Cagigal fullname: Martinez-Cagigal, Victor organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain – sequence: 4 givenname: Diego orcidid: 0000-0002-7493-5242 surname: Marcos-Martinez fullname: Marcos-Martinez, Diego organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain – sequence: 5 givenname: Roberto orcidid: 0000-0001-9915-2570 surname: Hornero fullname: Hornero, Roberto organization: Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, Valladolid, Spain |
BookMark | eNp9kU9vEzEQxVeoSLSFLwAXS1y4bPC_tXe50RDalQKVaOHCwZr1joOjzTq1HVC-fTdN1UMPnGY0-r03M3pnxckYRiyKt4zOGKPNx9vvNz8WM045nwlWKyn5i-KUVVVdUs7oyaEXspSC01fFWUprSplWlT4tfi8Wlzf7zSdy_RejDRs_rkg7Zoxl2nVrtJn8guih84PPe-JH8i3kEEm7gRXGPbmAhD25mLeJ_PP5D_mCuCVLhDhORq-Llw6GhG8e63nx8-vidn5VLq8v2_nnZWmlqHPZ8Z4Lp63qVUdBQlX1vOs66ZSoOIKVXHJkDe2tc9bSRqmmA2kr7dBqXktxXrRH3z7A2myj30DcmwDePAxCXBmI2dsBDdWgrBOKYt1J7aABTqm11mkmFOhm8vpw9NrGcLfDlM3GJ4vDACOGXTJc1axmrBZsQt8_Q9dhF8fp0wNVMTVRdKL4kbIxpBTRPR3IqDlkZx6yM4fszGN2k6h-JrI-Q_ZhzBH88H_pu6PUI-LTrqamWnAh7gHvPKgv |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1088_1361_6579_ad4e95 crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_3390_s23084164 crossref_primary_10_1109_TNSRE_2023_3314679 crossref_primary_10_1109_TPAMI_2023_3299568 crossref_primary_10_1016_j_cmpb_2024_108048 crossref_primary_10_1016_j_compbiomed_2023_107901 crossref_primary_10_1016_j_knosys_2025_113315 crossref_primary_10_1109_TETCI_2024_3359097 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1177_15500594241312450 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_3389_fnins_2025_1469244 crossref_primary_10_1016_j_heliyon_2024_e37343 crossref_primary_10_16984_saufenbilder_1190493 crossref_primary_10_1016_j_ipm_2024_104012 crossref_primary_10_1016_j_knosys_2024_111855 crossref_primary_10_3390_computers12070145 crossref_primary_10_1016_j_patcog_2024_110726 crossref_primary_10_1016_j_cmpb_2023_107357 crossref_primary_10_1016_j_bspc_2024_106401 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_3389_fnhum_2024_1320457 crossref_primary_10_1109_TNSRE_2022_3228216 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1088_1741_2552_adbfc1 crossref_primary_10_1142_S0218001423540204 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_4015_S1016237224500194 |
Cites_doi | 10.1109/TNNLS.2020.3015505 10.1109/IJCNN.2008.4634130 10.1016/S1388-2457(02)00057-3 10.3389/fnhum.2019.00244 10.1109/TBME.2018.2872855 10.1016/j.neunet.2020.11.002 10.3389/fnhum.2019.00128 10.1093/gigascience/giz002 10.1109/TNSRE.2020.3048106 10.1161/01.CIR.101.23.e215 10.1109/CVPR.2015.7298594 10.3389/fncom.2019.00087 10.1093/acprof:oso/9780195388855.001.0001 10.1609/aaai.v34i07.7000 10.3390/s120201211 10.5507/ag.2014.001 10.1016/j.neucli.2018.10.068 10.1371/journal.pone.0047048 10.1093/cercor/bhaa234 10.1109/CVPR.2017.634 10.2307/3001968 10.1080/2326263X.2017.1297192 10.1088/1741-2552/ab260c 10.1088/1741-2552/aace8c 10.1007/s11571-020-09649-8 10.1016/j.neunet.2019.07.008 10.1016/j.brainres.2017.08.025 10.1161/STROKEAHA.116.016304 10.3389/fnins.2017.00400 10.1016/j.neuroscience.2016.12.050 10.1371/journal.pone.0148886 10.1088/1741-2552/abb7a7 10.1016/j.brainres.2008.05.089 10.1002/hbm.23730 10.1016/j.neunet.2020.12.013 10.1016/j.neuroimage.2018.04.005 10.1109/TNSRE.2019.2914916 10.3389/fnins.2020.591435 10.1109/TNNLS.2019.2946869 10.1109/ACCESS.2018.2886271 10.1038/s41467-020-18360-5 10.1109/CVPR.2016.90 10.1111/j.2517-6161.1995.tb02031.x 10.1109/CVPR.2017.243 10.1016/j.eswa.2018.08.031 10.1016/j.eswa.2018.11.026 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2022.3186442 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79 10_1109_TNSRE_2022_3186442 9807323 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovaci?n grantid: PID2020- 115468RB-I00; RTC2019-007350-1 funderid: 10.13039/501100004837 – fundername: Centro de Investigaci?n Biom?dica en Red en Bioingenier?a, Biomateriales y Nanomedicina grantid: CB19/01/00012 funderid: 10.13039/501100005053 – fundername: Instituto de Salud Carlos III funderid: 10.13039/501100004587 – fundername: European Regional Development Fund grantid: An?lisis y correlaci?n entre la epigen?tica y l funderid: 10.13039/501100008530 – fundername: Consejer?a de Educaci?n, Junta de Castilla y Le?n grantid: PIF grant funderid: 10.13039/501100008431 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c438t-b2d23f7c6d6b0a4a55d2bbb4f6352eac4242e190dcffcc09669ba4c57fec72843 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:30:37 EDT 2025 Thu Jul 10 16:46:19 EDT 2025 Fri Jul 25 07:34:05 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 00:43:25 EDT 2025 Wed Aug 27 02:23:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-b2d23f7c6d6b0a4a55d2bbb4f6352eac4242e190dcffcc09669ba4c57fec72843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3822-1787 0000-0002-7493-5242 0000-0002-7688-4258 0000-0002-2999-3216 0000-0001-9915-2570 |
OpenAccessLink | https://doaj.org/article/07a6cf360e8b47fa9a200cccf7136a79 |
PQID | 2685161830 |
PQPubID | 85423 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TNSRE_2022_3186442 proquest_journals_2685161830 crossref_citationtrail_10_1109_TNSRE_2022_3186442 ieee_primary_9807323 proquest_miscellaneous_2681811831 doaj_primary_oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref26 ref25 ref20 chollet (ref45) 2021 ref22 ref21 kaya (ref38) 2018; 5 ref28 ref27 ref29 vaswani (ref31) 2017 |
References_xml | – ident: ref18 doi: 10.1109/TNNLS.2020.3015505 – ident: ref19 doi: 10.1109/IJCNN.2008.4634130 – ident: ref2 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref13 doi: 10.3389/fnhum.2019.00244 – ident: ref4 doi: 10.1109/TBME.2018.2872855 – ident: ref49 doi: 10.1016/j.neunet.2020.11.002 – ident: ref37 doi: 10.3389/fnhum.2019.00128 – ident: ref27 doi: 10.1093/gigascience/giz002 – ident: ref5 doi: 10.1109/TNSRE.2020.3048106 – year: 2021 ident: ref45 publication-title: Deep Learning with Python – ident: ref26 doi: 10.1161/01.CIR.101.23.e215 – ident: ref28 doi: 10.1109/CVPR.2015.7298594 – ident: ref21 doi: 10.3389/fncom.2019.00087 – ident: ref8 doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: ref41 doi: 10.1609/aaai.v34i07.7000 – ident: ref1 doi: 10.3390/s120201211 – ident: ref42 doi: 10.5507/ag.2014.001 – start-page: 5999 year: 2017 ident: ref31 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref48 doi: 10.1016/j.neucli.2018.10.068 – ident: ref7 doi: 10.1371/journal.pone.0047048 – ident: ref39 doi: 10.1093/cercor/bhaa234 – ident: ref43 doi: 10.1109/CVPR.2017.634 – ident: ref46 doi: 10.2307/3001968 – ident: ref20 doi: 10.1080/2326263X.2017.1297192 – ident: ref40 doi: 10.1088/1741-2552/ab260c – ident: ref23 doi: 10.1088/1741-2552/aace8c – volume: 5 year: 2018 ident: ref38 article-title: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces publication-title: Data Science Journal – ident: ref29 doi: 10.1007/s11571-020-09649-8 – ident: ref17 doi: 10.1016/j.neunet.2019.07.008 – ident: ref10 doi: 10.1016/j.brainres.2017.08.025 – ident: ref14 doi: 10.1161/STROKEAHA.116.016304 – ident: ref11 doi: 10.3389/fnins.2017.00400 – ident: ref36 doi: 10.1016/j.neuroscience.2016.12.050 – ident: ref35 doi: 10.1371/journal.pone.0148886 – ident: ref32 doi: 10.1088/1741-2552/abb7a7 – ident: ref9 doi: 10.1016/j.brainres.2008.05.089 – ident: ref22 doi: 10.1002/hbm.23730 – ident: ref25 doi: 10.1016/j.neunet.2020.12.013 – ident: ref12 doi: 10.1016/j.neuroimage.2018.04.005 – ident: ref6 doi: 10.1109/TNSRE.2019.2914916 – ident: ref16 doi: 10.3389/fnins.2020.591435 – ident: ref34 doi: 10.1109/TNNLS.2019.2946869 – ident: ref15 doi: 10.1109/ACCESS.2018.2886271 – ident: ref44 doi: 10.1038/s41467-020-18360-5 – ident: ref30 doi: 10.1109/CVPR.2016.90 – ident: ref47 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref33 doi: 10.1109/CVPR.2017.243 – ident: ref24 doi: 10.1016/j.eswa.2018.08.031 – ident: ref3 doi: 10.1016/j.eswa.2018.11.026 |
SSID | ssj0017657 |
Score | 2.529675 |
Snippet | In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym . Our... In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Brain Computer Interface (BCI) Brain modeling Classification Computer architecture Convolutional neural networks Datasets Decoding Deep learning Deep Learning (DL) EEG Electrodes Electroencephalography Feature extraction Human-computer interface Imagery Inter-subject Interfaces Machine learning Mental task performance Model accuracy Motor Imagery Motor skill learning Neural networks Transfer learning |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQkGEFmQk4ALZeh3HSbixZUuL1CK1W1SJg-VPhKDZit0cll_P2PFGFBDiFiW2FWvGM_Nm7GeAZ7RU1JnAh-d9mXOE17lqap8LynlZuFDsixtkT8XRBX9_WV5uwKvhLIxzLm4-c6PwGGv5dm66kCrbb2pUSFZswiYCt_6s1lAxqERk9cQFzHNeMLo-IEOb_dnp-dkUoSBjiFBrDADYDScUufrT5Sp_WOToZg7vwMn6B_vdJV9H3VKPzI_fuBv_dwbbcDvFm-RNryB3YcO19-D5r9zCZNYTC5AX5OwGbfcOfJpO352vrl6TD6jwqJro5khMIeaLTocEDvmIULvvsiJfWnIyRwhPjq8CMcaKTNBDWjI5OF6QkO4lb527JonQ9fN9uDiczg6O8nQbQ254US9zzSwrfGWEFZoqrsrSMq019xiyMDTfHJ29w_DCGu-NQWQkGq24KSvvTIVOsHgAW-28dQ-BWIfm2daIPceKUzvWJoRVSrtwhVHFywzGa_FIk-Ycbsz4JiNkoY2MIpVBpDKJNIOXQ5_rnqjjn60nQepDy0CyHV-gtGRas5JWShhfCOpqzSuvGoUmxRjjEdgLVTUZ7AQJD4Mk4Wawt9YhmQzCQjKBoa1A-0kzeDp8xqUc6jOqdfMutsF4C9uMH_195F24FSbRZ4D2YGv5vXOPMSZa6idxMfwE7hQGlA priority: 102 providerName: IEEE |
Title | EEGSym: Overcoming Inter-subject Variability in Motor Imagery Based BCIs with Deep Learning |
URI | https://ieeexplore.ieee.org/document/9807323 https://www.proquest.com/docview/2685161830 https://www.proquest.com/docview/2681811831 https://doaj.org/article/07a6cf360e8b47fa9a200cccf7136a79 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQJy6ohSKWpshILRe0wvH6scuNQCggARIkFImDZXvtNlKzQRAO-feMvU4UVKm99Lo7Xnk945n5_PgGoa-Ea-Js4MPznucM4HWuq9LngjDGCxc2--IB2WtxPmSXD_xhqdRXOBPW0gO3A3dIpBbWF4K40jDpdaVBr9ZaD-hKaBmv7kHMm4OptH8gBZfzKzKkOhxc3932AQxSChi1hBSAvgtDka0_lVf5wyfHQHP2Aa2nDBEftz37iFZcs4G-LbMB40FLBYD38e07ou1N9Njvf7-bjY_wDZgoGBMEJhwX_XLwEGHJBd8DOG6bzPCowVcTAN34YhyoLGa4BzGtxr2Tixf8YzT9hU-de8KJgvXnJzQ86w9OzvNUPyG3rCinuaE1Lby0ohaGaKY5r6kxhnlIMig4XAbh2UFCUFvvrQUsIyqjmeXSOyshbBVbaLWZNG4b4dqBQ61LQItdzUjdNTYkQtq4UHRIMp6h7nw4lU3_HGpc_FYRZJBKRRWooAKVVJChg0Wbp5Za46_SvaClhWSgxY4PwFhUMhb1L2PJ0GbQ8eIjVQkejhYZ6sx1rtIUflFUQDIqwOORDO0tXsPkCzsqunGT1ygDGRLIdHf-R_c-o7Xwy-0KTwetTp9f3RfIeaZmN5r3brye-AZbd_xl |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcoALXwWxUMBIlAva1Ov1eneROJA2JaFtkNq0qsTB2F4bIWhSNYlQ-C38Ff4bY-9mRQFxq8QtSryWvHkzb2ZsvwF4RjNFrfF6eM5lMcf0OlZl4WJBOc9S6zf7wgHZoegf8bcn2ckKfG_vwlhrw-Ez2_Efw15-NTFzXyrbLAsEJFu2qt61i6-YoE1fDbbx39xgbKc32urHTQ-B2PC0mMWaVSx1uRGV0FRxlWUV01pzh0TL0OlwpCiLpFgZ54zBeF6UWnGT5c6aHF13ivNegasYZ2Ssvh3W7lHkIuiIosvgMU8ZXV7JoeXmaHh40MPkkzHMiQsMOdgF2gvdAZp2Ln9wQCC2nZvwY_lK6vMsnzvzme6Yb7-pRf6v7-wW3GgiavK6NoHbsGLHd2DjV_VkMqqlE8hzcnBBmHwN3vd6bw4Xpy_JOzRpND4kchKKpPF0rn2JihwrNNHwyIJ8GpP9yWxyTganXvpjQboYA1SkuzWYEl_QJtvWnpFGsvbjXTi6lHXfg9XxZGzvA6ksElBVYHadKE6rRBsfOCptfZOmnGcRJEs4SNOs2fcE-SJDUkZLGSAkPYRkA6EIXrTPnNVSJP8c3fUoa0d6GfHwBaJDNl5J0lwJ41JBbaF57lSp0GkaY1yepELlZQRrHlHtJA2YIlhfYlY2Lm8qmcDgXSBD0Aietj-js_I7UGpsJ_MwBiNKHJM8-PvMT-Baf7S_J_cGw92HcN0vqK53rcPq7HxuH2EEONOPgyES-HDZKP4JAKVmdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGSym%3A+Overcoming+Inter-Subject+Variability+in+Motor+Imagery+Based+BCIs+With+Deep+Learning&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sergio+Perez-Velasco&rft.au=Eduardo+Santamaria-Vazquez&rft.au=Victor+Martinez-Cagigal&rft.au=Diego+Marcos-Martinez&rft.date=2022&rft.pub=IEEE&rft.eissn=1558-0210&rft.volume=30&rft.spage=1766&rft.epage=1775&rft_id=info:doi/10.1109%2FTNSRE.2022.3186442&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07a6cf360e8b47fa9a200cccf7136a79 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |