Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives

Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 7; no. 1; pp. 4325 - 4337
Main Authors Tang, Jianshi, Wang, Kang L
Format Journal Article
LanguageEnglish
Published England 01.01.2015
Online AccessGet full text

Cover

Loading…
Abstract Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics. This review paper presents the challenges, recent progress, and perspectives of electrical spin injection and transport in semiconductor nanowires.
AbstractList Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.
Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.
Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics. This review paper presents the challenges, recent progress, and perspectives of electrical spin injection and transport in semiconductor nanowires.
Author Wang, Kang L
Tang, Jianshi
AuthorAffiliation Department of Electrical Engineering
University of California
Device Research Laboratory
AuthorAffiliation_xml – name: Device Research Laboratory
– name: University of California
– name: Department of Electrical Engineering
Author_xml – sequence: 1
  givenname: Jianshi
  surname: Tang
  fullname: Tang, Jianshi
– sequence: 2
  givenname: Kang L
  surname: Wang
  fullname: Wang, Kang L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25686092$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAURoOM-N64V-pOxOpt00mn7mTwBaIgui5pejNmaJOa21H892YcHUHEVZKP812Sk002sM4iY7sJnCTAi1OVWQ-5SJLJCttIIYOY8zwdLPciW2ebRFMAUXDB19h6OhQjAUW6wcxFg6r3Rskmos7YyNhpCIyzkbR11HtpqXO-D3lE2BrlbD1TvfORlda9GY90Fqln2TRoJ0jHUefdJIT0We_QUzcf94q0zVa1bAh3vtYt9nR58Ti-jm_vr27G57exyviojyVqTFHnFYKsgUOBOeSAWSYqqBIpdIo4Cs_OdAV1Hc66kiM-DxKdw7DiW-xwMTfc5GWG1JetIYVNIy26GZWJyIMekabDgO5_obOqxbrsvGmlfy-_9QTgaAEo74g86iWSQDl3X46zu4dP91cBhl-wMr2cqwwWTfN35WBR8aSWo3--s-xqHZi9_xj-AU8Rnec
CitedBy_id crossref_primary_10_1007_s12648_020_01958_2
crossref_primary_10_1021_acsami_0c09044
crossref_primary_10_1002_adma_201904059
crossref_primary_10_1021_acs_nanolett_4c03420
crossref_primary_10_1063_5_0029274
crossref_primary_10_1002_admt_202401017
crossref_primary_10_1088_1402_4896_ac1cd0
crossref_primary_10_1007_s11664_020_08008_x
crossref_primary_10_1016_j_jmmm_2021_168245
crossref_primary_10_1039_C6DT01745B
crossref_primary_10_1039_C8CP00843D
crossref_primary_10_1021_acs_jpcc_4c08269
crossref_primary_10_1016_j_pmatsci_2018_08_001
crossref_primary_10_1016_j_ijleo_2018_03_107
crossref_primary_10_1016_j_vacuum_2019_02_039
crossref_primary_10_1039_C5CP01637A
crossref_primary_10_1103_PhysRevB_93_165424
crossref_primary_10_1038_s41598_024_78668_w
crossref_primary_10_1016_j_jmmm_2021_168995
crossref_primary_10_1039_D3NR03438K
crossref_primary_10_1002_mma_7967
crossref_primary_10_1063_5_0014148
crossref_primary_10_1103_PhysRevB_95_121407
crossref_primary_10_1557_jmr_2019_333
crossref_primary_10_1016_j_jmmm_2018_10_123
crossref_primary_10_1142_S0217984921504133
crossref_primary_10_1109_JPROC_2016_2573836
crossref_primary_10_1016_j_asej_2024_103044
crossref_primary_10_1063_1_5080508
crossref_primary_10_1016_j_chaos_2022_112179
crossref_primary_10_1038_s41467_022_29053_6
crossref_primary_10_1080_09205071_2018_1431156
crossref_primary_10_1038_s41567_018_0406_3
crossref_primary_10_1021_acs_nanolett_7b03221
crossref_primary_10_1039_C6NR08688H
crossref_primary_10_1088_1402_4896_ac2180
crossref_primary_10_1016_j_matpr_2021_02_818
crossref_primary_10_1063_1_4998587
crossref_primary_10_1039_C6CE01598K
crossref_primary_10_1016_j_jallcom_2016_12_127
crossref_primary_10_1177_2280800017751492
crossref_primary_10_1021_acs_chemmater_9b02243
crossref_primary_10_1088_0953_8984_27_25_256002
crossref_primary_10_1088_1361_6528_abcfeb
crossref_primary_10_1016_j_camwa_2018_09_054
crossref_primary_10_1088_1402_4896_ad482a
crossref_primary_10_1038_ncomms15722
Cites_doi 10.1103/PhysRevLett.83.203
10.1103/PhysRevB.62.R4790
10.1166/jnn.2005.175
10.1063/1.102730
10.1063/1.3157128
10.1021/nn2017777
10.1063/1.3670985
10.1038/nature06037
10.1038/nnano.2012.161
10.1103/PhysRevLett.105.167202
10.1063/1.3368701
10.1063/1.3357423
10.1126/science.1065389
10.1063/1.3652757
10.1038/nphys543
10.1063/1.2230012
10.1063/1.4711850
10.1021/nl301052g
10.1143/APEX.1.051406
10.1088/0268-1242/28/1/015018
10.1021/nn301956m
10.1103/PhysRevLett.113.236602
10.1063/1.2035332
10.1038/416713a
10.1103/PhysRevLett.108.156603
10.1038/nature02674
10.1103/PhysRevB.74.081301
10.1103/PhysRevB.86.035315
10.1073/pnas.0504581102
10.1021/cr900056b
10.1103/PhysRevLett.98.176808
10.1038/nature01141
10.1103/PhysRevLett.61.2472
10.1103/PhysRevLett.97.036805
10.1038/nmat2716
10.1088/0022-3727/47/19/193001
10.1038/35066533
10.1038/nphys673
10.1143/APEX.5.053004
10.1063/1.2430688
10.1103/PhysRevB.67.085319
10.1103/PhysRevB.81.155449
10.1103/PhysRevB.62.R16267
10.1038/nature05803
10.1021/nl303645k
10.1016/j.mee.2009.03.052
10.1063/1.2719017
10.1103/PhysRevB.64.184420
10.1088/0268-1242/29/5/054004
10.1038/nnano.2010.31
10.1103/PhysRevB.84.054410
10.1103/PhysRevB.66.081304
10.1021/nl5026198
10.1103/PhysRev.96.266
10.1038/nnano.2007.64
10.1103/RevModPhys.76.323
10.1103/PhysRevB.61.13115
10.1149/06406.0613ecst
10.1038/nature02325
10.1103/PhysRevB.39.4828
10.1021/nl303667v
10.1088/0957-4484/21/50/505704
10.1103/PhysRevB.71.205328
10.1126/science.260.5106.320
10.1088/0268-1242/27/8/083001
10.1109/TED.2009.2027975
10.1063/1.3367748
10.1063/1.1689403
10.1103/PhysRevB.85.035320
10.1109/TNANO.2004.837847
10.1021/nl401238p
10.1103/PhysRevB.84.165315
10.1021/nl101477q
10.1103/PhysRev.138.A1689
10.1063/1.3536488
10.1021/nl1008663
10.1063/1.3028343
10.1038/nature08570
10.1016/0375-9601(75)90174-7
10.1016/j.jcrysgro.2009.09.052
10.1103/PhysRevB.84.125323
10.1038/ncomms1256
10.1063/1.2831918
10.1103/PhysRevLett.87.016601
10.1103/PhysRevB.63.054416
10.1103/PhysRevLett.88.066806
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1039/c4nr07611g
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 4337
ExternalDocumentID 25686092
10_1039_C4NR07611G
c4nr07611g
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7X8
ID FETCH-LOGICAL-c438t-aefe2ef7be0ad0309e7070e446b0b1a6f2ee81034fb0dda6ffba8310341f705b3
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 18:18:01 EDT 2025
Thu Apr 03 06:57:46 EDT 2025
Tue Jul 01 00:33:17 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Thu May 19 04:16:26 EDT 2016
Sat Jun 01 02:24:57 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-aefe2ef7be0ad0309e7070e446b0b1a6f2ee81034fb0dda6ffba8310341f705b3
Notes 2
Kang L. Wang received his BS degree in Electrical Engineering from National Cheng Kung University in 1964 and his PhD degree in Electrical Engineering from Massachusetts Institute of Technology in 1970. In 1970-1972, he was an Assistant Professor at MIT. In 1972-1979, he worked at the General Electric Corporate Research and Development Center as a physicist/engineer. In 1979, he joined the Electrical Engineering Department of UCLA, where he is the endowed Raytheon Professor. His research activities include semiconductor nanodevices, spintronics/ferromagnetic materials and devices, nanoscience and technology; molecular beam epitaxy, quantum structures and devices. He is an IEEE Fellow.
,
etc.
and magnetic nanostructures. He has authored or co-authored more than 40 technical publications.
Jianshi Tang received his BS degree in Electronic Engineering from Tsinghua University in 2008, and his PhD degree in Electrical Engineering from the University of California, Los Angeles (UCLA) in 2014. After working as a Staff Researcher at UCLA for three months, he then joined IBM T. J. Watson Research Center as a Postdoctoral Researcher in January 2015. His research interest involves physics and device applications of low-dimensional nanomaterials, including semiconductor nanowires and heterostructures, carbon nanotubes, two-dimensional van der Waals materials (graphene, topological insulators, MoS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25686092
PQID 1673376225
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1673376225
crossref_citationtrail_10_1039_C4NR07611G
rsc_primary_c4nr07611g
crossref_primary_10_1039_C4NR07611G
pubmed_primary_25686092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2015
References 5
Heine (C4NR07611G-(cit34)/*[position()=1]) 1965; 138
Schmidt (C4NR07611G-(cit27)/*[position()=1]) 2000; 62
Noborisaka (C4NR07611G-(cit85)/*[position()=1]) 2005; 87
Hirohata (C4NR07611G-(cit87)/*[position()=1]) 2014; 47
Elliott (C4NR07611G-(cit63)/*[position()=1]) 1954; 96
Wolf (C4NR07611G-(cit2)/*[position()=1]) 2001; 294
Nikonov (C4NR07611G-(cit90)/*[position()=1]) 2005; 4
Lou (C4NR07611G-(cit12)/*[position()=1]) 2007; 3
Heedt (C4NR07611G-(cit24)/*[position()=1]) 2012; 12
Liu (C4NR07611G-(cit21)/*[position()=1]) 2010; 10
Zhou (C4NR07611G-(cit37)/*[position()=1]) 2008; 93
Patibandla (C4NR07611G-(cit71)/*[position()=1]) 2006; 100
Tang (C4NR07611G-(cit46)/*[position()=1]) 2011; 5
Litvinenko (C4NR07611G-(cit60)/*[position()=1]) 2007; 101
Sasaki (C4NR07611G-(cit52)/*[position()=1]) 2011; 98
Tang (C4NR07611G-(cit19)/*[position()=1]) 2013; 13
Datta (C4NR07611G-(cit17)/*[position()=1]) 1990; 56
Yamane (C4NR07611G-(cit31)/*[position()=1]) 2010; 96
Jain (C4NR07611G-(cit56)/*[position()=1]) 2011; 99
Xiong (C4NR07611G-(cit80)/*[position()=1]) 2004; 427
Butler (C4NR07611G-(cit39)/*[position()=1]) 2001; 63
Hammar (C4NR07611G-(cit65)/*[position()=1]) 1999; 83
Zhang (C4NR07611G-(cit25)/*[position()=1]) 2013; 13
Jahangir (C4NR07611G-(cit57)/*[position()=1]) 2012; 86
Jansen (C4NR07611G-(cit48)/*[position()=1]) 2012; 27
Zhou (C4NR07611G-(cit38)/*[position()=1]) 2010; 96
Schäpers (C4NR07611G-(cit72)/*[position()=1]) 2006; 74
Kum (C4NR07611G-(cit23)/*[position()=1]) 2012; 100
Iba (C4NR07611G-(cit41)/*[position()=1]) 2012; 5
Ramsteiner (C4NR07611G-(cit58)/*[position()=1]) 2002; 66
Baibich (C4NR07611G-(cit4)/*[position()=1]) 1988; 61
Toriumi (C4NR07611G-(cit33)/*[position()=1]) 2009; 86
Kasahara (C4NR07611G-(cit43)/*[position()=1]) 2012; 111
Tombros (C4NR07611G-(cit14)/*[position()=1]) 2007; 448
Tang (C4NR07611G-(cit86)/*[position()=1]) 2014; 14
Sasaki (C4NR07611G-(cit40)/*[position()=1]) 2010; 96
Julliere (C4NR07611G-(cit82)/*[position()=1]) 1975; 54
Tang (C4NR07611G-(cit45)/*[position()=1]) 2010; 21
Chang (C4NR07611G-(cit49)/*[position()=1]) 2013; 28
Pramanik (C4NR07611G-(cit79)/*[position()=1]) 2007; 2
Ando (C4NR07611G-(cit55)/*[position()=1]) 2012; 85
Kiselev (C4NR07611G-(cit26)/*[position()=1]) 2000; 61
Behin-Aein (C4NR07611G-(cit88)/*[position()=1]) 2010; 5
Tang (C4NR07611G-(cit47)/*[position()=1]) 2012; 6
Hammar (C4NR07611G-(cit64)/*[position()=1]) 2002; 88
Tang (C4NR07611G-(cit81)/*[position()=1]) 2012; 12
Johnson (C4NR07611G-(cit16)/*[position()=1]) 1993; 260
Fert (C4NR07611G-(cit28)/*[position()=1]) 2001; 64
Oltscher (C4NR07611G-(cit66)/*[position()=1]) 2014; 113
Jedema (C4NR07611G-(cit7)/*[position()=1]) 2002; 416
C4NR07611G-(cit1)/*[position()=1]
Jeon (C4NR07611G-(cit11)/*[position()=1]) 2011; 84
Wei (C4NR07611G-(cit77)/*[position()=1]) 2014; 29
Dash (C4NR07611G-(cit32)/*[position()=1]) 2011; 84
George (C4NR07611G-(cit75)/*[position()=1]) 2009; 110
Li (C4NR07611G-(cit53)/*[position()=1]) 2011; 2
Lu (C4NR07611G-(cit84)/*[position()=1]) 2005; 102
Lieten (C4NR07611G-(cit35)/*[position()=1]) 2008; 92
Han (C4NR07611G-(cit30)/*[position()=1]) 2009; 312
Jedema (C4NR07611G-(cit62)/*[position()=1]) 2003; 67
Lauhon (C4NR07611G-(cit83)/*[position()=1]) 2002; 420
Rashba (C4NR07611G-(cit29)/*[position()=1]) 2000; 62
Tang (C4NR07611G-(cit20)/*[position()=1]) 2014; 64
Appelbaum (C4NR07611G-(cit50)/*[position()=1]) 2007; 447
Tang (C4NR07611G-(cit76)/*[position()=1]) 2011; 2011
Žutić (C4NR07611G-(cit3)/*[position()=1]) 2004; 76
Nishimura (C4NR07611G-(cit36)/*[position()=1]) 2008; 1
Hansen (C4NR07611G-(cit73)/*[position()=1]) 2005; 71
Yafet (C4NR07611G-(cit61)/*[position()=1]) 1963; 14
Balandin (C4NR07611G-(cit68)/*[position()=1]) 2005; 5
Zhou (C4NR07611G-(cit42)/*[position()=1]) 2009; 94
Zhou (C4NR07611G-(cit10)/*[position()=1]) 2011; 84
Lin (C4NR07611G-(cit22)/*[position()=1]) 2010; 10
Jedema (C4NR07611G-(cit6)/*[position()=1]) 2001; 410
Sugahara (C4NR07611G-(cit18)/*[position()=1]) 2004; 84
van 't Erve (C4NR07611G-(cit54)/*[position()=1]) 2012; 7
Binasch (C4NR07611G-(cit5)/*[position()=1]) 1989; 39
Kettemann (C4NR07611G-(cit70)/*[position()=1]) 2007; 98
Han (C4NR07611G-(cit15)/*[position()=1]) 2010; 105
Xiu (C4NR07611G-(cit89)/*[position()=1]) 2010; 9
Jonker (C4NR07611G-(cit8)/*[position()=1]) 2007; 3
Tang (C4NR07611G-(cit78)/*[position()=1]) 2012
Holleitner (C4NR07611G-(cit69)/*[position()=1]) 2006; 97
van't Erve (C4NR07611G-(cit51)/*[position()=1]) 2009; 56
Zhu (C4NR07611G-(cit13)/*[position()=1]) 2001; 87
Wu (C4NR07611G-(cit44)/*[position()=1]) 2004; 430
Roulleau (C4NR07611G-(cit74)/*[position()=1]) 2010; 81
Dash (C4NR07611G-(cit9)/*[position()=1]) 2009; 462
Pezzoli (C4NR07611G-(cit67)/*[position()=1]) 2012; 108
Koo (C4NR07611G-(cit59)/*[position()=1]) 2007; 90
References_xml – issn: 1963
  issue: 14
  end-page: 1-98
  publication-title: Solid State Phys.
  doi: Yafet
– issn: 2012
  year: 5
  end-page: 1
  doi: Tang Wang Chen Wang
– volume: 14
  volume-title: Solid State Phys.
  year: 1963
  ident: C4NR07611G-(cit61)/*[position()=1]
– volume: 83
  start-page: 203
  year: 1999
  ident: C4NR07611G-(cit65)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.203
– volume: 62
  start-page: R4790
  year: 2000
  ident: C4NR07611G-(cit27)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.62.R4790
– volume: 5
  start-page: 1015
  year: 2005
  ident: C4NR07611G-(cit68)/*[position()=1]
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2005.175
– volume: 56
  start-page: 665
  year: 1990
  ident: C4NR07611G-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.102730
– volume: 94
  start-page: 242104
  year: 2009
  ident: C4NR07611G-(cit42)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3157128
– volume: 5
  start-page: 6008
  year: 2011
  ident: C4NR07611G-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2017777
– volume: 111
  start-page: 07C503
  year: 2012
  ident: C4NR07611G-(cit43)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3670985
– volume: 448
  start-page: 571
  year: 2007
  ident: C4NR07611G-(cit14)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06037
– volume: 7
  start-page: 737
  year: 2012
  ident: C4NR07611G-(cit54)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.161
– volume: 105
  start-page: 167202
  year: 2010
  ident: C4NR07611G-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.167202
– volume: 96
  start-page: 162104
  year: 2010
  ident: C4NR07611G-(cit31)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3368701
– volume: 96
  start-page: 102103
  year: 2010
  ident: C4NR07611G-(cit38)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3357423
– volume: 294
  start-page: 1488
  year: 2001
  ident: C4NR07611G-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1065389
– volume: 2011
  start-page: 316513
  year: 2011
  ident: C4NR07611G-(cit76)/*[position()=1]
  publication-title: Adv. Mater. Sci. Eng.
– volume: 99
  start-page: 162102
  year: 2011
  ident: C4NR07611G-(cit56)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3652757
– volume: 3
  start-page: 197
  year: 2007
  ident: C4NR07611G-(cit12)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys543
– volume: 100
  start-page: 044303
  year: 2006
  ident: C4NR07611G-(cit71)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2230012
– volume: 100
  start-page: 182407
  year: 2012
  ident: C4NR07611G-(cit23)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4711850
– volume: 12
  start-page: 4437
  year: 2012
  ident: C4NR07611G-(cit24)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl301052g
– volume: 1
  start-page: 051406
  year: 2008
  ident: C4NR07611G-(cit36)/*[position()=1]
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.1.051406
– volume: 28
  start-page: 015018
  year: 2013
  ident: C4NR07611G-(cit49)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/1/015018
– volume: 6
  start-page: 5710
  year: 2012
  ident: C4NR07611G-(cit47)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn301956m
– volume: 113
  start-page: 236602
  year: 2014
  ident: C4NR07611G-(cit66)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.236602
– volume: 87
  start-page: 093109
  year: 2005
  ident: C4NR07611G-(cit85)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2035332
– volume: 416
  start-page: 713
  year: 2002
  ident: C4NR07611G-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/416713a
– volume: 108
  start-page: 156603
  year: 2012
  ident: C4NR07611G-(cit67)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.156603
– volume: 430
  start-page: 61
  year: 2004
  ident: C4NR07611G-(cit44)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02674
– volume: 74
  start-page: 081301
  year: 2006
  ident: C4NR07611G-(cit72)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.74.081301
– volume: 86
  start-page: 035315
  year: 2012
  ident: C4NR07611G-(cit57)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.86.035315
– volume: 102
  start-page: 10046
  year: 2005
  ident: C4NR07611G-(cit84)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504581102
– volume: 110
  start-page: 111
  year: 2009
  ident: C4NR07611G-(cit75)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900056b
– volume: 98
  start-page: 176808
  year: 2007
  ident: C4NR07611G-(cit70)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.176808
– volume: 420
  start-page: 57
  year: 2002
  ident: C4NR07611G-(cit83)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01141
– volume: 61
  start-page: 2472
  year: 1988
  ident: C4NR07611G-(cit4)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2472
– volume: 97
  start-page: 036805
  year: 2006
  ident: C4NR07611G-(cit69)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.036805
– volume: 9
  start-page: 337
  year: 2010
  ident: C4NR07611G-(cit89)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2716
– volume: 47
  start-page: 193001
  year: 2014
  ident: C4NR07611G-(cit87)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/19/193001
– volume: 410
  start-page: 345
  year: 2001
  ident: C4NR07611G-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35066533
– volume: 3
  start-page: 542
  year: 2007
  ident: C4NR07611G-(cit8)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys673
– volume: 5
  start-page: 053004
  year: 2012
  ident: C4NR07611G-(cit41)/*[position()=1]
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.053004
– volume: 90
  start-page: 022101
  year: 2007
  ident: C4NR07611G-(cit59)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2430688
– volume: 67
  start-page: 085319
  year: 2003
  ident: C4NR07611G-(cit62)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.67.085319
– volume: 81
  start-page: 155449
  year: 2010
  ident: C4NR07611G-(cit74)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.81.155449
– volume: 62
  start-page: R16267
  year: 2000
  ident: C4NR07611G-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.62.R16267
– volume: 447
  start-page: 295
  year: 2007
  ident: C4NR07611G-(cit50)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05803
– volume: 12
  start-page: 6372
  year: 2012
  ident: C4NR07611G-(cit81)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl303645k
– volume: 86
  start-page: 1571
  year: 2009
  ident: C4NR07611G-(cit33)/*[position()=1]
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.03.052
– volume: 101
  start-page: 083105
  year: 2007
  ident: C4NR07611G-(cit60)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2719017
– volume: 64
  start-page: 184420
  year: 2001
  ident: C4NR07611G-(cit28)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.64.184420
– volume: 29
  start-page: 054004
  year: 2014
  ident: C4NR07611G-(cit77)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/5/054004
– volume: 5
  start-page: 266
  year: 2010
  ident: C4NR07611G-(cit88)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.31
– volume: 84
  start-page: 054410
  year: 2011
  ident: C4NR07611G-(cit32)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.84.054410
– volume: 66
  start-page: 081304
  year: 2002
  ident: C4NR07611G-(cit58)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.66.081304
– volume: 14
  start-page: 5423
  year: 2014
  ident: C4NR07611G-(cit86)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5026198
– volume: 96
  start-page: 266
  year: 1954
  ident: C4NR07611G-(cit63)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.96.266
– volume: 2
  start-page: 216
  year: 2007
  ident: C4NR07611G-(cit79)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.64
– volume: 76
  start-page: 323
  year: 2004
  ident: C4NR07611G-(cit3)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.323
– volume: 61
  start-page: 13115
  year: 2000
  ident: C4NR07611G-(cit26)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.61.13115
– volume: 64
  start-page: 613
  year: 2014
  ident: C4NR07611G-(cit20)/*[position()=1]
  publication-title: ECS Trans.
  doi: 10.1149/06406.0613ecst
– volume: 427
  start-page: 821
  year: 2004
  ident: C4NR07611G-(cit80)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02325
– volume: 39
  start-page: 4828
  year: 1989
  ident: C4NR07611G-(cit5)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.39.4828
– volume: 13
  start-page: 430
  year: 2013
  ident: C4NR07611G-(cit25)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl303667v
– volume: 21
  start-page: 505704
  year: 2010
  ident: C4NR07611G-(cit45)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/50/505704
– volume: 71
  start-page: 205328
  year: 2005
  ident: C4NR07611G-(cit73)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.71.205328
– volume: 260
  start-page: 320
  year: 1993
  ident: C4NR07611G-(cit16)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.260.5106.320
– volume: 27
  start-page: 083001
  year: 2012
  ident: C4NR07611G-(cit48)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/27/8/083001
– volume: 56
  start-page: 2343
  year: 2009
  ident: C4NR07611G-(cit51)/*[position()=1]
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2027975
– volume: 96
  start-page: 122101
  year: 2010
  ident: C4NR07611G-(cit40)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3367748
– volume: 84
  start-page: 2307
  year: 2004
  ident: C4NR07611G-(cit18)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1689403
– volume: 85
  start-page: 035320
  year: 2012
  ident: C4NR07611G-(cit55)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.85.035320
– ident: C4NR07611G-(cit1)/*[position()=1]
– volume: 4
  start-page: 206
  year: 2005
  ident: C4NR07611G-(cit90)/*[position()=1]
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2004.837847
– volume: 13
  start-page: 4036
  year: 2013
  ident: C4NR07611G-(cit19)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401238p
– volume: 84
  start-page: 165315
  year: 2011
  ident: C4NR07611G-(cit11)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.84.165315
– volume: 10
  start-page: 2281
  year: 2010
  ident: C4NR07611G-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101477q
– volume: 138
  start-page: A1689
  year: 1965
  ident: C4NR07611G-(cit34)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.A1689
– volume: 98
  start-page: 012508
  year: 2011
  ident: C4NR07611G-(cit52)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3536488
– volume: 10
  start-page: 3297
  year: 2010
  ident: C4NR07611G-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl1008663
– volume: 93
  start-page: 202105
  year: 2008
  ident: C4NR07611G-(cit37)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3028343
– volume: 462
  start-page: 491
  year: 2009
  ident: C4NR07611G-(cit9)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08570
– volume: 54
  start-page: 225
  year: 1975
  ident: C4NR07611G-(cit82)/*[position()=1]
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(75)90174-7
– volume: 312
  start-page: 44
  year: 2009
  ident: C4NR07611G-(cit30)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.09.052
– volume: 84
  start-page: 125323
  year: 2011
  ident: C4NR07611G-(cit10)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.84.125323
– volume: 2
  start-page: 245
  year: 2011
  ident: C4NR07611G-(cit53)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1256
– volume: 92
  start-page: 022106
  year: 2008
  ident: C4NR07611G-(cit35)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2831918
– volume: 87
  start-page: 016601
  year: 2001
  ident: C4NR07611G-(cit13)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.016601
– start-page: 1
  year: 2012
  ident: C4NR07611G-(cit78)/*[position()=1]
– volume: 63
  start-page: 054416
  year: 2001
  ident: C4NR07611G-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.63.054416
– volume: 88
  start-page: 066806
  year: 2002
  ident: C4NR07611G-(cit64)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.066806
SSID ssj0069363
Score 2.3779247
SecondaryResourceType review_article
Snippet Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4325
Title Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/25686092
https://www.proquest.com/docview/1673376225
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4HDxAaDDIaM4IIgXRI7TsJtTGPTEDtAJ3aLbMeGoimpmvbCX8-zkzjp2sPgEjVu7LT5vjw_P78fCL3NogQWDbExvRHh07hQfkpT7rO4CCMdMh4WJhr56xW7uKaXN_HNaPR94LW0WoqJ_LM1ruR_UIU2wNVEyf4Dsm5QaIDPgC8cAWE43gvjM1vDpglsnM-Mz-Jv1Zb-Nn6RXd5yY9OojRN8VZrsrtXifcnLyiQptv5wsqunYiG1DltG_NkMAn0oZj1UY0EmVzXc1rFi2pqdL4Ft9a9Zb6ZvRQk3sVSToYkhjAcmBiuJIuN2SEiTbnyihm3JmihNhowJBnKRkia8uZ1jKWkyvWzI74CY9Ken9Oqbsa-E5_0s1e3M35m8nEuh3UwnWd73fYB2Ilg7RGO0c_Ll0_mPboJmGbEF9ty_6rLWkuy4772up2wsPkAVWXQlYqwqMn2Mdts1BD5pCLGHRqrcR48GmSWfoFlPDWyogR01MOCKHTWgHa9RAztqfMQ9MT7gjha2-5AWT9H157Pp6YXfVtXwJSXp0udKq0jpRKiAF2aDTSUg9hWlTAQi5ExHSqXwMKgWQVHAuRbcVqOjoU6CWJADNC6rUj1HmDJayJBrnXBGZaC5DEShqKSRljHPhIfedc8wl23KeVP55DbfRMtDb9y18ybRytarXndQ5CAHzeYWL1W1qvOQJUAqBtOTh541GLlxQK1PWZBFHjoA0FyzpOXCDvvTQ4fbv8jnhT681y97gR72r85LNF4uVuoI9NWleNXy7y-6MpdP
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+spin+injection+and+transport+in+semiconductor+nanowires%3A+challenges%2C+progress+and+perspectives&rft.jtitle=Nanoscale&rft.au=Tang%2C+Jianshi&rft.au=Wang%2C+Kang+L.&rft.date=2015-01-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=7&rft.issue=10&rft.spage=4325&rft.epage=4337&rft_id=info:doi/10.1039%2FC4NR07611G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4NR07611G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon