Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives
Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires...
Saved in:
Published in | Nanoscale Vol. 7; no. 1; pp. 4325 - 4337 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.
This review paper presents the challenges, recent progress, and perspectives of electrical spin injection and transport in semiconductor nanowires. |
---|---|
AbstractList | Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics.Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics. Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics. Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those devices usually favors materials with long spin lifetime and spin diffusion length. Recent spin transport studies on semiconductor nanowires have shown much longer spin lifetimes and spin diffusion lengths than those reported in bulk/thin films. In this paper, we have reviewed recent progress in the electrical spin injection and transport in semiconductor nanowires and drawn a comparison with that in bulk/thin films. In particular, the challenges and methods of making high-quality ferromagnetic tunneling and Schottky contacts on semiconductor nanowires as well as thin films are discussed. Besides, commonly used methods for characterizing spin transport have been introduced, and their applicability in nanowire devices are discussed. Moreover, the effect of spin-orbit interaction strength and dimensionality on the spin relaxation and hence the spin lifetime are investigated. Finally, for further device applications, we have examined several proposals of spinFETs and provided a perspective of future studies on semiconductor spintronics. This review paper presents the challenges, recent progress, and perspectives of electrical spin injection and transport in semiconductor nanowires. |
Author | Wang, Kang L Tang, Jianshi |
AuthorAffiliation | Department of Electrical Engineering University of California Device Research Laboratory |
AuthorAffiliation_xml | – name: Device Research Laboratory – name: University of California – name: Department of Electrical Engineering |
Author_xml | – sequence: 1 givenname: Jianshi surname: Tang fullname: Tang, Jianshi – sequence: 2 givenname: Kang L surname: Wang fullname: Wang, Kang L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25686092$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAURoOM-N64V-pOxOpt00mn7mTwBaIgui5pejNmaJOa21H892YcHUHEVZKP812Sk002sM4iY7sJnCTAi1OVWQ-5SJLJCttIIYOY8zwdLPciW2ebRFMAUXDB19h6OhQjAUW6wcxFg6r3Rskmos7YyNhpCIyzkbR11HtpqXO-D3lE2BrlbD1TvfORlda9GY90Fqln2TRoJ0jHUefdJIT0We_QUzcf94q0zVa1bAh3vtYt9nR58Ti-jm_vr27G57exyviojyVqTFHnFYKsgUOBOeSAWSYqqBIpdIo4Cs_OdAV1Hc66kiM-DxKdw7DiW-xwMTfc5GWG1JetIYVNIy26GZWJyIMekabDgO5_obOqxbrsvGmlfy-_9QTgaAEo74g86iWSQDl3X46zu4dP91cBhl-wMr2cqwwWTfN35WBR8aSWo3--s-xqHZi9_xj-AU8Rnec |
CitedBy_id | crossref_primary_10_1007_s12648_020_01958_2 crossref_primary_10_1021_acsami_0c09044 crossref_primary_10_1002_adma_201904059 crossref_primary_10_1021_acs_nanolett_4c03420 crossref_primary_10_1063_5_0029274 crossref_primary_10_1002_admt_202401017 crossref_primary_10_1088_1402_4896_ac1cd0 crossref_primary_10_1007_s11664_020_08008_x crossref_primary_10_1016_j_jmmm_2021_168245 crossref_primary_10_1039_C6DT01745B crossref_primary_10_1039_C8CP00843D crossref_primary_10_1021_acs_jpcc_4c08269 crossref_primary_10_1016_j_pmatsci_2018_08_001 crossref_primary_10_1016_j_ijleo_2018_03_107 crossref_primary_10_1016_j_vacuum_2019_02_039 crossref_primary_10_1039_C5CP01637A crossref_primary_10_1103_PhysRevB_93_165424 crossref_primary_10_1038_s41598_024_78668_w crossref_primary_10_1016_j_jmmm_2021_168995 crossref_primary_10_1039_D3NR03438K crossref_primary_10_1002_mma_7967 crossref_primary_10_1063_5_0014148 crossref_primary_10_1103_PhysRevB_95_121407 crossref_primary_10_1557_jmr_2019_333 crossref_primary_10_1016_j_jmmm_2018_10_123 crossref_primary_10_1142_S0217984921504133 crossref_primary_10_1109_JPROC_2016_2573836 crossref_primary_10_1016_j_asej_2024_103044 crossref_primary_10_1063_1_5080508 crossref_primary_10_1016_j_chaos_2022_112179 crossref_primary_10_1038_s41467_022_29053_6 crossref_primary_10_1080_09205071_2018_1431156 crossref_primary_10_1038_s41567_018_0406_3 crossref_primary_10_1021_acs_nanolett_7b03221 crossref_primary_10_1039_C6NR08688H crossref_primary_10_1088_1402_4896_ac2180 crossref_primary_10_1016_j_matpr_2021_02_818 crossref_primary_10_1063_1_4998587 crossref_primary_10_1039_C6CE01598K crossref_primary_10_1016_j_jallcom_2016_12_127 crossref_primary_10_1177_2280800017751492 crossref_primary_10_1021_acs_chemmater_9b02243 crossref_primary_10_1088_0953_8984_27_25_256002 crossref_primary_10_1088_1361_6528_abcfeb crossref_primary_10_1016_j_camwa_2018_09_054 crossref_primary_10_1088_1402_4896_ad482a crossref_primary_10_1038_ncomms15722 |
Cites_doi | 10.1103/PhysRevLett.83.203 10.1103/PhysRevB.62.R4790 10.1166/jnn.2005.175 10.1063/1.102730 10.1063/1.3157128 10.1021/nn2017777 10.1063/1.3670985 10.1038/nature06037 10.1038/nnano.2012.161 10.1103/PhysRevLett.105.167202 10.1063/1.3368701 10.1063/1.3357423 10.1126/science.1065389 10.1063/1.3652757 10.1038/nphys543 10.1063/1.2230012 10.1063/1.4711850 10.1021/nl301052g 10.1143/APEX.1.051406 10.1088/0268-1242/28/1/015018 10.1021/nn301956m 10.1103/PhysRevLett.113.236602 10.1063/1.2035332 10.1038/416713a 10.1103/PhysRevLett.108.156603 10.1038/nature02674 10.1103/PhysRevB.74.081301 10.1103/PhysRevB.86.035315 10.1073/pnas.0504581102 10.1021/cr900056b 10.1103/PhysRevLett.98.176808 10.1038/nature01141 10.1103/PhysRevLett.61.2472 10.1103/PhysRevLett.97.036805 10.1038/nmat2716 10.1088/0022-3727/47/19/193001 10.1038/35066533 10.1038/nphys673 10.1143/APEX.5.053004 10.1063/1.2430688 10.1103/PhysRevB.67.085319 10.1103/PhysRevB.81.155449 10.1103/PhysRevB.62.R16267 10.1038/nature05803 10.1021/nl303645k 10.1016/j.mee.2009.03.052 10.1063/1.2719017 10.1103/PhysRevB.64.184420 10.1088/0268-1242/29/5/054004 10.1038/nnano.2010.31 10.1103/PhysRevB.84.054410 10.1103/PhysRevB.66.081304 10.1021/nl5026198 10.1103/PhysRev.96.266 10.1038/nnano.2007.64 10.1103/RevModPhys.76.323 10.1103/PhysRevB.61.13115 10.1149/06406.0613ecst 10.1038/nature02325 10.1103/PhysRevB.39.4828 10.1021/nl303667v 10.1088/0957-4484/21/50/505704 10.1103/PhysRevB.71.205328 10.1126/science.260.5106.320 10.1088/0268-1242/27/8/083001 10.1109/TED.2009.2027975 10.1063/1.3367748 10.1063/1.1689403 10.1103/PhysRevB.85.035320 10.1109/TNANO.2004.837847 10.1021/nl401238p 10.1103/PhysRevB.84.165315 10.1021/nl101477q 10.1103/PhysRev.138.A1689 10.1063/1.3536488 10.1021/nl1008663 10.1063/1.3028343 10.1038/nature08570 10.1016/0375-9601(75)90174-7 10.1016/j.jcrysgro.2009.09.052 10.1103/PhysRevB.84.125323 10.1038/ncomms1256 10.1063/1.2831918 10.1103/PhysRevLett.87.016601 10.1103/PhysRevB.63.054416 10.1103/PhysRevLett.88.066806 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1039/c4nr07611g |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 4337 |
ExternalDocumentID | 25686092 10_1039_C4NR07611G c4nr07611g |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7X8 |
ID | FETCH-LOGICAL-c438t-aefe2ef7be0ad0309e7070e446b0b1a6f2ee81034fb0dda6ffba8310341f705b3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 18:18:01 EDT 2025 Thu Apr 03 06:57:46 EDT 2025 Tue Jul 01 00:33:17 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Thu May 19 04:16:26 EDT 2016 Sat Jun 01 02:24:57 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-aefe2ef7be0ad0309e7070e446b0b1a6f2ee81034fb0dda6ffba8310341f705b3 |
Notes | 2 Kang L. Wang received his BS degree in Electrical Engineering from National Cheng Kung University in 1964 and his PhD degree in Electrical Engineering from Massachusetts Institute of Technology in 1970. In 1970-1972, he was an Assistant Professor at MIT. In 1972-1979, he worked at the General Electric Corporate Research and Development Center as a physicist/engineer. In 1979, he joined the Electrical Engineering Department of UCLA, where he is the endowed Raytheon Professor. His research activities include semiconductor nanodevices, spintronics/ferromagnetic materials and devices, nanoscience and technology; molecular beam epitaxy, quantum structures and devices. He is an IEEE Fellow. , etc. and magnetic nanostructures. He has authored or co-authored more than 40 technical publications. Jianshi Tang received his BS degree in Electronic Engineering from Tsinghua University in 2008, and his PhD degree in Electrical Engineering from the University of California, Los Angeles (UCLA) in 2014. After working as a Staff Researcher at UCLA for three months, he then joined IBM T. J. Watson Research Center as a Postdoctoral Researcher in January 2015. His research interest involves physics and device applications of low-dimensional nanomaterials, including semiconductor nanowires and heterostructures, carbon nanotubes, two-dimensional van der Waals materials (graphene, topological insulators, MoS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25686092 |
PQID | 1673376225 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1673376225 crossref_citationtrail_10_1039_C4NR07611G rsc_primary_c4nr07611g crossref_primary_10_1039_C4NR07611G pubmed_primary_25686092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2015 |
References | 5 Heine (C4NR07611G-(cit34)/*[position()=1]) 1965; 138 Schmidt (C4NR07611G-(cit27)/*[position()=1]) 2000; 62 Noborisaka (C4NR07611G-(cit85)/*[position()=1]) 2005; 87 Hirohata (C4NR07611G-(cit87)/*[position()=1]) 2014; 47 Elliott (C4NR07611G-(cit63)/*[position()=1]) 1954; 96 Wolf (C4NR07611G-(cit2)/*[position()=1]) 2001; 294 Nikonov (C4NR07611G-(cit90)/*[position()=1]) 2005; 4 Lou (C4NR07611G-(cit12)/*[position()=1]) 2007; 3 Heedt (C4NR07611G-(cit24)/*[position()=1]) 2012; 12 Liu (C4NR07611G-(cit21)/*[position()=1]) 2010; 10 Zhou (C4NR07611G-(cit37)/*[position()=1]) 2008; 93 Patibandla (C4NR07611G-(cit71)/*[position()=1]) 2006; 100 Tang (C4NR07611G-(cit46)/*[position()=1]) 2011; 5 Litvinenko (C4NR07611G-(cit60)/*[position()=1]) 2007; 101 Sasaki (C4NR07611G-(cit52)/*[position()=1]) 2011; 98 Tang (C4NR07611G-(cit19)/*[position()=1]) 2013; 13 Datta (C4NR07611G-(cit17)/*[position()=1]) 1990; 56 Yamane (C4NR07611G-(cit31)/*[position()=1]) 2010; 96 Jain (C4NR07611G-(cit56)/*[position()=1]) 2011; 99 Xiong (C4NR07611G-(cit80)/*[position()=1]) 2004; 427 Butler (C4NR07611G-(cit39)/*[position()=1]) 2001; 63 Hammar (C4NR07611G-(cit65)/*[position()=1]) 1999; 83 Zhang (C4NR07611G-(cit25)/*[position()=1]) 2013; 13 Jahangir (C4NR07611G-(cit57)/*[position()=1]) 2012; 86 Jansen (C4NR07611G-(cit48)/*[position()=1]) 2012; 27 Zhou (C4NR07611G-(cit38)/*[position()=1]) 2010; 96 Schäpers (C4NR07611G-(cit72)/*[position()=1]) 2006; 74 Kum (C4NR07611G-(cit23)/*[position()=1]) 2012; 100 Iba (C4NR07611G-(cit41)/*[position()=1]) 2012; 5 Ramsteiner (C4NR07611G-(cit58)/*[position()=1]) 2002; 66 Baibich (C4NR07611G-(cit4)/*[position()=1]) 1988; 61 Toriumi (C4NR07611G-(cit33)/*[position()=1]) 2009; 86 Kasahara (C4NR07611G-(cit43)/*[position()=1]) 2012; 111 Tombros (C4NR07611G-(cit14)/*[position()=1]) 2007; 448 Tang (C4NR07611G-(cit86)/*[position()=1]) 2014; 14 Sasaki (C4NR07611G-(cit40)/*[position()=1]) 2010; 96 Julliere (C4NR07611G-(cit82)/*[position()=1]) 1975; 54 Tang (C4NR07611G-(cit45)/*[position()=1]) 2010; 21 Chang (C4NR07611G-(cit49)/*[position()=1]) 2013; 28 Pramanik (C4NR07611G-(cit79)/*[position()=1]) 2007; 2 Ando (C4NR07611G-(cit55)/*[position()=1]) 2012; 85 Kiselev (C4NR07611G-(cit26)/*[position()=1]) 2000; 61 Behin-Aein (C4NR07611G-(cit88)/*[position()=1]) 2010; 5 Tang (C4NR07611G-(cit47)/*[position()=1]) 2012; 6 Hammar (C4NR07611G-(cit64)/*[position()=1]) 2002; 88 Tang (C4NR07611G-(cit81)/*[position()=1]) 2012; 12 Johnson (C4NR07611G-(cit16)/*[position()=1]) 1993; 260 Fert (C4NR07611G-(cit28)/*[position()=1]) 2001; 64 Oltscher (C4NR07611G-(cit66)/*[position()=1]) 2014; 113 Jedema (C4NR07611G-(cit7)/*[position()=1]) 2002; 416 C4NR07611G-(cit1)/*[position()=1] Jeon (C4NR07611G-(cit11)/*[position()=1]) 2011; 84 Wei (C4NR07611G-(cit77)/*[position()=1]) 2014; 29 Dash (C4NR07611G-(cit32)/*[position()=1]) 2011; 84 George (C4NR07611G-(cit75)/*[position()=1]) 2009; 110 Li (C4NR07611G-(cit53)/*[position()=1]) 2011; 2 Lu (C4NR07611G-(cit84)/*[position()=1]) 2005; 102 Lieten (C4NR07611G-(cit35)/*[position()=1]) 2008; 92 Han (C4NR07611G-(cit30)/*[position()=1]) 2009; 312 Jedema (C4NR07611G-(cit62)/*[position()=1]) 2003; 67 Lauhon (C4NR07611G-(cit83)/*[position()=1]) 2002; 420 Rashba (C4NR07611G-(cit29)/*[position()=1]) 2000; 62 Tang (C4NR07611G-(cit20)/*[position()=1]) 2014; 64 Appelbaum (C4NR07611G-(cit50)/*[position()=1]) 2007; 447 Tang (C4NR07611G-(cit76)/*[position()=1]) 2011; 2011 Žutić (C4NR07611G-(cit3)/*[position()=1]) 2004; 76 Nishimura (C4NR07611G-(cit36)/*[position()=1]) 2008; 1 Hansen (C4NR07611G-(cit73)/*[position()=1]) 2005; 71 Yafet (C4NR07611G-(cit61)/*[position()=1]) 1963; 14 Balandin (C4NR07611G-(cit68)/*[position()=1]) 2005; 5 Zhou (C4NR07611G-(cit42)/*[position()=1]) 2009; 94 Zhou (C4NR07611G-(cit10)/*[position()=1]) 2011; 84 Lin (C4NR07611G-(cit22)/*[position()=1]) 2010; 10 Jedema (C4NR07611G-(cit6)/*[position()=1]) 2001; 410 Sugahara (C4NR07611G-(cit18)/*[position()=1]) 2004; 84 van 't Erve (C4NR07611G-(cit54)/*[position()=1]) 2012; 7 Binasch (C4NR07611G-(cit5)/*[position()=1]) 1989; 39 Kettemann (C4NR07611G-(cit70)/*[position()=1]) 2007; 98 Han (C4NR07611G-(cit15)/*[position()=1]) 2010; 105 Xiu (C4NR07611G-(cit89)/*[position()=1]) 2010; 9 Jonker (C4NR07611G-(cit8)/*[position()=1]) 2007; 3 Tang (C4NR07611G-(cit78)/*[position()=1]) 2012 Holleitner (C4NR07611G-(cit69)/*[position()=1]) 2006; 97 van't Erve (C4NR07611G-(cit51)/*[position()=1]) 2009; 56 Zhu (C4NR07611G-(cit13)/*[position()=1]) 2001; 87 Wu (C4NR07611G-(cit44)/*[position()=1]) 2004; 430 Roulleau (C4NR07611G-(cit74)/*[position()=1]) 2010; 81 Dash (C4NR07611G-(cit9)/*[position()=1]) 2009; 462 Pezzoli (C4NR07611G-(cit67)/*[position()=1]) 2012; 108 Koo (C4NR07611G-(cit59)/*[position()=1]) 2007; 90 |
References_xml | – issn: 1963 issue: 14 end-page: 1-98 publication-title: Solid State Phys. doi: Yafet – issn: 2012 year: 5 end-page: 1 doi: Tang Wang Chen Wang – volume: 14 volume-title: Solid State Phys. year: 1963 ident: C4NR07611G-(cit61)/*[position()=1] – volume: 83 start-page: 203 year: 1999 ident: C4NR07611G-(cit65)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.203 – volume: 62 start-page: R4790 year: 2000 ident: C4NR07611G-(cit27)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.62.R4790 – volume: 5 start-page: 1015 year: 2005 ident: C4NR07611G-(cit68)/*[position()=1] publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2005.175 – volume: 56 start-page: 665 year: 1990 ident: C4NR07611G-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.102730 – volume: 94 start-page: 242104 year: 2009 ident: C4NR07611G-(cit42)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3157128 – volume: 5 start-page: 6008 year: 2011 ident: C4NR07611G-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2017777 – volume: 111 start-page: 07C503 year: 2012 ident: C4NR07611G-(cit43)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3670985 – volume: 448 start-page: 571 year: 2007 ident: C4NR07611G-(cit14)/*[position()=1] publication-title: Nature doi: 10.1038/nature06037 – volume: 7 start-page: 737 year: 2012 ident: C4NR07611G-(cit54)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.161 – volume: 105 start-page: 167202 year: 2010 ident: C4NR07611G-(cit15)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.167202 – volume: 96 start-page: 162104 year: 2010 ident: C4NR07611G-(cit31)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3368701 – volume: 96 start-page: 102103 year: 2010 ident: C4NR07611G-(cit38)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3357423 – volume: 294 start-page: 1488 year: 2001 ident: C4NR07611G-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1065389 – volume: 2011 start-page: 316513 year: 2011 ident: C4NR07611G-(cit76)/*[position()=1] publication-title: Adv. Mater. Sci. Eng. – volume: 99 start-page: 162102 year: 2011 ident: C4NR07611G-(cit56)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3652757 – volume: 3 start-page: 197 year: 2007 ident: C4NR07611G-(cit12)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys543 – volume: 100 start-page: 044303 year: 2006 ident: C4NR07611G-(cit71)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2230012 – volume: 100 start-page: 182407 year: 2012 ident: C4NR07611G-(cit23)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4711850 – volume: 12 start-page: 4437 year: 2012 ident: C4NR07611G-(cit24)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl301052g – volume: 1 start-page: 051406 year: 2008 ident: C4NR07611G-(cit36)/*[position()=1] publication-title: Appl. Phys. Express doi: 10.1143/APEX.1.051406 – volume: 28 start-page: 015018 year: 2013 ident: C4NR07611G-(cit49)/*[position()=1] publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/28/1/015018 – volume: 6 start-page: 5710 year: 2012 ident: C4NR07611G-(cit47)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn301956m – volume: 113 start-page: 236602 year: 2014 ident: C4NR07611G-(cit66)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.236602 – volume: 87 start-page: 093109 year: 2005 ident: C4NR07611G-(cit85)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2035332 – volume: 416 start-page: 713 year: 2002 ident: C4NR07611G-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/416713a – volume: 108 start-page: 156603 year: 2012 ident: C4NR07611G-(cit67)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.156603 – volume: 430 start-page: 61 year: 2004 ident: C4NR07611G-(cit44)/*[position()=1] publication-title: Nature doi: 10.1038/nature02674 – volume: 74 start-page: 081301 year: 2006 ident: C4NR07611G-(cit72)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.74.081301 – volume: 86 start-page: 035315 year: 2012 ident: C4NR07611G-(cit57)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.86.035315 – volume: 102 start-page: 10046 year: 2005 ident: C4NR07611G-(cit84)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504581102 – volume: 110 start-page: 111 year: 2009 ident: C4NR07611G-(cit75)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900056b – volume: 98 start-page: 176808 year: 2007 ident: C4NR07611G-(cit70)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.176808 – volume: 420 start-page: 57 year: 2002 ident: C4NR07611G-(cit83)/*[position()=1] publication-title: Nature doi: 10.1038/nature01141 – volume: 61 start-page: 2472 year: 1988 ident: C4NR07611G-(cit4)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2472 – volume: 97 start-page: 036805 year: 2006 ident: C4NR07611G-(cit69)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.036805 – volume: 9 start-page: 337 year: 2010 ident: C4NR07611G-(cit89)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2716 – volume: 47 start-page: 193001 year: 2014 ident: C4NR07611G-(cit87)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/19/193001 – volume: 410 start-page: 345 year: 2001 ident: C4NR07611G-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/35066533 – volume: 3 start-page: 542 year: 2007 ident: C4NR07611G-(cit8)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys673 – volume: 5 start-page: 053004 year: 2012 ident: C4NR07611G-(cit41)/*[position()=1] publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.053004 – volume: 90 start-page: 022101 year: 2007 ident: C4NR07611G-(cit59)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2430688 – volume: 67 start-page: 085319 year: 2003 ident: C4NR07611G-(cit62)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.67.085319 – volume: 81 start-page: 155449 year: 2010 ident: C4NR07611G-(cit74)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.81.155449 – volume: 62 start-page: R16267 year: 2000 ident: C4NR07611G-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.62.R16267 – volume: 447 start-page: 295 year: 2007 ident: C4NR07611G-(cit50)/*[position()=1] publication-title: Nature doi: 10.1038/nature05803 – volume: 12 start-page: 6372 year: 2012 ident: C4NR07611G-(cit81)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl303645k – volume: 86 start-page: 1571 year: 2009 ident: C4NR07611G-(cit33)/*[position()=1] publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.03.052 – volume: 101 start-page: 083105 year: 2007 ident: C4NR07611G-(cit60)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2719017 – volume: 64 start-page: 184420 year: 2001 ident: C4NR07611G-(cit28)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.64.184420 – volume: 29 start-page: 054004 year: 2014 ident: C4NR07611G-(cit77)/*[position()=1] publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/5/054004 – volume: 5 start-page: 266 year: 2010 ident: C4NR07611G-(cit88)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.31 – volume: 84 start-page: 054410 year: 2011 ident: C4NR07611G-(cit32)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.84.054410 – volume: 66 start-page: 081304 year: 2002 ident: C4NR07611G-(cit58)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.66.081304 – volume: 14 start-page: 5423 year: 2014 ident: C4NR07611G-(cit86)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5026198 – volume: 96 start-page: 266 year: 1954 ident: C4NR07611G-(cit63)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.266 – volume: 2 start-page: 216 year: 2007 ident: C4NR07611G-(cit79)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.64 – volume: 76 start-page: 323 year: 2004 ident: C4NR07611G-(cit3)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 61 start-page: 13115 year: 2000 ident: C4NR07611G-(cit26)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.61.13115 – volume: 64 start-page: 613 year: 2014 ident: C4NR07611G-(cit20)/*[position()=1] publication-title: ECS Trans. doi: 10.1149/06406.0613ecst – volume: 427 start-page: 821 year: 2004 ident: C4NR07611G-(cit80)/*[position()=1] publication-title: Nature doi: 10.1038/nature02325 – volume: 39 start-page: 4828 year: 1989 ident: C4NR07611G-(cit5)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.39.4828 – volume: 13 start-page: 430 year: 2013 ident: C4NR07611G-(cit25)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl303667v – volume: 21 start-page: 505704 year: 2010 ident: C4NR07611G-(cit45)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/50/505704 – volume: 71 start-page: 205328 year: 2005 ident: C4NR07611G-(cit73)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.71.205328 – volume: 260 start-page: 320 year: 1993 ident: C4NR07611G-(cit16)/*[position()=1] publication-title: Science doi: 10.1126/science.260.5106.320 – volume: 27 start-page: 083001 year: 2012 ident: C4NR07611G-(cit48)/*[position()=1] publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/27/8/083001 – volume: 56 start-page: 2343 year: 2009 ident: C4NR07611G-(cit51)/*[position()=1] publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2009.2027975 – volume: 96 start-page: 122101 year: 2010 ident: C4NR07611G-(cit40)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3367748 – volume: 84 start-page: 2307 year: 2004 ident: C4NR07611G-(cit18)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1689403 – volume: 85 start-page: 035320 year: 2012 ident: C4NR07611G-(cit55)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.85.035320 – ident: C4NR07611G-(cit1)/*[position()=1] – volume: 4 start-page: 206 year: 2005 ident: C4NR07611G-(cit90)/*[position()=1] publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2004.837847 – volume: 13 start-page: 4036 year: 2013 ident: C4NR07611G-(cit19)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401238p – volume: 84 start-page: 165315 year: 2011 ident: C4NR07611G-(cit11)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.84.165315 – volume: 10 start-page: 2281 year: 2010 ident: C4NR07611G-(cit22)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101477q – volume: 138 start-page: A1689 year: 1965 ident: C4NR07611G-(cit34)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.A1689 – volume: 98 start-page: 012508 year: 2011 ident: C4NR07611G-(cit52)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3536488 – volume: 10 start-page: 3297 year: 2010 ident: C4NR07611G-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl1008663 – volume: 93 start-page: 202105 year: 2008 ident: C4NR07611G-(cit37)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3028343 – volume: 462 start-page: 491 year: 2009 ident: C4NR07611G-(cit9)/*[position()=1] publication-title: Nature doi: 10.1038/nature08570 – volume: 54 start-page: 225 year: 1975 ident: C4NR07611G-(cit82)/*[position()=1] publication-title: Phys. Lett. A doi: 10.1016/0375-9601(75)90174-7 – volume: 312 start-page: 44 year: 2009 ident: C4NR07611G-(cit30)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.09.052 – volume: 84 start-page: 125323 year: 2011 ident: C4NR07611G-(cit10)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.84.125323 – volume: 2 start-page: 245 year: 2011 ident: C4NR07611G-(cit53)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1256 – volume: 92 start-page: 022106 year: 2008 ident: C4NR07611G-(cit35)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2831918 – volume: 87 start-page: 016601 year: 2001 ident: C4NR07611G-(cit13)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.016601 – start-page: 1 year: 2012 ident: C4NR07611G-(cit78)/*[position()=1] – volume: 63 start-page: 054416 year: 2001 ident: C4NR07611G-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.63.054416 – volume: 88 start-page: 066806 year: 2002 ident: C4NR07611G-(cit64)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.066806 |
SSID | ssj0069363 |
Score | 2.3779247 |
SecondaryResourceType | review_article |
Snippet | Spintronic devices are of fundamental interest for their nonvolatility and great potential for low-power electronics applications. The implementation of those... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4325 |
Title | Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25686092 https://www.proquest.com/docview/1673376225 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4HDxAaDDIaM4IIgXRI7TsJtTGPTEDtAJ3aLbMeGoimpmvbCX8-zkzjp2sPgEjVu7LT5vjw_P78fCL3NogQWDbExvRHh07hQfkpT7rO4CCMdMh4WJhr56xW7uKaXN_HNaPR94LW0WoqJ_LM1ruR_UIU2wNVEyf4Dsm5QaIDPgC8cAWE43gvjM1vDpglsnM-Mz-Jv1Zb-Nn6RXd5yY9OojRN8VZrsrtXifcnLyiQptv5wsqunYiG1DltG_NkMAn0oZj1UY0EmVzXc1rFi2pqdL4Ft9a9Zb6ZvRQk3sVSToYkhjAcmBiuJIuN2SEiTbnyihm3JmihNhowJBnKRkia8uZ1jKWkyvWzI74CY9Ken9Oqbsa-E5_0s1e3M35m8nEuh3UwnWd73fYB2Ilg7RGO0c_Ll0_mPboJmGbEF9ty_6rLWkuy4772up2wsPkAVWXQlYqwqMn2Mdts1BD5pCLGHRqrcR48GmSWfoFlPDWyogR01MOCKHTWgHa9RAztqfMQ9MT7gjha2-5AWT9H157Pp6YXfVtXwJSXp0udKq0jpRKiAF2aDTSUg9hWlTAQi5ExHSqXwMKgWQVHAuRbcVqOjoU6CWJADNC6rUj1HmDJayJBrnXBGZaC5DEShqKSRljHPhIfedc8wl23KeVP55DbfRMtDb9y18ybRytarXndQ5CAHzeYWL1W1qvOQJUAqBtOTh541GLlxQK1PWZBFHjoA0FyzpOXCDvvTQ4fbv8jnhT681y97gR72r85LNF4uVuoI9NWleNXy7y-6MpdP |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+spin+injection+and+transport+in+semiconductor+nanowires%3A+challenges%2C+progress+and+perspectives&rft.jtitle=Nanoscale&rft.au=Tang%2C+Jianshi&rft.au=Wang%2C+Kang+L.&rft.date=2015-01-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=7&rft.issue=10&rft.spage=4325&rft.epage=4337&rft_id=info:doi/10.1039%2FC4NR07611G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4NR07611G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |