Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning
Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Materials and methods Standard CT scans of 58 patients with insufficiency fracture...
Saved in:
Published in | European radiology Vol. 29; no. 5; pp. 2207 - 2217 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.
Materials and methods
Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques.
Results
One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67).
Conclusion
TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.
Key Points
• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy.
• Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction.
• This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans. |
---|---|
AbstractList | To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.
Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques.
One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67).
TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.
• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans. Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Materials and methods Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques. Results One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67). Conclusion TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging. Key Points • Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans. To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.PURPOSETo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques.MATERIALS AND METHODSStandard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques.One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67).RESULTSOne hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67).TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.CONCLUSIONTA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.KEY POINTS• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans. PurposeTo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.Materials and methodsStandard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques.ResultsOne hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67).ConclusionTA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.Key Points• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy.• Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction.• This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans. |
Author | Muehlematter, Urs J. Vokinger, Kerstin N. Fischer, Michael A. Becker, Anton S. Finkenstaedt, Tim Osterhoff, Georg Guggenberger, Roman Mannil, Manoj |
Author_xml | – sequence: 1 givenname: Urs J. orcidid: 0000-0003-3423-4633 surname: Muehlematter fullname: Muehlematter, Urs J. email: urs.muehlematter@usz.ch organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich – sequence: 2 givenname: Manoj surname: Mannil fullname: Mannil, Manoj organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich – sequence: 3 givenname: Anton S. surname: Becker fullname: Becker, Anton S. organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich – sequence: 4 givenname: Kerstin N. surname: Vokinger fullname: Vokinger, Kerstin N. organization: University Hospital of Zurich, University of Zurich – sequence: 5 givenname: Tim surname: Finkenstaedt fullname: Finkenstaedt, Tim organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich – sequence: 6 givenname: Georg surname: Osterhoff fullname: Osterhoff, Georg organization: Department of Trauma, University Hospital Zurich – sequence: 7 givenname: Michael A. surname: Fischer fullname: Fischer, Michael A. organization: Department of Radiology, University Hospital Balgrist, University of Zurich – sequence: 8 givenname: Roman surname: Guggenberger fullname: Guggenberger, Roman organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30519934$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcuKFDEUhoOMOD2jD-BGAm7clJ4kdUncSeMNBtyMbsOpXNqM1akxSQ32G_jYpugehAFdJYTvO-Q__wU5i3N0hDxn8JoBDG8ygBDQAJNNJ9u-kY_IhrWCNwxke0Y2oIRsBqXac3KR8w0AKNYOT8i5gI4pJdoN-f3NpeLGhBMdZ3ugIebF-2CCi-ZAfUJTluTyW2pdcaaEOdLZ07uT5CgWmkL-Qet7LhgtJku31zTscecyXXKIO1rcr3UIxYjTIYdcL5bu0XwP0dHJYYqVekoee5yye3Y6L8nXD--vt5-aqy8fP2_fXTWmFbI0iH7wONhWehTMcuxaaZixnPsemQWwo1IWbTtKxN7XlEyZTqKwgnMwvbgkr45zb9P8c3G56H3Ixk0TRjcvWXM2KM7VMEBFXz5Ab-Yl1RAr1QEXPQheqRcnahn3zurbVMOng77fcQWGI2DSnHNyXptQcF1lSRgmzUCvbepjm7q2qdc2tawme2DeD_-fw49OrmzcufT30_-W_gBmGrNN |
CitedBy_id | crossref_primary_10_1016_j_ejrad_2021_109827 crossref_primary_10_1186_s12891_023_06557_w crossref_primary_10_1016_j_jor_2023_10_026 crossref_primary_10_1210_clinem_dgac722 crossref_primary_10_3389_fneur_2022_918554 crossref_primary_10_1007_s00586_023_07838_7 crossref_primary_10_1038_s41598_024_82642_x crossref_primary_10_1186_s12891_023_06281_5 crossref_primary_10_1016_j_ejrad_2020_109264 crossref_primary_10_2147_IJGM_S471770 crossref_primary_10_1007_s00586_022_07176_0 crossref_primary_10_1016_j_ejro_2022_100447 crossref_primary_10_1097_BOR_0000000000000607 crossref_primary_10_1007_s10462_023_10638_6 crossref_primary_10_1007_s43390_022_00621_6 crossref_primary_10_1016_j_acra_2022_06_022 crossref_primary_10_1002_jbmr_4146 crossref_primary_10_1038_s41598_024_75628_2 crossref_primary_10_1055_s_0043_1771037 crossref_primary_10_1007_s00586_024_08433_0 crossref_primary_10_1155_2022_8747487 crossref_primary_10_3390_diagnostics11020208 crossref_primary_10_3803_EnM_2022_1461 crossref_primary_10_1016_j_aej_2021_03_005 crossref_primary_10_1186_s12880_025_01573_9 crossref_primary_10_1227_NEU_0000000000001853 crossref_primary_10_14245_ns_2347022_511 crossref_primary_10_1007_s00586_021_07036_3 crossref_primary_10_1016_j_bone_2022_116653 crossref_primary_10_1177_2192568220982279 crossref_primary_10_1186_s12879_023_08602_4 crossref_primary_10_1007_s00256_021_03862_0 crossref_primary_10_3390_diagnostics15020209 crossref_primary_10_1007_s00330_021_07812_1 crossref_primary_10_1055_s_0039_3400268 crossref_primary_10_1186_s12859_022_04596_z crossref_primary_10_1177_02841851241279896 crossref_primary_10_1007_s00586_024_08235_4 crossref_primary_10_1007_s00330_021_07832_x crossref_primary_10_1002_jbmr_4292 crossref_primary_10_3390_diagnostics13182913 crossref_primary_10_1007_s11914_020_00566_7 crossref_primary_10_1038_s41598_021_89311_3 crossref_primary_10_3389_fendo_2021_792760 crossref_primary_10_1016_j_crad_2025_106827 crossref_primary_10_1016_j_yacr_2020_05_005 crossref_primary_10_3390_diagnostics12102420 crossref_primary_10_1186_s12891_022_06096_w crossref_primary_10_3389_fendo_2021_778537 crossref_primary_10_1007_s00113_019_0658_0 crossref_primary_10_3390_ijerph191811708 crossref_primary_10_1007_s00586_023_07887_y crossref_primary_10_1055_a_1770_4626 crossref_primary_10_2147_IDR_S388868 crossref_primary_10_3174_ajnr_A7094 crossref_primary_10_1016_j_ejrad_2022_110642 crossref_primary_10_1007_s00198_020_05710_8 crossref_primary_10_3390_diagnostics14171879 crossref_primary_10_1016_j_berh_2022_101754 crossref_primary_10_1055_a_2013_3149 crossref_primary_10_3390_diagnostics11020240 crossref_primary_10_3390_diagnostics13122119 crossref_primary_10_1007_s13246_022_01116_4 crossref_primary_10_28982_josam_7715 crossref_primary_10_3390_diagnostics12040923 crossref_primary_10_1016_j_jmir_2019_11_006 crossref_primary_10_1186_s13018_024_04827_4 crossref_primary_10_1016_j_acra_2021_12_008 crossref_primary_10_1016_j_ejrad_2024_111714 crossref_primary_10_1038_s41413_023_00306_4 crossref_primary_10_1007_s12652_024_04840_9 crossref_primary_10_1016_j_acra_2024_06_041 crossref_primary_10_1186_s13018_023_04446_5 crossref_primary_10_3803_EnM_2021_1111 crossref_primary_10_1038_s41598_022_10807_7 crossref_primary_10_1097_RLI_0000000000000907 crossref_primary_10_2196_48535 crossref_primary_10_5114_pjr_2023_131696 crossref_primary_10_3389_fendo_2024_1370838 crossref_primary_10_7759_cureus_48341 crossref_primary_10_1148_ryct_2020190190 crossref_primary_10_1186_s12891_023_06939_0 crossref_primary_10_3389_fbioe_2024_1485364 crossref_primary_10_1007_s00330_020_06845_2 |
Cites_doi | 10.1148/radiol.14131390 10.1148/rg.2017160130 10.2307/2531595 10.1007/s00256-017-2728-0 10.1002/jbmr.5650080915 10.1007/s00330-006-0511-z 10.1007/s00198-006-0172-4 10.1016/j.jocd.2015.08.008 10.1002/jbmr.2176 10.1359/JBMR.041214 10.1016/j.cmpb.2008.08.005 10.1016/j.rcl.2010.02.015 10.1007/s00586-005-0018-3 10.1359/JBMR.050610 10.1016/S0140-6736(06)68891-0 10.1001/jama.285.6.785 10.1007/s00198-005-1937-x 10.1007/s00330-009-1571-7 10.7763/IJCTE.2016.V8.1040 10.1016/j.spinee.2006.04.013 10.1016/j.bone.2017.04.008 10.1080/02841859809172221 10.1007/s00198-004-1702-6 10.1148/radiol.2017162100 10.1148/radiol.2016160970 10.1117/12.2216452 10.1007/s00198-005-0007-8 10.2106/JBJS.J.00160 10.2307/2532051 10.18637/jss.v028.i05 10.1016/0169-6009(90)90061-J 10.1007/s00774-004-0536-9 10.1148/rg.2017170056 10.1007/s00256-008-0463-2 10.1016/S8756-3282(00)00376-8 10.1016/S0304-3800(02)00257-0 10.1097/01.brs.0000225993.57349.df |
ContentType | Journal Article |
Copyright | European Society of Radiology 2018 European Radiology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: European Society of Radiology 2018 – notice: European Radiology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-018-5846-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 2217 |
ExternalDocumentID | 30519934 10_1007_s00330_018_5846_8 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 6PF 7RV 7X7 8AO 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABUWZ ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX -Y2 1SB 2.D 28- 2P1 2VQ 53G 5QI 88E 8FI 8FJ AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ACUDM ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CCPQU CITATION COF EN4 GRRUI H13 HMCUK KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RIG RNI RZK S1Z S26 S28 SCLPG SDE T16 TEORI UDS ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c438t-aaf7fa7d48fa31d2a548c1cd22f6a1d00db99dad4b8aa6f19919c58a3d3220c63 |
IEDL.DBID | 7X7 |
ISSN | 0938-7994 1432-1084 |
IngestDate | Thu Jul 10 18:46:34 EDT 2025 Fri Jul 25 18:55:03 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 03:08:06 EDT 2025 Fri Feb 21 02:33:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Osteoporosis Tomography, X-ray computed Spine Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-aaf7fa7d48fa31d2a548c1cd22f6a1d00db99dad4b8aa6f19919c58a3d3220c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3423-4633 |
PMID | 30519934 |
PQID | 2150236032 |
PQPubID | 54162 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2179229770 proquest_journals_2150236032 pubmed_primary_30519934 crossref_citationtrail_10_1007_s00330_018_5846_8 crossref_primary_10_1007_s00330_018_5846_8 springer_journals_10_1007_s00330_018_5846_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Delmas, van de Langerijt, Watts (CR6) 2005; 20 Reddy, Kumaravel (CR36) 2010; 2 Krug, Burghardt, Majumdar, Link (CR10) 2010; 48 CR19 Genant, Wu, van Kuijk, Nevitt (CR21) 2009; 8 CR17 Szczypiński, Strzelecki, Materka, Klepaczko (CR22) 2009; 94 CR38 CR15 CR14 CR35 CR12 Andresen, Radmer, Banzer (CR23) 1998; 39 CR34 CR33 Ngo, Dinh (CR40) 2016; 8 Torres, Hammond (CR20) 2016; 19 CR32 CR31 (CR3) 2001; 285 Johnell, Kanis (CR4) 2006; 17 Mannil, Eberhard, Becker (CR18) 2017; 46 Ito, Ikeda, Nishiguchi (CR24) 2005; 20 Johnell, Kanis (CR5) 2005; 16 CR8 Damilakis, Maris, Karantanas (CR11) 2007; 17 CR29 CR9 CR27 Wagner, Stäbler, Sittek (CR39) 2005; 16 CR26 Schwaiger, Kopperdahl, Nardo (CR13) 2017; 101 Erickson, Korfiatis, Akkus, Kline (CR30) 2017; 37 Silva, Leslie, Resch (CR7) 2014; 29 Kim, Vaccaro (CR2) 2006; 6 Rohlmann, Zander, Bergmann (CR37) 2006; 15 Thevenot, Hirvasniemi, Pulkkinen (CR16) 2014; 272 DeLong, DeLong, Clarke-Pearson (CR28) 1988; 44 Sambrook, Cooper (CR1) 2006; 367 Issever, Link, Kentenich (CR25) 2010; 20 5846_CR19 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (5846_CR3) 2001; 285 A Rohlmann (5846_CR37) 2006; 15 AS Issever (5846_CR25) 2010; 20 S Wagner (5846_CR39) 2005; 16 5846_CR9 HK Genant (5846_CR21) 2009; 8 5846_CR8 VQ Ngo (5846_CR40) 2016; 8 P Sambrook (5846_CR1) 2006; 367 J Thevenot (5846_CR16) 2014; 272 5846_CR31 BJ Schwaiger (5846_CR13) 2017; 101 5846_CR32 5846_CR33 5846_CR12 5846_CR34 5846_CR35 5846_CR14 5846_CR15 5846_CR38 5846_CR17 C Torres (5846_CR20) 2016; 19 5846_CR29 PD Delmas (5846_CR6) 2005; 20 R Krug (5846_CR10) 2010; 48 BJ Erickson (5846_CR30) 2017; 37 TK Reddy (5846_CR36) 2010; 2 J Damilakis (5846_CR11) 2007; 17 ER DeLong (5846_CR28) 1988; 44 M Ito (5846_CR24) 2005; 20 R Andresen (5846_CR23) 1998; 39 PM Szczypiński (5846_CR22) 2009; 94 O Johnell (5846_CR4) 2006; 17 DH Kim (5846_CR2) 2006; 6 BC Silva (5846_CR7) 2014; 29 5846_CR26 M Mannil (5846_CR18) 2017; 46 5846_CR27 O Johnell (5846_CR5) 2005; 16 |
References_xml | – volume: 272 start-page: 184 year: 2014 end-page: 191 ident: CR16 article-title: Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study publication-title: Radiology doi: 10.1148/radiol.14131390 – volume: 2 start-page: 319 year: 2010 end-page: 327 ident: CR36 article-title: Wavelet based texture analysis and classification of bone lesions from dental CT publication-title: Int J Med Eng Inf – volume: 37 start-page: 505 year: 2017 end-page: 515 ident: CR30 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – ident: CR14 – ident: CR12 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR28 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – ident: CR33 – ident: CR35 – volume: 46 start-page: 1541 year: 2017 end-page: 1551 ident: CR18 article-title: Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects publication-title: Skeletal Radiol doi: 10.1007/s00256-017-2728-0 – volume: 8 start-page: 1137 year: 2009 end-page: 1148 ident: CR21 article-title: Vertebral fracture assessment using a semiquantitative technique publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650080915 – ident: CR29 – volume: 17 start-page: 1591 year: 2007 end-page: 1602 ident: CR11 article-title: An update on the assessment of osteoporosis using radiologic techniques publication-title: Eur Radiol doi: 10.1007/s00330-006-0511-z – ident: CR8 – volume: 17 start-page: 1726 year: 2006 end-page: 1733 ident: CR4 article-title: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures publication-title: Osteoporos Int doi: 10.1007/s00198-006-0172-4 – volume: 19 start-page: 63 year: 2016 end-page: 69 ident: CR20 article-title: Computed tomography and magnetic resonance imaging in the differentiation of osteoporotic fractures from neoplastic metastatic fractures publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.08.008 – ident: CR27 – volume: 29 start-page: 518 year: 2014 end-page: 530 ident: CR7 article-title: Trabecular bone score: a noninvasive analytical method based upon the DXA image publication-title: J Bone Miner Res doi: 10.1002/jbmr.2176 – volume: 20 start-page: 557 year: 2005 end-page: 563 ident: CR6 article-title: Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study publication-title: J Bone Miner Res doi: 10.1359/JBMR.041214 – ident: CR19 – volume: 94 start-page: 66 year: 2009 end-page: 76 ident: CR22 article-title: MaZda—a software package for image texture analysis publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2008.08.005 – volume: 48 start-page: 601 year: 2010 end-page: 621 ident: CR10 article-title: High-resolution imaging techniques for the assessment of osteoporosis publication-title: Radiol Clin North Am doi: 10.1016/j.rcl.2010.02.015 – volume: 15 start-page: 1255 year: 2006 end-page: 1264 ident: CR37 article-title: Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty publication-title: Eur Spine J doi: 10.1007/s00586-005-0018-3 – volume: 20 start-page: 1828 year: 2005 end-page: 1836 ident: CR24 article-title: Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk publication-title: J Bone Miner Res doi: 10.1359/JBMR.050610 – volume: 367 start-page: 2010 year: 2006 end-page: 2018 ident: CR1 article-title: Osteoporosis publication-title: Lancet doi: 10.1016/S0140-6736(06)68891-0 – volume: 285 start-page: 785 year: 2001 end-page: 795 ident: CR3 article-title: Osteoporosis prevention, diagnosis, and therapy publication-title: JAMA doi: 10.1001/jama.285.6.785 – ident: CR15 – ident: CR38 – ident: CR17 – volume: 16 start-page: 1815 year: 2005 end-page: 1822 ident: CR39 article-title: Diagnosis of osteoporosis: visual assessment on conventional versus digital radiographs publication-title: Osteoporos Int doi: 10.1007/s00198-005-1937-x – volume: 20 start-page: 458 year: 2010 end-page: 468 ident: CR25 article-title: Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard publication-title: Eur Radiol doi: 10.1007/s00330-009-1571-7 – ident: CR31 – ident: CR9 – volume: 8 start-page: 177 year: 2016 end-page: 181 ident: CR40 article-title: Bone texture characterization based on Contourlet and Gabor tranforms publication-title: Int J Comput Theory Eng doi: 10.7763/IJCTE.2016.V8.1040 – ident: CR32 – ident: CR34 – volume: 6 start-page: 479 year: 2006 end-page: 487 ident: CR2 article-title: Osteoporotic compression fractures of the spine; current options and considerations for treatment publication-title: Spine J doi: 10.1016/j.spinee.2006.04.013 – volume: 101 start-page: 62 year: 2017 end-page: 69 ident: CR13 article-title: Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations publication-title: Bone doi: 10.1016/j.bone.2017.04.008 – ident: CR26 – volume: 39 start-page: 538 year: 1998 end-page: 542 ident: CR23 article-title: Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures publication-title: Acta Radiol doi: 10.1080/02841859809172221 – volume: 16 start-page: S3 year: 2005 end-page: S7 ident: CR5 article-title: Epidemiology of osteoporotic fractures publication-title: Osteoporos Int doi: 10.1007/s00198-004-1702-6 – volume: 19 start-page: 63 year: 2016 ident: 5846_CR20 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.08.008 – volume: 6 start-page: 479 year: 2006 ident: 5846_CR2 publication-title: Spine J doi: 10.1016/j.spinee.2006.04.013 – ident: 5846_CR8 doi: 10.1148/radiol.2017162100 – ident: 5846_CR19 doi: 10.1148/radiol.2016160970 – volume: 44 start-page: 837 year: 1988 ident: 5846_CR28 publication-title: Biometrics doi: 10.2307/2531595 – ident: 5846_CR17 doi: 10.1117/12.2216452 – volume: 2 start-page: 319 year: 2010 ident: 5846_CR36 publication-title: Int J Med Eng Inf – volume: 20 start-page: 458 year: 2010 ident: 5846_CR25 publication-title: Eur Radiol doi: 10.1007/s00330-009-1571-7 – ident: 5846_CR33 doi: 10.1007/s00198-005-0007-8 – ident: 5846_CR9 doi: 10.2106/JBJS.J.00160 – ident: 5846_CR29 doi: 10.2307/2532051 – volume: 20 start-page: 1828 year: 2005 ident: 5846_CR24 publication-title: J Bone Miner Res doi: 10.1359/JBMR.050610 – ident: 5846_CR26 doi: 10.18637/jss.v028.i05 – ident: 5846_CR35 doi: 10.1016/0169-6009(90)90061-J – volume: 48 start-page: 601 year: 2010 ident: 5846_CR10 publication-title: Radiol Clin North Am doi: 10.1016/j.rcl.2010.02.015 – volume: 101 start-page: 62 year: 2017 ident: 5846_CR13 publication-title: Bone doi: 10.1016/j.bone.2017.04.008 – ident: 5846_CR38 – volume: 17 start-page: 1726 year: 2006 ident: 5846_CR4 publication-title: Osteoporos Int doi: 10.1007/s00198-006-0172-4 – volume: 39 start-page: 538 year: 1998 ident: 5846_CR23 publication-title: Acta Radiol doi: 10.1080/02841859809172221 – volume: 8 start-page: 177 year: 2016 ident: 5846_CR40 publication-title: Int J Comput Theory Eng doi: 10.7763/IJCTE.2016.V8.1040 – ident: 5846_CR34 doi: 10.1007/s00774-004-0536-9 – volume: 29 start-page: 518 year: 2014 ident: 5846_CR7 publication-title: J Bone Miner Res doi: 10.1002/jbmr.2176 – ident: 5846_CR14 doi: 10.1148/rg.2017170056 – volume: 285 start-page: 785 year: 2001 ident: 5846_CR3 publication-title: JAMA doi: 10.1001/jama.285.6.785 – volume: 16 start-page: S3 year: 2005 ident: 5846_CR5 publication-title: Osteoporos Int doi: 10.1007/s00198-004-1702-6 – volume: 46 start-page: 1541 year: 2017 ident: 5846_CR18 publication-title: Skeletal Radiol doi: 10.1007/s00256-017-2728-0 – ident: 5846_CR15 doi: 10.1007/s00256-008-0463-2 – ident: 5846_CR32 doi: 10.1016/S8756-3282(00)00376-8 – ident: 5846_CR27 doi: 10.1016/S0304-3800(02)00257-0 – volume: 15 start-page: 1255 year: 2006 ident: 5846_CR37 publication-title: Eur Spine J doi: 10.1007/s00586-005-0018-3 – ident: 5846_CR12 doi: 10.1097/01.brs.0000225993.57349.df – volume: 16 start-page: 1815 year: 2005 ident: 5846_CR39 publication-title: Osteoporos Int doi: 10.1007/s00198-005-1937-x – volume: 367 start-page: 2010 year: 2006 ident: 5846_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(06)68891-0 – volume: 272 start-page: 184 year: 2014 ident: 5846_CR16 publication-title: Radiology doi: 10.1148/radiol.14131390 – volume: 37 start-page: 505 year: 2017 ident: 5846_CR30 publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 20 start-page: 557 year: 2005 ident: 5846_CR6 publication-title: J Bone Miner Res doi: 10.1359/JBMR.041214 – volume: 8 start-page: 1137 year: 2009 ident: 5846_CR21 publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650080915 – volume: 94 start-page: 66 year: 2009 ident: 5846_CR22 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2008.08.005 – volume: 17 start-page: 1591 year: 2007 ident: 5846_CR11 publication-title: Eur Radiol doi: 10.1007/s00330-006-0511-z – ident: 5846_CR31 |
SSID | ssj0009147 |
Score | 2.5554843 |
Snippet | Purpose
To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify... To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients... PurposeTo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2207 |
SubjectTerms | Aged Aged, 80 and over Artificial intelligence Bone Density Case-Control Studies Classification Computed Tomography Confidence intervals Diagnostic Radiology Diagnostic systems Feature extraction Female Fractures Fractures, Stress - diagnosis Humans Image detection Imaging Internal Medicine Interventional Radiology Learning algorithms Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - injuries Machine Learning Male Medical imaging Medicine Medicine & Public Health Middle Aged Neuroradiology Osteoporosis Patients Radiology Retrospective Studies Risk analysis ROC Curve Source code Spinal Fractures - diagnosis Spine Texture Thoracic Vertebrae - diagnostic imaging Thoracic Vertebrae - injuries Tomography, X-Ray Computed - methods Ultrasound Vertebrae |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5qC8UX0Vo1WmUEn1oWspdc1rdSLEWwTz3StzDZSxHanNKTI_gP_Nnu7NmkSFXwLSS7m5DZnZ3Z-eYbxj5U6BGjnuOiNw3XQUhurFVcoAnaalsZn1C-5_XZQn--rC5zHvdqQrtPIcmkqedkNyo7RiAqyhTSNW8fsZ2KXPc4iRfy-J5pV6SqYtFTb3ljjJ5CmX8a4vfN6IGF-SA6mjad06fsSbYW4Xgj3mdsyw97bPdLjoc_Zz-_-ruRQr_X0C_dDyBkeeKEoIRKCJQBtY7-9EdwfkyYqwGWAb7nTh5wBMKWQ7w_nSnAyQV8u4laZgWEib8CgobEQQAzfUm8cHCTMJgectGJq322OP10cXLGc20FbrVqR44YmoCN021AJZzE6LlYYZ2UoUbhytL1xjh0um8R60AAKWOrFpWLGqC0tXrBtofl4F8xMI3vGyWtq3yte-dbUfVxVVOMTzQCXcHK6Sd3NhOPU_2L626mTE5y6aJcOpJL1xbscO5yu2Hd-Ffjg0lyXV6Aqy5aMsSNXypZsPfz47h0KB6Cg1-uqU1jpIwGcFmwlxuJz29TZNoapQt2NE2B-8H_-imv_6v1G_Y4ml9mA588YNvj3dq_jSbO2L9LU_oXwxPzmQ priority: 102 providerName: Springer Nature |
Title | Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning |
URI | https://link.springer.com/article/10.1007/s00330-018-5846-8 https://www.ncbi.nlm.nih.gov/pubmed/30519934 https://www.proquest.com/docview/2150236032 https://www.proquest.com/docview/2179229770 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbC2MvY7_nrS0a7GlDzJJly-pLSUrSsrEwRjOyJyNLchm0dtc4g_0H-7N7p8gJo6wvlrFl2fik053u03eEvMuNNwb0HOO1Vkw2XDBtbca40Y200ubaB5TvrDidy0-LfBEX3JYRVjnoxKCoXWdxjfwjTE1Idp5m4ujqF8OsURhdjSk07pNdpC5DSJdaqC3pLg8JxsBpL5nSWg5RzTSQiIInD4407juSBSv_nZduGZu3AqVh_pk-Jo-i4UhHa0k_Ifd8-5Q8-BJD48_I3-_-usco8AWtO_eHIsg80EPg3kra4GaoFbjWh9T5PsCvWto19Hd8yFPTU4SZU7g-LC_Q4zP68xIUzpIiPP6cIkoEGqEmMpnAiaOXAY7pacw_cf6czKeTs-NTFtMsMCuzsmfGNKoxysmyMRl3woATY7l1QjSF4S5NXa21M07WpTFFg1gpbfPSZA6UQWqL7AXZabvWvyJUK1-rTFiX-0LWzpc8r2GAY7iPK25cQtLhJ1c2cpBjKoyLasOeHORSgVwqlEtVJuT95pGrNQHHXZX3BslVcSwuq23PScjbzW0YRRgaMa3vVlhHaSHAFk4T8nIt8c3bMrRydSYT8mHoAtvG__spr-_-lDfkIZheeg2d3CM7_fXK74N509cHoQ_DsZyeHJDd0XQ8nmF58uPzBMrxZPb1G9ydi9ENGyr9Zw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJtAASPBBRQRP_IwEkKosGzp47RFvQXHdiqkNindLKj_gF_Db2TGSXaFKnrrLUocx8qMx2PPN98AvEiNNwbtXMwrnceq5iLW1sqYG10rq2yqfUD57mXTffXlID1Ygz9jLgzBKkebGAy1ay2dkb_BpYnIzhMp3p_8iKlqFEVXxxIavVps-7NfuGWbv9v6iPJ9KcTk02xzGg9VBWKrZNHFxtR5bXKnitpI7oRBn91y64SoM8NdkrhKa2ecqgpjspqgQdqmhZEOdT-xmcR-r8BVJaWmGVVMPq9IfnkoaJZoNCK51mqMoiaBtFRKgoBRnpPK4uLfdfCcc3suMBvWu8ktuDk4quxDr1m3Yc03d-Da7hCKvwu_v_rTjqLOR6xq3RkjUHugo6BcTlZT8tUCt_JvmfNdgHs1rK3Zz-Elz0zHCNbO8P54nME2Z-z7MRq4OSM4_iEjVAp2wszAnIIXjh0H-KdnQ72Lw3uwfykCuA_rTdv4h8B07qtcCutSn6nK-YKnFRoUCi_ynBsXQTL-5NIOnOdUeuOoXLI1B7mUKJeS5FIWEbxavnLSE35c1HhjlFw5zP15udLUCJ4vH-OspVCMaXy7oDa5FgJ97ySCB73El1-T5FVrqSJ4ParAqvP_DuXRxUN5Btens92dcmdrb_sx3EC3T_ewzQ1Y704X_gm6Vl31NOgzg2-XPYH-AmVFNWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDehBYwEF1DU-JE4RkIItaxaChWHFu0tOH5USG3SdrOg_gN-E7-OGSfZFarorbcocRwr38x47Pk8Q8jL3HhjwM6lrNYqlYHxVFsrUmZ0kFbaXPvI8t0vdg7lp2k-XSF_xrMwSKscbWI01K61uEe-CVMTJjvPBN8MAy3i6_bk_elZihWkMNI6ltPoRWTPX_yC5dvs3e42YP2K88nHg62ddKgwkFopyi41JqhglJNlMII5bsB_t8w6zkNhmMsyV2vtjJN1aUwRkCakbV4a4UAPMlsI6PcGualEzlDH1FQtE_6yWNws02BQlNZyjKhmMYGpEEgHwzNPskjLf-fES47upSBtnPsmd8jtwWmlH3opu0tWfHOPrH0ZwvL3ye9v_rzDCPQxrVt3QZHgHlNT4LlOGvAg1hyW9W-p812kfjW0DfTn8JKnpqNIcadwf9zaoFsH9McJGLsZRWr-EUUooBNqhiwqcOHoSaSCejrUvjh6QA6vBYCHZLVpG_-YUK18rQS3LveFrJ0vWV6DccFQI1PMuIRk40-u7JD_HMtwHFeLzM0RlwpwqRCXqkzI68Urp33yj6sab4zIVYMdmFVLqU3Ii8Vj0GAMy5jGt3NsozTn4IdnCXnUI774mkAPWwuZkDejCCw7_-9Qnlw9lOdkDVSn-ry7v7dOboEHqHsG5wZZ7c7n_il4WV39LIozJd-vW3_-AqDgOZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertebral+body+insufficiency+fractures%3A+detection+of+vertebrae+at+risk+on+standard+CT+images+using+texture+analysis+and+machine+learning&rft.jtitle=European+radiology&rft.au=Muehlematter%2C+Urs+J.&rft.au=Mannil%2C+Manoj&rft.au=Becker%2C+Anton+S.&rft.au=Vokinger%2C+Kerstin+N.&rft.date=2019-05-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=5&rft.spage=2207&rft.epage=2217&rft_id=info:doi/10.1007%2Fs00330-018-5846-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_018_5846_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |