Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning

Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Materials and methods Standard CT scans of 58 patients with insufficiency fracture...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 29; no. 5; pp. 2207 - 2217
Main Authors Muehlematter, Urs J., Mannil, Manoj, Becker, Anton S., Vokinger, Kerstin N., Finkenstaedt, Tim, Osterhoff, Georg, Fischer, Michael A., Guggenberger, Roman
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Materials and methods Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques. Results One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67). Conclusion TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging. Key Points • Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.
AbstractList To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques. One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67). TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging. • Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.
Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures. Materials and methods Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques. Results One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67). Conclusion TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging. Key Points • Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.
To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.PURPOSETo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.Standard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques.MATERIALS AND METHODSStandard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured ("unstable") or remained intact ("stable") in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort "cases" and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into "unstable" and "stable" using identical techniques.One hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67).RESULTSOne hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77-0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97-0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42-0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61-0.67).TA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.CONCLUSIONTA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.KEY POINTS• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy. • Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction. • This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.
PurposeTo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.Materials and methodsStandard CT scans of 58 patients with insufficiency fractures of the spine, performed between 2006 and 2013, were analyzed retrospectively. Every included patient had at least two CT scans. Intact vertebrae in a first scan that either fractured (“unstable”) or remained intact (“stable”) in the consecutive scan were manually segmented on mid-sagittal reformations. TA features for all vertebrae were extracted using open-source software (MaZda). In a paired control study, all vertebrae of the study cohort “cases” and matched controls were classified using ROC analysis of Hounsfield unit (HU) measurements and supervised ML techniques. In a within-subject vertebra comparison, vertebrae of the cases were classified into “unstable” and “stable” using identical techniques.ResultsOne hundred twenty vertebrae were included. Classification of cases/controls using ROC analysis of HU measurements showed an AUC of 0.83 (95% confidence interval [CI], 0.77–0.88), and ML-based classification showed an AUC of 0.97 (CI, 0.97–0.98). Classification of unstable/stable vertebrae using ROC analysis showed an AUC of 0.52 (CI, 0.42–0.63), and ML-based classification showed an AUC of 0.64 (CI, 0.61–0.67).ConclusionTA combined with ML allows to identifying patients who will suffer from vertebral insufficiency fractures in standard CT scans with high accuracy. However, identification of single vertebra at risk remains challenging.Key Points• Bone texture analysis combined with machine learning allows to identify patients at risk for vertebral body insufficiency fractures on standard CT scans with high accuracy.• Compared to mere Hounsfield unit measurements on CT scans, application of bone texture analysis combined with machine learning improve fracture risk prediction.• This analysis has the potential to identify vertebrae at risk for insufficiency fracture and may thus increase diagnostic value of standard CT scans.
Author Muehlematter, Urs J.
Vokinger, Kerstin N.
Fischer, Michael A.
Becker, Anton S.
Finkenstaedt, Tim
Osterhoff, Georg
Guggenberger, Roman
Mannil, Manoj
Author_xml – sequence: 1
  givenname: Urs J.
  orcidid: 0000-0003-3423-4633
  surname: Muehlematter
  fullname: Muehlematter, Urs J.
  email: urs.muehlematter@usz.ch
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
– sequence: 2
  givenname: Manoj
  surname: Mannil
  fullname: Mannil, Manoj
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
– sequence: 3
  givenname: Anton S.
  surname: Becker
  fullname: Becker, Anton S.
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
– sequence: 4
  givenname: Kerstin N.
  surname: Vokinger
  fullname: Vokinger, Kerstin N.
  organization: University Hospital of Zurich, University of Zurich
– sequence: 5
  givenname: Tim
  surname: Finkenstaedt
  fullname: Finkenstaedt, Tim
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
– sequence: 6
  givenname: Georg
  surname: Osterhoff
  fullname: Osterhoff, Georg
  organization: Department of Trauma, University Hospital Zurich
– sequence: 7
  givenname: Michael A.
  surname: Fischer
  fullname: Fischer, Michael A.
  organization: Department of Radiology, University Hospital Balgrist, University of Zurich
– sequence: 8
  givenname: Roman
  surname: Guggenberger
  fullname: Guggenberger, Roman
  organization: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30519934$$D View this record in MEDLINE/PubMed
BookMark eNp9kcuKFDEUhoOMOD2jD-BGAm7clJ4kdUncSeMNBtyMbsOpXNqM1akxSQ32G_jYpugehAFdJYTvO-Q__wU5i3N0hDxn8JoBDG8ygBDQAJNNJ9u-kY_IhrWCNwxke0Y2oIRsBqXac3KR8w0AKNYOT8i5gI4pJdoN-f3NpeLGhBMdZ3ugIebF-2CCi-ZAfUJTluTyW2pdcaaEOdLZ07uT5CgWmkL-Qet7LhgtJku31zTscecyXXKIO1rcr3UIxYjTIYdcL5bu0XwP0dHJYYqVekoee5yye3Y6L8nXD--vt5-aqy8fP2_fXTWmFbI0iH7wONhWehTMcuxaaZixnPsemQWwo1IWbTtKxN7XlEyZTqKwgnMwvbgkr45zb9P8c3G56H3Ixk0TRjcvWXM2KM7VMEBFXz5Ab-Yl1RAr1QEXPQheqRcnahn3zurbVMOng77fcQWGI2DSnHNyXptQcF1lSRgmzUCvbepjm7q2qdc2tawme2DeD_-fw49OrmzcufT30_-W_gBmGrNN
CitedBy_id crossref_primary_10_1016_j_ejrad_2021_109827
crossref_primary_10_1186_s12891_023_06557_w
crossref_primary_10_1016_j_jor_2023_10_026
crossref_primary_10_1210_clinem_dgac722
crossref_primary_10_3389_fneur_2022_918554
crossref_primary_10_1007_s00586_023_07838_7
crossref_primary_10_1038_s41598_024_82642_x
crossref_primary_10_1186_s12891_023_06281_5
crossref_primary_10_1016_j_ejrad_2020_109264
crossref_primary_10_2147_IJGM_S471770
crossref_primary_10_1007_s00586_022_07176_0
crossref_primary_10_1016_j_ejro_2022_100447
crossref_primary_10_1097_BOR_0000000000000607
crossref_primary_10_1007_s10462_023_10638_6
crossref_primary_10_1007_s43390_022_00621_6
crossref_primary_10_1016_j_acra_2022_06_022
crossref_primary_10_1002_jbmr_4146
crossref_primary_10_1038_s41598_024_75628_2
crossref_primary_10_1055_s_0043_1771037
crossref_primary_10_1007_s00586_024_08433_0
crossref_primary_10_1155_2022_8747487
crossref_primary_10_3390_diagnostics11020208
crossref_primary_10_3803_EnM_2022_1461
crossref_primary_10_1016_j_aej_2021_03_005
crossref_primary_10_1186_s12880_025_01573_9
crossref_primary_10_1227_NEU_0000000000001853
crossref_primary_10_14245_ns_2347022_511
crossref_primary_10_1007_s00586_021_07036_3
crossref_primary_10_1016_j_bone_2022_116653
crossref_primary_10_1177_2192568220982279
crossref_primary_10_1186_s12879_023_08602_4
crossref_primary_10_1007_s00256_021_03862_0
crossref_primary_10_3390_diagnostics15020209
crossref_primary_10_1007_s00330_021_07812_1
crossref_primary_10_1055_s_0039_3400268
crossref_primary_10_1186_s12859_022_04596_z
crossref_primary_10_1177_02841851241279896
crossref_primary_10_1007_s00586_024_08235_4
crossref_primary_10_1007_s00330_021_07832_x
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_3390_diagnostics13182913
crossref_primary_10_1007_s11914_020_00566_7
crossref_primary_10_1038_s41598_021_89311_3
crossref_primary_10_3389_fendo_2021_792760
crossref_primary_10_1016_j_crad_2025_106827
crossref_primary_10_1016_j_yacr_2020_05_005
crossref_primary_10_3390_diagnostics12102420
crossref_primary_10_1186_s12891_022_06096_w
crossref_primary_10_3389_fendo_2021_778537
crossref_primary_10_1007_s00113_019_0658_0
crossref_primary_10_3390_ijerph191811708
crossref_primary_10_1007_s00586_023_07887_y
crossref_primary_10_1055_a_1770_4626
crossref_primary_10_2147_IDR_S388868
crossref_primary_10_3174_ajnr_A7094
crossref_primary_10_1016_j_ejrad_2022_110642
crossref_primary_10_1007_s00198_020_05710_8
crossref_primary_10_3390_diagnostics14171879
crossref_primary_10_1016_j_berh_2022_101754
crossref_primary_10_1055_a_2013_3149
crossref_primary_10_3390_diagnostics11020240
crossref_primary_10_3390_diagnostics13122119
crossref_primary_10_1007_s13246_022_01116_4
crossref_primary_10_28982_josam_7715
crossref_primary_10_3390_diagnostics12040923
crossref_primary_10_1016_j_jmir_2019_11_006
crossref_primary_10_1186_s13018_024_04827_4
crossref_primary_10_1016_j_acra_2021_12_008
crossref_primary_10_1016_j_ejrad_2024_111714
crossref_primary_10_1038_s41413_023_00306_4
crossref_primary_10_1007_s12652_024_04840_9
crossref_primary_10_1016_j_acra_2024_06_041
crossref_primary_10_1186_s13018_023_04446_5
crossref_primary_10_3803_EnM_2021_1111
crossref_primary_10_1038_s41598_022_10807_7
crossref_primary_10_1097_RLI_0000000000000907
crossref_primary_10_2196_48535
crossref_primary_10_5114_pjr_2023_131696
crossref_primary_10_3389_fendo_2024_1370838
crossref_primary_10_7759_cureus_48341
crossref_primary_10_1148_ryct_2020190190
crossref_primary_10_1186_s12891_023_06939_0
crossref_primary_10_3389_fbioe_2024_1485364
crossref_primary_10_1007_s00330_020_06845_2
Cites_doi 10.1148/radiol.14131390
10.1148/rg.2017160130
10.2307/2531595
10.1007/s00256-017-2728-0
10.1002/jbmr.5650080915
10.1007/s00330-006-0511-z
10.1007/s00198-006-0172-4
10.1016/j.jocd.2015.08.008
10.1002/jbmr.2176
10.1359/JBMR.041214
10.1016/j.cmpb.2008.08.005
10.1016/j.rcl.2010.02.015
10.1007/s00586-005-0018-3
10.1359/JBMR.050610
10.1016/S0140-6736(06)68891-0
10.1001/jama.285.6.785
10.1007/s00198-005-1937-x
10.1007/s00330-009-1571-7
10.7763/IJCTE.2016.V8.1040
10.1016/j.spinee.2006.04.013
10.1016/j.bone.2017.04.008
10.1080/02841859809172221
10.1007/s00198-004-1702-6
10.1148/radiol.2017162100
10.1148/radiol.2016160970
10.1117/12.2216452
10.1007/s00198-005-0007-8
10.2106/JBJS.J.00160
10.2307/2532051
10.18637/jss.v028.i05
10.1016/0169-6009(90)90061-J
10.1007/s00774-004-0536-9
10.1148/rg.2017170056
10.1007/s00256-008-0463-2
10.1016/S8756-3282(00)00376-8
10.1016/S0304-3800(02)00257-0
10.1097/01.brs.0000225993.57349.df
ContentType Journal Article
Copyright European Society of Radiology 2018
European Radiology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2018
– notice: European Radiology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-018-5846-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 2217
ExternalDocumentID 30519934
10_1007_s00330_018_5846_8
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6PF
7RV
7X7
8AO
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
53G
5QI
88E
8FI
8FJ
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ACUDM
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CCPQU
CITATION
COF
EN4
GRRUI
H13
HMCUK
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
UDS
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c438t-aaf7fa7d48fa31d2a548c1cd22f6a1d00db99dad4b8aa6f19919c58a3d3220c63
IEDL.DBID 7X7
ISSN 0938-7994
1432-1084
IngestDate Thu Jul 10 18:46:34 EDT 2025
Fri Jul 25 18:55:03 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 03:08:06 EDT 2025
Fri Feb 21 02:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Osteoporosis
Tomography, X-ray computed
Spine
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-aaf7fa7d48fa31d2a548c1cd22f6a1d00db99dad4b8aa6f19919c58a3d3220c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3423-4633
PMID 30519934
PQID 2150236032
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2179229770
proquest_journals_2150236032
pubmed_primary_30519934
crossref_citationtrail_10_1007_s00330_018_5846_8
crossref_primary_10_1007_s00330_018_5846_8
springer_journals_10_1007_s00330_018_5846_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Delmas, van de Langerijt, Watts (CR6) 2005; 20
Reddy, Kumaravel (CR36) 2010; 2
Krug, Burghardt, Majumdar, Link (CR10) 2010; 48
CR19
Genant, Wu, van Kuijk, Nevitt (CR21) 2009; 8
CR17
Szczypiński, Strzelecki, Materka, Klepaczko (CR22) 2009; 94
CR38
CR15
CR14
CR35
CR12
Andresen, Radmer, Banzer (CR23) 1998; 39
CR34
CR33
Ngo, Dinh (CR40) 2016; 8
Torres, Hammond (CR20) 2016; 19
CR32
CR31
(CR3) 2001; 285
Johnell, Kanis (CR4) 2006; 17
Mannil, Eberhard, Becker (CR18) 2017; 46
Ito, Ikeda, Nishiguchi (CR24) 2005; 20
Johnell, Kanis (CR5) 2005; 16
CR8
Damilakis, Maris, Karantanas (CR11) 2007; 17
CR29
CR9
CR27
Wagner, Stäbler, Sittek (CR39) 2005; 16
CR26
Schwaiger, Kopperdahl, Nardo (CR13) 2017; 101
Erickson, Korfiatis, Akkus, Kline (CR30) 2017; 37
Silva, Leslie, Resch (CR7) 2014; 29
Kim, Vaccaro (CR2) 2006; 6
Rohlmann, Zander, Bergmann (CR37) 2006; 15
Thevenot, Hirvasniemi, Pulkkinen (CR16) 2014; 272
DeLong, DeLong, Clarke-Pearson (CR28) 1988; 44
Sambrook, Cooper (CR1) 2006; 367
Issever, Link, Kentenich (CR25) 2010; 20
5846_CR19
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (5846_CR3) 2001; 285
A Rohlmann (5846_CR37) 2006; 15
AS Issever (5846_CR25) 2010; 20
S Wagner (5846_CR39) 2005; 16
5846_CR9
HK Genant (5846_CR21) 2009; 8
5846_CR8
VQ Ngo (5846_CR40) 2016; 8
P Sambrook (5846_CR1) 2006; 367
J Thevenot (5846_CR16) 2014; 272
5846_CR31
BJ Schwaiger (5846_CR13) 2017; 101
5846_CR32
5846_CR33
5846_CR12
5846_CR34
5846_CR35
5846_CR14
5846_CR15
5846_CR38
5846_CR17
C Torres (5846_CR20) 2016; 19
5846_CR29
PD Delmas (5846_CR6) 2005; 20
R Krug (5846_CR10) 2010; 48
BJ Erickson (5846_CR30) 2017; 37
TK Reddy (5846_CR36) 2010; 2
J Damilakis (5846_CR11) 2007; 17
ER DeLong (5846_CR28) 1988; 44
M Ito (5846_CR24) 2005; 20
R Andresen (5846_CR23) 1998; 39
PM Szczypiński (5846_CR22) 2009; 94
O Johnell (5846_CR4) 2006; 17
DH Kim (5846_CR2) 2006; 6
BC Silva (5846_CR7) 2014; 29
5846_CR26
M Mannil (5846_CR18) 2017; 46
5846_CR27
O Johnell (5846_CR5) 2005; 16
References_xml – volume: 272
  start-page: 184
  year: 2014
  end-page: 191
  ident: CR16
  article-title: Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study
  publication-title: Radiology
  doi: 10.1148/radiol.14131390
– volume: 2
  start-page: 319
  year: 2010
  end-page: 327
  ident: CR36
  article-title: Wavelet based texture analysis and classification of bone lesions from dental CT
  publication-title: Int J Med Eng Inf
– volume: 37
  start-page: 505
  year: 2017
  end-page: 515
  ident: CR30
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– ident: CR14
– ident: CR12
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR28
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: CR33
– ident: CR35
– volume: 46
  start-page: 1541
  year: 2017
  end-page: 1551
  ident: CR18
  article-title: Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-017-2728-0
– volume: 8
  start-page: 1137
  year: 2009
  end-page: 1148
  ident: CR21
  article-title: Vertebral fracture assessment using a semiquantitative technique
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.5650080915
– ident: CR29
– volume: 17
  start-page: 1591
  year: 2007
  end-page: 1602
  ident: CR11
  article-title: An update on the assessment of osteoporosis using radiologic techniques
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0511-z
– ident: CR8
– volume: 17
  start-page: 1726
  year: 2006
  end-page: 1733
  ident: CR4
  article-title: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-006-0172-4
– volume: 19
  start-page: 63
  year: 2016
  end-page: 69
  ident: CR20
  article-title: Computed tomography and magnetic resonance imaging in the differentiation of osteoporotic fractures from neoplastic metastatic fractures
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.08.008
– ident: CR27
– volume: 29
  start-page: 518
  year: 2014
  end-page: 530
  ident: CR7
  article-title: Trabecular bone score: a noninvasive analytical method based upon the DXA image
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2176
– volume: 20
  start-page: 557
  year: 2005
  end-page: 563
  ident: CR6
  article-title: Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.041214
– ident: CR19
– volume: 94
  start-page: 66
  year: 2009
  end-page: 76
  ident: CR22
  article-title: MaZda—a software package for image texture analysis
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.08.005
– volume: 48
  start-page: 601
  year: 2010
  end-page: 621
  ident: CR10
  article-title: High-resolution imaging techniques for the assessment of osteoporosis
  publication-title: Radiol Clin North Am
  doi: 10.1016/j.rcl.2010.02.015
– volume: 15
  start-page: 1255
  year: 2006
  end-page: 1264
  ident: CR37
  article-title: Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty
  publication-title: Eur Spine J
  doi: 10.1007/s00586-005-0018-3
– volume: 20
  start-page: 1828
  year: 2005
  end-page: 1836
  ident: CR24
  article-title: Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050610
– volume: 367
  start-page: 2010
  year: 2006
  end-page: 2018
  ident: CR1
  article-title: Osteoporosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68891-0
– volume: 285
  start-page: 785
  year: 2001
  end-page: 795
  ident: CR3
  article-title: Osteoporosis prevention, diagnosis, and therapy
  publication-title: JAMA
  doi: 10.1001/jama.285.6.785
– ident: CR15
– ident: CR38
– ident: CR17
– volume: 16
  start-page: 1815
  year: 2005
  end-page: 1822
  ident: CR39
  article-title: Diagnosis of osteoporosis: visual assessment on conventional versus digital radiographs
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1937-x
– volume: 20
  start-page: 458
  year: 2010
  end-page: 468
  ident: CR25
  article-title: Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard
  publication-title: Eur Radiol
  doi: 10.1007/s00330-009-1571-7
– ident: CR31
– ident: CR9
– volume: 8
  start-page: 177
  year: 2016
  end-page: 181
  ident: CR40
  article-title: Bone texture characterization based on Contourlet and Gabor tranforms
  publication-title: Int J Comput Theory Eng
  doi: 10.7763/IJCTE.2016.V8.1040
– ident: CR32
– ident: CR34
– volume: 6
  start-page: 479
  year: 2006
  end-page: 487
  ident: CR2
  article-title: Osteoporotic compression fractures of the spine; current options and considerations for treatment
  publication-title: Spine J
  doi: 10.1016/j.spinee.2006.04.013
– volume: 101
  start-page: 62
  year: 2017
  end-page: 69
  ident: CR13
  article-title: Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations
  publication-title: Bone
  doi: 10.1016/j.bone.2017.04.008
– ident: CR26
– volume: 39
  start-page: 538
  year: 1998
  end-page: 542
  ident: CR23
  article-title: Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures
  publication-title: Acta Radiol
  doi: 10.1080/02841859809172221
– volume: 16
  start-page: S3
  year: 2005
  end-page: S7
  ident: CR5
  article-title: Epidemiology of osteoporotic fractures
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-004-1702-6
– volume: 19
  start-page: 63
  year: 2016
  ident: 5846_CR20
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.08.008
– volume: 6
  start-page: 479
  year: 2006
  ident: 5846_CR2
  publication-title: Spine J
  doi: 10.1016/j.spinee.2006.04.013
– ident: 5846_CR8
  doi: 10.1148/radiol.2017162100
– ident: 5846_CR19
  doi: 10.1148/radiol.2016160970
– volume: 44
  start-page: 837
  year: 1988
  ident: 5846_CR28
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: 5846_CR17
  doi: 10.1117/12.2216452
– volume: 2
  start-page: 319
  year: 2010
  ident: 5846_CR36
  publication-title: Int J Med Eng Inf
– volume: 20
  start-page: 458
  year: 2010
  ident: 5846_CR25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-009-1571-7
– ident: 5846_CR33
  doi: 10.1007/s00198-005-0007-8
– ident: 5846_CR9
  doi: 10.2106/JBJS.J.00160
– ident: 5846_CR29
  doi: 10.2307/2532051
– volume: 20
  start-page: 1828
  year: 2005
  ident: 5846_CR24
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050610
– ident: 5846_CR26
  doi: 10.18637/jss.v028.i05
– ident: 5846_CR35
  doi: 10.1016/0169-6009(90)90061-J
– volume: 48
  start-page: 601
  year: 2010
  ident: 5846_CR10
  publication-title: Radiol Clin North Am
  doi: 10.1016/j.rcl.2010.02.015
– volume: 101
  start-page: 62
  year: 2017
  ident: 5846_CR13
  publication-title: Bone
  doi: 10.1016/j.bone.2017.04.008
– ident: 5846_CR38
– volume: 17
  start-page: 1726
  year: 2006
  ident: 5846_CR4
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-006-0172-4
– volume: 39
  start-page: 538
  year: 1998
  ident: 5846_CR23
  publication-title: Acta Radiol
  doi: 10.1080/02841859809172221
– volume: 8
  start-page: 177
  year: 2016
  ident: 5846_CR40
  publication-title: Int J Comput Theory Eng
  doi: 10.7763/IJCTE.2016.V8.1040
– ident: 5846_CR34
  doi: 10.1007/s00774-004-0536-9
– volume: 29
  start-page: 518
  year: 2014
  ident: 5846_CR7
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2176
– ident: 5846_CR14
  doi: 10.1148/rg.2017170056
– volume: 285
  start-page: 785
  year: 2001
  ident: 5846_CR3
  publication-title: JAMA
  doi: 10.1001/jama.285.6.785
– volume: 16
  start-page: S3
  year: 2005
  ident: 5846_CR5
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-004-1702-6
– volume: 46
  start-page: 1541
  year: 2017
  ident: 5846_CR18
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-017-2728-0
– ident: 5846_CR15
  doi: 10.1007/s00256-008-0463-2
– ident: 5846_CR32
  doi: 10.1016/S8756-3282(00)00376-8
– ident: 5846_CR27
  doi: 10.1016/S0304-3800(02)00257-0
– volume: 15
  start-page: 1255
  year: 2006
  ident: 5846_CR37
  publication-title: Eur Spine J
  doi: 10.1007/s00586-005-0018-3
– ident: 5846_CR12
  doi: 10.1097/01.brs.0000225993.57349.df
– volume: 16
  start-page: 1815
  year: 2005
  ident: 5846_CR39
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1937-x
– volume: 367
  start-page: 2010
  year: 2006
  ident: 5846_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68891-0
– volume: 272
  start-page: 184
  year: 2014
  ident: 5846_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.14131390
– volume: 37
  start-page: 505
  year: 2017
  ident: 5846_CR30
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 20
  start-page: 557
  year: 2005
  ident: 5846_CR6
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.041214
– volume: 8
  start-page: 1137
  year: 2009
  ident: 5846_CR21
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.5650080915
– volume: 94
  start-page: 66
  year: 2009
  ident: 5846_CR22
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.08.005
– volume: 17
  start-page: 1591
  year: 2007
  ident: 5846_CR11
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0511-z
– ident: 5846_CR31
SSID ssj0009147
Score 2.5554843
Snippet Purpose To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify...
To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients...
PurposeTo evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2207
SubjectTerms Aged
Aged, 80 and over
Artificial intelligence
Bone Density
Case-Control Studies
Classification
Computed Tomography
Confidence intervals
Diagnostic Radiology
Diagnostic systems
Feature extraction
Female
Fractures
Fractures, Stress - diagnosis
Humans
Image detection
Imaging
Internal Medicine
Interventional Radiology
Learning algorithms
Lumbar Vertebrae - diagnostic imaging
Lumbar Vertebrae - injuries
Machine Learning
Male
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Neuroradiology
Osteoporosis
Patients
Radiology
Retrospective Studies
Risk analysis
ROC Curve
Source code
Spinal Fractures - diagnosis
Spine
Texture
Thoracic Vertebrae - diagnostic imaging
Thoracic Vertebrae - injuries
Tomography, X-Ray Computed - methods
Ultrasound
Vertebrae
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5qC8UX0Vo1WmUEn1oWspdc1rdSLEWwTz3StzDZSxHanNKTI_gP_Nnu7NmkSFXwLSS7m5DZnZ3Z-eYbxj5U6BGjnuOiNw3XQUhurFVcoAnaalsZn1C-5_XZQn--rC5zHvdqQrtPIcmkqedkNyo7RiAqyhTSNW8fsZ2KXPc4iRfy-J5pV6SqYtFTb3ljjJ5CmX8a4vfN6IGF-SA6mjad06fsSbYW4Xgj3mdsyw97bPdLjoc_Zz-_-ruRQr_X0C_dDyBkeeKEoIRKCJQBtY7-9EdwfkyYqwGWAb7nTh5wBMKWQ7w_nSnAyQV8u4laZgWEib8CgobEQQAzfUm8cHCTMJgectGJq322OP10cXLGc20FbrVqR44YmoCN021AJZzE6LlYYZ2UoUbhytL1xjh0um8R60AAKWOrFpWLGqC0tXrBtofl4F8xMI3vGyWtq3yte-dbUfVxVVOMTzQCXcHK6Sd3NhOPU_2L626mTE5y6aJcOpJL1xbscO5yu2Hd-Ffjg0lyXV6Aqy5aMsSNXypZsPfz47h0KB6Cg1-uqU1jpIwGcFmwlxuJz29TZNoapQt2NE2B-8H_-imv_6v1G_Y4ml9mA588YNvj3dq_jSbO2L9LU_oXwxPzmQ
  priority: 102
  providerName: Springer Nature
Title Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning
URI https://link.springer.com/article/10.1007/s00330-018-5846-8
https://www.ncbi.nlm.nih.gov/pubmed/30519934
https://www.proquest.com/docview/2150236032
https://www.proquest.com/docview/2179229770
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbC2MvY7_nrS0a7GlDzJJly-pLSUrSsrEwRjOyJyNLchm0dtc4g_0H-7N7p8gJo6wvlrFl2fik053u03eEvMuNNwb0HOO1Vkw2XDBtbca40Y200ubaB5TvrDidy0-LfBEX3JYRVjnoxKCoXWdxjfwjTE1Idp5m4ujqF8OsURhdjSk07pNdpC5DSJdaqC3pLg8JxsBpL5nSWg5RzTSQiIInD4407juSBSv_nZduGZu3AqVh_pk-Jo-i4UhHa0k_Ifd8-5Q8-BJD48_I3-_-usco8AWtO_eHIsg80EPg3kra4GaoFbjWh9T5PsCvWto19Hd8yFPTU4SZU7g-LC_Q4zP68xIUzpIiPP6cIkoEGqEmMpnAiaOXAY7pacw_cf6czKeTs-NTFtMsMCuzsmfGNKoxysmyMRl3woATY7l1QjSF4S5NXa21M07WpTFFg1gpbfPSZA6UQWqL7AXZabvWvyJUK1-rTFiX-0LWzpc8r2GAY7iPK25cQtLhJ1c2cpBjKoyLasOeHORSgVwqlEtVJuT95pGrNQHHXZX3BslVcSwuq23PScjbzW0YRRgaMa3vVlhHaSHAFk4T8nIt8c3bMrRydSYT8mHoAtvG__spr-_-lDfkIZheeg2d3CM7_fXK74N509cHoQ_DsZyeHJDd0XQ8nmF58uPzBMrxZPb1G9ydi9ENGyr9Zw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJtAASPBBRQRP_IwEkKosGzp47RFvQXHdiqkNindLKj_gF_Db2TGSXaFKnrrLUocx8qMx2PPN98AvEiNNwbtXMwrnceq5iLW1sqYG10rq2yqfUD57mXTffXlID1Ygz9jLgzBKkebGAy1ay2dkb_BpYnIzhMp3p_8iKlqFEVXxxIavVps-7NfuGWbv9v6iPJ9KcTk02xzGg9VBWKrZNHFxtR5bXKnitpI7oRBn91y64SoM8NdkrhKa2ecqgpjspqgQdqmhZEOdT-xmcR-r8BVJaWmGVVMPq9IfnkoaJZoNCK51mqMoiaBtFRKgoBRnpPK4uLfdfCcc3suMBvWu8ktuDk4quxDr1m3Yc03d-Da7hCKvwu_v_rTjqLOR6xq3RkjUHugo6BcTlZT8tUCt_JvmfNdgHs1rK3Zz-Elz0zHCNbO8P54nME2Z-z7MRq4OSM4_iEjVAp2wszAnIIXjh0H-KdnQ72Lw3uwfykCuA_rTdv4h8B07qtcCutSn6nK-YKnFRoUCi_ynBsXQTL-5NIOnOdUeuOoXLI1B7mUKJeS5FIWEbxavnLSE35c1HhjlFw5zP15udLUCJ4vH-OspVCMaXy7oDa5FgJ97ySCB73El1-T5FVrqSJ4ParAqvP_DuXRxUN5Btens92dcmdrb_sx3EC3T_ewzQ1Y704X_gm6Vl31NOgzg2-XPYH-AmVFNWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDehBYwEF1DU-JE4RkIItaxaChWHFu0tOH5USG3SdrOg_gN-E7-OGSfZFarorbcocRwr38x47Pk8Q8jL3HhjwM6lrNYqlYHxVFsrUmZ0kFbaXPvI8t0vdg7lp2k-XSF_xrMwSKscbWI01K61uEe-CVMTJjvPBN8MAy3i6_bk_elZihWkMNI6ltPoRWTPX_yC5dvs3e42YP2K88nHg62ddKgwkFopyi41JqhglJNlMII5bsB_t8w6zkNhmMsyV2vtjJN1aUwRkCakbV4a4UAPMlsI6PcGualEzlDH1FQtE_6yWNws02BQlNZyjKhmMYGpEEgHwzNPskjLf-fES47upSBtnPsmd8jtwWmlH3opu0tWfHOPrH0ZwvL3ye9v_rzDCPQxrVt3QZHgHlNT4LlOGvAg1hyW9W-p812kfjW0DfTn8JKnpqNIcadwf9zaoFsH9McJGLsZRWr-EUUooBNqhiwqcOHoSaSCejrUvjh6QA6vBYCHZLVpG_-YUK18rQS3LveFrJ0vWV6DccFQI1PMuIRk40-u7JD_HMtwHFeLzM0RlwpwqRCXqkzI68Urp33yj6sab4zIVYMdmFVLqU3Ii8Vj0GAMy5jGt3NsozTn4IdnCXnUI774mkAPWwuZkDejCCw7_-9Qnlw9lOdkDVSn-ry7v7dOboEHqHsG5wZZ7c7n_il4WV39LIozJd-vW3_-AqDgOZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertebral+body+insufficiency+fractures%3A+detection+of+vertebrae+at+risk+on+standard+CT+images+using+texture+analysis+and+machine+learning&rft.jtitle=European+radiology&rft.au=Muehlematter%2C+Urs+J.&rft.au=Mannil%2C+Manoj&rft.au=Becker%2C+Anton+S.&rft.au=Vokinger%2C+Kerstin+N.&rft.date=2019-05-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=5&rft.spage=2207&rft.epage=2217&rft_id=info:doi/10.1007%2Fs00330-018-5846-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_018_5846_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon