3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field
Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electr...
Saved in:
Published in | IEEE transactions on nanobioscience Vol. 4; no. 4; pp. 284 - 294 |
---|---|
Main Authors | , , |
Format | Magazine Article |
Language | English |
Published |
United States
IEEE
01.12.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1536-1241 1558-2639 |
DOI | 10.1109/TNB.2005.859549 |
Cover
Loading…
Abstract | Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures. |
---|---|
AbstractList | Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures. Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures.Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. [...] a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. |
Author | Jing Liu Zhong-Shan Deng Yong-Gang Lv |
Author_xml | – sequence: 1 givenname: Y.-G. surname: Lu fullname: Lu, Y.-G. – sequence: 2 givenname: Z.-S. surname: Deng fullname: Deng, Z.-S. – sequence: 3 givenname: J. surname: Liu fullname: Liu, J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16433294$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk2LFDEQhhtZcT_07EGQ4EG9zEy-Oznq-gmLXtZzk04qOxm6k7GTBvdv-ItNOysLexhPCdTzVEHVe96cxBShaZ4TvCYE6831t_drirFYK6EF14-aMyKEWlHJ9MnyZ3JFKCenzXnOO4xJK4V-0pwSyRmjmp81v9nqA4rzCFOwZkC5zO4WpYjKFlCIbrbg0BZMCfEGgfdgS0bJIxh7cK7WxmCntIkmpr2ZSrAD5EXfzqOJqE-1WZ77XdVQSQh-FZhiHTOC-zsOhlqZ0mhuIlQZ-QCDe9o89mbI8OzuvWh-fPp4fflldfX989fLd1cry5kqK2O40oo6K2XfgtLEUd9Kiy12XhnVS8q55M4LISX1pqWk761pedt7L5zU7KJ5c-i7n9LPGXLpxpAtDIOJkObcKc3qHkmrKvn6KCk1Vlgy_F-QtrrFjC_g26MgkS3hlFFFK_rqAbpL87LF3GlCsSZEywq9vIPmvi63209hNNNt9-_QFdgcgHqunCfw9wjulih1NUrdEqXuEKVqiAeGDaUGIcUymTAc8V4cvAAA91MEF4oK9gf2_9Xr |
CODEN | ITMCEL |
CitedBy_id | crossref_primary_10_1016_j_jtherbio_2013_03_007 crossref_primary_10_1007_s00231_011_0907_4 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_123 crossref_primary_10_1016_j_jphotobiol_2019_111599 crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_005 crossref_primary_10_2147_NSA_S260374 crossref_primary_10_3109_02656736_2013_836757 crossref_primary_10_1115_1_4030213 crossref_primary_10_1115_1_4002225 crossref_primary_10_1007_s11517_016_1589_3 crossref_primary_10_1063_1_3680541 crossref_primary_10_1016_j_ijthermalsci_2014_01_024 crossref_primary_10_1016_j_jmmm_2010_05_028 crossref_primary_10_1109_TMAG_2009_2019128 crossref_primary_10_1016_j_ijthermalsci_2018_05_015 crossref_primary_10_1109_TNANO_2021_3137046 crossref_primary_10_1080_10407782_2016_1193342 crossref_primary_10_1371_journal_pone_0081227 crossref_primary_10_1002_wnan_61 crossref_primary_10_1080_00401706_2017_1345702 crossref_primary_10_1109_TBME_2017_2666738 crossref_primary_10_1109_TMAG_2006_888737 crossref_primary_10_3390_ma13010136 crossref_primary_10_1016_j_jtherbio_2017_04_005 crossref_primary_10_1063_1_3525089 crossref_primary_10_1016_j_ijthermalsci_2012_07_002 crossref_primary_10_1080_10407782_2020_1720409 crossref_primary_10_3109_02656730903514685 crossref_primary_10_12693_APhysPolA_115_413 crossref_primary_10_1016_j_ces_2011_05_031 crossref_primary_10_1080_13645700701803826 crossref_primary_10_1080_17415977_2010_531473 crossref_primary_10_1118_1_3693048 crossref_primary_10_1080_02656730801907937 crossref_primary_10_1615_AnnualRevHeatTransfer_2024055368 crossref_primary_10_1016_j_applthermaleng_2018_05_015 crossref_primary_10_1109_TPS_2018_2875342 crossref_primary_10_1016_j_nano_2017_11_018 crossref_primary_10_1016_j_ijthermalsci_2013_01_007 crossref_primary_10_1016_j_ijthermalsci_2015_06_022 crossref_primary_10_1016_j_enganabound_2017_07_008 crossref_primary_10_1016_j_jmmm_2019_166143 crossref_primary_10_1080_02656730802203377 crossref_primary_10_1108_COMPEL_05_2016_0212 crossref_primary_10_1016_j_applthermaleng_2015_06_062 crossref_primary_10_1016_j_compbiomed_2016_06_002 crossref_primary_10_1016_j_aej_2022_08_032 crossref_primary_10_1016_j_nano_2007_11_002 crossref_primary_10_1016_j_ijthermalsci_2013_03_014 crossref_primary_10_1115_1_4032053 crossref_primary_10_1007_s00339_019_3170_z crossref_primary_10_1016_j_cap_2019_06_003 crossref_primary_10_1007_s40997_019_00314_y crossref_primary_10_1109_TAP_2014_2360213 crossref_primary_10_15446_ing_investig_92288 crossref_primary_10_1109_TMAG_2015_2489639 crossref_primary_10_1016_j_applthermaleng_2014_04_035 crossref_primary_10_1080_13645700701709494 crossref_primary_10_1108_HFF_03_2016_0114 crossref_primary_10_1115_1_4003563 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_024 crossref_primary_10_2528_PIERC18092504 crossref_primary_10_1016_j_cryobiol_2014_02_002 crossref_primary_10_1016_j_mechrescom_2011_05_012 crossref_primary_10_1108_HFF_03_2016_0118 crossref_primary_10_1109_TNB_2008_2011857 crossref_primary_10_1016_j_finel_2017_07_001 crossref_primary_10_1118_1_4860661 |
Cites_doi | 10.1080/10407790260444813 10.1115/1.2894097 10.1088/0022-3727/36/13/201 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-# 10.3109/02656739409009351 10.1097/00000658-195710000-00007 10.1111/j.1349-7006.1998.tb03283.x 10.1016/0304-8853(93)91113-L 10.1016/S0304-8853(02)00706-0 10.1109/TBME.1984.325334 10.3109/02656738809029305 10.3109/02656739709023559 10.4028/www.scientific.net/MSF.293.65 10.1007/BF00122273 10.1109/22.58652 10.1109/20.281165 10.1109/TBME.1984.325364 10.3109/02656739609027678 10.1109/TMTT.1977.1129205 10.1152/jappl.1948.1.2.93 10.1001/jama.1976.03260460018014 10.1109/20.718537 10.1007/978-3-642-82955-0_5 10.1118/1.594911 10.1016/S0304-8853(98)00552-6 10.1016/0306-9877(79)90063-X 10.2307/3575874 10.1016/S1076-6332(03)80171-X 10.1007/BF02798277 10.1118/1.594930 10.1016/S0304-8853(00)01235-X 10.1111/j.1349-7006.1997.tb00429.x 10.1016/S0142-9612(97)00067-7 10.1109/TBME.1976.324588 10.1016/0360-3016(89)90470-7 10.1038/251521a0 10.1080/16070658.1979.11689169 10.1016/S0010-4825(03)00086-6 10.1111/j.1349-7006.1998.tb00586.x 10.1016/0921-5093(94)90865-6 10.1002/1097-0142(197901)43:1<188::aid-cncr2820430128>3.0.co;2-7 10.1109/TBME.1984.325372 10.1054/mehy.2000.1089 |
ContentType | Magazine Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNB.2005.859549 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Solid State and Superconductivity Abstracts Technology Research Database MEDLINE - Academic Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1558-2639 |
EndPage | 294 |
ExternalDocumentID | 2543693911 16433294 10_1109_TNB_2005_859549 1545825 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c438t-aa48982dc66b7e891d2f76c0c0df8a8b624464df55662fa721bbca747bff5d693 |
IEDL.DBID | RIE |
ISSN | 1536-1241 |
IngestDate | Thu Jul 10 19:24:08 EDT 2025 Fri Jul 11 09:07:46 EDT 2025 Fri Jul 11 05:15:29 EDT 2025 Fri Jul 11 10:02:27 EDT 2025 Mon Jun 30 08:18:38 EDT 2025 Wed Feb 19 01:43:16 EST 2025 Thu Apr 24 23:12:00 EDT 2025 Sun Jul 06 05:01:56 EDT 2025 Tue Aug 26 16:40:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-aa48982dc66b7e891d2f76c0c0df8a8b624464df55662fa721bbca747bff5d693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 16433294 |
PQID | 912091196 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_893263178 proquest_miscellaneous_69080630 proquest_journals_912091196 pubmed_primary_16433294 proquest_miscellaneous_27970340 proquest_miscellaneous_1671423282 ieee_primary_1545825 crossref_primary_10_1109_TNB_2005_859549 crossref_citationtrail_10_1109_TNB_2005_859549 |
PublicationCentury | 2000 |
PublicationDate | 2005-12-01 |
PublicationDateYYYYMMDD | 2005-12-01 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on nanobioscience |
PublicationTitleAbbrev | TNB |
PublicationTitleAlternate | IEEE Trans Nanobioscience |
PublicationYear | 2005 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref15 ref52 ref11 Liu (ref49) 1997 ref17 ref16 ref19 ref18 d’Ambly (ref44) 1999; 194 Haji-Sheikh (ref47) 1988 Wan (ref55) 1997 ref51 ref50 ref46 ref45 ref48 Steeves (ref3) 1992; 68 ref8 ref7 ref4 Von Aulock (ref54) 1965 ref6 Smit (ref53) 1959 ref5 Neel (ref41) 1949; 228 ref40 Strohbehn (ref14) 1979; 14 ref35 ref34 ref37 ref36 Lin (ref42) 1997 ref31 ref30 ref33 ref32 ref2 ref1 Doss (ref9) ref39 ref38 Lehamn (ref10) 1970; 51 ref24 ref23 ref26 Tang (ref43) 2002; 42 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Doss (ref12) 1970; 10 |
References_xml | – volume-title: Molecular Theory and Property of Fluid year: 1997 ident: ref55 – ident: ref48 doi: 10.1080/10407790260444813 – ident: ref56 doi: 10.1115/1.2894097 – volume-title: Modern Hyperthermic Oncology (Principles, Methods and Clinics) year: 1997 ident: ref42 – ident: ref39 doi: 10.1088/0022-3727/36/13/201 – ident: ref1 doi: 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-# – ident: ref4 doi: 10.3109/02656739409009351 – ident: ref20 doi: 10.1097/00000658-195710000-00007 – ident: ref38 doi: 10.1111/j.1349-7006.1998.tb03283.x – volume-title: Bioheat Transfer year: 1997 ident: ref49 – ident: ref23 doi: 10.1016/0304-8853(93)91113-L – ident: ref45 doi: 10.1016/S0304-8853(02)00706-0 – ident: ref18 doi: 10.1109/TBME.1984.325334 – volume: 68 start-page: 342 year: 1992 ident: ref3 article-title: Hyperthermia in cancer therapy: Where are we today and where are we going? publication-title: Bull. NY Acad. Med. – ident: ref7 doi: 10.3109/02656738809029305 – ident: ref25 doi: 10.3109/02656739709023559 – ident: ref30 doi: 10.4028/www.scientific.net/MSF.293.65 – ident: ref28 doi: 10.1007/BF00122273 – ident: ref19 doi: 10.1109/22.58652 – ident: ref31 doi: 10.1109/20.281165 – ident: ref52 doi: 10.1109/TBME.1984.325364 – ident: ref32 doi: 10.3109/02656739609027678 – ident: ref33 doi: 10.3109/02656739709023559 – ident: ref50 doi: 10.1109/TMTT.1977.1129205 – volume: 228 start-page: 664 year: 1949 ident: ref41 article-title: Influence of thermal fluctuations on the magnetization of ferromagnetic small particles publication-title: Comptes Rendus de l’Academie des Sciences – ident: ref46 doi: 10.1152/jappl.1948.1.2.93 – ident: ref8 doi: 10.1001/jama.1976.03260460018014 – ident: ref40 doi: 10.1109/20.718537 – ident: ref6 doi: 10.1007/978-3-642-82955-0_5 – ident: ref13 doi: 10.1118/1.594911 – volume: 194 start-page: 197 year: 1999 ident: ref44 article-title: Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00552-6 – ident: ref21 doi: 10.1016/0306-9877(79)90063-X – ident: ref27 doi: 10.2307/3575874 – ident: ref26 doi: 10.1016/S1076-6332(03)80171-X – ident: ref22 doi: 10.1007/BF02798277 – start-page: 226 volume-title: Proc. Int. Symp. Cancer Therapy by Hyperthermia and Radiation ident: ref9 article-title: Use of RF fields produce hyperthermia in animal tumors – volume: 51 start-page: 143 year: 1970 ident: ref10 article-title: Evaluation of a microwave contact applicatior publication-title: Arch. Phys. Med. – volume-title: Handbook of Microwave Ferrite Materials year: 1965 ident: ref54 – volume: 10 start-page: 16 year: 1970 ident: ref12 article-title: A technique for localized heating in tissue: an adjunct to tumor therapy publication-title: Med. Instrum. – ident: ref15 doi: 10.1118/1.594930 – ident: ref35 doi: 10.1016/S0304-8853(00)01235-X – ident: ref36 doi: 10.1111/j.1349-7006.1997.tb00429.x – ident: ref29 doi: 10.1016/S0142-9612(97)00067-7 – ident: ref17 doi: 10.1109/TBME.1976.324588 – ident: ref5 doi: 10.1016/0360-3016(89)90470-7 – ident: ref2 doi: 10.1038/251521a0 – volume-title: Ferrites year: 1959 ident: ref53 – volume: 14 start-page: 339 year: 1979 ident: ref14 article-title: An invasive microwave system for locally-induced hyperthermia for cancer therapy publication-title: J. Microw. Power doi: 10.1080/16070658.1979.11689169 – volume: 42 start-page: 676 year: 2002 ident: ref43 article-title: Numerical simulation of tissue-equivalent material experiments for radio frequency hyperthermia of tumors publication-title: J. Tsinghua Univ. (Sci. Technol.) – ident: ref51 doi: 10.1016/S0010-4825(03)00086-6 – ident: ref37 doi: 10.1111/j.1349-7006.1998.tb00586.x – ident: ref24 doi: 10.1016/0921-5093(94)90865-6 – ident: ref11 doi: 10.1002/1097-0142(197901)43:1<188::aid-cncr2820430128>3.0.co;2-7 – ident: ref16 doi: 10.1109/TBME.1984.325372 – start-page: 673 volume-title: Handbook of Numerical Heat Transfer year: 1988 ident: ref47 article-title: Monte Carlo methods – ident: ref34 doi: 10.1054/mehy.2000.1089 |
SSID | ssj0017659 |
Score | 1.1914574 |
Snippet | Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor... The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. [...] a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 284 |
SubjectTerms | Bioheat transfer Computer Simulation Electrodes electromagnetic field Electromagnetic Fields Electromagnetic heating Heating Hot Temperature Humans Hyperthermia Hyperthermia, Induced - methods mathematical modeling Mathematical models Medical Medical treatment micro/nano magnetic particle Micromagnetics Microspheres minimally invasive therapy Models, Biological Monte Carlo method Nanoparticles Nanostructure Nanostructures - radiation effects Nanotechnology Neoplasms parameter optimization targeted tumor killing Temperature Therapy, Computer-Assisted - methods Tumors |
Title | 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field |
URI | https://ieeexplore.ieee.org/document/1545825 https://www.ncbi.nlm.nih.gov/pubmed/16433294 https://www.proquest.com/docview/912091196 https://www.proquest.com/docview/1671423282 https://www.proquest.com/docview/27970340 https://www.proquest.com/docview/69080630 https://www.proquest.com/docview/893263178 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB61lZA4FShLKMsgceBA3ouzeDmyVRVSe2ql3iI7djjQlyBecmh_Br-YsZ28CkQkbpEyjmLNjP2NZ_wNwFtBKMBwS7FJI21KnihSU1iZcgLHrigUb0OgeHbOTy_Lr1fV1R68392Fcc6F4jO38o8hl2_7ZvRHZeuY5an2YZ8Ct3hXa5cxEDw0RiMH9n1lSjbR-LBMrS_OP8bDE8_lVQaeUO5pu1T5x2YUuqssA82w4Zwcwtn8q7HO5PtqHMyquf2LxfF_5_IADmcmafwQbeUh7LnuEdyLzShvjuBXkX7GbowZnGsMvLPYd0gIESlwJxOw6Fdu2utwqgLBvkW3MY4WL4sbX9q37nRHYfhUbeeHhyaAaHr62HY0_tQHhx5n8mncxEQRTu14Nvpb569VYqisewyXJ18uPp2mU8eGtCkLOaRal1LJ3DacG-GkYjZvBW-yJrOt1NJwAhO8tG1FIDJvNUWfxjSaIhrTtpXlqngCB13fuWeATNO0mBXcEETSwmpRMdHKXNuCF8zaBFaz6upmojP3XTWu6xDWZKomtfsmm1Ud1Z7Au92AH5HJY1n0yCvsTizqKoHj2TbqydO3tfKXjxmtYwm82b0lF_V5F925ftzWjAvm8-EyT-D1gkwuFK29ZbYswRWBe16QBC5ISI_FCQ_KBJ5Gy72bwWTwz_89s2O4HylpfZnOCzgYfo7uJYGtwbwKXvYbrAcl5Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgSnAoU2FKiROHAgu3Eefhx5VQt097SVeovs2OFAN0FscqA_o7-YsZ1sBSISt0g7WcWaGfsbz8w3AK85ogDNDMYmlTAxeiKPdWZEzBAc2yyTrPaB4nLFFhf5l8vicg_e7nphrLW--MzO3KPP5Zu26t1V2TxkeYo7cLdwzbihW2uXM-DMj0ZDF3aTZXI6EPnQRM7Xq_fh-sSxeeWeKZQ54i6Z_3Ec-fkq01DTHzlnB7AcPzZUmnyf9Z2eVdd_8Tj-72oewsHIJU3eBWt5BHu2eQz3wjjKX4dwk8UfSdOHHM4V8cyzpG0IYkSCoTsagSFu78bTjgx1IKStid1oi9uXIRtX3DdvVIOB-FBv5173YwCJbvHPtr129z6ka8lIP002IVVEhoE8G_WtcY2VxNfWPYGLs0_rD4t4mNkQV3kmulipXEiRmooxza2Q1KQ1Z1VSJaYWSmiGcILlpi4QRqa1wvhT60phTKPrujBMZk9hv2kbewyEKlwWNZxpBEmKG8ULymuRKpOxjBoTwWxUXVkNhOZursZV6QObRJaodjdmsyiD2iN4s3vhR-DymBY9dAq7FQu6iuBktI1y8PVtKV37McWdLIJXu1_RSV3mRTW27bclZZy6jLhIIzidkEm5xN03T6YlmER4zzKUIBMSwqFxRIQigqNgubcrGAz-2b9Xdgr3F-vleXn-efX1BB4EglpXtPMc9rufvX2B0KvTL73H_QYShCkt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+numerical+study+on+the+induced+heating+effects+of+embedded+micro%2Fnanoparticles+on+human+body+subject+to+external+medical+electromagnetic+field&rft.jtitle=IEEE+transactions+on+nanobioscience&rft.au=Lv%2C+Yong-Gang&rft.au=Deng%2C+Zhong-Shan&rft.au=Liu%2C+Jing&rft.date=2005-12-01&rft.issn=1536-1241&rft.volume=4&rft.issue=4&rft.spage=284&rft_id=info:doi/10.1109%2Ftnb.2005.859549&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1241&client=summon |