3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field

Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanobioscience Vol. 4; no. 4; pp. 284 - 294
Main Authors Lu, Y.-G., Deng, Z.-S., Liu, J.
Format Magazine Article
LanguageEnglish
Published United States IEEE 01.12.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1241
1558-2639
DOI10.1109/TNB.2005.859549

Cover

Loading…
Abstract Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures.
AbstractList Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures.
Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures.Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor hyperthermia. However, there is a strong lack of quantitative understanding of the temperature profiles thus induced by the applied external electromagnetic (EM) field, which may impede the successful operation of this therapy. In the current study, the three-dimensional quasi-steady-state EM field and transient tissue temperature behavior induced by two planar electrodes were numerically investigated. Detailed computations indicated that nanoparticles exhibit an extraordinary highly focused heating on target tumor tissue, which is much stronger than that in the surrounding areas. This heating effect depends heavily on the properties of the magnetic nanoparticles, which may vary appreciably for different samples depending on their particle sizes and microstructures. The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. Moreover, a criterion to determine the appropriate particle concentration thermally important for medical treatment was established. Given accurate thermal and EM parameters for cancerous tissue embedded with nanoparticles, the current model could possibly be applied in the hyperthermia treatment planning and help optimize the surgical procedures.
The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. [...] a criterion to determine the appropriate particle concentration thermally important for medical treatment was established.
Author Jing Liu
Zhong-Shan Deng
Yong-Gang Lv
Author_xml – sequence: 1
  givenname: Y.-G.
  surname: Lu
  fullname: Lu, Y.-G.
– sequence: 2
  givenname: Z.-S.
  surname: Deng
  fullname: Deng, Z.-S.
– sequence: 3
  givenname: J.
  surname: Liu
  fullname: Liu, J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16433294$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhhtZcT_07EGQ4EG9zEy-Oznq-gmLXtZzk04qOxm6k7GTBvdv-ItNOysLexhPCdTzVEHVe96cxBShaZ4TvCYE6831t_drirFYK6EF14-aMyKEWlHJ9MnyZ3JFKCenzXnOO4xJK4V-0pwSyRmjmp81v9nqA4rzCFOwZkC5zO4WpYjKFlCIbrbg0BZMCfEGgfdgS0bJIxh7cK7WxmCntIkmpr2ZSrAD5EXfzqOJqE-1WZ77XdVQSQh-FZhiHTOC-zsOhlqZ0mhuIlQZ-QCDe9o89mbI8OzuvWh-fPp4fflldfX989fLd1cry5kqK2O40oo6K2XfgtLEUd9Kiy12XhnVS8q55M4LISX1pqWk761pedt7L5zU7KJ5c-i7n9LPGXLpxpAtDIOJkObcKc3qHkmrKvn6KCk1Vlgy_F-QtrrFjC_g26MgkS3hlFFFK_rqAbpL87LF3GlCsSZEywq9vIPmvi63209hNNNt9-_QFdgcgHqunCfw9wjulih1NUrdEqXuEKVqiAeGDaUGIcUymTAc8V4cvAAA91MEF4oK9gf2_9Xr
CODEN ITMCEL
CitedBy_id crossref_primary_10_1016_j_jtherbio_2013_03_007
crossref_primary_10_1007_s00231_011_0907_4
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_123
crossref_primary_10_1016_j_jphotobiol_2019_111599
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_005
crossref_primary_10_2147_NSA_S260374
crossref_primary_10_3109_02656736_2013_836757
crossref_primary_10_1115_1_4030213
crossref_primary_10_1115_1_4002225
crossref_primary_10_1007_s11517_016_1589_3
crossref_primary_10_1063_1_3680541
crossref_primary_10_1016_j_ijthermalsci_2014_01_024
crossref_primary_10_1016_j_jmmm_2010_05_028
crossref_primary_10_1109_TMAG_2009_2019128
crossref_primary_10_1016_j_ijthermalsci_2018_05_015
crossref_primary_10_1109_TNANO_2021_3137046
crossref_primary_10_1080_10407782_2016_1193342
crossref_primary_10_1371_journal_pone_0081227
crossref_primary_10_1002_wnan_61
crossref_primary_10_1080_00401706_2017_1345702
crossref_primary_10_1109_TBME_2017_2666738
crossref_primary_10_1109_TMAG_2006_888737
crossref_primary_10_3390_ma13010136
crossref_primary_10_1016_j_jtherbio_2017_04_005
crossref_primary_10_1063_1_3525089
crossref_primary_10_1016_j_ijthermalsci_2012_07_002
crossref_primary_10_1080_10407782_2020_1720409
crossref_primary_10_3109_02656730903514685
crossref_primary_10_12693_APhysPolA_115_413
crossref_primary_10_1016_j_ces_2011_05_031
crossref_primary_10_1080_13645700701803826
crossref_primary_10_1080_17415977_2010_531473
crossref_primary_10_1118_1_3693048
crossref_primary_10_1080_02656730801907937
crossref_primary_10_1615_AnnualRevHeatTransfer_2024055368
crossref_primary_10_1016_j_applthermaleng_2018_05_015
crossref_primary_10_1109_TPS_2018_2875342
crossref_primary_10_1016_j_nano_2017_11_018
crossref_primary_10_1016_j_ijthermalsci_2013_01_007
crossref_primary_10_1016_j_ijthermalsci_2015_06_022
crossref_primary_10_1016_j_enganabound_2017_07_008
crossref_primary_10_1016_j_jmmm_2019_166143
crossref_primary_10_1080_02656730802203377
crossref_primary_10_1108_COMPEL_05_2016_0212
crossref_primary_10_1016_j_applthermaleng_2015_06_062
crossref_primary_10_1016_j_compbiomed_2016_06_002
crossref_primary_10_1016_j_aej_2022_08_032
crossref_primary_10_1016_j_nano_2007_11_002
crossref_primary_10_1016_j_ijthermalsci_2013_03_014
crossref_primary_10_1115_1_4032053
crossref_primary_10_1007_s00339_019_3170_z
crossref_primary_10_1016_j_cap_2019_06_003
crossref_primary_10_1007_s40997_019_00314_y
crossref_primary_10_1109_TAP_2014_2360213
crossref_primary_10_15446_ing_investig_92288
crossref_primary_10_1109_TMAG_2015_2489639
crossref_primary_10_1016_j_applthermaleng_2014_04_035
crossref_primary_10_1080_13645700701709494
crossref_primary_10_1108_HFF_03_2016_0114
crossref_primary_10_1115_1_4003563
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_024
crossref_primary_10_2528_PIERC18092504
crossref_primary_10_1016_j_cryobiol_2014_02_002
crossref_primary_10_1016_j_mechrescom_2011_05_012
crossref_primary_10_1108_HFF_03_2016_0118
crossref_primary_10_1109_TNB_2008_2011857
crossref_primary_10_1016_j_finel_2017_07_001
crossref_primary_10_1118_1_4860661
Cites_doi 10.1080/10407790260444813
10.1115/1.2894097
10.1088/0022-3727/36/13/201
10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
10.3109/02656739409009351
10.1097/00000658-195710000-00007
10.1111/j.1349-7006.1998.tb03283.x
10.1016/0304-8853(93)91113-L
10.1016/S0304-8853(02)00706-0
10.1109/TBME.1984.325334
10.3109/02656738809029305
10.3109/02656739709023559
10.4028/www.scientific.net/MSF.293.65
10.1007/BF00122273
10.1109/22.58652
10.1109/20.281165
10.1109/TBME.1984.325364
10.3109/02656739609027678
10.1109/TMTT.1977.1129205
10.1152/jappl.1948.1.2.93
10.1001/jama.1976.03260460018014
10.1109/20.718537
10.1007/978-3-642-82955-0_5
10.1118/1.594911
10.1016/S0304-8853(98)00552-6
10.1016/0306-9877(79)90063-X
10.2307/3575874
10.1016/S1076-6332(03)80171-X
10.1007/BF02798277
10.1118/1.594930
10.1016/S0304-8853(00)01235-X
10.1111/j.1349-7006.1997.tb00429.x
10.1016/S0142-9612(97)00067-7
10.1109/TBME.1976.324588
10.1016/0360-3016(89)90470-7
10.1038/251521a0
10.1080/16070658.1979.11689169
10.1016/S0010-4825(03)00086-6
10.1111/j.1349-7006.1998.tb00586.x
10.1016/0921-5093(94)90865-6
10.1002/1097-0142(197901)43:1<188::aid-cncr2820430128>3.0.co;2-7
10.1109/TBME.1984.325372
10.1054/mehy.2000.1089
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNB.2005.859549
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Solid State and Superconductivity Abstracts
Technology Research Database

MEDLINE - Academic
Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1558-2639
EndPage 294
ExternalDocumentID 2543693911
16433294
10_1109_TNB_2005_859549
1545825
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c438t-aa48982dc66b7e891d2f76c0c0df8a8b624464df55662fa721bbca747bff5d693
IEDL.DBID RIE
ISSN 1536-1241
IngestDate Thu Jul 10 19:24:08 EDT 2025
Fri Jul 11 09:07:46 EDT 2025
Fri Jul 11 05:15:29 EDT 2025
Fri Jul 11 10:02:27 EDT 2025
Mon Jun 30 08:18:38 EDT 2025
Wed Feb 19 01:43:16 EST 2025
Thu Apr 24 23:12:00 EDT 2025
Sun Jul 06 05:01:56 EDT 2025
Tue Aug 26 16:40:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-aa48982dc66b7e891d2f76c0c0df8a8b624464df55662fa721bbca747bff5d693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 16433294
PQID 912091196
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_893263178
proquest_miscellaneous_69080630
proquest_journals_912091196
pubmed_primary_16433294
proquest_miscellaneous_27970340
proquest_miscellaneous_1671423282
ieee_primary_1545825
crossref_primary_10_1109_TNB_2005_859549
crossref_citationtrail_10_1109_TNB_2005_859549
PublicationCentury 2000
PublicationDate 2005-12-01
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on nanobioscience
PublicationTitleAbbrev TNB
PublicationTitleAlternate IEEE Trans Nanobioscience
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref52
ref11
Liu (ref49) 1997
ref17
ref16
ref19
ref18
d’Ambly (ref44) 1999; 194
Haji-Sheikh (ref47) 1988
Wan (ref55) 1997
ref51
ref50
ref46
ref45
ref48
Steeves (ref3) 1992; 68
ref8
ref7
ref4
Von Aulock (ref54) 1965
ref6
Smit (ref53) 1959
ref5
Neel (ref41) 1949; 228
ref40
Strohbehn (ref14) 1979; 14
ref35
ref34
ref37
ref36
Lin (ref42) 1997
ref31
ref30
ref33
ref32
ref2
ref1
Doss (ref9)
ref39
ref38
Lehamn (ref10) 1970; 51
ref24
ref23
ref26
Tang (ref43) 2002; 42
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Doss (ref12) 1970; 10
References_xml – volume-title: Molecular Theory and Property of Fluid
  year: 1997
  ident: ref55
– ident: ref48
  doi: 10.1080/10407790260444813
– ident: ref56
  doi: 10.1115/1.2894097
– volume-title: Modern Hyperthermic Oncology (Principles, Methods and Clinics)
  year: 1997
  ident: ref42
– ident: ref39
  doi: 10.1088/0022-3727/36/13/201
– ident: ref1
  doi: 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
– ident: ref4
  doi: 10.3109/02656739409009351
– ident: ref20
  doi: 10.1097/00000658-195710000-00007
– ident: ref38
  doi: 10.1111/j.1349-7006.1998.tb03283.x
– volume-title: Bioheat Transfer
  year: 1997
  ident: ref49
– ident: ref23
  doi: 10.1016/0304-8853(93)91113-L
– ident: ref45
  doi: 10.1016/S0304-8853(02)00706-0
– ident: ref18
  doi: 10.1109/TBME.1984.325334
– volume: 68
  start-page: 342
  year: 1992
  ident: ref3
  article-title: Hyperthermia in cancer therapy: Where are we today and where are we going?
  publication-title: Bull. NY Acad. Med.
– ident: ref7
  doi: 10.3109/02656738809029305
– ident: ref25
  doi: 10.3109/02656739709023559
– ident: ref30
  doi: 10.4028/www.scientific.net/MSF.293.65
– ident: ref28
  doi: 10.1007/BF00122273
– ident: ref19
  doi: 10.1109/22.58652
– ident: ref31
  doi: 10.1109/20.281165
– ident: ref52
  doi: 10.1109/TBME.1984.325364
– ident: ref32
  doi: 10.3109/02656739609027678
– ident: ref33
  doi: 10.3109/02656739709023559
– ident: ref50
  doi: 10.1109/TMTT.1977.1129205
– volume: 228
  start-page: 664
  year: 1949
  ident: ref41
  article-title: Influence of thermal fluctuations on the magnetization of ferromagnetic small particles
  publication-title: Comptes Rendus de l’Academie des Sciences
– ident: ref46
  doi: 10.1152/jappl.1948.1.2.93
– ident: ref8
  doi: 10.1001/jama.1976.03260460018014
– ident: ref40
  doi: 10.1109/20.718537
– ident: ref6
  doi: 10.1007/978-3-642-82955-0_5
– ident: ref13
  doi: 10.1118/1.594911
– volume: 194
  start-page: 197
  year: 1999
  ident: ref44
  article-title: Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00552-6
– ident: ref21
  doi: 10.1016/0306-9877(79)90063-X
– ident: ref27
  doi: 10.2307/3575874
– ident: ref26
  doi: 10.1016/S1076-6332(03)80171-X
– ident: ref22
  doi: 10.1007/BF02798277
– start-page: 226
  volume-title: Proc. Int. Symp. Cancer Therapy by Hyperthermia and Radiation
  ident: ref9
  article-title: Use of RF fields produce hyperthermia in animal tumors
– volume: 51
  start-page: 143
  year: 1970
  ident: ref10
  article-title: Evaluation of a microwave contact applicatior
  publication-title: Arch. Phys. Med.
– volume-title: Handbook of Microwave Ferrite Materials
  year: 1965
  ident: ref54
– volume: 10
  start-page: 16
  year: 1970
  ident: ref12
  article-title: A technique for localized heating in tissue: an adjunct to tumor therapy
  publication-title: Med. Instrum.
– ident: ref15
  doi: 10.1118/1.594930
– ident: ref35
  doi: 10.1016/S0304-8853(00)01235-X
– ident: ref36
  doi: 10.1111/j.1349-7006.1997.tb00429.x
– ident: ref29
  doi: 10.1016/S0142-9612(97)00067-7
– ident: ref17
  doi: 10.1109/TBME.1976.324588
– ident: ref5
  doi: 10.1016/0360-3016(89)90470-7
– ident: ref2
  doi: 10.1038/251521a0
– volume-title: Ferrites
  year: 1959
  ident: ref53
– volume: 14
  start-page: 339
  year: 1979
  ident: ref14
  article-title: An invasive microwave system for locally-induced hyperthermia for cancer therapy
  publication-title: J. Microw. Power
  doi: 10.1080/16070658.1979.11689169
– volume: 42
  start-page: 676
  year: 2002
  ident: ref43
  article-title: Numerical simulation of tissue-equivalent material experiments for radio frequency hyperthermia of tumors
  publication-title: J. Tsinghua Univ. (Sci. Technol.)
– ident: ref51
  doi: 10.1016/S0010-4825(03)00086-6
– ident: ref37
  doi: 10.1111/j.1349-7006.1998.tb00586.x
– ident: ref24
  doi: 10.1016/0921-5093(94)90865-6
– ident: ref11
  doi: 10.1002/1097-0142(197901)43:1<188::aid-cncr2820430128>3.0.co;2-7
– ident: ref16
  doi: 10.1109/TBME.1984.325372
– start-page: 673
  volume-title: Handbook of Numerical Heat Transfer
  year: 1988
  ident: ref47
  article-title: Monte Carlo methods
– ident: ref34
  doi: 10.1054/mehy.2000.1089
SSID ssj0017659
Score 1.1914574
Snippet Advancement of the recent micro/nanotechnology stimulates the renaissance of using magnetic micro/nanoparticles embedded in tissues for the target tumor...
The effect of micro/nanoparticle concentration, heating area, and the frequency and strength of the external alternating EM field were also tested. [...] a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 284
SubjectTerms Bioheat transfer
Computer Simulation
Electrodes
electromagnetic field
Electromagnetic Fields
Electromagnetic heating
Heating
Hot Temperature
Humans
Hyperthermia
Hyperthermia, Induced - methods
mathematical modeling
Mathematical models
Medical
Medical treatment
micro/nano magnetic particle
Micromagnetics
Microspheres
minimally invasive therapy
Models, Biological
Monte Carlo method
Nanoparticles
Nanostructure
Nanostructures - radiation effects
Nanotechnology
Neoplasms
parameter optimization
targeted tumor killing
Temperature
Therapy, Computer-Assisted - methods
Tumors
Title 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field
URI https://ieeexplore.ieee.org/document/1545825
https://www.ncbi.nlm.nih.gov/pubmed/16433294
https://www.proquest.com/docview/912091196
https://www.proquest.com/docview/1671423282
https://www.proquest.com/docview/27970340
https://www.proquest.com/docview/69080630
https://www.proquest.com/docview/893263178
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB61lZA4FShLKMsgceBA3ouzeDmyVRVSe2ql3iI7djjQlyBecmh_Br-YsZ28CkQkbpEyjmLNjP2NZ_wNwFtBKMBwS7FJI21KnihSU1iZcgLHrigUb0OgeHbOTy_Lr1fV1R68392Fcc6F4jO38o8hl2_7ZvRHZeuY5an2YZ8Ct3hXa5cxEDw0RiMH9n1lSjbR-LBMrS_OP8bDE8_lVQaeUO5pu1T5x2YUuqssA82w4Zwcwtn8q7HO5PtqHMyquf2LxfF_5_IADmcmafwQbeUh7LnuEdyLzShvjuBXkX7GbowZnGsMvLPYd0gIESlwJxOw6Fdu2utwqgLBvkW3MY4WL4sbX9q37nRHYfhUbeeHhyaAaHr62HY0_tQHhx5n8mncxEQRTu14Nvpb569VYqisewyXJ18uPp2mU8eGtCkLOaRal1LJ3DacG-GkYjZvBW-yJrOt1NJwAhO8tG1FIDJvNUWfxjSaIhrTtpXlqngCB13fuWeATNO0mBXcEETSwmpRMdHKXNuCF8zaBFaz6upmojP3XTWu6xDWZKomtfsmm1Ud1Z7Au92AH5HJY1n0yCvsTizqKoHj2TbqydO3tfKXjxmtYwm82b0lF_V5F925ftzWjAvm8-EyT-D1gkwuFK29ZbYswRWBe16QBC5ISI_FCQ_KBJ5Gy72bwWTwz_89s2O4HylpfZnOCzgYfo7uJYGtwbwKXvYbrAcl5Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgSnAoU2FKiROHAgu3Eefhx5VQt097SVeovs2OFAN0FscqA_o7-YsZ1sBSISt0g7WcWaGfsbz8w3AK85ogDNDMYmlTAxeiKPdWZEzBAc2yyTrPaB4nLFFhf5l8vicg_e7nphrLW--MzO3KPP5Zu26t1V2TxkeYo7cLdwzbihW2uXM-DMj0ZDF3aTZXI6EPnQRM7Xq_fh-sSxeeWeKZQ54i6Z_3Ec-fkq01DTHzlnB7AcPzZUmnyf9Z2eVdd_8Tj-72oewsHIJU3eBWt5BHu2eQz3wjjKX4dwk8UfSdOHHM4V8cyzpG0IYkSCoTsagSFu78bTjgx1IKStid1oi9uXIRtX3DdvVIOB-FBv5173YwCJbvHPtr129z6ka8lIP002IVVEhoE8G_WtcY2VxNfWPYGLs0_rD4t4mNkQV3kmulipXEiRmooxza2Q1KQ1Z1VSJaYWSmiGcILlpi4QRqa1wvhT60phTKPrujBMZk9hv2kbewyEKlwWNZxpBEmKG8ULymuRKpOxjBoTwWxUXVkNhOZursZV6QObRJaodjdmsyiD2iN4s3vhR-DymBY9dAq7FQu6iuBktI1y8PVtKV37McWdLIJXu1_RSV3mRTW27bclZZy6jLhIIzidkEm5xN03T6YlmER4zzKUIBMSwqFxRIQigqNgubcrGAz-2b9Xdgr3F-vleXn-efX1BB4EglpXtPMc9rufvX2B0KvTL73H_QYShCkt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+numerical+study+on+the+induced+heating+effects+of+embedded+micro%2Fnanoparticles+on+human+body+subject+to+external+medical+electromagnetic+field&rft.jtitle=IEEE+transactions+on+nanobioscience&rft.au=Lv%2C+Yong-Gang&rft.au=Deng%2C+Zhong-Shan&rft.au=Liu%2C+Jing&rft.date=2005-12-01&rft.issn=1536-1241&rft.volume=4&rft.issue=4&rft.spage=284&rft_id=info:doi/10.1109%2Ftnb.2005.859549&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1241&client=summon