Sarsasapogenin alleviates diabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: In vivo and in vitro study

Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known. This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 infla...

Full description

Saved in:
Bibliographic Details
Published inPhytomedicine (Stuttgart) Vol. 78; p. 153314
Main Authors Tang, Zhuang-Zhuang, Zhang, Yu-Meng, Zheng, Ting, Huang, Ting-Ting, Ma, Teng-Fei, Liu, Yao-Wu
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known. This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN. Streptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar. Sar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs. Sar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney. [Display omitted]
AbstractList Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known.BACKGROUNDSarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known.This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN.PURPOSEThis study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN.Streptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar.METHODSStreptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar.Sar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs.RESULTSSar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs.Sar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.CONCLUSIONSar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.
Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known.This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN.Streptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar.Sar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs.Sar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.
Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known. This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN. Streptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar. Sar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs. Sar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney. [Display omitted]
ArticleNumber 153314
Author Huang, Ting-Ting
Tang, Zhuang-Zhuang
Zheng, Ting
Ma, Teng-Fei
Zhang, Yu-Meng
Liu, Yao-Wu
Author_xml – sequence: 1
  givenname: Zhuang-Zhuang
  surname: Tang
  fullname: Tang, Zhuang-Zhuang
  organization: Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
– sequence: 2
  givenname: Yu-Meng
  surname: Zhang
  fullname: Zhang, Yu-Meng
  organization: Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
– sequence: 3
  givenname: Ting
  surname: Zheng
  fullname: Zheng, Ting
  organization: Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
– sequence: 4
  givenname: Ting-Ting
  surname: Huang
  fullname: Huang, Ting-Ting
  organization: Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
– sequence: 5
  givenname: Teng-Fei
  orcidid: 0000-0002-8916-7370
  surname: Ma
  fullname: Ma, Teng-Fei
  organization: Institute for Stem Cell and Neural Regeneration; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
– sequence: 6
  givenname: Yao-Wu
  orcidid: 0000-0002-4203-1943
  surname: Liu
  fullname: Liu, Yao-Wu
  email: ywliu@xzhmu.edu.cn
  organization: Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
BookMark eNqFkctu1DAUhi1UJKYDb8DCSzYZfMutC6SqorRSJRAXiZ3l2CczHiV2sJ2p8hS8Mp6GFQu6Oke_vu8szn-JLpx3gNBbSnaU0Or9cTcdlhHMjhGWo5JzKl6gDa1oU5C2_HmBNqQVoqgp5a_QZYxHQqhoa7JBv7-pEFVUk9-Dsw6rYYCTVQkiNlZ1kKzGDqZD8JNKhwWnvM37A47zNAWI0XqHfY91jl1GresHNY4qnfNuwcY_uiLAfh5y5Pb4y_XXgl7he4dP9uSxciYreU_B45hms7xGL3s1RHjzd27Rj9uP32_uiofPn-5vrh8KLXiTCtWqXjSiq_oeqpZxXnWMqa5nWvOyAlZWqmZGAWtqpstOUC3AdE1dmU4LIYBv0bv17hT8rxlikqONGoZBOfBzlKwURDSs5uR5VGS0Fi0vMypWVAcfY4BeTsGOKiySEnmuSh7lWpU8VyXXqrJ29Y-mbXr6YQrKDs_JH1YZ8rtOFoKM2oLTYGwAnaTx9v8H_gBDQ7d4
CitedBy_id crossref_primary_10_1016_j_phymed_2021_153871
crossref_primary_10_3389_fimmu_2023_1196016
crossref_primary_10_1155_2022_2193768
crossref_primary_10_1016_j_lfs_2023_121991
crossref_primary_10_1016_j_cca_2022_04_011
crossref_primary_10_1016_j_phymed_2021_153777
crossref_primary_10_3390_antiox12030574
crossref_primary_10_3390_molecules27062032
crossref_primary_10_1007_s13258_023_01417_2
crossref_primary_10_1002_jcp_30807
crossref_primary_10_1007_s12185_021_03158_y
crossref_primary_10_1007_s10787_024_01562_4
crossref_primary_10_1039_D0FO01954B
crossref_primary_10_1016_j_cbi_2025_111418
crossref_primary_10_46235_1028_7221_10759_IOP
crossref_primary_10_1093_function_zqae030
crossref_primary_10_1016_j_bcp_2023_115915
crossref_primary_10_1016_j_intimp_2024_112774
crossref_primary_10_1016_j_phymed_2021_153686
crossref_primary_10_33084_jmd_v1i2_2904
crossref_primary_10_1007_s00011_021_01532_4
crossref_primary_10_1007_s00210_021_02184_1
crossref_primary_10_1007_s10565_022_09711_7
crossref_primary_10_1016_j_bcp_2021_114675
crossref_primary_10_3389_fgene_2022_991936
crossref_primary_10_1007_s10565_023_09802_z
Cites_doi 10.1038/srep33030
10.2147/DMSO.S199802
10.18632/oncotarget.20418
10.1016/j.phymed.2018.12.021
10.1055/s-0031-1298223
10.1016/j.intimp.2015.02.016
10.1111/aji.12517
10.1016/j.intimp.2018.07.027
10.1038/cddis.2017.292
10.1038/s41401-019-0297-6
10.1016/j.bbrc.2009.04.105
10.1309/LMF8R2KSTOW3FLKD
10.1371/journal.pone.0043950
10.1186/s12974-019-1657-3
10.1111/j.1440-1681.2011.05530.x
10.1016/j.jpba.2018.12.017
10.1111/febs.13699
10.1016/j.jchromb.2015.06.015
10.1371/journal.pone.0021484
10.1074/jbc.M110.158949
10.1007/s12272-009-1916-4
10.1007/s00210-017-1445-5
10.1371/journal.pone.0007283
10.18632/oncotarget.25069
10.1002/jcb.20533
10.1016/j.brainres.2005.08.019
10.1016/j.phrs.2016.11.004
10.1161/01.RES.0000033520.95242.A2
10.1007/s12031-013-0072-y
10.1016/j.bcp.2020.113849
10.1002/ptr.6088
10.1159/000452269
10.1186/s12974-017-0901-y
10.1016/j.fct.2009.04.009
ContentType Journal Article
Copyright 2020 Elsevier GmbH
Copyright © 2020 Elsevier GmbH. All rights reserved.
Copyright_xml – notice: 2020 Elsevier GmbH
– notice: Copyright © 2020 Elsevier GmbH. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.phymed.2020.153314
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1618-095X
ExternalDocumentID 10_1016_j_phymed_2020_153314
S094471132030146X
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
3V.
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X2
7X7
88E
88I
8AF
8FE
8FH
8FI
8FJ
8P~
8R4
8R5
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAKPP
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAWTL
AAXUO
AAYOK
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABUWG
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACGOD
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKRA
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AIXEN
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
ATCPS
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BES
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DOVZS
DU5
DWQXO
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
HCIFZ
HMCUK
HVGLF
HX~
HZ~
IAG
IAO
IEA
IHA
IHE
IHR
INH
INR
IOF
ISR
J1W
KOM
LCYCR
M0K
M1P
M2P
M2Q
M41
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
PCD
PQQKQ
PROAC
PSQYO
PV9
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
RXW
RZL
S0X
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSP
SSU
SSZ
T5I
T5K
TAE
UKHRP
UNMZH
WOW
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ALIPV
ANKPU
APXCP
CITATION
ITC
PHGZM
PHGZT
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c438t-a9af484b6ffe692336b22abf2cc356e256a72dae2872c5b41c4edb876dbc444e3
IEDL.DBID .~1
ISSN 0944-7113
1618-095X
IngestDate Tue Aug 05 11:22:35 EDT 2025
Thu Jul 10 22:29:13 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Jul 01 03:32:49 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cell proliferation
PAR-1
IL
Sar
DM
AGEs
DN
siRNA
RAGE
NF-κB
HMCs
PMSF
FBS
Arg
CMC-Na
The NLRP3 inflammasome
Vor
Diabetic nephropathy
NLRP3
UACR
Sarsasapogenin
HG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-a9af484b6ffe692336b22abf2cc356e256a72dae2872c5b41c4edb876dbc444e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8916-7370
0000-0002-4203-1943
PQID 2440474935
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2540482730
proquest_miscellaneous_2440474935
crossref_primary_10_1016_j_phymed_2020_153314
crossref_citationtrail_10_1016_j_phymed_2020_153314
elsevier_sciencedirect_doi_10_1016_j_phymed_2020_153314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Phytomedicine (Stuttgart)
PublicationYear 2020
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Sharma, Merkulova, Raithatha, Parkinson, Shen, Cooper, Granville (bib0023) 2016; 283
Delekta, Apel, Gu, Siu, Hattori, McAllister-Lucas, Lucas (bib0004) 2010; 285
Lee, Johnson, Gnanapavan, Giovannoni, Wang, Steiner, Medynets, Vaal, Gartner, Nath (bib0012) 2017; 14
Pontecorvi, Banki, Zampieri, Zalfa, Azmoon, Kounnas, Marchese, Gonias, Mantuano (bib0019) 2019; 16
Song, Wei, Du, Wang, Jiang (bib0025) 2018; 63
Waasdorp, Duitman, Florquin, Spek (bib0029) 2018; 9
Zhang, Zhu, Li, Ma, Shi, Yang, Fan (bib0034) 2019; 12
Du, Xu, Deng, Wu, Li, Wang, Wang, Ji, Guo, Yang, Tang (bib0006) 2019; 166
Hu, Xia, Sun, Orsi, Rees (bib0008) 2005; 1060
Liu, Tang, Zhang, Kong, Xiao, Ma, Liu (bib0014) 2020; 175
Rahman, True, Anwar, Ye, Voyno-Yasenetskaya, Malik (bib0021) 2002; 91
Wang, Li, Fan, Zhang, Luan, Bian, Ding, Wang, Wang, Song, Cui, Mei, Ju (bib0031) 2017; 8
Han, Ma, Liu, Wu, Tu, Huang, Long, Wang, Yee, Wan, Tang, Tang, Wan (bib0007) 2019; 57
Qiu, Tang (bib0020) 2016; 114
Zhong, Chen, Qin, Zhang, Wang, Meng, Huai, Zhang, Yin, Lei, Han, He, Sun, Liu, Liu, Zhou, Sun, Yang (bib0037) 2017; 8
Bushi, Chapman, Katzav, Shavit-Stein, Molshatzki, Maggio, Tanne (bib0002) 2013; 51
Lim, Jeong, Kang, Kim, Choi, Kim (bib0013) 2015; 25
Waasdorp, Duitman, Spek (bib0030) 2017; 10
Zheng, Shi, Chen, Lv (bib0036) 2015; 46
Mhatre, Potter, Lockwood, Krikun, Abrahams (bib0018) 2016; 76
Liu, Hao, Chen, Yin, Zhang, Kong, Wang (bib0015) 2018; 32
Tantivejkul, Loberg, Mawocha, Day, John, Pienta, Rubin, Pienta (bib0027) 2005; 96
Waasdorp, Duitman, Florquin, Spek (bib0028) 2016; 6
Shlipak (bib0024) 2010
Cooper, Pechkovsky, Hackett, Knight, Granville (bib0003) 2011; 6
Wang, Lee, Choi, Pardo-Villamizar, Lee, Yang, Calabresi, Nath (bib0032) 2012; 7
Zhang, Li, Yin, Kong, Liu, Yin, Liu (bib0035) 2018; 391
Sun, Liu, Peng, Liu, Lin, Li, Song (bib0026) 2015; 997
Du, Wang, Wang, Wang, Hao, Chen, Li, Li, Jiang, Li, Yang, Gu, Yin, Lu (bib0005) 2020; 41
Kim, Shin, Ryu, Kim, Cho, Choi, Lee (bib0010) 2009; 47
Lu, Qiu, Li, Tao, Sun, Chen (bib0017) 2011; 38
Wang, Cai, Fu, Cheng, Wu, Zhang, Zhang, Jin, Zhang (bib0033) 2018; 23
Antoniak, Cardenas, Buczek, Church, Mackman, Pawlinski (bib0001) 2017; 136
King, Fong, Griffin, Shoemaker, Staub, Zhang, Cohen, Shtivelman (bib0011) 2009; 4
Lu, Qiu, Li, Tao, Sun, Chen (bib0016) 2009; 32
Sakai, Nambu, Katoh, Uehara, Fukuroda, Nishikibe (bib0022) 2009; 384
Kang, Zhang, Cong, Li, Xiong, Zhao, Tan, Yu, Yu, Cong, Liu, Ma (bib0009) 2012; 78
Cooper (10.1016/j.phymed.2020.153314_bib0003) 2011; 6
Kim (10.1016/j.phymed.2020.153314_bib0010) 2009; 47
Waasdorp (10.1016/j.phymed.2020.153314_bib0028) 2016; 6
Lee (10.1016/j.phymed.2020.153314_bib0012) 2017; 14
Sun (10.1016/j.phymed.2020.153314_bib0026) 2015; 997
Waasdorp (10.1016/j.phymed.2020.153314_bib0030) 2017; 10
Liu (10.1016/j.phymed.2020.153314_bib0014) 2020; 175
Lim (10.1016/j.phymed.2020.153314_bib0013) 2015; 25
Hu (10.1016/j.phymed.2020.153314_bib0008) 2005; 1060
Lu (10.1016/j.phymed.2020.153314_bib0017) 2011; 38
Zheng (10.1016/j.phymed.2020.153314_bib0036) 2015; 46
Delekta (10.1016/j.phymed.2020.153314_bib0004) 2010; 285
Waasdorp (10.1016/j.phymed.2020.153314_bib0029) 2018; 9
Du (10.1016/j.phymed.2020.153314_bib0005) 2020; 41
Mhatre (10.1016/j.phymed.2020.153314_bib0018) 2016; 76
Lu (10.1016/j.phymed.2020.153314_bib0016) 2009; 32
Wang (10.1016/j.phymed.2020.153314_bib0031) 2017; 8
Bushi (10.1016/j.phymed.2020.153314_bib0002) 2013; 51
Han (10.1016/j.phymed.2020.153314_bib0007) 2019; 57
Kang (10.1016/j.phymed.2020.153314_bib0009) 2012; 78
Du (10.1016/j.phymed.2020.153314_bib0006) 2019; 166
Zhong (10.1016/j.phymed.2020.153314_bib0037) 2017; 8
Song (10.1016/j.phymed.2020.153314_bib0025) 2018; 63
Wang (10.1016/j.phymed.2020.153314_bib0032) 2012; 7
Liu (10.1016/j.phymed.2020.153314_bib0015) 2018; 32
Sharma (10.1016/j.phymed.2020.153314_bib0023) 2016; 283
King (10.1016/j.phymed.2020.153314_bib0011) 2009; 4
Shlipak (10.1016/j.phymed.2020.153314_bib0024) 2010
Rahman (10.1016/j.phymed.2020.153314_bib0021) 2002; 91
Antoniak (10.1016/j.phymed.2020.153314_bib0001) 2017; 136
Zhang (10.1016/j.phymed.2020.153314_bib0034) 2019; 12
Pontecorvi (10.1016/j.phymed.2020.153314_bib0019) 2019; 16
Tantivejkul (10.1016/j.phymed.2020.153314_bib0027) 2005; 96
Wang (10.1016/j.phymed.2020.153314_bib0033) 2018; 23
Qiu (10.1016/j.phymed.2020.153314_bib0020) 2016; 114
Sakai (10.1016/j.phymed.2020.153314_bib0022) 2009; 384
Zhang (10.1016/j.phymed.2020.153314_bib0035) 2018; 391
References_xml – volume: 166
  start-page: 30
  year: 2019
  end-page: 39
  ident: bib0006
  article-title: Predictive metabolic signatures for the occurrence and development of diabetic nephropathy and the intervention of Ginkgo biloba leaves extract based on gas or liquid chromatography with mass spectrometry
  publication-title: J. Pharm. Biomed. Anal.
– volume: 7
  start-page: e43950
  year: 2012
  ident: bib0032
  article-title: Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel
  publication-title: PLoS One
– volume: 41
  start-page: 358
  year: 2020
  end-page: 372
  ident: bib0005
  article-title: A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling
  publication-title: Acta Pharmacol. Sin.
– volume: 391
  start-page: 159
  year: 2018
  end-page: 168
  ident: bib0035
  article-title: Sarsasapogenin suppresses Abeta overproduction induced by high glucose in HT-22 cells
  publication-title: Naunyn. Schmiedebergs. Arch. Pharmacol.
– volume: 285
  start-page: 41432
  year: 2010
  end-page: 41442
  ident: bib0004
  article-title: Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3.Bcl10.MALT1 signalosome
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 1610
  year: 2009
  end-page: 1617
  ident: bib0010
  article-title: Anti-inflammatory effect of anemarsaponin B isolated from the rhizomes of
  publication-title: Food Chem. Toxicol.
– volume: 91
  start-page: 398
  year: 2002
  end-page: 405
  ident: bib0021
  article-title: Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells
  publication-title: Circ. Res.
– volume: 78
  start-page: 611
  year: 2012
  end-page: 616
  ident: bib0009
  article-title: Steroidal glycosides from the rhizomes of
  publication-title: Planta. Med.
– volume: 38
  start-page: 430
  year: 2011
  end-page: 434
  ident: bib0017
  article-title: Antiplatelet and antithrombotic activities of timosaponin B-II, an extract of Anemarrhena asphodeloides
  publication-title: Clin. Exp. Pharmacol. Physiol.
– volume: 76
  start-page: 29
  year: 2016
  end-page: 37
  ident: bib0018
  article-title: Thrombin augments LPS-induced human endometrial endothelial cell inflammation via PAR1 activation
  publication-title: Am. J. Reprod. Immunol.
– volume: 997
  start-page: 236
  year: 2015
  end-page: 243
  ident: bib0026
  article-title: Metabolites characterization of timosaponin AIII in vivo and in vitro by using liquid chromatography-mass spectrometry
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
– year: 2010
  ident: bib0024
  article-title: Diabetic nephropathy: preventing progression
  publication-title: BMJ Clin. Evid.
– volume: 175
  year: 2020
  ident: bib0014
  article-title: Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes
  publication-title: Biochem. Pharmacol.
– volume: 57
  start-page: 203
  year: 2019
  end-page: 214
  ident: bib0007
  article-title: Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-kappaB signaling
  publication-title: Phytomedicine
– volume: 46
  start-page: 214
  year: 2015
  end-page: 220
  ident: bib0036
  article-title: Associations between inflammatory markers, hemostatic markers, and microvascular complications in 182 Chinese patients with type 2 diabetes mellitus
  publication-title: Lab. Med.
– volume: 1060
  start-page: 26
  year: 2005
  end-page: 39
  ident: bib0008
  article-title: A new approach to the pharmacological regulation of memory: sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models
  publication-title: Brain Res.
– volume: 51
  start-page: 844
  year: 2013
  end-page: 850
  ident: bib0002
  article-title: Quantitative detection of thrombin activity in an ischemic stroke model
  publication-title: J. Mol. Neurosci.
– volume: 96
  start-page: 641
  year: 2005
  end-page: 652
  ident: bib0027
  article-title: PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism
  publication-title: J. Cell Biochem.
– volume: 32
  start-page: 1301
  year: 2009
  end-page: 1308
  ident: bib0016
  article-title: Timosaponin B-II inhibits pro-inflammatory cytokine induction by lipopolysaccharide in BV2 cells
  publication-title: Arch. Pharm. Res.
– volume: 136
  start-page: 258
  year: 2017
  end-page: 268
  ident: bib0001
  article-title: Protease-activated receptor 1 contributes to angiotensin II-induced cardiovascular remodeling and inflammation
  publication-title: Cardiology
– volume: 16
  start-page: 257
  year: 2019
  ident: bib0019
  article-title: Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines
  publication-title: J. Neuroinflammation.
– volume: 14
  start-page: 131
  year: 2017
  ident: bib0012
  article-title: Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1beta
  publication-title: J. Neuroinflammation.
– volume: 8
  start-page: 104855
  year: 2017
  end-page: 104866
  ident: bib0037
  article-title: Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-kappaB/miR-17/E-cadherin pathway
  publication-title: Oncotarget
– volume: 384
  start-page: 173
  year: 2009
  end-page: 179
  ident: bib0022
  article-title: Up-regulation of protease-activated receptor-1 in diabetic glomerulosclerosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 6
  start-page: e21484
  year: 2011
  ident: bib0003
  article-title: Granzyme K activates protease-activated receptor-1
  publication-title: PLoS One
– volume: 9
  start-page: 21655
  year: 2018
  end-page: 21662
  ident: bib0029
  article-title: Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice
  publication-title: Oncotarget
– volume: 6
  start-page: 33030
  year: 2016
  ident: bib0028
  article-title: Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1297
  year: 2019
  end-page: 1309
  ident: bib0034
  article-title: A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation
  publication-title: Diabetes Metab. Syndr. Obes.
– volume: 23
  year: 2018
  ident: bib0033
  article-title: Anti-inflammatory activities of compounds isolated from the Rhizome of Anemarrhena asphodeloides
  publication-title: Molecules
– volume: 8
  start-page: e2937
  year: 2017
  ident: bib0031
  article-title: Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation
  publication-title: Cell. Death Dis.
– volume: 4
  start-page: e7283
  year: 2009
  ident: bib0011
  article-title: Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress
  publication-title: PLoS One
– volume: 63
  start-page: 227
  year: 2018
  end-page: 238
  ident: bib0025
  article-title: Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-kappaB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice
  publication-title: Int. Immunopharmacol.
– volume: 25
  start-page: 493
  year: 2015
  end-page: 503
  ident: bib0013
  article-title: Timosaponin AIII and its metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-kappaB and MAPK activation and restoring Th17/Treg cell balance
  publication-title: Int. Immunopharmacol.
– volume: 283
  start-page: 1734
  year: 2016
  end-page: 1747
  ident: bib0023
  article-title: Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1
  publication-title: FEBS J.
– volume: 32
  start-page: 1574
  year: 2018
  end-page: 1582
  ident: bib0015
  article-title: Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats
  publication-title: Phytother. Res.
– volume: 114
  start-page: 251
  year: 2016
  end-page: 264
  ident: bib0020
  article-title: Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy
  publication-title: Pharmacol. Res.
– volume: 10
  start-page: 152
  year: 2017
  end-page: 156
  ident: bib0030
  article-title: Plasmin reduces fibronectin deposition by mesangial cells in a protease-activated receptor-1 independent manner
  publication-title: Biochem. Biophys. Rep.
– volume: 6
  start-page: 33030
  year: 2016
  ident: 10.1016/j.phymed.2020.153314_bib0028
  article-title: Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep33030
– volume: 23
  year: 2018
  ident: 10.1016/j.phymed.2020.153314_bib0033
  article-title: Anti-inflammatory activities of compounds isolated from the Rhizome of Anemarrhena asphodeloides
  publication-title: Molecules
– volume: 12
  start-page: 1297
  year: 2019
  ident: 10.1016/j.phymed.2020.153314_bib0034
  article-title: A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation
  publication-title: Diabetes Metab. Syndr. Obes.
  doi: 10.2147/DMSO.S199802
– volume: 8
  start-page: 104855
  year: 2017
  ident: 10.1016/j.phymed.2020.153314_bib0037
  article-title: Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-kappaB/miR-17/E-cadherin pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20418
– volume: 57
  start-page: 203
  year: 2019
  ident: 10.1016/j.phymed.2020.153314_bib0007
  article-title: Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-kappaB signaling
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2018.12.021
– volume: 78
  start-page: 611
  year: 2012
  ident: 10.1016/j.phymed.2020.153314_bib0009
  article-title: Steroidal glycosides from the rhizomes of Anemarrhena asphodeloides and their antiplatelet aggregation activity
  publication-title: Planta. Med.
  doi: 10.1055/s-0031-1298223
– volume: 25
  start-page: 493
  year: 2015
  ident: 10.1016/j.phymed.2020.153314_bib0013
  article-title: Timosaponin AIII and its metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-kappaB and MAPK activation and restoring Th17/Treg cell balance
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2015.02.016
– volume: 76
  start-page: 29
  year: 2016
  ident: 10.1016/j.phymed.2020.153314_bib0018
  article-title: Thrombin augments LPS-induced human endometrial endothelial cell inflammation via PAR1 activation
  publication-title: Am. J. Reprod. Immunol.
  doi: 10.1111/aji.12517
– volume: 63
  start-page: 227
  year: 2018
  ident: 10.1016/j.phymed.2020.153314_bib0025
  article-title: Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-kappaB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2018.07.027
– volume: 8
  start-page: e2937
  year: 2017
  ident: 10.1016/j.phymed.2020.153314_bib0031
  article-title: Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation
  publication-title: Cell. Death Dis.
  doi: 10.1038/cddis.2017.292
– volume: 41
  start-page: 358
  year: 2020
  ident: 10.1016/j.phymed.2020.153314_bib0005
  article-title: A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0297-6
– volume: 384
  start-page: 173
  year: 2009
  ident: 10.1016/j.phymed.2020.153314_bib0022
  article-title: Up-regulation of protease-activated receptor-1 in diabetic glomerulosclerosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.04.105
– volume: 46
  start-page: 214
  year: 2015
  ident: 10.1016/j.phymed.2020.153314_bib0036
  article-title: Associations between inflammatory markers, hemostatic markers, and microvascular complications in 182 Chinese patients with type 2 diabetes mellitus
  publication-title: Lab. Med.
  doi: 10.1309/LMF8R2KSTOW3FLKD
– volume: 7
  start-page: e43950
  year: 2012
  ident: 10.1016/j.phymed.2020.153314_bib0032
  article-title: Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043950
– volume: 10
  start-page: 152
  year: 2017
  ident: 10.1016/j.phymed.2020.153314_bib0030
  article-title: Plasmin reduces fibronectin deposition by mesangial cells in a protease-activated receptor-1 independent manner
  publication-title: Biochem. Biophys. Rep.
– volume: 16
  start-page: 257
  year: 2019
  ident: 10.1016/j.phymed.2020.153314_bib0019
  article-title: Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines
  publication-title: J. Neuroinflammation.
  doi: 10.1186/s12974-019-1657-3
– volume: 38
  start-page: 430
  year: 2011
  ident: 10.1016/j.phymed.2020.153314_bib0017
  article-title: Antiplatelet and antithrombotic activities of timosaponin B-II, an extract of Anemarrhena asphodeloides
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.2011.05530.x
– volume: 166
  start-page: 30
  year: 2019
  ident: 10.1016/j.phymed.2020.153314_bib0006
  article-title: Predictive metabolic signatures for the occurrence and development of diabetic nephropathy and the intervention of Ginkgo biloba leaves extract based on gas or liquid chromatography with mass spectrometry
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2018.12.017
– volume: 283
  start-page: 1734
  year: 2016
  ident: 10.1016/j.phymed.2020.153314_bib0023
  article-title: Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1
  publication-title: FEBS J.
  doi: 10.1111/febs.13699
– volume: 997
  start-page: 236
  year: 2015
  ident: 10.1016/j.phymed.2020.153314_bib0026
  article-title: Metabolites characterization of timosaponin AIII in vivo and in vitro by using liquid chromatography-mass spectrometry
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2015.06.015
– volume: 6
  start-page: e21484
  year: 2011
  ident: 10.1016/j.phymed.2020.153314_bib0003
  article-title: Granzyme K activates protease-activated receptor-1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021484
– volume: 285
  start-page: 41432
  year: 2010
  ident: 10.1016/j.phymed.2020.153314_bib0004
  article-title: Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3.Bcl10.MALT1 signalosome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.158949
– volume: 32
  start-page: 1301
  year: 2009
  ident: 10.1016/j.phymed.2020.153314_bib0016
  article-title: Timosaponin B-II inhibits pro-inflammatory cytokine induction by lipopolysaccharide in BV2 cells
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-009-1916-4
– volume: 391
  start-page: 159
  year: 2018
  ident: 10.1016/j.phymed.2020.153314_bib0035
  article-title: Sarsasapogenin suppresses Abeta overproduction induced by high glucose in HT-22 cells
  publication-title: Naunyn. Schmiedebergs. Arch. Pharmacol.
  doi: 10.1007/s00210-017-1445-5
– volume: 4
  start-page: e7283
  year: 2009
  ident: 10.1016/j.phymed.2020.153314_bib0011
  article-title: Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007283
– issue: 2010
  year: 2010
  ident: 10.1016/j.phymed.2020.153314_bib0024
  article-title: Diabetic nephropathy: preventing progression
  publication-title: BMJ Clin. Evid.
– volume: 9
  start-page: 21655
  year: 2018
  ident: 10.1016/j.phymed.2020.153314_bib0029
  article-title: Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25069
– volume: 96
  start-page: 641
  year: 2005
  ident: 10.1016/j.phymed.2020.153314_bib0027
  article-title: PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.20533
– volume: 1060
  start-page: 26
  year: 2005
  ident: 10.1016/j.phymed.2020.153314_bib0008
  article-title: A new approach to the pharmacological regulation of memory: sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.08.019
– volume: 114
  start-page: 251
  year: 2016
  ident: 10.1016/j.phymed.2020.153314_bib0020
  article-title: Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.11.004
– volume: 91
  start-page: 398
  year: 2002
  ident: 10.1016/j.phymed.2020.153314_bib0021
  article-title: Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000033520.95242.A2
– volume: 51
  start-page: 844
  year: 2013
  ident: 10.1016/j.phymed.2020.153314_bib0002
  article-title: Quantitative detection of thrombin activity in an ischemic stroke model
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-013-0072-y
– volume: 175
  year: 2020
  ident: 10.1016/j.phymed.2020.153314_bib0014
  article-title: Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2020.113849
– volume: 32
  start-page: 1574
  year: 2018
  ident: 10.1016/j.phymed.2020.153314_bib0015
  article-title: Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.6088
– volume: 136
  start-page: 258
  year: 2017
  ident: 10.1016/j.phymed.2020.153314_bib0001
  article-title: Protease-activated receptor 1 contributes to angiotensin II-induced cardiovascular remodeling and inflammation
  publication-title: Cardiology
  doi: 10.1159/000452269
– volume: 14
  start-page: 131
  year: 2017
  ident: 10.1016/j.phymed.2020.153314_bib0012
  article-title: Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1beta
  publication-title: J. Neuroinflammation.
  doi: 10.1186/s12974-017-0901-y
– volume: 47
  start-page: 1610
  year: 2009
  ident: 10.1016/j.phymed.2020.153314_bib0010
  article-title: Anti-inflammatory effect of anemarsaponin B isolated from the rhizomes of Anemarrhena asphodeloides in LPS-induced RAW 264.7 macrophages is mediated by negative regulation of the nuclear factor-kappaB and p38 pathways
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2009.04.009
SSID ssj0014970
Score 2.435008
Snippet Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 153314
SubjectTerms blood serum
Cell proliferation
cortex
creatinine
Diabetic nephropathy
excretion
glucose
humans
inflammasomes
inflammation
kidneys
NF-κB
PAR-1
rats
Sarsasapogenin
The NLRP3 inflammasome
thrombin
urea nitrogen
uric acid
urine
Title Sarsasapogenin alleviates diabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: In vivo and in vitro study
URI https://dx.doi.org/10.1016/j.phymed.2020.153314
https://www.proquest.com/docview/2440474935
https://www.proquest.com/docview/2540482730
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLadOWJk3DFEpOUXdtyV5vb0tI2HRJWPKgexN6GRyCbPYFe8lf6F_uyJITUmgDPfk1Atkznoc08w0hX7ksVD-TmmYKYxPOUk0Vs4pqibpPaiuHLYjr-UU-vuE_Ztlsixx3tTA-rTLq_qDTW20d7_Ti1-w1VdW7wsAENasvAfZhQT7zFex84KX82_1DmgcGAG3DOE9MPXVXPtfmeOGboM3BKDH1SyyMJfxv5ukPRd1an9M35HV0G2EUZvaWbFm3Q16ex43xHXI4DRDUmyO4fqyoWhzBIUwfwak378ivK4xk5UI2NUpO5cC3UllX3uGEsAxbaXC28c0T0DfcQOzjA4tVE1NmHdQl6ICpCyifKFKh_BHUBgwG9XQe-tujUYTp6JIm3-HMwbpa1yCdwSF4vpzX0CLbvic3pyfXx2MamzJQzVmxpHIoS15wlZelzdE7ZLlKU6nKVGuW5RY9KDlIjbQYiaU6UzzR3BqFOtcozTm37APZdrWzHwlkBn0hfIBmtOA66ashK0xuCoO876vE7hLW8ULoiFjuG2fciS417VYEDgrPQRE4uEvow6gmIHY8Qz_o2CyeSJ5Ao_LMyC-dVAj8Kf1Oi3S2Xi1E6lEXB3zIsn_QoK_sMVhZf--_Z_CJvPJXoTZyn2wv5yv7GZ2kpTpo_4ID8mJ0Nhlf-OPk8ufkN5gZF2E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddCttextZtrN3XDUafKhJbsmPvLZSVZG1CWFPIm5BkGTyGbPIF-Sv6L-9kyS0bbIW9GUsHsu90H9Ld7wj5zGWmBonUNFEYm3AWa6qYUVRL1H1SG5m3IK7TWTq-4d-WyfKAnHe1MC6tMuh-r9NbbR3e9MPf7DdV1b_GwAQ1qysBdmFBunxEDh06VdIjh6PJ5Xh2d5nA87ZnnJtPHUFXQdemeeHHoNnBQDF2pyyMRfxvFuoPXd0aoIvn5FnwHGHkF_eCHBh7RB5Pw934ETmdexTq_Rks7ouq1mdwCvN7fOr9S3J7jcGsXMumRuGpLLhuKrvK-ZzgT2IrDdY0rn8Cuod7CK18YL1tQtashboE7WF1AUUUpcpXQILaQ4FxPV35FvdoF2E--k6jLzCxsKt2NUhbIAk-b1Y1tOC2r8jNxdfF-ZiGvgxUc5ZtqMxlyTOu0rI0KTqILFVxLFUZa82S1KATJYdxIQ0GY7FOFI80N4VCtVsozTk37DXp2dqaNwSSAt0hHEBLmnEdDVTOsiItsgLZP1CROSas44XQAbTc9c74KbrstB_Cc1A4DgrPwWNC76gaD9rxwPxhx2bxm_AJtCsPUH7qpELgvnSXLdKaersWsQNeHPKcJf-Yg-6yg2Flg5P_XsFH8mS8mF6Jq8ns8i156kZ8qeQ70tustuY9-kwb9SHsiV9RLBhv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sarsasapogenin+alleviates+diabetic+nephropathy+through+suppression+of+chronic+inflammation+by+down-regulating+PAR-1%3A+In+vivo+and+in+vitro+study&rft.jtitle=Phytomedicine+%28Stuttgart%29&rft.au=Tang%2C+Zhuang-Zhuang&rft.au=Zhang%2C+Yu-Meng&rft.au=Zheng%2C+Ting&rft.au=Huang%2C+Ting-Ting&rft.date=2020-11-01&rft.pub=Elsevier+GmbH&rft.issn=0944-7113&rft.eissn=1618-095X&rft.volume=78&rft_id=info:doi/10.1016%2Fj.phymed.2020.153314&rft.externalDocID=S094471132030146X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-7113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-7113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-7113&client=summon