Recent developments and key barriers to advanced biofuels: A short review
•With 2DS, the biofuels’ transport-fuel share will be 30.7% by 2060.•Recent studies on advanced biofuels from different inedible feedstocks are reviewed.•Important technical barriers to drop-in, algal, and electro biofuels are discussed.•Biofuel deoxygenation, oleaginous algae, and electro-fermentat...
Saved in:
Published in | Bioresource technology Vol. 257; pp. 320 - 333 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •With 2DS, the biofuels’ transport-fuel share will be 30.7% by 2060.•Recent studies on advanced biofuels from different inedible feedstocks are reviewed.•Important technical barriers to drop-in, algal, and electro biofuels are discussed.•Biofuel deoxygenation, oleaginous algae, and electro-fermentation are emphasized.
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)’s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. |
---|---|
AbstractList | Biofuels are regarded as one of the most viable options for reduction of CO
emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO
mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. •With 2DS, the biofuels’ transport-fuel share will be 30.7% by 2060.•Recent studies on advanced biofuels from different inedible feedstocks are reviewed.•Important technical barriers to drop-in, algal, and electro biofuels are discussed.•Biofuel deoxygenation, oleaginous algae, and electro-fermentation are emphasized. Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)’s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)’s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. |
Author | Kim, Changman Kim, Jung Rae Hwang, Kyung-Ran Lee, Jin-Suk Oh, You-Kwan |
Author_xml | – sequence: 1 givenname: You-Kwan surname: Oh fullname: Oh, You-Kwan organization: School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea – sequence: 2 givenname: Kyung-Ran surname: Hwang fullname: Hwang, Kyung-Ran organization: Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea – sequence: 3 givenname: Changman surname: Kim fullname: Kim, Changman organization: School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea – sequence: 4 givenname: Jung Rae surname: Kim fullname: Kim, Jung Rae organization: School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea – sequence: 5 givenname: Jin-Suk surname: Lee fullname: Lee, Jin-Suk email: bmjslee@kier.re.kr organization: Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29523378$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtPGzEUha0KBAnwFyIvu5nBj5mxp-qiCLUFCQmpKmvLjzuK08k4tZ2g_Ps6CnTBBlb3Lr5z7tU5c3QyhQkQWlBSU0K761VtfIgZ7LJmhMqasJrI_hOaUSl4xXrRnaAZ6TtSyZY152ie0ooQwqlgZ-ic9S3jXMgZuv8FFqaMHexgDJt12RPWk8N_YI-NjtFDTDgHrN1OTxYcLneHLYzpC77BaVl-wBF2Hp4v0emgxwRXL_MCPf34_vv2rnp4_Hl_e_NQ2YbLXOlOGEsMtdw0XFguxSCotY4MAM72zDhXNt3oThMwth86kLwdqGiM1MZRfoE-H303MfzdQspq7ZOFcdQThG1SjHSCtS0V_AMoZT1lJaGCLl7QrVmDU5vo1zru1WtSBeiOgI0hpQjDf4QSdahErdRrJQdjqQhTpZIi_PpGaH3W2YcpR-3H9-XfjvIS-SHnqJL1cGjCR7BZueDfs_gHGdytJA |
CitedBy_id | crossref_primary_10_1016_j_biortech_2018_06_004 crossref_primary_10_1016_j_enconman_2019_112015 crossref_primary_10_1016_j_fuel_2021_120783 crossref_primary_10_1016_j_fuel_2021_122840 crossref_primary_10_16984_saufenbilder_641591 crossref_primary_10_1016_j_rser_2022_112269 crossref_primary_10_1016_j_biortech_2020_124245 crossref_primary_10_1016_j_indcrop_2024_118907 crossref_primary_10_1016_j_cep_2022_108804 crossref_primary_10_1016_j_fuel_2020_119037 crossref_primary_10_1186_s12934_021_01674_4 crossref_primary_10_3389_fenrg_2021_663331 crossref_primary_10_1016_j_envres_2024_118503 crossref_primary_10_1016_j_cej_2020_124278 crossref_primary_10_3390_en17051172 crossref_primary_10_1016_j_biortech_2019_121401 crossref_primary_10_1007_s11157_019_09503_2 crossref_primary_10_1016_j_mcat_2020_111207 crossref_primary_10_3390_fermentation10050260 crossref_primary_10_1016_j_biortech_2020_124350 crossref_primary_10_3390_resources11060057 crossref_primary_10_47248_ges2202040008 crossref_primary_10_1016_j_matpr_2019_12_238 crossref_primary_10_1039_D3YA00369H crossref_primary_10_1039_D2GC00186A crossref_primary_10_1016_j_biortech_2022_128183 crossref_primary_10_1016_j_fuel_2021_121616 crossref_primary_10_1016_j_copbio_2019_09_020 crossref_primary_10_1016_j_biortech_2022_127893 crossref_primary_10_1016_j_apenergy_2019_113988 crossref_primary_10_3390_en17143506 crossref_primary_10_3389_fmicb_2019_01313 crossref_primary_10_1016_j_biortech_2021_126124 crossref_primary_10_1016_j_fuel_2022_126475 crossref_primary_10_3390_app11083348 crossref_primary_10_1016_j_jtte_2020_05_001 crossref_primary_10_1016_j_biombioe_2022_106555 crossref_primary_10_1016_j_biortech_2024_131480 crossref_primary_10_1039_C8SE00638E crossref_primary_10_1016_j_rser_2021_110707 crossref_primary_10_1016_j_rser_2021_110949 crossref_primary_10_3390_en14206661 crossref_primary_10_1016_j_algal_2021_102436 crossref_primary_10_1093_jimb_kuac022 crossref_primary_10_1016_j_biortech_2019_03_107 crossref_primary_10_1016_j_heliyon_2024_e40677 crossref_primary_10_7849_ksnre_2020_2056 crossref_primary_10_1061__ASCE_EY_1943_7897_0000775 crossref_primary_10_3390_en13082089 crossref_primary_10_1007_s42452_019_0543_z crossref_primary_10_1016_j_cherd_2023_06_043 crossref_primary_10_3390_nano8110931 crossref_primary_10_1016_j_biortech_2019_121950 crossref_primary_10_1016_j_chemphys_2024_112344 crossref_primary_10_3390_ijerph17113842 crossref_primary_10_1007_s00792_022_01261_4 crossref_primary_10_1002_masy_202400067 crossref_primary_10_1016_j_biortech_2019_01_104 crossref_primary_10_1016_j_biortech_2021_124953 crossref_primary_10_1016_j_fuel_2021_121150 crossref_primary_10_1016_j_jclepro_2019_118700 crossref_primary_10_3390_catal11121537 crossref_primary_10_3390_fuels3040037 crossref_primary_10_1016_j_jbiotec_2022_07_007 crossref_primary_10_1016_j_cej_2020_127467 crossref_primary_10_3390_recycling9010019 crossref_primary_10_1039_C9SE00788A crossref_primary_10_1016_j_ijhydene_2019_12_141 crossref_primary_10_1002_cjce_24480 crossref_primary_10_1016_j_rser_2019_04_057 crossref_primary_10_1016_j_ijbiomac_2020_10_159 crossref_primary_10_1016_j_fuel_2025_134749 crossref_primary_10_1080_17597269_2018_1501637 crossref_primary_10_1021_acsomega_9b00375 crossref_primary_10_1016_j_biortech_2021_126358 crossref_primary_10_1016_j_jclepro_2020_122144 crossref_primary_10_25046_aj060147 crossref_primary_10_1016_j_jclepro_2018_10_318 crossref_primary_10_3390_nano10081571 crossref_primary_10_1016_j_jcou_2019_01_011 crossref_primary_10_1016_j_chemosphere_2021_132863 crossref_primary_10_1016_j_renene_2019_04_105 crossref_primary_10_1039_C9GC00673G crossref_primary_10_1016_j_cej_2023_144234 crossref_primary_10_1016_j_enconman_2022_116371 crossref_primary_10_1016_j_fuel_2022_127081 crossref_primary_10_1021_acscatal_3c04465 crossref_primary_10_1016_j_biortech_2020_124659 crossref_primary_10_1016_j_fuel_2018_10_030 crossref_primary_10_1007_s10295_019_02242_x crossref_primary_10_1016_j_fuel_2022_126553 crossref_primary_10_1016_j_renene_2019_05_027 crossref_primary_10_1111_1751_7915_13379 crossref_primary_10_1007_s11274_019_2682_1 crossref_primary_10_3390_ijerph17165900 crossref_primary_10_3390_catal12121524 crossref_primary_10_1002_bbb_2403 crossref_primary_10_1016_j_energy_2022_124306 crossref_primary_10_2478_rtuect_2023_0004 crossref_primary_10_1007_s10811_021_02471_7 crossref_primary_10_1016_j_cherd_2021_07_009 crossref_primary_10_1016_j_biortech_2019_122274 crossref_primary_10_3390_fermentation9100869 crossref_primary_10_1007_s10311_019_00939_0 crossref_primary_10_1016_j_fuel_2022_123171 crossref_primary_10_1016_j_biortech_2019_121746 crossref_primary_10_1016_j_heliyon_2020_e04213 crossref_primary_10_1016_j_ultsonch_2018_12_010 crossref_primary_10_1080_10643389_2021_1923976 crossref_primary_10_1016_j_fuel_2019_116659 crossref_primary_10_1186_s13065_018_0491_5 crossref_primary_10_1002_er_7248 crossref_primary_10_1093_erae_jbad019 crossref_primary_10_3390_en18020253 crossref_primary_10_1016_j_biortech_2019_121356 crossref_primary_10_1080_15435075_2021_1930007 crossref_primary_10_1002_btpr_2830 crossref_primary_10_3390_fuels5020010 crossref_primary_10_1007_s43994_025_00212_x crossref_primary_10_1002_biot_201900043 crossref_primary_10_1016_j_microb_2024_100053 crossref_primary_10_1016_j_fuel_2022_125688 crossref_primary_10_1016_j_fuel_2022_126416 crossref_primary_10_1134_S2517751623060057 crossref_primary_10_3390_app9153069 crossref_primary_10_3390_en14041031 crossref_primary_10_1016_j_fuel_2023_130751 crossref_primary_10_1016_j_fuel_2020_117253 crossref_primary_10_1016_j_biortech_2023_130012 crossref_primary_10_1016_j_jclepro_2018_07_150 crossref_primary_10_1088_1757_899X_546_7_072007 crossref_primary_10_1016_j_egyr_2021_09_155 crossref_primary_10_1016_j_mcat_2021_111696 crossref_primary_10_1016_j_algal_2019_101413 crossref_primary_10_1360_SSC_2023_0037 crossref_primary_10_1016_j_biortech_2021_126312 crossref_primary_10_1080_17518253_2020_1829099 crossref_primary_10_3390_catal9050403 crossref_primary_10_1016_j_apcatb_2018_08_057 crossref_primary_10_1088_1742_6596_2094_5_052045 crossref_primary_10_1016_j_heliyon_2024_e28380 crossref_primary_10_1007_s13399_021_02114_4 crossref_primary_10_1016_j_jcou_2022_101923 crossref_primary_10_3390_land10060548 crossref_primary_10_1016_j_rser_2019_109498 crossref_primary_10_1002_bit_27639 crossref_primary_10_1016_j_mcat_2021_111469 crossref_primary_10_1007_s10311_018_0777_9 crossref_primary_10_1007_s11101_022_09831_2 crossref_primary_10_1016_j_ijhydene_2022_10_206 crossref_primary_10_5897_JDAE2023_1390 crossref_primary_10_1007_s13399_023_04016_z crossref_primary_10_1016_j_ecmx_2021_100153 crossref_primary_10_1002_bbb_2327 crossref_primary_10_1016_j_carpta_2022_100242 crossref_primary_10_3390_en11092477 crossref_primary_10_1016_j_cej_2019_03_063 crossref_primary_10_3390_catal10020200 crossref_primary_10_3390_en14216982 crossref_primary_10_1007_s11051_020_05108_x crossref_primary_10_1039_D4YA00043A crossref_primary_10_1016_j_biortech_2023_129044 crossref_primary_10_1007_s11696_021_01885_4 crossref_primary_10_1016_j_seta_2022_102455 crossref_primary_10_3390_agriculture11121282 crossref_primary_10_1007_s00253_018_9221_0 crossref_primary_10_1016_j_biortech_2021_126415 crossref_primary_10_1615_InterJEnerCleanEnv_2022044290 crossref_primary_10_3390_en16042066 crossref_primary_10_3390_ijms222212249 crossref_primary_10_1016_j_scitotenv_2021_146708 crossref_primary_10_1016_j_renene_2022_08_146 crossref_primary_10_1088_1742_6596_1295_1_012047 crossref_primary_10_1016_j_fluid_2020_112585 crossref_primary_10_1007_s12010_022_03955_z crossref_primary_10_31857_S2218117223060056 crossref_primary_10_3390_fermentation7040268 crossref_primary_10_1590_s1517_707620200002_1020 crossref_primary_10_3390_en17030560 crossref_primary_10_1016_j_biortech_2018_07_008 crossref_primary_10_1016_j_algal_2019_101621 crossref_primary_10_1016_j_rser_2021_111417 crossref_primary_10_1016_j_algal_2019_101505 crossref_primary_10_3390_en14185687 crossref_primary_10_1016_j_catcom_2018_08_014 crossref_primary_10_1016_j_fuproc_2022_107563 crossref_primary_10_1016_j_apenergy_2022_119044 crossref_primary_10_1016_j_renene_2023_119851 crossref_primary_10_1016_j_rser_2019_109548 crossref_primary_10_1002_bbb_2109 crossref_primary_10_1016_j_jobab_2021_02_001 crossref_primary_10_1016_j_jaecs_2023_100228 crossref_primary_10_1007_s10098_024_02803_4 crossref_primary_10_1016_j_esd_2022_06_004 crossref_primary_10_1051_e3sconf_202343604003 crossref_primary_10_1016_j_clay_2020_105555 crossref_primary_10_1016_j_jece_2022_107218 crossref_primary_10_1007_s00253_020_10818_2 crossref_primary_10_1016_j_enconman_2020_112925 crossref_primary_10_1021_acs_energyfuels_1c00032 crossref_primary_10_1016_j_fuel_2019_116246 crossref_primary_10_1016_j_biortech_2019_02_082 crossref_primary_10_3390_molecules27248717 crossref_primary_10_1016_j_egyr_2021_05_084 crossref_primary_10_1016_j_esr_2021_100633 crossref_primary_10_1016_j_fuel_2020_117311 crossref_primary_10_1007_s13399_022_03594_8 crossref_primary_10_1016_j_biortech_2021_126292 crossref_primary_10_1016_j_fuel_2021_122757 crossref_primary_10_1016_j_seta_2022_102890 crossref_primary_10_1016_j_biortech_2018_11_082 crossref_primary_10_2516_ogst_2020051 crossref_primary_10_3390_cleantechnol6020035 crossref_primary_10_1016_j_biombioe_2019_105439 crossref_primary_10_1039_D4RA01166J crossref_primary_10_1016_j_rser_2021_111563 crossref_primary_10_1016_j_ecmx_2020_100070 crossref_primary_10_1039_C9SE00087A crossref_primary_10_1007_s13399_022_02570_6 crossref_primary_10_1016_j_biortech_2020_124496 crossref_primary_10_3389_fmicb_2019_01895 crossref_primary_10_3390_pr11082300 crossref_primary_10_1016_j_energy_2021_121700 crossref_primary_10_1016_j_fuel_2019_04_049 crossref_primary_10_1016_j_jclepro_2022_131153 |
Cites_doi | 10.1039/C4GC01413H 10.1007/s12257-016-0584-8 10.1016/j.fuproc.2016.02.032 10.1021/es506149d 10.1016/j.biortech.2016.09.025 10.1021/es902371e 10.1016/j.biortech.2016.06.066 10.5714/CL.2016.20.076 10.1016/j.biortech.2014.07.022 10.1135/cccc20081015 10.1016/j.biortech.2011.12.058 10.1016/j.biortech.2014.08.112 10.1016/S1872-2067(12)60710-4 10.1016/j.biortech.2013.12.065 10.1016/j.biortech.2016.03.034 10.1016/j.biortech.2017.02.111 10.1016/j.biortech.2015.06.122 10.1016/j.biortech.2017.09.079 10.1016/j.enpol.2012.02.068 10.1021/es500690a 10.1016/j.biortech.2016.09.020 10.1016/j.biortech.2013.07.131 10.1016/j.biortech.2015.08.107 10.1039/C5CY01307K 10.1007/s11356-015-4643-z 10.1016/j.biortech.2015.04.084 10.1186/1475-2859-9-90 10.1039/C6GC01239F 10.1128/mBio.00103-10 10.1002/bit.22266 10.1016/j.rser.2017.05.224 10.1038/nrmicro2113 10.1016/j.biortech.2017.02.097 10.1186/s13068-017-0886-x 10.1021/ef900110t 10.1016/j.tibtech.2016.04.007 10.1016/j.biombioe.2011.01.048 10.1128/mBio.00190-10 10.1016/j.biortech.2016.06.086 10.1016/j.biortech.2017.05.021 10.1016/j.biortech.2015.08.115 10.1021/ef060455v 10.1128/AEM.01834-09 10.1007/s00449-014-1186-5 10.1016/j.fuel.2017.07.110 10.1016/j.biortech.2015.02.116 10.1016/j.rser.2014.09.037 10.1016/j.biortech.2016.03.023 10.3389/fmicb.2015.00054 10.1016/j.biortech.2017.05.003 10.1016/j.biortech.2014.11.017 10.1016/j.fuel.2017.11.094 10.1016/j.biortech.2015.07.040 10.1016/j.biortech.2016.11.048 10.1016/j.cattod.2014.02.011 10.1002/jctb.5353 10.1016/j.jcat.2014.04.009 10.1016/j.biortech.2017.03.114 10.1016/j.biortech.2017.07.086 10.1007/s11814-013-0258-6 10.1016/j.jbiotec.2013.10.001 10.1016/j.algal.2017.06.024 10.1016/j.biortech.2017.05.170 10.1128/JB.00926-06 10.1016/j.biortech.2013.05.058 10.1128/AEM.02642-10 10.1016/j.biortech.2017.03.175 10.1016/j.biortech.2015.06.026 10.1016/j.biortech.2017.05.142 10.1016/j.copbio.2011.01.009 10.1016/j.biortech.2017.06.164 10.1016/j.rser.2014.07.113 10.1016/j.biortech.2014.05.094 10.1016/j.rser.2017.10.074 10.1016/j.biortech.2016.09.036 10.1016/j.fuel.2014.09.025 10.1016/j.apcata.2015.03.012 10.1002/bit.26243 10.1016/j.procbio.2016.07.028 10.1016/j.tibtech.2016.04.009 10.1016/j.biortech.2016.03.052 10.1016/j.biortech.2017.11.063 10.1016/j.egypro.2017.07.006 10.1016/j.ecoleng.2014.09.070 10.1016/j.cattod.2005.07.188 10.1038/srep27820 10.3390/catal7100281 10.1016/j.fuel.2016.01.080 10.1016/j.biortech.2016.08.034 10.1016/j.chemosphere.2017.10.004 10.1016/j.fuel.2015.05.020 10.1016/j.apcata.2013.07.053 10.1016/j.biortech.2017.09.119 10.1016/j.biortech.2017.06.081 10.1016/j.biortech.2012.12.176 10.1038/srep06961 10.1016/j.watres.2015.09.011 10.1016/j.watres.2016.04.043 10.1111/gcbb.12431 10.1016/j.rser.2017.10.038 10.1007/s12257-015-0777-6 10.1016/j.biortech.2014.02.129 10.1016/j.renene.2016.05.075 10.1128/AEM.00569-13 10.1016/j.biortech.2016.02.103 10.1128/AEM.02401-12 10.1016/j.biortech.2017.06.038 10.1016/j.biortech.2015.04.017 10.1021/acs.iecr.7b04445 10.1016/j.apenergy.2016.03.093 10.1016/j.electacta.2017.08.045 10.1016/j.copbio.2017.03.008 10.1021/acscatal.7b01326 10.1016/j.biortech.2014.09.053 10.1016/j.biortech.2017.05.040 10.1371/journal.pcbi.0040036 10.1016/j.biortech.2013.01.102 10.1016/j.catcom.2015.03.034 10.1016/j.biortech.2014.03.079 10.1039/c0ee00343c 10.1016/j.algal.2015.06.017 10.1016/j.biortech.2014.06.017 10.1016/j.fuel.2013.04.044 10.1038/srep16168 10.1016/j.cej.2017.06.078 10.1111/1751-7915.12240 10.1016/j.cbpa.2016.08.003 10.1016/j.biortech.2015.10.106 10.1016/j.biortech.2014.08.101 10.1021/acs.energyfuels.6b03418 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2018.02.089 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 333 |
ExternalDocumentID | 29523378 10_1016_j_biortech_2018_02_089 S0960852418302864 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-a67bc0b1c3b437c387f71ccd0feedc92bddfeea4a6a0ebc9f6e835f174b8abd13 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 22:38:46 EDT 2025 Fri Jul 11 06:14:52 EDT 2025 Mon Jul 21 05:52:07 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 02:06:57 EDT 2025 Fri Feb 23 02:19:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Drop-in fuel Microalgae Advanced biofuels Electro-biofuel Deoxygenation |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-a67bc0b1c3b437c387f71ccd0feedc92bddfeea4a6a0ebc9f6e835f174b8abd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29523378 |
PQID | 2012912852 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2067255173 proquest_miscellaneous_2012912852 pubmed_primary_29523378 crossref_primary_10_1016_j_biortech_2018_02_089 crossref_citationtrail_10_1016_j_biortech_2018_02_089 elsevier_sciencedirect_doi_10_1016_j_biortech_2018_02_089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Praveenkumar, Lee, Lee, Oh (b0460) 2015; 17 Yamanaka, T., 2008. Oxidation and Reduction of Iron by Bacteria. In: Chemolithoautotrophic Bacteria. Biochemistry and Environmental Biology. Springer, pp. 79–102. Ullah, Sharma, Ahmad, Lv, Krahl, Wang, Sofia. (b0585) 2018; 82 Wang, Gao, Chen, Guo, Liu (b0595) 2013; 142 Dennis, Harnisch, Yeoh, Tyson, Rabaey (b0130) 2013; 79 Aslam, Thomas-Hall, Mughal, Schenk (b0025) 2017; 233 Liu, Zuo, Zhang, Wang, Ma (b0370) 2014; 35 Kim, Lee, Lee, Lee, Han, Park, Oh (b0315) 2017; 239 Nevin, Woodard, Franks, Summers, Lovley (b0410) 2010; 1 Bridgewater (b0040) 2012; 38 Yang, Coppi, Lovley, Sun (b0625) 2010; 9 Ho, Ngo, Guo (b0195) 2014; 169 Srivastava, Goud (b0545) 2017; 242 Cheng, Whang, Chan, Chung, Wu, Liu, Tien, Chen, Chang, Lee (b0070) 2015; 184 Wu, Shi, Fu, Leidl, Hou, Lu (b0605) 2016; 6 Taleb, Kandilian, Touchard, Montalescot, Rinaldi, Taha, Takache, Marchal, Legrand, Pruvost (b0570) 2016; 218 Zhang, Wang, Chen, Zhang (b0665) 2017; 7 Roy, Schievano, Pant (b0480) 2016; 213 Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (b0415) 2011; 77 Yang, Nie, Fu, Hou, Lu (b0630) 2013; 146 Choi, Hwang, Han, Lee, Yun, Lee (b0100) 2015; 158 Cheon, Kim, Gustavsson, Lee (b0080) 2016; 35 Khandelwal, Vijay, Dixit, Chhabra (b0265) 2018; 247 Alfenore, Molina-Jouve (b0015) 2016; 51 Wang, Liu, Song, Li, Li, Xu, Ma, Tian (b0600) 2014; 234 Zaybak, Pisciotta, Tokash, Logan (b0655) 2013; 168 Choi, Cui (b0090) 2012; 107 Kim, Jang, Kim, Yamaoka, Hong, Song, Nishida, Li-Beisson, Lee (b0270) 2015; 6 Kao, Chen, Chang, Chiu, Lin, Chen, Chang, Lin (b0260) 2014; 166 Son, Sung, Ryu, Oh, Han (b0525) 2017; 244 Steinbusch, Hamelers, Schaap, Kampman, Buisman (b0550) 2010; 44 Jamil, Al-Muhatseb, Al-Haj, Al-Hinai, Baawain (b0225) 2017; 118 Kang, Lee, Choi, Moon, Park, Lim, Yang (b0255) 2014; 31 Chokshi, Pancha, Ghosh, Mishra (b0110) 2017; 244 Mäki-Arvela, Kubickova, Snåre, Eränen, Murzin (b0395) 2007; 21 Praveenkumar, Kim, Choi, Lee, Park, Lee, Lee, Oh (b0455) 2014; 171 Tremblay, Hoglund, Koza, Bonde, Zhang (b0580) 2015; 5 Pancha, Chokshi, Maurya, Trivedi, Patidar, Ghosh, Mishra (b0425) 2015; 189 Ahlgren, Hagberg, Grahn (b0010) 2017; 9 Kim, Kim, Lee, Lee, Choi (b0305) 2017; 7 Abate, Giorgianni, Lanzafame, Perathoner, Centi (b0005) 2016; 50 Jiang, Xin, Lu, Dong, Jiang (b0245) 2017; 45 Kubička (b0325) 2008; 73 Speers, Young, Reguera (b0540) 2014; 48 Lestari, Maki-Arvela, Bernas, Simakova, Sjoholm, Beltramini, Lu, Myllyoja, Simakova, Murzin (b0355) 2009; 23 Chen, Wan, Mehmood, Chang, Bai, Zhao (b0065) 2017; 244 Cho, Lee, Park, Yu, Luong, Oh, Lee (b0085) 2013; 131 Lee, Oh, Lee (b0345) 2015; 196 Wu, Li, Zhou, Liang, Zhang, Jiang, Huang (b0610) 2016; 98 Im, Kim, Song, Oh, Jeon, Kim (b0220) 2018; 191 Praveenkumar, Kim, Choi, Lee, Cho, Hyun, Park, Lee, Lee, Lee (b0450) 2014; 37 Patil, Arends, Vanwonterghem, van Meerbergen, Guo, Tyson, Rabaey (b0435) 2015; 49 Seo, Sung, Oh, Han (b0505) 2016; 200 Brown (b0045) 2015; 178 Moscoviz, Toledo-Alarcón, Trably, Bernet (b0405) 2016; 34 Yun, Kim, Oh, Shin, Jung (b0640) 2014; 159 Sturm-Richter, Golitsch, Sturm, Kipf, Dittrich, Beblawy, Kerzenmacher, Gescher (b0555) 2015; 186 Seo, Kim, Lee, Lee, Na, Jeon, Park, Oh (b0510) 2017 Yang, Li, Cui, Liu, Qiu, Ding, Wu, Zang (b0635) 2016; 18 Logan (b0375) 2009; 7 Dechambre, Thien, Bardow (b0120) 2017; 209 Flynn, Ross, Hunt, Bond, Gralnick (b0160) 2010; 1 Hossain, Jhawar, Chowdhury, Xu, Wu, Hiscott, Charpentier (b0200) 2017; 31 Prajitno, Insyani, Park, Ryu, Kim (b0445) 2016; 172 Sugnaux, Happe, Cachelin, Gloriod, Huguenin, Blatter, Fischer (b0560) 2016; 221 Marshall, Ross, Fichot, Norman, May (b0400) 2012; 78 Kondaveeti, Min (b0320) 2015; 87 Ellabban, Abu-Rub, Blaabjerg (b0150) 2014; 39 Han, Pei, Hu, Jiang, Cheng, Zhang (b0180) 2016; 209 Park, Oh, Lee, Lee, Jeong, Choi (b0430) 2014; 153 Schuetz, Schicklberger, Kuermann, Spormann, Gescher (b0495) 2009; 75 Kim, Yun, Shin, Han (b0300) 2017; 224 Zeb, Park, Riaz, Ryu, Kim (b0660) 2017; 327 Yun, Oh, Praveenkumar, Seo, Cho (b0650) 2017; 22 Yabe, Shinoda, Seki, Tanaka, Akisawa (b0615) 2012; 45 ElMekawy, Hegab, Mohanakrishna, Elbaz, Bulut, Pant (b0155) 2016; 215 Song, Park, Kim, Lee, Seo, Oh, Kim, Ryou, Lee, Lee (b0530) 2017; 250 Zhou, Lawal (b0680) 2016; 6 Choi, Lee, Kim, Kim, Lee, Hwang (b0105) 2018; 215 Francavilla, Kamaterou, Intini, Monteleone, Zabaniotou (b0165) 2015; 11 Zhao, Ma, Zhao, Laurens, Jarvis, Chen, Frear (b0670) 2014; 161 Church, Hwang, Kim, McLean, Oh, Nam, Joo, Lee (b0115) 2017; 243 Piligaev, Sorokina, Shashkov, Parmon (b0440) 2018; 250 Dao, Wu, Wang, Zhuang, Zhang, Hu (b0125) 2018; 247 Kim, Lim, Daud, Gadd, Chang (b0275) 2015; 190 Kubičkova, Snåre, Eränen, Arvela, Murzin (b0330) 2005; 106 Li, Cheng, Huang, Zhou, Cen (b0365) 2015; 197 Duan, Savage (b0145) 2011; 4 Pahl, Lee, Kalaitzidis, Ashman, Sathe, Lewis (b0420) 2012 Kim, Ainala, Oh, Jeon, Park, Kim (b0285) 2016; 21 Lee, Kim, Farooq, Chung, Han, Shin, Jeong, Park, Lee, Oh (b0335) 2013; 132 Schievano, Sciarria, Vanbroekhoven, De Wever, Puig, Andersen, Rabaey, Pant (b0490) 2016; 34 Alwan, Salley, Ng (b0020) 2015; 498 Lynd, Liang, Biddy, Allee, Cai, Foust, Himme, Laser, Wang, Wyman (b0390) 2017; 45 Praveenkumar, Kim, Lee, Vijayan, Lee, Nam, Jeon, Kim, Oh (b0465) 2016; 220 Kim, Vijayan, Praveenkumar, Han, Lee, Park, Chang, Lee, Oh (b0290) 2016; 199 Song, Zhang, Liu, Zhang, Wang, Yang, Yuan, Xie (b0535) 2017; 243 Cheng, Zhang, Zhang, Yuan, Wang, Liu (b0075) 2017; 238 Yun, Shin, Lee, Oh, Kim (b0645) 2016; 23 Kim, Kim, Michie, Jeon, Premier, Park, Kim (b0295) 2017; 10 Lovley, Nevin (b0380) 2011; 22 Kim, Praveenkumar, Lee, Nam, Kim, Lee, Lee, Oh (b0280) 2016; 219 Guo, Zheng, Li, Du, Feng, Yin, Wu, Ren, Chang (b0175) 2016; 221 Rodenas Motos, Molina, ter Heijne, Sleutels, Saakes, Buisman (b0475) 2017; 92 Ji, Kabra, Choi, Hwang, Kim, Abou-Shanab, Oh, Jeon (b0230) 2014; 73 Jiang, Xin, Lu, Dong, Zhang, Zhang, Wu, Ma, Jiang (b0235) 2017; 245 Bursac, Gralnick, Gescher (b0050) 2017; 114 Im, Kim, Lee (b0210) 2015; 193 Seo, Jeon, Kim, Lee, Oh, Ahn, Lee (b0515) 2018; 57 Domínguez-Barroso, Herrera, Larrubia, Alemany (b0135) 2016; 148 Ju, Zhou, He, Wu, Fang (b0240) 2016; 97 Choi, Kim, Woo, Um (b0095) 2014; 4 Tale, Ghosh, Kapadnis, Kale (b0565) 2014; 169 Lee, Park, Choi, Oh, Han (b0340) 2014; 172 Rastogi, Pandey, Larroche, Madamwar (b0470) 2018; 82 Bwapwa, Anandraj, Trois (b0055) 2017; 80 Ummalyma, Gnansounou, Sukumaran, Sindhu, Pandey, Sahoo (b0590) 2017; 242 Tang, Meadows, Kirby, Keasling (b0575) 2007; 189 Kim, Oh, Lee, Chang (b0310) 2017; 26 Kandel, Anderegg, Nelson, Chaudhary, Slowing (b0250) 2014; 314 Biffinger, Ray, Little, Fitzgerald, Ribbens, Finkel, Ringeisen (b0035) 2009; 103 Zhou, Freguia, Dennis, Keller, Rabaey (b0675) 2015; 8 Shim, Jeong, Jang, Jeon, Kim, Jeon, Roh, Na, Oh, Han, Ko (b0520) 2015; 67 Herskowitz, Landau, Reizner, Berger (b0190) 2013; 111 Hwang, Choi, Choi, Han, Lee, Lee (b0205) 2016; 174 Fu, Yang, Wu, Zhuang, Hou, Lu (b0170) 2015; 139 Lee, Cho, Chang, Oh (b0350) 2017; 244 Li, Zhao, Ding, Zhao, Xu, Li, Ma, Yu (b0360) 2017; 235 Heidrich, Curtis, Woodcock, Dolfing (b0185) 2016; 218 Im, Song, Jeon, Kim (b0215) 2016; 20 Barros, Gonçalves, Simões, Pires (b0030) 2015; 41 Dong, Qu, He, Du, Liu, Han, Feng (b0140) 2015; 195 Sari, Kim, Salley, Ng (b0485) 2013; 467 Segura, Mahadevan, Juárez, Lovley (b0500) 2008; 4 Chen, Smith, Wolcott (b0060) 2016; 1 Lu, Ren (b0385) 2016; 215 Marshall (10.1016/j.biortech.2018.02.089_b0400) 2012; 78 Fu (10.1016/j.biortech.2018.02.089_b0170) 2015; 139 Dechambre (10.1016/j.biortech.2018.02.089_b0120) 2017; 209 Biffinger (10.1016/j.biortech.2018.02.089_b0035) 2009; 103 Heidrich (10.1016/j.biortech.2018.02.089_b0185) 2016; 218 Segura (10.1016/j.biortech.2018.02.089_b0500) 2008; 4 Francavilla (10.1016/j.biortech.2018.02.089_b0165) 2015; 11 Ahlgren (10.1016/j.biortech.2018.02.089_b0010) 2017; 9 Chen (10.1016/j.biortech.2018.02.089_b0060) 2016; 1 Zeb (10.1016/j.biortech.2018.02.089_b0660) 2017; 327 Song (10.1016/j.biortech.2018.02.089_b0530) 2017; 250 Sari (10.1016/j.biortech.2018.02.089_b0485) 2013; 467 Im (10.1016/j.biortech.2018.02.089_b0215) 2016; 20 Lynd (10.1016/j.biortech.2018.02.089_b0390) 2017; 45 Schuetz (10.1016/j.biortech.2018.02.089_b0495) 2009; 75 Bursac (10.1016/j.biortech.2018.02.089_b0050) 2017; 114 Lestari (10.1016/j.biortech.2018.02.089_b0355) 2009; 23 Srivastava (10.1016/j.biortech.2018.02.089_b0545) 2017; 242 Sturm-Richter (10.1016/j.biortech.2018.02.089_b0555) 2015; 186 Jamil (10.1016/j.biortech.2018.02.089_b0225) 2017; 118 Schievano (10.1016/j.biortech.2018.02.089_b0490) 2016; 34 Flynn (10.1016/j.biortech.2018.02.089_b0160) 2010; 1 Rodenas Motos (10.1016/j.biortech.2018.02.089_b0475) 2017; 92 Bridgewater (10.1016/j.biortech.2018.02.089_b0040) 2012; 38 Moscoviz (10.1016/j.biortech.2018.02.089_b0405) 2016; 34 Park (10.1016/j.biortech.2018.02.089_b0430) 2014; 153 Ullah (10.1016/j.biortech.2018.02.089_b0585) 2018; 82 Lee (10.1016/j.biortech.2018.02.089_b0335) 2013; 132 Lee (10.1016/j.biortech.2018.02.089_b0340) 2014; 172 Choi (10.1016/j.biortech.2018.02.089_b0105) 2018; 215 Hwang (10.1016/j.biortech.2018.02.089_b0205) 2016; 174 Kim (10.1016/j.biortech.2018.02.089_b0285) 2016; 21 Kim (10.1016/j.biortech.2018.02.089_b0295) 2017; 10 Praveenkumar (10.1016/j.biortech.2018.02.089_b0450) 2014; 37 Kondaveeti (10.1016/j.biortech.2018.02.089_b0320) 2015; 87 Lovley (10.1016/j.biortech.2018.02.089_b0380) 2011; 22 Steinbusch (10.1016/j.biortech.2018.02.089_b0550) 2010; 44 Li (10.1016/j.biortech.2018.02.089_b0360) 2017; 235 Im (10.1016/j.biortech.2018.02.089_b0220) 2018; 191 Prajitno (10.1016/j.biortech.2018.02.089_b0445) 2016; 172 Herskowitz (10.1016/j.biortech.2018.02.089_b0190) 2013; 111 Kim (10.1016/j.biortech.2018.02.089_b0280) 2016; 219 Taleb (10.1016/j.biortech.2018.02.089_b0570) 2016; 218 Brown (10.1016/j.biortech.2018.02.089_b0045) 2015; 178 Cheon (10.1016/j.biortech.2018.02.089_b0080) 2016; 35 Rastogi (10.1016/j.biortech.2018.02.089_b0470) 2018; 82 Jiang (10.1016/j.biortech.2018.02.089_b0245) 2017; 45 Piligaev (10.1016/j.biortech.2018.02.089_b0440) 2018; 250 Lee (10.1016/j.biortech.2018.02.089_b0345) 2015; 196 Cheng (10.1016/j.biortech.2018.02.089_b0075) 2017; 238 Yabe (10.1016/j.biortech.2018.02.089_b0615) 2012; 45 Praveenkumar (10.1016/j.biortech.2018.02.089_b0460) 2015; 17 Nevin (10.1016/j.biortech.2018.02.089_b0415) 2011; 77 Sugnaux (10.1016/j.biortech.2018.02.089_b0560) 2016; 221 Zhou (10.1016/j.biortech.2018.02.089_b0675) 2015; 8 Kim (10.1016/j.biortech.2018.02.089_b0305) 2017; 7 ElMekawy (10.1016/j.biortech.2018.02.089_b0155) 2016; 215 Cheng (10.1016/j.biortech.2018.02.089_b0070) 2015; 184 Kim (10.1016/j.biortech.2018.02.089_b0315) 2017; 239 Han (10.1016/j.biortech.2018.02.089_b0180) 2016; 209 Aslam (10.1016/j.biortech.2018.02.089_b0025) 2017; 233 Khandelwal (10.1016/j.biortech.2018.02.089_b0265) 2018; 247 Seo (10.1016/j.biortech.2018.02.089_b0510) 2017 Tremblay (10.1016/j.biortech.2018.02.089_b0580) 2015; 5 Zhou (10.1016/j.biortech.2018.02.089_b0680) 2016; 6 Lu (10.1016/j.biortech.2018.02.089_b0385) 2016; 215 Patil (10.1016/j.biortech.2018.02.089_b0435) 2015; 49 Guo (10.1016/j.biortech.2018.02.089_b0175) 2016; 221 Kim (10.1016/j.biortech.2018.02.089_b0275) 2015; 190 Kim (10.1016/j.biortech.2018.02.089_b0290) 2016; 199 Ho (10.1016/j.biortech.2018.02.089_b0195) 2014; 169 Tang (10.1016/j.biortech.2018.02.089_b0575) 2007; 189 Bwapwa (10.1016/j.biortech.2018.02.089_b0055) 2017; 80 Kao (10.1016/j.biortech.2018.02.089_b0260) 2014; 166 Seo (10.1016/j.biortech.2018.02.089_b0515) 2018; 57 Ummalyma (10.1016/j.biortech.2018.02.089_b0590) 2017; 242 Praveenkumar (10.1016/j.biortech.2018.02.089_b0455) 2014; 171 Chokshi (10.1016/j.biortech.2018.02.089_b0110) 2017; 244 Zaybak (10.1016/j.biortech.2018.02.089_b0655) 2013; 168 Wang (10.1016/j.biortech.2018.02.089_b0600) 2014; 234 Wang (10.1016/j.biortech.2018.02.089_b0595) 2013; 142 Barros (10.1016/j.biortech.2018.02.089_b0030) 2015; 41 Yang (10.1016/j.biortech.2018.02.089_b0635) 2016; 18 Praveenkumar (10.1016/j.biortech.2018.02.089_b0465) 2016; 220 Choi (10.1016/j.biortech.2018.02.089_b0100) 2015; 158 Yun (10.1016/j.biortech.2018.02.089_b0640) 2014; 159 Yang (10.1016/j.biortech.2018.02.089_b0630) 2013; 146 Wu (10.1016/j.biortech.2018.02.089_b0605) 2016; 6 Zhao (10.1016/j.biortech.2018.02.089_b0670) 2014; 161 Alfenore (10.1016/j.biortech.2018.02.089_b0015) 2016; 51 Kim (10.1016/j.biortech.2018.02.089_b0310) 2017; 26 Yun (10.1016/j.biortech.2018.02.089_b0645) 2016; 23 Choi (10.1016/j.biortech.2018.02.089_b0095) 2014; 4 Kandel (10.1016/j.biortech.2018.02.089_b0250) 2014; 314 Kubička (10.1016/j.biortech.2018.02.089_b0325) 2008; 73 Cho (10.1016/j.biortech.2018.02.089_b0085) 2013; 131 Abate (10.1016/j.biortech.2018.02.089_b0005) 2016; 50 Jiang (10.1016/j.biortech.2018.02.089_b0235) 2017; 245 Duan (10.1016/j.biortech.2018.02.089_b0145) 2011; 4 Kim (10.1016/j.biortech.2018.02.089_b0270) 2015; 6 Chen (10.1016/j.biortech.2018.02.089_b0065) 2017; 244 Domínguez-Barroso (10.1016/j.biortech.2018.02.089_b0135) 2016; 148 Dao (10.1016/j.biortech.2018.02.089_b0125) 2018; 247 Dennis (10.1016/j.biortech.2018.02.089_b0130) 2013; 79 Tale (10.1016/j.biortech.2018.02.089_b0565) 2014; 169 Pancha (10.1016/j.biortech.2018.02.089_b0425) 2015; 189 10.1016/j.biortech.2018.02.089_b0620 Shim (10.1016/j.biortech.2018.02.089_b0520) 2015; 67 Ellabban (10.1016/j.biortech.2018.02.089_b0150) 2014; 39 Im (10.1016/j.biortech.2018.02.089_b0210) 2015; 193 Yang (10.1016/j.biortech.2018.02.089_b0625) 2010; 9 Choi (10.1016/j.biortech.2018.02.089_b0090) 2012; 107 Dong (10.1016/j.biortech.2018.02.089_b0140) 2015; 195 Hossain (10.1016/j.biortech.2018.02.089_b0200) 2017; 31 Ju (10.1016/j.biortech.2018.02.089_b0240) 2016; 97 Lee (10.1016/j.biortech.2018.02.089_b0350) 2017; 244 Wu (10.1016/j.biortech.2018.02.089_b0610) 2016; 98 Nevin (10.1016/j.biortech.2018.02.089_b0410) 2010; 1 Kubičkova (10.1016/j.biortech.2018.02.089_b0330) 2005; 106 Song (10.1016/j.biortech.2018.02.089_b0535) 2017; 243 Alwan (10.1016/j.biortech.2018.02.089_b0020) 2015; 498 Ji (10.1016/j.biortech.2018.02.089_b0230) 2014; 73 Li (10.1016/j.biortech.2018.02.089_b0365) 2015; 197 Speers (10.1016/j.biortech.2018.02.089_b0540) 2014; 48 Kang (10.1016/j.biortech.2018.02.089_b0255) 2014; 31 Church (10.1016/j.biortech.2018.02.089_b0115) 2017; 243 Logan (10.1016/j.biortech.2018.02.089_b0375) 2009; 7 Son (10.1016/j.biortech.2018.02.089_b0525) 2017; 244 Kim (10.1016/j.biortech.2018.02.089_b0300) 2017; 224 Liu (10.1016/j.biortech.2018.02.089_b0370) 2014; 35 Seo (10.1016/j.biortech.2018.02.089_b0505) 2016; 200 Zhang (10.1016/j.biortech.2018.02.089_b0665) 2017; 7 Roy (10.1016/j.biortech.2018.02.089_b0480) 2016; 213 Pahl (10.1016/j.biortech.2018.02.089_b0420) 2012 Mäki-Arvela (10.1016/j.biortech.2018.02.089_b0395) 2007; 21 Yun (10.1016/j.biortech.2018.02.089_b0650) 2017; 22 |
References_xml | – volume: 166 start-page: 485 year: 2014 end-page: 493 ident: b0260 article-title: Utilization of carbon dioxide in industrial flue gases for the cultivation of microalgal publication-title: Bioresour. Technol. – volume: 221 start-page: 61 year: 2016 end-page: 69 ident: b0560 article-title: Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell publication-title: Bioresour. Technol. – volume: 34 start-page: 866 year: 2016 end-page: 878 ident: b0490 article-title: Electro-fermentation–merging electrochemistry with fermentation in industrial applications publication-title: Trends Biotechnol. – volume: 186 start-page: 89 year: 2015 end-page: 96 ident: b0555 article-title: Unbalanced fermentation of glycerol in publication-title: Bioresour. Technol. – start-page: 59 year: 2017 end-page: 87 ident: b0510 article-title: Multifunctional nanoparticle applications to microalgal biorefinery publication-title: Nanotechnology for Bioenergy and Biofuel Production – volume: 106 start-page: 197 year: 2005 end-page: 200 ident: b0330 article-title: Hydrocarbons for diesel fuel via decarboxylation of vegetable oils publication-title: Catal. Today – volume: 49 start-page: 8833 year: 2015 end-page: 8843 ident: b0435 article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO publication-title: Environ. Sci. Technol. – volume: 197 start-page: 289 year: 2015 end-page: 294 ident: b0365 article-title: Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst publication-title: Bioresour. Technol. – volume: 98 start-page: 396 year: 2016 end-page: 403 ident: b0610 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. – volume: 37 start-page: 2083 year: 2014 end-page: 2094 ident: b0450 article-title: Mixotrophic cultivation of oleaginous publication-title: Bioprocess Biosyst. Eng. – volume: 189 start-page: 894 year: 2007 end-page: 901 ident: b0575 article-title: Anaerobic central metabolic pathways in publication-title: J. Bacteriol. – volume: 131 start-page: 515 year: 2013 end-page: 520 ident: b0085 article-title: Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources publication-title: Bioresour. Technol. – volume: 244 start-page: 1317 year: 2017 end-page: 1328 ident: b0350 article-title: Cell disruption and lipid extraction for microalgal biorefineries: a review publication-title: Bioresour. Technol. – volume: 23 start-page: 7138 year: 2016 end-page: 7145 ident: b0645 article-title: Inhibition of residual publication-title: Environ. Sci. Pollut. Res. – volume: 200 start-page: 1073 year: 2016 end-page: 1075 ident: b0505 article-title: Lipid extraction from microalgae cell using persulfate-based oxidation publication-title: Bioresour. Technol. – volume: 153 start-page: 408 year: 2014 end-page: 412 ident: b0430 article-title: Acid-catalyzed hot-water extraction of lipids from publication-title: Bioresour. Technol. – volume: 35 start-page: 10 year: 2016 end-page: 21 ident: b0080 article-title: Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels publication-title: Curr. Opin. Chem. Biol. – volume: 21 start-page: 30 year: 2007 end-page: 41 ident: b0395 article-title: Catalytic deoxygenation of fatty acids and their derivatives publication-title: Energy Fuel – volume: 189 start-page: 341 year: 2015 end-page: 348 ident: b0425 article-title: Salinity induced oxidative stress enhanced biofuel production potential of microalgae publication-title: Bioresour. Technol. – volume: 196 start-page: 22 year: 2015 end-page: 27 ident: b0345 article-title: Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of publication-title: Bioresour. Technol. – volume: 148 start-page: 110 year: 2016 end-page: 116 ident: b0135 article-title: Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt–Ni/Al publication-title: Fuel Process. Technol. – volume: 209 start-page: 16 year: 2016 end-page: 22 ident: b0180 article-title: Beneficial changes in biomass and lipid of microalgae publication-title: Bioresour. Technol. – volume: 114 start-page: 1283 year: 2017 end-page: 1289 ident: b0050 article-title: Acetoin production via unbalanced fermentation in publication-title: Biotechnol. Bioeng. – start-page: 165 year: 2012 end-page: 185 ident: b0420 article-title: Harvesting, thickening and dewatering microalgae biomass publication-title: Algae for Biofuels and Energy – volume: 111 start-page: 157 year: 2013 end-page: 164 ident: b0190 article-title: A commercially-viable, one-step process for production of green diesel from soybean oil on Pt/SAPO-11 publication-title: Fuel – volume: 78 start-page: 8412 year: 2012 end-page: 8420 ident: b0400 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. – volume: 77 start-page: 2882 year: 2011 end-page: 2886 ident: b0415 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. – volume: 7 start-page: 281 year: 2017 ident: b0665 article-title: Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: a comparative study of desilication and dealumination publication-title: Catalysts – reference: Yamanaka, T., 2008. Oxidation and Reduction of Iron by Bacteria. In: Chemolithoautotrophic Bacteria. Biochemistry and Environmental Biology. Springer, pp. 79–102. – volume: 11 start-page: 184 year: 2015 end-page: 193 ident: b0165 article-title: Cascading microalgae biorefinery: fast pyrolysis of publication-title: Algal Res. – volume: 159 start-page: 365 year: 2014 end-page: 372 ident: b0640 article-title: Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production publication-title: Bioresour. Technol. – volume: 244 start-page: 1198 year: 2017 end-page: 1206 ident: b0065 article-title: Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-a review publication-title: Bioresour. Technol. – volume: 87 start-page: 137 year: 2015 end-page: 144 ident: b0320 article-title: Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels publication-title: Water Res. – volume: 174 start-page: 107 year: 2016 end-page: 113 ident: b0205 article-title: Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source publication-title: Fuel – volume: 51 start-page: 1747 year: 2016 end-page: 1756 ident: b0015 article-title: Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria publication-title: Process Biochem. – volume: 79 start-page: 4008 year: 2013 end-page: 4014 ident: b0130 article-title: Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system publication-title: Appl. Environ. Microbiol. – volume: 234 start-page: 153 year: 2014 end-page: 160 ident: b0600 article-title: High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst publication-title: Catal. Today – volume: 82 start-page: 2946 year: 2018 end-page: 2969 ident: b0470 article-title: Algal green energy – R & D and technological perspectives for biodiesel production publication-title: Renewable Sustainable Energy Rev. – volume: 467 start-page: 261 year: 2013 end-page: 269 ident: b0485 article-title: A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: correlation of activity and catalyst properties publication-title: Appl. Catal., A – volume: 238 start-page: 749 year: 2017 end-page: 754 ident: b0075 article-title: An oleaginous filamentous microalgae publication-title: Bioresour. Technol. – volume: 34 start-page: 856 year: 2016 end-page: 865 ident: b0405 article-title: Electro-fermentation: how to drive fermentation using electrochemical systems publication-title: Trends Biotechnol. – volume: 245 start-page: 1498 year: 2017 end-page: 1506 ident: b0235 article-title: State of the art review of biofuels production from lignocellulose by thermophilic bacteria publication-title: Bioresour. Technol. – volume: 247 start-page: 520 year: 2018 end-page: 527 ident: b0265 article-title: Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation publication-title: Bioresour. Technol. – volume: 9 start-page: 1168 year: 2017 end-page: 1180 ident: b0010 article-title: Transport biofuels in global energy–economy modelling – a review of comprehensive energy systems assessment approaches publication-title: GCB Bioenergy – volume: 4 start-page: e36 year: 2008 ident: b0500 article-title: Computational and experimental analysis of redundancy in the central metabolism of publication-title: PLoS Comput. Biol. – volume: 8 start-page: 483 year: 2015 end-page: 489 ident: b0675 article-title: Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system publication-title: Microb. Biotechnol. – volume: 209 start-page: 615 year: 2017 end-page: 623 ident: b0120 article-title: When 2nd generation biofuel meets water – the water solubility and phase stability issue publication-title: Fuel – volume: 168 start-page: 478 year: 2013 end-page: 485 ident: b0655 article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems publication-title: J. Biotechnol. – volume: 118 start-page: 35 year: 2017 end-page: 39 ident: b0225 article-title: Phoenix Dactylifera kernel oil used as potential source for synthesizing jet fuel and green diesel publication-title: Energy Procedia – volume: 178 start-page: 166 year: 2015 end-page: 176 ident: b0045 article-title: A techno-economic review of thermochemical cellulosic biofuel pathways publication-title: Bioresour. Technol. – volume: 73 start-page: 260 year: 2014 end-page: 269 ident: b0230 article-title: Biodegradation of bisphenol A by the freshwater microalgae publication-title: Ecol. Eng. – volume: 242 start-page: 244 year: 2017 end-page: 252 ident: b0545 article-title: Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047) publication-title: Bioresour. Technol. – volume: 139 start-page: 678 year: 2015 end-page: 683 ident: b0170 article-title: Direct production of aviation fuels from microalgae lipids in water publication-title: Fuel – volume: 158 start-page: 98 year: 2015 end-page: 104 ident: b0100 article-title: The direct production of jet-fuel from non-edible oil in a single-step process publication-title: Fuel – volume: 107 start-page: 522 year: 2012 end-page: 525 ident: b0090 article-title: Recovery of silver from wastewater coupled with power generation using a microbial fuel cell publication-title: Bioresour. Technol. – volume: 39 start-page: 748 year: 2014 end-page: 764 ident: b0150 article-title: Renewable energy resources: current status, future prospects and their enabling technology publication-title: Renewable Sustainable Energy Rev. – volume: 67 start-page: 16 year: 2015 end-page: 20 ident: b0520 article-title: Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid publication-title: Catal. Commun. – volume: 193 start-page: 386 year: 2015 end-page: 392 ident: b0210 article-title: Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae publication-title: Bioresour. Technol. – volume: 215 start-page: 254 year: 2016 end-page: 264 ident: b0385 article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review publication-title: Bioresour. Technol. – volume: 44 start-page: 513 year: 2010 end-page: 517 ident: b0550 article-title: Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures publication-title: Environ. Sci. Technol. – volume: 17 start-page: 1226 year: 2015 end-page: 1234 ident: b0460 article-title: Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae publication-title: Green Chem. – volume: 38 start-page: 68 year: 2012 end-page: 94 ident: b0040 article-title: Review of fast pyrolysis of biomass and product upgrading publication-title: Biomass Bioenergy – volume: 243 start-page: 147 year: 2017 end-page: 153 ident: b0115 article-title: Effect of salt type and concentration on the growth and lipid content of publication-title: Bioresour. Technol. – volume: 190 start-page: 395 year: 2015 end-page: 401 ident: b0275 article-title: The biocathode of microbial electrochemical systems and microbially-influenced corrosion publication-title: Bioresour. Technol. – volume: 45 start-page: 202 year: 2017 end-page: 211 ident: b0390 article-title: Cellulosic ethanol: status and innovation publication-title: Curr. Opin. Biotechnol. – volume: 9 start-page: 90 year: 2010 ident: b0625 article-title: Metabolic response of publication-title: Microb. Cell Fact. – volume: 172 start-page: 138 year: 2014 end-page: 142 ident: b0340 article-title: Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass publication-title: Bioresour. Technol. – volume: 184 start-page: 379 year: 2015 end-page: 385 ident: b0070 article-title: Biological butanol production from microalgae-based biodiesel residues by publication-title: Bioresour. Technol. – volume: 244 start-page: 57 year: 2017 end-page: 62 ident: b0525 article-title: Microalgae dewatering based on forward osmosis employing proton exchange membrane publication-title: Bioresour. Technol. – volume: 199 start-page: 300 year: 2016 end-page: 310 ident: b0290 article-title: Cell-wall disruption and lipid/astaxanthin extraction from microalgae: publication-title: Bioresour. Technol. – volume: 7 start-page: 6256 year: 2017 end-page: 6267 ident: b0305 article-title: Maximizing biojet fuel production from triglyceride: importance of the hydrocracking catalyst and separation deoxygenation/hydrocracking steps publication-title: ACS Catal. – volume: 75 start-page: 7789 year: 2009 end-page: 7796 ident: b0495 article-title: Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of publication-title: Appl. Environ. Microbiol. – volume: 31 start-page: 4013 year: 2017 end-page: 4023 ident: b0200 article-title: Using subcritical water for decarboxylation of oleic acid into fuel-range hydrocarbons publication-title: Energy Fuel – volume: 6 start-page: 1442 year: 2016 end-page: 1454 ident: b0680 article-title: Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts publication-title: Catal. Sci. Technol. – volume: 18 start-page: 3684 year: 2016 end-page: 3699 ident: b0635 article-title: Catalytic hydroprocessing of microalgae-derived biofuels: a review publication-title: Green Chem. – volume: 244 start-page: 1376 year: 2017 end-page: 1383 ident: b0110 article-title: Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae publication-title: Bioresour. Technol. – volume: 213 start-page: 129 year: 2016 end-page: 139 ident: b0480 article-title: Electro-stimulated microbial factory for value added product synthesis publication-title: Bioresour. Technol. – volume: 4 start-page: 6961 year: 2014 ident: b0095 article-title: Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph publication-title: Sci. Rep.-UK – volume: 92 start-page: 2817 year: 2017 end-page: 2824 ident: b0475 article-title: Prototype of a scaled-up microbial fuel cell for copper recovery publication-title: J. Chem. Technol. Biotechnol. – volume: 327 start-page: 79 year: 2017 end-page: 90 ident: b0660 article-title: High-yield bio-oil production from macroalgae (Saccharina japonica) in supercritical ethanol and its combustion behavior publication-title: Chem. Eng. J. – volume: 23 start-page: 3842 year: 2009 end-page: 3845 ident: b0355 article-title: Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst publication-title: Energy Fuel – volume: 239 start-page: 190 year: 2017 end-page: 196 ident: b0315 article-title: Acidified-flocculation process for harvesting of microalgae: coagulant reutilization and metal-free-microalgae recovery publication-title: Bioresour. Technol. – volume: 219 start-page: 608 year: 2016 end-page: 613 ident: b0280 article-title: Magnesium aminoclay enhances lipid production of mixotrophic publication-title: Bioresour. Technol. – volume: 1 year: 2010 ident: b0160 article-title: Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria publication-title: mBio – volume: 242 start-page: 227 year: 2017 end-page: 235 ident: b0590 article-title: Bioflocculation: an alternative strategy for harvesting of microalgae–an overview publication-title: Bioresour. Technol. – volume: 10 start-page: 199 year: 2017 ident: b0295 article-title: Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant publication-title: Biotechnol. Biofuels – volume: 31 start-page: 861 year: 2014 end-page: 867 ident: b0255 article-title: Enhancing lipid productivity of publication-title: Korean J. Chem. Eng. – volume: 314 start-page: 142 year: 2014 end-page: 148 ident: b0250 article-title: Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel publication-title: J. Catal. – volume: 132 start-page: 440 year: 2013 end-page: 445 ident: b0335 article-title: Harvesting of oleaginous publication-title: Bioresour. Technol. – volume: 218 start-page: 27 year: 2016 end-page: 30 ident: b0185 article-title: Quantification of effective exoelectrogens by most probable number (MPN) in a microbial fuel cell publication-title: Bioresour. Technol. – volume: 20 start-page: 76 year: 2016 end-page: 80 ident: b0215 article-title: Biologically activated graphite fiber electrode for autotrophic acetate production from CO publication-title: Carbon Lett. – volume: 45 start-page: 1498 year: 2017 end-page: 1506 ident: b0245 article-title: State of the art review of biofuels production from lignocellulose by thermophilic bacteria publication-title: Bioresour. Technol. – volume: 80 start-page: 1345 year: 2017 end-page: 1354 ident: b0055 article-title: Possibilities for conversion of microalgae oil into aviation fuel: a review publication-title: Renewable Sustainable Energy Rev. – volume: 1 start-page: 4 year: 2010 ident: b0410 article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds publication-title: mBio – volume: 41 start-page: 1489 year: 2015 end-page: 1500 ident: b0030 article-title: Harvesting techniques applied to microalgae: a review publication-title: Renewable Sustainable Energy Rev. – volume: 35 start-page: 748 year: 2014 end-page: 756 ident: b0370 article-title: Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts publication-title: Chin. J. Catal. – volume: 45 start-page: 529 year: 2012 end-page: 540 ident: b0615 article-title: Market penetration speed and effects on CO publication-title: Energy Policy – volume: 169 start-page: 328 year: 2014 end-page: 335 ident: b0565 article-title: Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent publication-title: Bioresour. Technol. – volume: 103 start-page: 524 year: 2009 end-page: 531 ident: b0035 article-title: Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with publication-title: Biotechnol. Bioeng. – volume: 215 start-page: 675 year: 2018 end-page: 685 ident: b0105 article-title: Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO publication-title: Fuel – volume: 57 start-page: 1655 year: 2018 end-page: 1661 ident: b0515 article-title: Simulated-sunlight-driven cell lysis of magnetophoretically separated microalgae using ZnFe publication-title: Ind. Eng. Chem. Res. – volume: 498 start-page: 32 year: 2015 end-page: 40 ident: b0020 article-title: Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15 publication-title: Appl. Catal., A – volume: 169 start-page: 742 year: 2014 end-page: 749 ident: b0195 article-title: A mini review on renewable sources for biofuel publication-title: Bioresour. Technol. – volume: 7 start-page: 375 year: 2009 end-page: 381 ident: b0375 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. – volume: 146 start-page: 569 year: 2013 end-page: 573 ident: b0630 article-title: Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil publication-title: Bioresour. Technol. – volume: 172 start-page: 12 year: 2016 end-page: 22 ident: b0445 article-title: Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil publication-title: Appl. Energy aslam – volume: 6 start-page: 54 year: 2015 ident: b0270 article-title: The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in publication-title: Front. Microbiol. – volume: 4 start-page: 1447 year: 2011 end-page: 1456 ident: b0145 article-title: Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies publication-title: Energy Environ. Sci. – volume: 250 start-page: 59 year: 2017 end-page: 67 ident: b0530 article-title: Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries publication-title: Electrochim. Acta – volume: 171 start-page: 500 year: 2014 end-page: 505 ident: b0455 article-title: Improved biomass and lipid production in a mixotrophic culture of publication-title: Bioresour. Technol. – volume: 247 start-page: 561 year: 2018 end-page: 567 ident: b0125 article-title: Enhanced growth and fatty acid accumulation of microalgae publication-title: Bioresour. Technol. – volume: 243 start-page: 573 year: 2017 end-page: 582 ident: b0535 article-title: High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm publication-title: Bioresour. Technol. – volume: 250 start-page: 538 year: 2018 end-page: 547 ident: b0440 article-title: Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment publication-title: Bioresour. Technol. – volume: 233 start-page: 271 year: 2017 end-page: 283 ident: b0025 article-title: Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas publication-title: Bioresour. Technol. – volume: 195 start-page: 66 year: 2015 end-page: 72 ident: b0140 article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode publication-title: Bioresour. Technol. – volume: 97 start-page: 1 year: 2016 end-page: 7 ident: b0240 article-title: Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy publication-title: Renewable Energy – volume: 48 start-page: 6350 year: 2014 end-page: 6358 ident: b0540 article-title: Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium publication-title: Environ. Sci. Technol. – volume: 191 start-page: 166 year: 2018 end-page: 173 ident: b0220 article-title: Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator publication-title: Chemosphere – volume: 26 start-page: 431 year: 2017 end-page: 435 ident: b0310 article-title: Levulinate production from algal cell hydrolysis using publication-title: Algal Res. – volume: 6 start-page: 27820 year: 2016 ident: b0605 article-title: Catalytic decarboxylation of fatty acids to aviation fuels over nickel supported on activated carbon publication-title: Sci. Rep.-UK – volume: 73 start-page: 1015 year: 2008 end-page: 1044 ident: b0325 article-title: Future refining catalysis - Introduction of biomass feedstocks publication-title: Collect. Czech. Chem. Commun. – volume: 22 start-page: 150 year: 2017 end-page: 160 ident: b0650 article-title: Contaminated bacterial effects and qPCR application to monitor a specific bacterium in publication-title: Biotechnol. Bioprocess Eng. – volume: 50 start-page: 259 year: 2016 end-page: 264 ident: b0005 article-title: Multifunctional HDO/selective cracking Ni/HBEA catalysts to produce jet fuel and diesel from bio-oils publication-title: Chem. Eng. Trans. – volume: 224 start-page: 738 year: 2017 end-page: 742 ident: b0300 article-title: Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production publication-title: Bioresour. Technol. – volume: 235 start-page: 104 year: 2017 end-page: 112 ident: b0360 article-title: A strategy for promoting lipid production in green microalgae publication-title: Bioresour. Technol. – volume: 5 start-page: 16168 year: 2015 ident: b0580 article-title: Adaptation of the autotrophic acetogen publication-title: Sci. Rep.-UK – volume: 161 start-page: 423 year: 2014 end-page: 430 ident: b0670 article-title: Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production publication-title: Bioresour. Technol. – volume: 215 start-page: 357 year: 2016 end-page: 370 ident: b0155 article-title: Technological advances in CO publication-title: Bioresour. Technol. – volume: 221 start-page: 284 year: 2016 end-page: 290 ident: b0175 article-title: Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae publication-title: Bioresour. Technol. – volume: 220 start-page: 661 year: 2016 end-page: 665 ident: b0465 article-title: Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in publication-title: Bioresour. Technol. – volume: 22 start-page: 441 year: 2011 end-page: 448 ident: b0380 article-title: A shift in the current: new applications and concepts for microbe-electrode electron exchange publication-title: Curr. Opin. Biotechnol. – volume: 82 start-page: 3992 year: 2018 end-page: 4008 ident: b0585 article-title: The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review publication-title: Renewable Sustainable Energy Rev. – volume: 21 start-page: 250 year: 2016 end-page: 260 ident: b0285 article-title: Metabolic flux change in publication-title: Biotechnol. Bioprocess Eng. – volume: 218 start-page: 480 year: 2016 end-page: 490 ident: b0570 article-title: Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production publication-title: Bioresour. Technol. – volume: 1 start-page: 42 year: 2016 end-page: 59 ident: b0060 article-title: U.S. biofuels industry: a critical review of opportunities and challenges publication-title: Bioprod. Bus. – volume: 142 start-page: 39 year: 2013 end-page: 44 ident: b0595 article-title: Integration process of biodiesel production from filamentous oleaginous microalgae publication-title: Bioresour. Technol. – volume: 17 start-page: 1226 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0460 article-title: Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae publication-title: Green Chem. doi: 10.1039/C4GC01413H – volume: 22 start-page: 150 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0650 article-title: Contaminated bacterial effects and qPCR application to monitor a specific bacterium in Chlorella sp. KR-1 culture publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-016-0584-8 – volume: 148 start-page: 110 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0135 article-title: Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt–Ni/Al2O3 and Pd/C combined catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.02.032 – volume: 49 start-page: 8833 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0435 article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2 publication-title: Environ. Sci. Technol. doi: 10.1021/es506149d – volume: 220 start-page: 661 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0465 article-title: Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.025 – volume: 44 start-page: 513 year: 2010 ident: 10.1016/j.biortech.2018.02.089_b0550 article-title: Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures publication-title: Environ. Sci. Technol. doi: 10.1021/es902371e – volume: 218 start-page: 27 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0185 article-title: Quantification of effective exoelectrogens by most probable number (MPN) in a microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.06.066 – volume: 20 start-page: 76 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0215 article-title: Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system publication-title: Carbon Lett. doi: 10.5714/CL.2016.20.076 – volume: 169 start-page: 742 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0195 article-title: A mini review on renewable sources for biofuel publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.022 – volume: 73 start-page: 1015 year: 2008 ident: 10.1016/j.biortech.2018.02.089_b0325 article-title: Future refining catalysis - Introduction of biomass feedstocks publication-title: Collect. Czech. Chem. Commun. doi: 10.1135/cccc20081015 – volume: 107 start-page: 522 year: 2012 ident: 10.1016/j.biortech.2018.02.089_b0090 article-title: Recovery of silver from wastewater coupled with power generation using a microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.058 – volume: 171 start-page: 500 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0455 article-title: Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.112 – volume: 35 start-page: 748 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0370 article-title: Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(12)60710-4 – volume: 153 start-page: 408 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0430 article-title: Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.065 – ident: 10.1016/j.biortech.2018.02.089_b0620 – volume: 215 start-page: 254 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0385 article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.034 – volume: 233 start-page: 271 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0025 article-title: Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.111 – volume: 193 start-page: 386 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0210 article-title: Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.122 – volume: 247 start-page: 561 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0125 article-title: Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.079 – volume: 45 start-page: 529 year: 2012 ident: 10.1016/j.biortech.2018.02.089_b0615 article-title: Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan publication-title: Energy Policy doi: 10.1016/j.enpol.2012.02.068 – volume: 48 start-page: 6350 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0540 article-title: Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium publication-title: Environ. Sci. Technol. doi: 10.1021/es500690a – volume: 221 start-page: 61 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0560 article-title: Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.020 – volume: 146 start-page: 569 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0630 article-title: Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.131 – volume: 199 start-page: 300 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0290 article-title: Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.107 – volume: 6 start-page: 1442 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0680 article-title: Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01307K – volume: 23 start-page: 7138 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0645 article-title: Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4643-z – volume: 190 start-page: 395 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0275 article-title: The biocathode of microbial electrochemical systems and microbially-influenced corrosion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.084 – volume: 9 start-page: 90 year: 2010 ident: 10.1016/j.biortech.2018.02.089_b0625 article-title: Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-9-90 – start-page: 165 year: 2012 ident: 10.1016/j.biortech.2018.02.089_b0420 article-title: Harvesting, thickening and dewatering microalgae biomass – volume: 18 start-page: 3684 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0635 article-title: Catalytic hydroprocessing of microalgae-derived biofuels: a review publication-title: Green Chem. doi: 10.1039/C6GC01239F – start-page: 59 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0510 article-title: Multifunctional nanoparticle applications to microalgal biorefinery – volume: 1 start-page: 4 year: 2010 ident: 10.1016/j.biortech.2018.02.089_b0410 article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds publication-title: mBio doi: 10.1128/mBio.00103-10 – volume: 103 start-page: 524 year: 2009 ident: 10.1016/j.biortech.2018.02.089_b0035 article-title: Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22266 – volume: 80 start-page: 1345 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0055 article-title: Possibilities for conversion of microalgae oil into aviation fuel: a review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.05.224 – volume: 7 start-page: 375 year: 2009 ident: 10.1016/j.biortech.2018.02.089_b0375 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2113 – volume: 242 start-page: 227 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0590 article-title: Bioflocculation: an alternative strategy for harvesting of microalgae–an overview publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.097 – volume: 10 start-page: 199 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0295 article-title: Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0886-x – volume: 23 start-page: 3842 year: 2009 ident: 10.1016/j.biortech.2018.02.089_b0355 article-title: Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst publication-title: Energy Fuel doi: 10.1021/ef900110t – volume: 34 start-page: 866 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0490 article-title: Electro-fermentation–merging electrochemistry with fermentation in industrial applications publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.04.007 – volume: 38 start-page: 68 year: 2012 ident: 10.1016/j.biortech.2018.02.089_b0040 article-title: Review of fast pyrolysis of biomass and product upgrading publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.048 – volume: 1 year: 2010 ident: 10.1016/j.biortech.2018.02.089_b0160 article-title: Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria publication-title: mBio doi: 10.1128/mBio.00190-10 – volume: 218 start-page: 480 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0570 article-title: Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.06.086 – volume: 239 start-page: 190 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0315 article-title: Acidified-flocculation process for harvesting of microalgae: coagulant reutilization and metal-free-microalgae recovery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.021 – volume: 197 start-page: 289 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0365 article-title: Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.115 – volume: 21 start-page: 30 year: 2007 ident: 10.1016/j.biortech.2018.02.089_b0395 article-title: Catalytic deoxygenation of fatty acids and their derivatives publication-title: Energy Fuel doi: 10.1021/ef060455v – volume: 75 start-page: 7789 year: 2009 ident: 10.1016/j.biortech.2018.02.089_b0495 article-title: Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01834-09 – volume: 37 start-page: 2083 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0450 article-title: Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-014-1186-5 – volume: 209 start-page: 615 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0120 article-title: When 2nd generation biofuel meets water – the water solubility and phase stability issue publication-title: Fuel doi: 10.1016/j.fuel.2017.07.110 – volume: 186 start-page: 89 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0555 article-title: Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.116 – volume: 41 start-page: 1489 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0030 article-title: Harvesting techniques applied to microalgae: a review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.09.037 – volume: 215 start-page: 357 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0155 article-title: Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.023 – volume: 6 start-page: 54 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0270 article-title: The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00054 – volume: 244 start-page: 1376 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0110 article-title: Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.003 – volume: 184 start-page: 379 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0070 article-title: Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.017 – volume: 215 start-page: 675 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0105 article-title: Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst publication-title: Fuel doi: 10.1016/j.fuel.2017.11.094 – volume: 196 start-page: 22 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0345 article-title: Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.040 – volume: 224 start-page: 738 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0300 article-title: Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.048 – volume: 234 start-page: 153 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0600 article-title: High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2014.02.011 – volume: 92 start-page: 2817 issue: 11 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0475 article-title: Prototype of a scaled-up microbial fuel cell for copper recovery publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5353 – volume: 314 start-page: 142 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0250 article-title: Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel publication-title: J. Catal. doi: 10.1016/j.jcat.2014.04.009 – volume: 235 start-page: 104 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0360 article-title: A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.114 – volume: 244 start-page: 57 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0525 article-title: Microalgae dewatering based on forward osmosis employing proton exchange membrane publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.086 – volume: 31 start-page: 861 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0255 article-title: Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-013-0258-6 – volume: 168 start-page: 478 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0655 article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.10.001 – volume: 26 start-page: 431 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0310 article-title: Levulinate production from algal cell hydrolysis using in situ transesterification publication-title: Algal Res. doi: 10.1016/j.algal.2017.06.024 – volume: 244 start-page: 1198 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0065 article-title: Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.170 – volume: 189 start-page: 894 year: 2007 ident: 10.1016/j.biortech.2018.02.089_b0575 article-title: Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling publication-title: J. Bacteriol. doi: 10.1128/JB.00926-06 – volume: 142 start-page: 39 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0595 article-title: Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.05.058 – volume: 77 start-page: 2882 year: 2011 ident: 10.1016/j.biortech.2018.02.089_b0415 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02642-10 – volume: 242 start-page: 244 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0545 article-title: Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.175 – volume: 195 start-page: 66 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0140 article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.026 – volume: 245 start-page: 1498 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0235 article-title: State of the art review of biofuels production from lignocellulose by thermophilic bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.142 – volume: 22 start-page: 441 year: 2011 ident: 10.1016/j.biortech.2018.02.089_b0380 article-title: A shift in the current: new applications and concepts for microbe-electrode electron exchange publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.01.009 – volume: 243 start-page: 573 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0535 article-title: High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.164 – volume: 39 start-page: 748 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0150 article-title: Renewable energy resources: current status, future prospects and their enabling technology publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.07.113 – volume: 166 start-page: 485 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0260 article-title: Utilization of carbon dioxide in industrial flue gases for the cultivation of microalgal Chlorella sp. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.094 – volume: 82 start-page: 3992 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0585 article-title: The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.10.074 – volume: 221 start-page: 284 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0175 article-title: Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.036 – volume: 139 start-page: 678 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0170 article-title: Direct production of aviation fuels from microalgae lipids in water publication-title: Fuel doi: 10.1016/j.fuel.2014.09.025 – volume: 498 start-page: 32 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0020 article-title: Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2015.03.012 – volume: 114 start-page: 1283 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0050 article-title: Acetoin production via unbalanced fermentation in Shewanella oneidensis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26243 – volume: 51 start-page: 1747 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0015 article-title: Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria publication-title: Process Biochem. doi: 10.1016/j.procbio.2016.07.028 – volume: 34 start-page: 856 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0405 article-title: Electro-fermentation: how to drive fermentation using electrochemical systems publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.04.009 – volume: 213 start-page: 129 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0480 article-title: Electro-stimulated microbial factory for value added product synthesis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.052 – volume: 250 start-page: 538 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0440 article-title: Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.063 – volume: 118 start-page: 35 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0225 article-title: Phoenix Dactylifera kernel oil used as potential source for synthesizing jet fuel and green diesel publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.006 – volume: 73 start-page: 260 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0230 article-title: Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.09.070 – volume: 106 start-page: 197 year: 2005 ident: 10.1016/j.biortech.2018.02.089_b0330 article-title: Hydrocarbons for diesel fuel via decarboxylation of vegetable oils publication-title: Catal. Today doi: 10.1016/j.cattod.2005.07.188 – volume: 6 start-page: 27820 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0605 article-title: Catalytic decarboxylation of fatty acids to aviation fuels over nickel supported on activated carbon publication-title: Sci. Rep.-UK doi: 10.1038/srep27820 – volume: 7 start-page: 281 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0665 article-title: Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: a comparative study of desilication and dealumination publication-title: Catalysts doi: 10.3390/catal7100281 – volume: 174 start-page: 107 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0205 article-title: Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source publication-title: Fuel doi: 10.1016/j.fuel.2016.01.080 – volume: 219 start-page: 608 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0280 article-title: Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.034 – volume: 191 start-page: 166 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0220 article-title: Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.004 – volume: 158 start-page: 98 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0100 article-title: The direct production of jet-fuel from non-edible oil in a single-step process publication-title: Fuel doi: 10.1016/j.fuel.2015.05.020 – volume: 467 start-page: 261 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0485 article-title: A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: correlation of activity and catalyst properties publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2013.07.053 – volume: 247 start-page: 520 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0265 article-title: Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.119 – volume: 243 start-page: 147 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0115 article-title: Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.081 – volume: 131 start-page: 515 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0085 article-title: Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.176 – volume: 4 start-page: 6961 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0095 article-title: Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum publication-title: Sci. Rep.-UK doi: 10.1038/srep06961 – volume: 87 start-page: 137 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0320 article-title: Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels publication-title: Water Res. doi: 10.1016/j.watres.2015.09.011 – volume: 98 start-page: 396 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0610 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2016.04.043 – volume: 9 start-page: 1168 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0010 article-title: Transport biofuels in global energy–economy modelling – a review of comprehensive energy systems assessment approaches publication-title: GCB Bioenergy doi: 10.1111/gcbb.12431 – volume: 82 start-page: 2946 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0470 article-title: Algal green energy – R & D and technological perspectives for biodiesel production publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.10.038 – volume: 21 start-page: 250 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0285 article-title: Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-015-0777-6 – volume: 159 start-page: 365 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0640 article-title: Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.129 – volume: 97 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0240 article-title: Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy publication-title: Renewable Energy doi: 10.1016/j.renene.2016.05.075 – volume: 79 start-page: 4008 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0130 article-title: Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00569-13 – volume: 209 start-page: 16 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0180 article-title: Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.103 – volume: 78 start-page: 8412 year: 2012 ident: 10.1016/j.biortech.2018.02.089_b0400 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02401-12 – volume: 244 start-page: 1317 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0350 article-title: Cell disruption and lipid extraction for microalgal biorefineries: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.038 – volume: 50 start-page: 259 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0005 article-title: Multifunctional HDO/selective cracking Ni/HBEA catalysts to produce jet fuel and diesel from bio-oils publication-title: Chem. Eng. Trans. – volume: 189 start-page: 341 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0425 article-title: Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.017 – volume: 57 start-page: 1655 year: 2018 ident: 10.1016/j.biortech.2018.02.089_b0515 article-title: Simulated-sunlight-driven cell lysis of magnetophoretically separated microalgae using ZnFe2O4 octahedrons publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04445 – volume: 45 start-page: 1498 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0245 article-title: State of the art review of biofuels production from lignocellulose by thermophilic bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.142 – volume: 172 start-page: 12 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0445 article-title: Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil publication-title: Appl. Energy aslam doi: 10.1016/j.apenergy.2016.03.093 – volume: 250 start-page: 59 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0530 article-title: Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.045 – volume: 45 start-page: 202 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0390 article-title: Cellulosic ethanol: status and innovation publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.03.008 – volume: 7 start-page: 6256 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0305 article-title: Maximizing biojet fuel production from triglyceride: importance of the hydrocracking catalyst and separation deoxygenation/hydrocracking steps publication-title: ACS Catal. doi: 10.1021/acscatal.7b01326 – volume: 178 start-page: 166 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0045 article-title: A techno-economic review of thermochemical cellulosic biofuel pathways publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.053 – volume: 238 start-page: 749 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0075 article-title: An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.040 – volume: 4 start-page: e36 year: 2008 ident: 10.1016/j.biortech.2018.02.089_b0500 article-title: Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0040036 – volume: 132 start-page: 440 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0335 article-title: Harvesting of oleaginous Chlorella sp. by organoclays publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.102 – volume: 67 start-page: 16 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0520 article-title: Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid publication-title: Catal. Commun. doi: 10.1016/j.catcom.2015.03.034 – volume: 161 start-page: 423 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0670 article-title: Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.079 – volume: 4 start-page: 1447 year: 2011 ident: 10.1016/j.biortech.2018.02.089_b0145 article-title: Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00343c – volume: 11 start-page: 184 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0165 article-title: Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue publication-title: Algal Res. doi: 10.1016/j.algal.2015.06.017 – volume: 169 start-page: 328 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0565 article-title: Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.017 – volume: 111 start-page: 157 year: 2013 ident: 10.1016/j.biortech.2018.02.089_b0190 article-title: A commercially-viable, one-step process for production of green diesel from soybean oil on Pt/SAPO-11 publication-title: Fuel doi: 10.1016/j.fuel.2013.04.044 – volume: 5 start-page: 16168 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0580 article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products publication-title: Sci. Rep.-UK doi: 10.1038/srep16168 – volume: 327 start-page: 79 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0660 article-title: High-yield bio-oil production from macroalgae (Saccharina japonica) in supercritical ethanol and its combustion behavior publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.078 – volume: 8 start-page: 483 year: 2015 ident: 10.1016/j.biortech.2018.02.089_b0675 article-title: Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12240 – volume: 35 start-page: 10 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0080 article-title: Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.08.003 – volume: 200 start-page: 1073 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0505 article-title: Lipid extraction from microalgae cell using persulfate-based oxidation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.106 – volume: 1 start-page: 42 issue: 4 year: 2016 ident: 10.1016/j.biortech.2018.02.089_b0060 article-title: U.S. biofuels industry: a critical review of opportunities and challenges publication-title: Bioprod. Bus. – volume: 172 start-page: 138 year: 2014 ident: 10.1016/j.biortech.2018.02.089_b0340 article-title: Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.101 – volume: 31 start-page: 4013 year: 2017 ident: 10.1016/j.biortech.2018.02.089_b0200 article-title: Using subcritical water for decarboxylation of oleic acid into fuel-range hydrocarbons publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b03418 |
SSID | ssj0003172 |
Score | 2.6301649 |
SecondaryResourceType | review_article |
Snippet | •With 2DS, the biofuels’ transport-fuel share will be 30.7% by 2060.•Recent studies on advanced biofuels from different inedible feedstocks are... Biofuels are regarded as one of the most viable options for reduction of CO emissions in the transport sector. However, conventional plant-based biofuels... Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 320 |
SubjectTerms | Advanced biofuels biodiesel bioethanol Biofuels Biomass carbon dioxide Deoxygenation Drop-in fuel Electro-biofuel electrochemistry fuel production greenhouse gas emissions lipid content Lipids Microalgae mixing raw materials |
Title | Recent developments and key barriers to advanced biofuels: A short review |
URI | https://dx.doi.org/10.1016/j.biortech.2018.02.089 https://www.ncbi.nlm.nih.gov/pubmed/29523378 https://www.proquest.com/docview/2012912852 https://www.proquest.com/docview/2067255173 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAHxJvxmILEtWxtsiblVk1MAwQXmMQtStIUNqEOrduV347TBwwJ2IFbH3blOk5sK85ngHNhRYRpQ-rpkBmPWZ14imrf48wwX2ijbIFbcHcfDobs5qn7tAK9-iyMK6us1v5yTS9W6-pJu9Jm-200aj-44Ft00QM5CCsROkxQxriz8ov3rzIP9I_FTgISe4564ZTw-EKPXEVrsSnhiwK707V7_9lB_RaAFo6ovwWbVQRJ4lLIbVix2Q5sxM_TCkXD7sBar27jhm8WEAd34RrDRHQzJPmqFcqJyhKCc5loNXX963Iym5C6NoCg8Okc5bskMclf8EdIedplD4b9q8fewKu6KXiGUTHzVMi16WjfUM0oN1TwlPvGJJ0U3aSJAp0keKWYClXHahOlocXoLMWMRQulE5_uQyObZPYQSEgxyOL4QZy_TDkAnUgYinxGJMJa3YRurUJpKqhx1_HiVdY1ZWNZq1461ctOIFH1TWh_8r2VYBtLOaJ6hOQ3s5HoEZbyntVDKnFM3EaJyuxknjuiIELH3Q3-ogk5pmM-p004KO3hU-YgwvSecnH0D-mOYd3dlVVpJ9CYTef2FOOfmW4VBt6C1fj6dnD_Add_Bpk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BewAOCMpWViNxDW1iJ3a4VRWoZekFkLhZtuNAK5SiLv_POEsBieXALYo90WS8vBl5_AbgTFgRY9iQejpixmNWJ56i2vc4M8wX2iib8xbcDaLeI7t-Cp-WoFvdhXFpleXeX-zp-W5dvmmV1my9DYete-d8ixARyFFYiYgtQ92xU4U1qHf6N73BYkNGiMwPE7C_5wQ-XRQeneuhS2rNzyV8kdN3uorv32PUTz5ojkVXG7BeOpGkU-i5CUs2a8Ba53lSEmnYBqx0q0pu2PKJdHAL-ugpItKQ5CNdaEpUlhBczkSriSthNyWzManSAwgqn85RvwvSIdMX_BFSXHjZhsery4duzysLKniGUTHzVMS1aWvfUM0oN1TwlPvGJO0UkdLEgU4SfFJMRapttYnTyKKDlmLQooXSiU93oJaNM7sHJKLoZ3H8IC5hphyHTiwMRTkjEmGtbkJYmVCakm3cFb14lVVa2UhWppfO9LIdSDR9E1oLubeCb-NPibgaIfll5kgEhT9lT6shlTgm7qxEZXY8n7pOQYzYHQa_9Yk4RmQ-p03YLebDQucgxgifcrH_D-1OYKX3cHcrb_uDmwNYdS1Fktoh1GaTuT1Cd2imj8vp_g7LmglK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+and+key+barriers+to+advanced+biofuels%3A+A+short+review&rft.jtitle=Bioresource+technology&rft.au=Oh%2C+You-Kwan&rft.au=Hwang%2C+Kyung-Ran&rft.au=Kim%2C+Changman&rft.au=Kim%2C+Jung+Rae&rft.date=2018-06-01&rft.issn=0960-8524&rft.volume=257+p.320-333&rft.spage=320&rft.epage=333&rft_id=info:doi/10.1016%2Fj.biortech.2018.02.089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |