Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network

In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 42; no. 6; pp. 104 - 8
Main Authors Urtnasan, Erdenebayar, Park, Jong-Uk, Joo, Eun-Yeon, Lee, Kyoung-Joung
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
AbstractList In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
ArticleNumber 104
Author Joo, Eun-Yeon
Lee, Kyoung-Joung
Urtnasan, Erdenebayar
Park, Jong-Uk
Author_xml – sequence: 1
  givenname: Erdenebayar
  surname: Urtnasan
  fullname: Urtnasan, Erdenebayar
  organization: Department of Biomedical Engineering, College of Health Science, Yonsei University
– sequence: 2
  givenname: Jong-Uk
  surname: Park
  fullname: Park, Jong-Uk
  organization: Department of Biomedical Engineering, College of Health Science, Yonsei University
– sequence: 3
  givenname: Eun-Yeon
  surname: Joo
  fullname: Joo, Eun-Yeon
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
– sequence: 4
  givenname: Kyoung-Joung
  orcidid: 0000-0002-2704-456X
  surname: Lee
  fullname: Lee, Kyoung-Joung
  email: lkj5809@yonsei.ac.kr
  organization: Department of Biomedical Engineering, College of Health Science, Yonsei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29687192$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2KFDEUhYOMOD2jD-BGAm7cRPNfybLpaX-gcRbjgLuQqrrV1FhVaZNUiytf3ZQ9gzCgq0vI9x0u91ygsylMgNBLRt8ySqt3iVHLNKHMEGq1IPQJWjFVCaKN_XqGVpRJQ5Sy5hxdpHRHaaF09Qydc6tNxSxfoV_rOYfRZ2jxFWRoch8mHDp8Xacc5_I8Ar4ZAA54fZjA4-0RppxwF8OIPb7pp_0AZAe-xduh2DE0PrZ92Ec_4ttUvgu1CdMxDPMS7Qf8Geb4Z-QfIX57jp52fkjw4n5eotv32y-bj2R3_eHTZr0jjRQmE8-hrjupjLda2kbVDVXesFYDaOBKMa4ElbzlXVtzqgTzrHyaVskKhJRSXKI3p9xDDN9nSNmNfWpgGPwEYU6OU8EorzSzBX39CL0LcyyrLxS3whhWLYGv7qm5HqF1h9iPPv50D6ctQHUCmhhSitC5ps9-OUKOvh8co24p0Z1KdKVEt5ToaDHZI_Mh_H8OPzmpsNMe4t-l_y39BqK1rig
CitedBy_id crossref_primary_10_12677_BIPHY_2020_81001
crossref_primary_10_1109_TIM_2021_3062414
crossref_primary_10_1007_s10916_020_01676_6
crossref_primary_10_1016_j_bspc_2023_105444
crossref_primary_10_1016_j_cmpb_2020_105640
crossref_primary_10_1016_j_eswa_2021_114693
crossref_primary_10_1109_TIM_2024_3420355
crossref_primary_10_1109_ACCESS_2020_3025374
crossref_primary_10_3389_frsle_2023_1162652
crossref_primary_10_1109_ACCESS_2023_3346689
crossref_primary_10_3389_fcvm_2021_647071
crossref_primary_10_1007_s00521_018_3833_2
crossref_primary_10_1016_j_bspc_2021_102928
crossref_primary_10_2478_joeb_2020_0002
crossref_primary_10_3390_s20185037
crossref_primary_10_1109_ACCESS_2020_3009149
crossref_primary_10_1002_widm_1478
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1016_j_procs_2023_10_376
crossref_primary_10_3390_diagnostics13142417
crossref_primary_10_1109_JBHI_2022_3203560
crossref_primary_10_2147_NSS_S297856
crossref_primary_10_5664_jcsm_10532
crossref_primary_10_1155_2023_5287043
crossref_primary_10_5812_ans_144058
crossref_primary_10_1016_j_artmed_2021_102133
crossref_primary_10_1016_j_ajp_2023_103705
crossref_primary_10_1080_03091902_2022_2026504
crossref_primary_10_1177_14604582241300012
crossref_primary_10_1155_2021_5594733
crossref_primary_10_1039_C9RA00805E
crossref_primary_10_1016_j_procs_2024_09_328
crossref_primary_10_3390_diagnostics11122302
crossref_primary_10_1109_TIM_2020_3017246
crossref_primary_10_1016_j_sleepe_2022_100031
crossref_primary_10_3390_s19224934
crossref_primary_10_2139_ssrn_4150150
crossref_primary_10_1016_j_jns_2020_116723
crossref_primary_10_3390_e25060879
crossref_primary_10_3390_life12010119
crossref_primary_10_1007_s13534_023_00297_5
crossref_primary_10_1117_1_JEI_29_1_013007
crossref_primary_10_3389_fnins_2023_1155900
crossref_primary_10_1088_1361_6579_abfae5
crossref_primary_10_1080_24725579_2022_2141379
crossref_primary_10_1007_s12530_022_09445_1
crossref_primary_10_3390_s22228826
crossref_primary_10_1109_TIM_2025_3548069
crossref_primary_10_3349_ymj_2022_63_S93
crossref_primary_10_3346_jkms_2019_34_e64
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_3390_electronics9010121
crossref_primary_10_1097_WCO_0000000000000630
crossref_primary_10_1109_TII_2022_3152809
crossref_primary_10_17671_gazibtd_615014
Cites_doi 10.1016/j.medengphy.2011.12.008
10.1016/j.neucom.2015.09.116
10.1016/j.eswa.2008.11.043
10.15252/msb.20156651
10.1038/nature14539
10.1016/j.eswa.2011.04.080
10.3346/jkms.2017.32.6.893
10.1109/TASE.2014.2345667
10.1109/TITB.2012.2188299
10.1109/MSP.2012.2205597
10.1016/j.pcad.2008.03.002
10.1088/0967-3334/36/9/2009
10.1378/chest.07-0800
10.1109/TITB.2009.2031639
10.1016/j.bspc.2013.05.007
10.1210/jcem.85.3.6484
10.1109/72.977323
10.1016/j.measurement.2013.03.016
10.1109/JBHI.2016.2636665
10.1162/089976604773135104
10.1164/ajrccm.158.1.9709135
10.1088/0967-3334/31/3/001
10.1007/BF02345072
10.1109/TITB.2012.2185809
10.1109/TBME.2015.2468589
10.1136/thx.2003.015867
10.1109/TBME.2011.2167971
10.1093/sleep/20.9.705
10.1109/WSC.1994.717192
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-018-0963-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Proquest Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 8
ExternalDocumentID 29687192
10_1007_s10916_018_0963_0
Genre Journal Article
GrantInformation_xml – fundername: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education. It is a product of the Local Innovative Creative Human Resource Training Project
  grantid: NRF-2014H1C1A1063845
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
ABRTQ
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-a2ebbf458a9649c5bc05a81d6ee6e2551253042d2fdb20531a11d68d547e34443
IEDL.DBID 7X7
ISSN 0148-5598
1573-689X
IngestDate Tue Aug 05 11:31:21 EDT 2025
Fri Jul 25 18:55:46 EDT 2025
Wed Feb 19 02:43:13 EST 2025
Tue Jul 01 03:30:21 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Fri Feb 21 02:37:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Obstructive sleep apnea
Convolutional neural network
Single-lead ECG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-a2ebbf458a9649c5bc05a81d6ee6e2551253042d2fdb20531a11d68d547e34443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2704-456X
PMID 29687192
PQID 2029388174
PQPubID 54050
PageCount 8
ParticipantIDs proquest_miscellaneous_2031027619
proquest_journals_2029388174
pubmed_primary_29687192
crossref_citationtrail_10_1007_s10916_018_0963_0
crossref_primary_10_1007_s10916_018_0963_0
springer_journals_10_1007_s10916_018_0963_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yildiz, Akın, Poyraz (CR10) 2011; 38
Erdenebayar, Park, Jeong, Lee (CR15) 2017; 32
Guo, Liu, Oerlemans, Lao, Wu, Lew (CR26) 2016; 187
Ravi, Wong, Deligianni, Berthelot, Perez, Lo, Yang (CR25) 2016; 21
CR35
Engleman, Douglas (CR3) 2004; 59
CR34
Bhattacharjee, Kheirandish-Gozal, Pillar, Gozal (CR6) 2009; 51
LeCun, Bengio, Hinton (CR21) 2015; 521
CR32
Rosasco, Vito, Caponnetto, Piana, Verri (CR29) 2004; 16
Young, Evans, Finn, Palta (CR1) 1997; 20
Jafari (CR37) 2013; 8
Penzel, McNames, de Chazal, Raymond, Murray, Moody (CR9) 2002; 40
Al-Angari, Sahakian (CR19) 2012; 16
Kiranyaz, Ince, Gabbouj (CR27) 2016; 63
Xie, Minn (CR36) 2012; 16
Angermueller, Pärnamaa, Parts, Stegle (CR20) 2016; 12
Álvarez-Estévez, Moret-Bonillo (CR17) 2009; 36
Vgontzas, Papanicolaou, Bixler, Hopper, Lotsikas, Lin, Kales, Chrousos (CR4) 2000; 85
Penzel (CR8) 2000; 27
Mendez, Corthout, Van Huffel, Matteucci, Penzel, Cerutti, Bianchi (CR18) 2010; 31
Yu, Efe, Kaynak (CR31) 2002; 13
Marcos, Hornero, Alvarez, Aboy, Del Campo (CR11) 2012; 59
Park, Lee, Lee, Urtnasan, Kim, Lee (CR12) 2015; 36
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Kingsbury (CR23) 2012; 29
Abadi, Barham, Chen, Chen, Davis, Dean, Kudlur (CR33) 2016; 16
CR28
Lopez-Jimenez, Sert Kuniyoshi, Gami, Somers (CR7) 2008; 133
CR24
Khandoker, Gubbi, Palaniswami (CR16) 2009; 13
CR22
Solà-Soler, Fiz, Morera, Jané (CR14) 2012; 34
Chen, Zhang, Song (CR38) 2015; 2
Berry, Brooks, Gamaldo, Harding, Marcus, Vaughn (CR2) 2012
Barbé, Pericas, Munoz, Findley, Anto, Agusti (CR5) 1998; 158
Koley, Dey (CR13) 2013; 46
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR30) 2014; 15
F Barbé (963_CR5) 1998; 158
D Álvarez-Estévez (963_CR17) 2009; 36
F Lopez-Jimenez (963_CR7) 2008; 133
963_CR28
A Jafari (963_CR37) 2013; 8
L Chen (963_CR38) 2015; 2
T Penzel (963_CR8) 2000; 27
963_CR22
HM Engleman (963_CR3) 2004; 59
963_CR24
RB Berry (963_CR2) 2012
B Xie (963_CR36) 2012; 16
J Solà-Soler (963_CR14) 2012; 34
T Young (963_CR1) 1997; 20
Y LeCun (963_CR21) 2015; 521
BL Koley (963_CR13) 2013; 46
G Hinton (963_CR23) 2012; 29
S Kiranyaz (963_CR27) 2016; 63
963_CR32
HM Al-Angari (963_CR19) 2012; 16
M Abadi (963_CR33) 2016; 16
Y Guo (963_CR26) 2016; 187
R Bhattacharjee (963_CR6) 2009; 51
U Erdenebayar (963_CR15) 2017; 32
JV Marcos (963_CR11) 2012; 59
963_CR34
L Rosasco (963_CR29) 2004; 16
963_CR35
MO Mendez (963_CR18) 2010; 31
A Yildiz (963_CR10) 2011; 38
X Yu (963_CR31) 2002; 13
T Penzel (963_CR9) 2002; 40
AH Khandoker (963_CR16) 2009; 13
D Ravi (963_CR25) 2016; 21
N Srivastava (963_CR30) 2014; 15
JU Park (963_CR12) 2015; 36
C Angermueller (963_CR20) 2016; 12
AN Vgontzas (963_CR4) 2000; 85
References_xml – volume: 34
  start-page: 1213
  issue: 9
  year: 2012
  end-page: 1220
  ident: CR14
  article-title: Multiclass classification of subjects with sleep apnoea–hypopnoea syndrome through snoring analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.12.008
– ident: CR22
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: CR26
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 36
  start-page: 7778
  issue: 4
  year: 2009
  end-page: 7785
  ident: CR17
  article-title: Fuzzy reasoning used to detect apneic events in the sleep apnea-hypopnea syndrome
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.11.043
– volume: 12
  start-page: 878
  issue: 7
  year: 2016
  ident: CR20
  article-title: Deep learning for computational biology
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156651
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 38
  start-page: 12880
  issue: 10
  year: 2011
  end-page: 12890
  ident: CR10
  article-title: An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.080
– volume: 32
  start-page: 893
  issue: 6
  year: 2017
  end-page: 899
  ident: CR15
  article-title: Obstructive sleep apnea screening using a piezo-electric sensor
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2017.32.6.893
– volume: 2
  start-page: 106
  year: 2015
  end-page: 115
  ident: CR38
  article-title: An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2345667
– volume: 16
  start-page: 469
  issue: 3
  year: 2012
  end-page: 477
  ident: CR36
  article-title: Real-time sleep apnea detection by classifier combination
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2188299
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR23
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 51
  start-page: 416
  issue: 5
  year: 2009
  end-page: 433
  ident: CR6
  article-title: Cardiovascular complications of obstructive sleep apnea syndrome: Evidence from children
  publication-title: Prog. Cardiovasc. Dis.
  doi: 10.1016/j.pcad.2008.03.002
– volume: 27
  start-page: 255
  year: 2000
  end-page: 258
  ident: CR8
  article-title: The apnoea-ECG database
  publication-title: Comput. Cardiol.
– ident: CR35
– volume: 36
  start-page: 2009
  issue: 9
  year: 2015
  end-page: 2025
  ident: CR12
  article-title: Automatic classification of apnea/hypopnea events through sleep/wake states and severity of SDB from a pulse oximeter
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/9/2009
– volume: 133
  start-page: 793
  issue: 3
  year: 2008
  end-page: 804
  ident: CR7
  article-title: Obstructive sleep apnea: Implications for cardiac and vascular disease
  publication-title: Chest
  doi: 10.1378/chest.07-0800
– volume: 13
  start-page: 1057
  issue: 6
  year: 2009
  end-page: 1067
  ident: CR16
  article-title: Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings
  publication-title: EEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2031639
– volume: 8
  start-page: 551
  issue: 6
  year: 2013
  end-page: 558
  ident: CR37
  article-title: Sleep apnoea detection from ECG using features extracted from reconstructed phase space and frequency domain
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.05.007
– volume: 85
  start-page: 1151
  issue: 3
  year: 2000
  end-page: 1158
  ident: CR4
  article-title: Sleep apnea and daytime sleepiness and fatigue: Relation to visceral obesity, insulin resistance, and hypercytokinemia
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem.85.3.6484
– volume: 13
  start-page: 251
  issue: 1
  year: 2002
  end-page: 254
  ident: CR31
  article-title: A general backpropagation algorithm for feedforward neural networks learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.977323
– volume: 16
  start-page: 265
  year: 2016
  end-page: 283
  ident: CR33
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: OSDI
– year: 2012
  ident: CR2
  publication-title: AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications
– volume: 46
  start-page: 2082
  issue: 7
  year: 2013
  end-page: 2092
  ident: CR13
  article-title: Automatic detection of sleep apnea and hypopnea events from single channel measurement of respiration signal employing ensemble binary SVM classifiers
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.03.016
– volume: 21
  start-page: 4
  issue: 1
  year: 2016
  end-page: 21
  ident: CR25
  article-title: Deep learning for health informatics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– volume: 16
  start-page: 1063
  issue: 5
  year: 2004
  end-page: 1076
  ident: CR29
  article-title: Are loss functions all the same?
  publication-title: Neural Comput.
  doi: 10.1162/089976604773135104
– volume: 158
  start-page: 18
  issue: 1
  year: 1998
  end-page: 22
  ident: CR5
  article-title: Automobile accidents in patients with sleep apnea syndrome: An epidemiological and mechanistic study
  publication-title: A J. Res. Crit. Care Med.
  doi: 10.1164/ajrccm.158.1.9709135
– volume: 31
  start-page: 273
  issue: 3
  year: 2010
  end-page: 289
  ident: CR18
  article-title: Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/3/001
– volume: 40
  start-page: 402
  issue: 4
  year: 2002
  end-page: 407
  ident: CR9
  article-title: Systematic comparison of different algorithms for apnoea detection based on ECG recordings
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345072
– volume: 16
  start-page: 463
  issue: 3
  year: 2012
  end-page: 468
  ident: CR19
  article-title: Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2185809
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  end-page: 675
  ident: CR27
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– ident: CR32
– ident: CR34
– volume: 59
  start-page: 618
  issue: 7
  year: 2004
  end-page: 622
  ident: CR3
  article-title: Sleep 4: Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnea syndrome
  publication-title: Thorax
  doi: 10.1136/thx.2003.015867
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR30
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 141
  issue: 1
  year: 2012
  end-page: 149
  ident: CR11
  article-title: Automated prediction of the apnea-hypopnea index from nocturnal oximetry recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2167971
– ident: CR28
– volume: 20
  start-page: 705
  issue: 9
  year: 1997
  end-page: 706
  ident: CR1
  article-title: Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women
  publication-title: Sleep
  doi: 10.1093/sleep/20.9.705
– ident: CR24
– volume: 133
  start-page: 793
  issue: 3
  year: 2008
  ident: 963_CR7
  publication-title: Chest
  doi: 10.1378/chest.07-0800
– volume: 38
  start-page: 12880
  issue: 10
  year: 2011
  ident: 963_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.080
– volume: 32
  start-page: 893
  issue: 6
  year: 2017
  ident: 963_CR15
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2017.32.6.893
– volume-title: AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications
  year: 2012
  ident: 963_CR2
– volume: 158
  start-page: 18
  issue: 1
  year: 1998
  ident: 963_CR5
  publication-title: A J. Res. Crit. Care Med.
  doi: 10.1164/ajrccm.158.1.9709135
– volume: 59
  start-page: 141
  issue: 1
  year: 2012
  ident: 963_CR11
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2167971
– volume: 31
  start-page: 273
  issue: 3
  year: 2010
  ident: 963_CR18
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/3/001
– volume: 2
  start-page: 106
  year: 2015
  ident: 963_CR38
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2345667
– volume: 46
  start-page: 2082
  issue: 7
  year: 2013
  ident: 963_CR13
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.03.016
– volume: 34
  start-page: 1213
  issue: 9
  year: 2012
  ident: 963_CR14
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.12.008
– volume: 59
  start-page: 618
  issue: 7
  year: 2004
  ident: 963_CR3
  publication-title: Thorax
  doi: 10.1136/thx.2003.015867
– volume: 13
  start-page: 251
  issue: 1
  year: 2002
  ident: 963_CR31
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.977323
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 963_CR21
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 963_CR27
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 8
  start-page: 551
  issue: 6
  year: 2013
  ident: 963_CR37
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.05.007
– volume: 16
  start-page: 469
  issue: 3
  year: 2012
  ident: 963_CR36
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2188299
– ident: 963_CR28
– volume: 51
  start-page: 416
  issue: 5
  year: 2009
  ident: 963_CR6
  publication-title: Prog. Cardiovasc. Dis.
  doi: 10.1016/j.pcad.2008.03.002
– volume: 12
  start-page: 878
  issue: 7
  year: 2016
  ident: 963_CR20
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156651
– volume: 21
  start-page: 4
  issue: 1
  year: 2016
  ident: 963_CR25
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– volume: 27
  start-page: 255
  year: 2000
  ident: 963_CR8
  publication-title: Comput. Cardiol.
– volume: 13
  start-page: 1057
  issue: 6
  year: 2009
  ident: 963_CR16
  publication-title: EEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2031639
– volume: 85
  start-page: 1151
  issue: 3
  year: 2000
  ident: 963_CR4
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem.85.3.6484
– ident: 963_CR32
– volume: 20
  start-page: 705
  issue: 9
  year: 1997
  ident: 963_CR1
  publication-title: Sleep
  doi: 10.1093/sleep/20.9.705
– ident: 963_CR34
– volume: 40
  start-page: 402
  issue: 4
  year: 2002
  ident: 963_CR9
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345072
– volume: 187
  start-page: 27
  year: 2016
  ident: 963_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 16
  start-page: 1063
  issue: 5
  year: 2004
  ident: 963_CR29
  publication-title: Neural Comput.
  doi: 10.1162/089976604773135104
– ident: 963_CR35
  doi: 10.1109/WSC.1994.717192
– volume: 16
  start-page: 463
  issue: 3
  year: 2012
  ident: 963_CR19
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2185809
– volume: 16
  start-page: 265
  year: 2016
  ident: 963_CR33
  publication-title: OSDI
– volume: 15
  start-page: 1929
  year: 2014
  ident: 963_CR30
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 963_CR23
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 36
  start-page: 2009
  issue: 9
  year: 2015
  ident: 963_CR12
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/9/2009
– ident: 963_CR22
– volume: 36
  start-page: 7778
  issue: 4
  year: 2009
  ident: 963_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.11.043
– ident: 963_CR24
SSID ssj0009667
Score 2.4481766
Snippet In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Activation
Apnea
Artificial neural networks
Automation
Convolution
Datasets
EKG
Electrocardiography
Health Informatics
Health Sciences
Medicine
Medicine & Public Health
Mobile & Wireless Health
Neural networks
Patients
Sleep
Sleep apnea
Sleep disorders
Statistics for Life Sciences
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9QwFH7oCiKI6KprdZUInpRAmyZpehzWWRZh9bAO7K0k6etpaAdmdq_-676XtjPKquCph6Rp6PuSfC_vF8AHXSJti20lTVlpqasYZSgtSltHTYpc67zhaOTLr_Zipb9cm-spjns7e7vPJsm0U_8S7EZUhlRfNtez8fE-PDCsuhOIV2pxyLRr7RgjrZ3k7OOzKfNPQ_x-GN1hmHeso-nQOX8KTya2KBajeJ_BPeyP4eHlZA8_hsfjrZsYg4mew4_FzW4gDoqt-Iy75GXVi6ET38KUJ_YWxdUacSMWmx69WLK341ZwjInw4ormsEbJVTfFciyPE5O7KntwieRcQL3Ohv52witNjZN7pEfyJn8Bq_Pl97MLOZVYkFGXbie9whA6bZyvra6jCTE3niisRbRI2gbRH77vaFXXBsXr1RfU6FqjKyy11uVLOOqHHl-BqHx0NuSxKLzXxCtc1RWdMyoUOpgqrzLI53_dxCn_OJfBWDeHzMksnobE07B4mjyDj_tXNmPyjX91Pp0F2EzrcNsQPurSOVK7Mni_b6YVxGYR3-Nww32I4iq-zsngZBT8_muqtqRR1iqDTzMSDoP_dSqv_6v3G3ikEiQZmadwRHjAt8R0duFdQvZPnyLyuQ
  priority: 102
  providerName: Springer Nature
Title Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network
URI https://link.springer.com/article/10.1007/s10916-018-0963-0
https://www.ncbi.nlm.nih.gov/pubmed/29687192
https://www.proquest.com/docview/2029388174
https://www.proquest.com/docview/2031027619
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oBiKI6NTZOUcEn5RAP9IkfZI6ezeUTXFeuD6VJE2fLu2Ve7dX__Wd06b3IsO9NNCkbeg5SX7nG-C9yDxui43ieaYEF8o5bjPpuSycQEGu0SanaOSLS3k-F18X-SIo3NbBrXLaE4eNuukd6chJSC8yrRFAf1r94VQ1iqyroYTGQ9in1GXk0qUWapd0V8oxXFpoTonIJ6vmGDqHwAgFaTL-kynz33PpDti8Yygdzp_ZM3gagCMrR0o_hwe-O4BHF8E0fgBPRgUcG-OKXsDf8nrTIxz1DfviN4PDVcf6ln23IWXsjWdXS-9XrFx13rCKHB_XjMJNmGFXOIel51SAk1VjpRw3eK6SMxcb_Axw1Gnf3QTWxalRno-hGRzLX8J8Vv06Peeh2gJ3ItMbblJvbStybQopCpdbF-cG0az0XnoUPBAJkeqjSdvGprR0TYKdusmF8pkQInsFe13f-dfAlHFa2tgliTECIYZWbdLqPLWJsLmKVQTx9K9rF1KRU0WMZb1LokzkqZE8NZGnjiP4sH1kNebhuG_w8UTAOizJdb1joAjebbtxMZGFxHS-v6YxiHZT0uxEcDgSfvu1tJAoXBZpBB8nTti9_L9TObp_Km_gcTrwILHiMewhA_i3iHI29mRgZbzq2dkJ7Jdnv79V2H6uLn_8xLvztLwFgHD7Nw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgESQlBegQJGggvIUmI7jnNAaNXusqXdcmgr9RZsxzmtkkW7LeLEP-I3MpPHrlBFbz3lYMexMp_tbzwvgHdKBtwWy4ynMlNcZd5zJ3XgOvcKFbnS2JSikWfHenqmvp6n51vwZ4iFIbfKYU9sN-qy8XRHTkp6Lo1BAv158YNT1Siyrg4lNDpYHIZfP1FlW3462Ef5vhdiMj7dm_K-qgD3SpoVtyI4V6nU2Fyr3KfOx6lF1qZD0AEJNp74pOKXoiqdIIjaBBtNmaosSKWUxHFvwW0lZU4ryky-bJL8at2FZyvDKfH5YEXtQvWQiKHiTs4GZDr99xy8Qm6vGGbb827yEB70RJWNOmQ9gq1Q78CdWW-K34H73YUf6-KYHsPv0cWqQfobSrYfVq2DV82ain1zfYray8BO5iEs2GhRB8vG5Gi5ZBTewiw7wTnMA6eCn2zcVebxracsOY-x1q8Be-019WW_VHBqlFekfbSO7E_g7Ebk8BS266YOz4Fl1hvtYp8k1iqkNCarksqkwiXKpVmcRRAP_7rwfepzqsAxLzZJm0k8BYqnIPEUcQQf1q8surwf13XeHQRY9FvAstgANoK362ZcvGSRsXVoLqgPsmtBN0kRPOsEv_6ayDUqs7mI4OOAhM3g_53Ki-un8gbuTk9nR8XRwfHhS7gnWjwSLHdhG8EQXiHDWrnXLawZfL_pdfQXomkyEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVICEF5BQoYCS4gi8RxbOeA0Kq7q5bSglQq7S21Hee0ShbttogT_4tfx0weu0IVvfWUQ5zEynxjf-N5AbyRacBlsdQ8S7XkUnvPXaoCV7mXaMiVxmaUjXx8og7O5OdZNtuCP0MuDIVVDmtiu1CXjaczcjLS89QYJNAfqj4s4tt4-mnxg1MHKfK0Du00OogchV8_0Xxbfjwco6zfCjGdfN8_4H2HAe5lalbciuBcJTNjcyVznzkfZxYZnApBBSTbuPuTuV-KqnSC4GoTvGnKTOqQSilTfO8tuK3TLCEd0zO9KfirVJeqLQ2nIuiDR7VL20NShkY8BR6QG_XfPfEK0b3ipG33vul9uNeTVjbqUPYAtkK9CzvHvVt-F-52h3-sy2l6CL9HF6sGqXAo2Tis2mCvmjUV--r6crWXgZ3OQ1iw0aIOlk0o6HLJKNWFWXaKc5gHTs0_2aTr0uPbqFkKJGNtjAOO2m_qy15tcGpUY6S9tEHtj-DsRuTwGLbrpg5PgWnrjXKxTxJrJdIbo6ukMplwiXSZjnUE8fCvC9-XQaduHPNiU8CZxFOgeAoSTxFH8G79yKKrAXLd4L1BgEW_HCyLDXgjeL2-jYpM3hlbh-aCxiDTFnSqFMGTTvDrr4lcoWGbiwjeD0jYvPy_U3l2_VRewQ5qUPHl8OToOdwRLRwJlXuwjVgIL5BsrdzLFtUMzm9ajf4C_qE2Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Obstructive+Sleep+Apnea+Events+from+a+Single-Lead+Electrocardiogram+Using+a+Convolutional+Neural+Network&rft.jtitle=Journal+of+medical+systems&rft.au=Urtnasan%2C+Erdenebayar&rft.au=Jong-Uk+Park&rft.au=Eun-Yeon+Joo&rft.au=Kyoung-Joung%2C+Lee&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=6&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1007%2Fs10916-018-0963-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon