Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network
In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One...
Saved in:
Published in | Journal of medical systems Vol. 42; no. 6; pp. 104 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an
F
1
-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA. |
---|---|
AbstractList | In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA. In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA. In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA. In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA. |
ArticleNumber | 104 |
Author | Joo, Eun-Yeon Lee, Kyoung-Joung Urtnasan, Erdenebayar Park, Jong-Uk |
Author_xml | – sequence: 1 givenname: Erdenebayar surname: Urtnasan fullname: Urtnasan, Erdenebayar organization: Department of Biomedical Engineering, College of Health Science, Yonsei University – sequence: 2 givenname: Jong-Uk surname: Park fullname: Park, Jong-Uk organization: Department of Biomedical Engineering, College of Health Science, Yonsei University – sequence: 3 givenname: Eun-Yeon surname: Joo fullname: Joo, Eun-Yeon organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine – sequence: 4 givenname: Kyoung-Joung orcidid: 0000-0002-2704-456X surname: Lee fullname: Lee, Kyoung-Joung email: lkj5809@yonsei.ac.kr organization: Department of Biomedical Engineering, College of Health Science, Yonsei University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687192$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2KFDEUhYOMOD2jD-BGAm7cRPNfybLpaX-gcRbjgLuQqrrV1FhVaZNUiytf3ZQ9gzCgq0vI9x0u91ygsylMgNBLRt8ySqt3iVHLNKHMEGq1IPQJWjFVCaKN_XqGVpRJQ5Sy5hxdpHRHaaF09Qydc6tNxSxfoV_rOYfRZ2jxFWRoch8mHDp8Xacc5_I8Ar4ZAA54fZjA4-0RppxwF8OIPb7pp_0AZAe-xduh2DE0PrZ92Ec_4ttUvgu1CdMxDPMS7Qf8Geb4Z-QfIX57jp52fkjw4n5eotv32y-bj2R3_eHTZr0jjRQmE8-hrjupjLda2kbVDVXesFYDaOBKMa4ElbzlXVtzqgTzrHyaVskKhJRSXKI3p9xDDN9nSNmNfWpgGPwEYU6OU8EorzSzBX39CL0LcyyrLxS3whhWLYGv7qm5HqF1h9iPPv50D6ctQHUCmhhSitC5ps9-OUKOvh8co24p0Z1KdKVEt5ToaDHZI_Mh_H8OPzmpsNMe4t-l_y39BqK1rig |
CitedBy_id | crossref_primary_10_12677_BIPHY_2020_81001 crossref_primary_10_1109_TIM_2021_3062414 crossref_primary_10_1007_s10916_020_01676_6 crossref_primary_10_1016_j_bspc_2023_105444 crossref_primary_10_1016_j_cmpb_2020_105640 crossref_primary_10_1016_j_eswa_2021_114693 crossref_primary_10_1109_TIM_2024_3420355 crossref_primary_10_1109_ACCESS_2020_3025374 crossref_primary_10_3389_frsle_2023_1162652 crossref_primary_10_1109_ACCESS_2023_3346689 crossref_primary_10_3389_fcvm_2021_647071 crossref_primary_10_1007_s00521_018_3833_2 crossref_primary_10_1016_j_bspc_2021_102928 crossref_primary_10_2478_joeb_2020_0002 crossref_primary_10_3390_s20185037 crossref_primary_10_1109_ACCESS_2020_3009149 crossref_primary_10_1002_widm_1478 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_1016_j_procs_2023_10_376 crossref_primary_10_3390_diagnostics13142417 crossref_primary_10_1109_JBHI_2022_3203560 crossref_primary_10_2147_NSS_S297856 crossref_primary_10_5664_jcsm_10532 crossref_primary_10_1155_2023_5287043 crossref_primary_10_5812_ans_144058 crossref_primary_10_1016_j_artmed_2021_102133 crossref_primary_10_1016_j_ajp_2023_103705 crossref_primary_10_1080_03091902_2022_2026504 crossref_primary_10_1177_14604582241300012 crossref_primary_10_1155_2021_5594733 crossref_primary_10_1039_C9RA00805E crossref_primary_10_1016_j_procs_2024_09_328 crossref_primary_10_3390_diagnostics11122302 crossref_primary_10_1109_TIM_2020_3017246 crossref_primary_10_1016_j_sleepe_2022_100031 crossref_primary_10_3390_s19224934 crossref_primary_10_2139_ssrn_4150150 crossref_primary_10_1016_j_jns_2020_116723 crossref_primary_10_3390_e25060879 crossref_primary_10_3390_life12010119 crossref_primary_10_1007_s13534_023_00297_5 crossref_primary_10_1117_1_JEI_29_1_013007 crossref_primary_10_3389_fnins_2023_1155900 crossref_primary_10_1088_1361_6579_abfae5 crossref_primary_10_1080_24725579_2022_2141379 crossref_primary_10_1007_s12530_022_09445_1 crossref_primary_10_3390_s22228826 crossref_primary_10_1109_TIM_2025_3548069 crossref_primary_10_3349_ymj_2022_63_S93 crossref_primary_10_3346_jkms_2019_34_e64 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_3390_electronics9010121 crossref_primary_10_1097_WCO_0000000000000630 crossref_primary_10_1109_TII_2022_3152809 crossref_primary_10_17671_gazibtd_615014 |
Cites_doi | 10.1016/j.medengphy.2011.12.008 10.1016/j.neucom.2015.09.116 10.1016/j.eswa.2008.11.043 10.15252/msb.20156651 10.1038/nature14539 10.1016/j.eswa.2011.04.080 10.3346/jkms.2017.32.6.893 10.1109/TASE.2014.2345667 10.1109/TITB.2012.2188299 10.1109/MSP.2012.2205597 10.1016/j.pcad.2008.03.002 10.1088/0967-3334/36/9/2009 10.1378/chest.07-0800 10.1109/TITB.2009.2031639 10.1016/j.bspc.2013.05.007 10.1210/jcem.85.3.6484 10.1109/72.977323 10.1016/j.measurement.2013.03.016 10.1109/JBHI.2016.2636665 10.1162/089976604773135104 10.1164/ajrccm.158.1.9709135 10.1088/0967-3334/31/3/001 10.1007/BF02345072 10.1109/TITB.2012.2185809 10.1109/TBME.2015.2468589 10.1136/thx.2003.015867 10.1109/TBME.2011.2167971 10.1093/sleep/20.9.705 10.1109/WSC.1994.717192 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s10916-018-0963-0 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Proquest Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-689X |
EndPage | 8 |
ExternalDocumentID | 29687192 10_1007_s10916_018_0963_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education. It is a product of the Local Innovative Creative Human Resource Training Project grantid: NRF-2014H1C1A1063845 |
GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK ABRTQ F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c438t-a2ebbf458a9649c5bc05a81d6ee6e2551253042d2fdb20531a11d68d547e34443 |
IEDL.DBID | 7X7 |
ISSN | 0148-5598 1573-689X |
IngestDate | Tue Aug 05 11:31:21 EDT 2025 Fri Jul 25 18:55:46 EDT 2025 Wed Feb 19 02:43:13 EST 2025 Tue Jul 01 03:30:21 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Fri Feb 21 02:37:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Obstructive sleep apnea Convolutional neural network Single-lead ECG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-a2ebbf458a9649c5bc05a81d6ee6e2551253042d2fdb20531a11d68d547e34443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2704-456X |
PMID | 29687192 |
PQID | 2029388174 |
PQPubID | 54050 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2031027619 proquest_journals_2029388174 pubmed_primary_29687192 crossref_citationtrail_10_1007_s10916_018_0963_0 crossref_primary_10_1007_s10916_018_0963_0 springer_journals_10_1007_s10916_018_0963_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of medical systems |
PublicationTitleAbbrev | J Med Syst |
PublicationTitleAlternate | J Med Syst |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Yildiz, Akın, Poyraz (CR10) 2011; 38 Erdenebayar, Park, Jeong, Lee (CR15) 2017; 32 Guo, Liu, Oerlemans, Lao, Wu, Lew (CR26) 2016; 187 Ravi, Wong, Deligianni, Berthelot, Perez, Lo, Yang (CR25) 2016; 21 CR35 Engleman, Douglas (CR3) 2004; 59 CR34 Bhattacharjee, Kheirandish-Gozal, Pillar, Gozal (CR6) 2009; 51 LeCun, Bengio, Hinton (CR21) 2015; 521 CR32 Rosasco, Vito, Caponnetto, Piana, Verri (CR29) 2004; 16 Young, Evans, Finn, Palta (CR1) 1997; 20 Jafari (CR37) 2013; 8 Penzel, McNames, de Chazal, Raymond, Murray, Moody (CR9) 2002; 40 Al-Angari, Sahakian (CR19) 2012; 16 Kiranyaz, Ince, Gabbouj (CR27) 2016; 63 Xie, Minn (CR36) 2012; 16 Angermueller, Pärnamaa, Parts, Stegle (CR20) 2016; 12 Álvarez-Estévez, Moret-Bonillo (CR17) 2009; 36 Vgontzas, Papanicolaou, Bixler, Hopper, Lotsikas, Lin, Kales, Chrousos (CR4) 2000; 85 Penzel (CR8) 2000; 27 Mendez, Corthout, Van Huffel, Matteucci, Penzel, Cerutti, Bianchi (CR18) 2010; 31 Yu, Efe, Kaynak (CR31) 2002; 13 Marcos, Hornero, Alvarez, Aboy, Del Campo (CR11) 2012; 59 Park, Lee, Lee, Urtnasan, Kim, Lee (CR12) 2015; 36 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Kingsbury (CR23) 2012; 29 Abadi, Barham, Chen, Chen, Davis, Dean, Kudlur (CR33) 2016; 16 CR28 Lopez-Jimenez, Sert Kuniyoshi, Gami, Somers (CR7) 2008; 133 CR24 Khandoker, Gubbi, Palaniswami (CR16) 2009; 13 CR22 Solà-Soler, Fiz, Morera, Jané (CR14) 2012; 34 Chen, Zhang, Song (CR38) 2015; 2 Berry, Brooks, Gamaldo, Harding, Marcus, Vaughn (CR2) 2012 Barbé, Pericas, Munoz, Findley, Anto, Agusti (CR5) 1998; 158 Koley, Dey (CR13) 2013; 46 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR30) 2014; 15 F Barbé (963_CR5) 1998; 158 D Álvarez-Estévez (963_CR17) 2009; 36 F Lopez-Jimenez (963_CR7) 2008; 133 963_CR28 A Jafari (963_CR37) 2013; 8 L Chen (963_CR38) 2015; 2 T Penzel (963_CR8) 2000; 27 963_CR22 HM Engleman (963_CR3) 2004; 59 963_CR24 RB Berry (963_CR2) 2012 B Xie (963_CR36) 2012; 16 J Solà-Soler (963_CR14) 2012; 34 T Young (963_CR1) 1997; 20 Y LeCun (963_CR21) 2015; 521 BL Koley (963_CR13) 2013; 46 G Hinton (963_CR23) 2012; 29 S Kiranyaz (963_CR27) 2016; 63 963_CR32 HM Al-Angari (963_CR19) 2012; 16 M Abadi (963_CR33) 2016; 16 Y Guo (963_CR26) 2016; 187 R Bhattacharjee (963_CR6) 2009; 51 U Erdenebayar (963_CR15) 2017; 32 JV Marcos (963_CR11) 2012; 59 963_CR34 L Rosasco (963_CR29) 2004; 16 963_CR35 MO Mendez (963_CR18) 2010; 31 A Yildiz (963_CR10) 2011; 38 X Yu (963_CR31) 2002; 13 T Penzel (963_CR9) 2002; 40 AH Khandoker (963_CR16) 2009; 13 D Ravi (963_CR25) 2016; 21 N Srivastava (963_CR30) 2014; 15 JU Park (963_CR12) 2015; 36 C Angermueller (963_CR20) 2016; 12 AN Vgontzas (963_CR4) 2000; 85 |
References_xml | – volume: 34 start-page: 1213 issue: 9 year: 2012 end-page: 1220 ident: CR14 article-title: Multiclass classification of subjects with sleep apnoea–hypopnoea syndrome through snoring analysis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.12.008 – ident: CR22 – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: CR26 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 36 start-page: 7778 issue: 4 year: 2009 end-page: 7785 ident: CR17 article-title: Fuzzy reasoning used to detect apneic events in the sleep apnea-hypopnea syndrome publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.11.043 – volume: 12 start-page: 878 issue: 7 year: 2016 ident: CR20 article-title: Deep learning for computational biology publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156651 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 38 start-page: 12880 issue: 10 year: 2011 end-page: 12890 ident: CR10 article-title: An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.080 – volume: 32 start-page: 893 issue: 6 year: 2017 end-page: 899 ident: CR15 article-title: Obstructive sleep apnea screening using a piezo-electric sensor publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2017.32.6.893 – volume: 2 start-page: 106 year: 2015 end-page: 115 ident: CR38 article-title: An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2345667 – volume: 16 start-page: 469 issue: 3 year: 2012 end-page: 477 ident: CR36 article-title: Real-time sleep apnea detection by classifier combination publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2188299 – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR23 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 51 start-page: 416 issue: 5 year: 2009 end-page: 433 ident: CR6 article-title: Cardiovascular complications of obstructive sleep apnea syndrome: Evidence from children publication-title: Prog. Cardiovasc. Dis. doi: 10.1016/j.pcad.2008.03.002 – volume: 27 start-page: 255 year: 2000 end-page: 258 ident: CR8 article-title: The apnoea-ECG database publication-title: Comput. Cardiol. – ident: CR35 – volume: 36 start-page: 2009 issue: 9 year: 2015 end-page: 2025 ident: CR12 article-title: Automatic classification of apnea/hypopnea events through sleep/wake states and severity of SDB from a pulse oximeter publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/9/2009 – volume: 133 start-page: 793 issue: 3 year: 2008 end-page: 804 ident: CR7 article-title: Obstructive sleep apnea: Implications for cardiac and vascular disease publication-title: Chest doi: 10.1378/chest.07-0800 – volume: 13 start-page: 1057 issue: 6 year: 2009 end-page: 1067 ident: CR16 article-title: Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings publication-title: EEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2031639 – volume: 8 start-page: 551 issue: 6 year: 2013 end-page: 558 ident: CR37 article-title: Sleep apnoea detection from ECG using features extracted from reconstructed phase space and frequency domain publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.05.007 – volume: 85 start-page: 1151 issue: 3 year: 2000 end-page: 1158 ident: CR4 article-title: Sleep apnea and daytime sleepiness and fatigue: Relation to visceral obesity, insulin resistance, and hypercytokinemia publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.85.3.6484 – volume: 13 start-page: 251 issue: 1 year: 2002 end-page: 254 ident: CR31 article-title: A general backpropagation algorithm for feedforward neural networks learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.977323 – volume: 16 start-page: 265 year: 2016 end-page: 283 ident: CR33 article-title: TensorFlow: A system for large-scale machine learning publication-title: OSDI – year: 2012 ident: CR2 publication-title: AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications – volume: 46 start-page: 2082 issue: 7 year: 2013 end-page: 2092 ident: CR13 article-title: Automatic detection of sleep apnea and hypopnea events from single channel measurement of respiration signal employing ensemble binary SVM classifiers publication-title: Measurement doi: 10.1016/j.measurement.2013.03.016 – volume: 21 start-page: 4 issue: 1 year: 2016 end-page: 21 ident: CR25 article-title: Deep learning for health informatics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636665 – volume: 16 start-page: 1063 issue: 5 year: 2004 end-page: 1076 ident: CR29 article-title: Are loss functions all the same? publication-title: Neural Comput. doi: 10.1162/089976604773135104 – volume: 158 start-page: 18 issue: 1 year: 1998 end-page: 22 ident: CR5 article-title: Automobile accidents in patients with sleep apnea syndrome: An epidemiological and mechanistic study publication-title: A J. Res. Crit. Care Med. doi: 10.1164/ajrccm.158.1.9709135 – volume: 31 start-page: 273 issue: 3 year: 2010 end-page: 289 ident: CR18 article-title: Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/3/001 – volume: 40 start-page: 402 issue: 4 year: 2002 end-page: 407 ident: CR9 article-title: Systematic comparison of different algorithms for apnoea detection based on ECG recordings publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345072 – volume: 16 start-page: 463 issue: 3 year: 2012 end-page: 468 ident: CR19 article-title: Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2185809 – volume: 63 start-page: 664 issue: 3 year: 2016 end-page: 675 ident: CR27 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – ident: CR32 – ident: CR34 – volume: 59 start-page: 618 issue: 7 year: 2004 end-page: 622 ident: CR3 article-title: Sleep 4: Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnea syndrome publication-title: Thorax doi: 10.1136/thx.2003.015867 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR30 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 141 issue: 1 year: 2012 end-page: 149 ident: CR11 article-title: Automated prediction of the apnea-hypopnea index from nocturnal oximetry recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2167971 – ident: CR28 – volume: 20 start-page: 705 issue: 9 year: 1997 end-page: 706 ident: CR1 article-title: Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women publication-title: Sleep doi: 10.1093/sleep/20.9.705 – ident: CR24 – volume: 133 start-page: 793 issue: 3 year: 2008 ident: 963_CR7 publication-title: Chest doi: 10.1378/chest.07-0800 – volume: 38 start-page: 12880 issue: 10 year: 2011 ident: 963_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.080 – volume: 32 start-page: 893 issue: 6 year: 2017 ident: 963_CR15 publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2017.32.6.893 – volume-title: AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications year: 2012 ident: 963_CR2 – volume: 158 start-page: 18 issue: 1 year: 1998 ident: 963_CR5 publication-title: A J. Res. Crit. Care Med. doi: 10.1164/ajrccm.158.1.9709135 – volume: 59 start-page: 141 issue: 1 year: 2012 ident: 963_CR11 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2167971 – volume: 31 start-page: 273 issue: 3 year: 2010 ident: 963_CR18 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/3/001 – volume: 2 start-page: 106 year: 2015 ident: 963_CR38 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2345667 – volume: 46 start-page: 2082 issue: 7 year: 2013 ident: 963_CR13 publication-title: Measurement doi: 10.1016/j.measurement.2013.03.016 – volume: 34 start-page: 1213 issue: 9 year: 2012 ident: 963_CR14 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.12.008 – volume: 59 start-page: 618 issue: 7 year: 2004 ident: 963_CR3 publication-title: Thorax doi: 10.1136/thx.2003.015867 – volume: 13 start-page: 251 issue: 1 year: 2002 ident: 963_CR31 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.977323 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 963_CR21 publication-title: Nature doi: 10.1038/nature14539 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 963_CR27 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 8 start-page: 551 issue: 6 year: 2013 ident: 963_CR37 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.05.007 – volume: 16 start-page: 469 issue: 3 year: 2012 ident: 963_CR36 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2188299 – ident: 963_CR28 – volume: 51 start-page: 416 issue: 5 year: 2009 ident: 963_CR6 publication-title: Prog. Cardiovasc. Dis. doi: 10.1016/j.pcad.2008.03.002 – volume: 12 start-page: 878 issue: 7 year: 2016 ident: 963_CR20 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156651 – volume: 21 start-page: 4 issue: 1 year: 2016 ident: 963_CR25 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636665 – volume: 27 start-page: 255 year: 2000 ident: 963_CR8 publication-title: Comput. Cardiol. – volume: 13 start-page: 1057 issue: 6 year: 2009 ident: 963_CR16 publication-title: EEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2031639 – volume: 85 start-page: 1151 issue: 3 year: 2000 ident: 963_CR4 publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.85.3.6484 – ident: 963_CR32 – volume: 20 start-page: 705 issue: 9 year: 1997 ident: 963_CR1 publication-title: Sleep doi: 10.1093/sleep/20.9.705 – ident: 963_CR34 – volume: 40 start-page: 402 issue: 4 year: 2002 ident: 963_CR9 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345072 – volume: 187 start-page: 27 year: 2016 ident: 963_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 16 start-page: 1063 issue: 5 year: 2004 ident: 963_CR29 publication-title: Neural Comput. doi: 10.1162/089976604773135104 – ident: 963_CR35 doi: 10.1109/WSC.1994.717192 – volume: 16 start-page: 463 issue: 3 year: 2012 ident: 963_CR19 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2185809 – volume: 16 start-page: 265 year: 2016 ident: 963_CR33 publication-title: OSDI – volume: 15 start-page: 1929 year: 2014 ident: 963_CR30 publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 963_CR23 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 36 start-page: 2009 issue: 9 year: 2015 ident: 963_CR12 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/9/2009 – ident: 963_CR22 – volume: 36 start-page: 7778 issue: 4 year: 2009 ident: 963_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.11.043 – ident: 963_CR24 |
SSID | ssj0009667 |
Score | 2.4481766 |
Snippet | In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Activation Apnea Artificial neural networks Automation Convolution Datasets EKG Electrocardiography Health Informatics Health Sciences Medicine Medicine & Public Health Mobile & Wireless Health Neural networks Patients Sleep Sleep apnea Sleep disorders Statistics for Life Sciences Training |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9QwFH7oCiKI6KprdZUInpRAmyZpehzWWRZh9bAO7K0k6etpaAdmdq_-676XtjPKquCph6Rp6PuSfC_vF8AHXSJti20lTVlpqasYZSgtSltHTYpc67zhaOTLr_Zipb9cm-spjns7e7vPJsm0U_8S7EZUhlRfNtez8fE-PDCsuhOIV2pxyLRr7RgjrZ3k7OOzKfNPQ_x-GN1hmHeso-nQOX8KTya2KBajeJ_BPeyP4eHlZA8_hsfjrZsYg4mew4_FzW4gDoqt-Iy75GXVi6ET38KUJ_YWxdUacSMWmx69WLK341ZwjInw4ormsEbJVTfFciyPE5O7KntwieRcQL3Ohv52witNjZN7pEfyJn8Bq_Pl97MLOZVYkFGXbie9whA6bZyvra6jCTE3niisRbRI2gbRH77vaFXXBsXr1RfU6FqjKyy11uVLOOqHHl-BqHx0NuSxKLzXxCtc1RWdMyoUOpgqrzLI53_dxCn_OJfBWDeHzMksnobE07B4mjyDj_tXNmPyjX91Pp0F2EzrcNsQPurSOVK7Mni_b6YVxGYR3-Nww32I4iq-zsngZBT8_muqtqRR1iqDTzMSDoP_dSqv_6v3G3ikEiQZmadwRHjAt8R0duFdQvZPnyLyuQ priority: 102 providerName: Springer Nature |
Title | Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network |
URI | https://link.springer.com/article/10.1007/s10916-018-0963-0 https://www.ncbi.nlm.nih.gov/pubmed/29687192 https://www.proquest.com/docview/2029388174 https://www.proquest.com/docview/2031027619 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oBiKI6NTZOUcEn5RAP9IkfZI6ezeUTXFeuD6VJE2fLu2Ve7dX__Wd06b3IsO9NNCkbeg5SX7nG-C9yDxui43ieaYEF8o5bjPpuSycQEGu0SanaOSLS3k-F18X-SIo3NbBrXLaE4eNuukd6chJSC8yrRFAf1r94VQ1iqyroYTGQ9in1GXk0qUWapd0V8oxXFpoTonIJ6vmGDqHwAgFaTL-kynz33PpDti8Yygdzp_ZM3gagCMrR0o_hwe-O4BHF8E0fgBPRgUcG-OKXsDf8nrTIxz1DfviN4PDVcf6ln23IWXsjWdXS-9XrFx13rCKHB_XjMJNmGFXOIel51SAk1VjpRw3eK6SMxcb_Axw1Gnf3QTWxalRno-hGRzLX8J8Vv06Peeh2gJ3ItMbblJvbStybQopCpdbF-cG0az0XnoUPBAJkeqjSdvGprR0TYKdusmF8pkQInsFe13f-dfAlHFa2tgliTECIYZWbdLqPLWJsLmKVQTx9K9rF1KRU0WMZb1LokzkqZE8NZGnjiP4sH1kNebhuG_w8UTAOizJdb1joAjebbtxMZGFxHS-v6YxiHZT0uxEcDgSfvu1tJAoXBZpBB8nTti9_L9TObp_Km_gcTrwILHiMewhA_i3iHI29mRgZbzq2dkJ7Jdnv79V2H6uLn_8xLvztLwFgHD7Nw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgESQlBegQJGggvIUmI7jnNAaNXusqXdcmgr9RZsxzmtkkW7LeLEP-I3MpPHrlBFbz3lYMexMp_tbzwvgHdKBtwWy4ynMlNcZd5zJ3XgOvcKFbnS2JSikWfHenqmvp6n51vwZ4iFIbfKYU9sN-qy8XRHTkp6Lo1BAv158YNT1Siyrg4lNDpYHIZfP1FlW3462Ef5vhdiMj7dm_K-qgD3SpoVtyI4V6nU2Fyr3KfOx6lF1qZD0AEJNp74pOKXoiqdIIjaBBtNmaosSKWUxHFvwW0lZU4ryky-bJL8at2FZyvDKfH5YEXtQvWQiKHiTs4GZDr99xy8Qm6vGGbb827yEB70RJWNOmQ9gq1Q78CdWW-K34H73YUf6-KYHsPv0cWqQfobSrYfVq2DV82ain1zfYray8BO5iEs2GhRB8vG5Gi5ZBTewiw7wTnMA6eCn2zcVebxracsOY-x1q8Be-019WW_VHBqlFekfbSO7E_g7Ebk8BS266YOz4Fl1hvtYp8k1iqkNCarksqkwiXKpVmcRRAP_7rwfepzqsAxLzZJm0k8BYqnIPEUcQQf1q8surwf13XeHQRY9FvAstgANoK362ZcvGSRsXVoLqgPsmtBN0kRPOsEv_6ayDUqs7mI4OOAhM3g_53Ki-un8gbuTk9nR8XRwfHhS7gnWjwSLHdhG8EQXiHDWrnXLawZfL_pdfQXomkyEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVICEF5BQoYCS4gi8RxbOeA0Kq7q5bSglQq7S21Hee0ShbttogT_4tfx0weu0IVvfWUQ5zEynxjf-N5AbyRacBlsdQ8S7XkUnvPXaoCV7mXaMiVxmaUjXx8og7O5OdZNtuCP0MuDIVVDmtiu1CXjaczcjLS89QYJNAfqj4s4tt4-mnxg1MHKfK0Du00OogchV8_0Xxbfjwco6zfCjGdfN8_4H2HAe5lalbciuBcJTNjcyVznzkfZxYZnApBBSTbuPuTuV-KqnSC4GoTvGnKTOqQSilTfO8tuK3TLCEd0zO9KfirVJeqLQ2nIuiDR7VL20NShkY8BR6QG_XfPfEK0b3ipG33vul9uNeTVjbqUPYAtkK9CzvHvVt-F-52h3-sy2l6CL9HF6sGqXAo2Tis2mCvmjUV--r6crWXgZ3OQ1iw0aIOlk0o6HLJKNWFWXaKc5gHTs0_2aTr0uPbqFkKJGNtjAOO2m_qy15tcGpUY6S9tEHtj-DsRuTwGLbrpg5PgWnrjXKxTxJrJdIbo6ukMplwiXSZjnUE8fCvC9-XQaduHPNiU8CZxFOgeAoSTxFH8G79yKKrAXLd4L1BgEW_HCyLDXgjeL2-jYpM3hlbh-aCxiDTFnSqFMGTTvDrr4lcoWGbiwjeD0jYvPy_U3l2_VRewQ5qUPHl8OToOdwRLRwJlXuwjVgIL5BsrdzLFtUMzm9ajf4C_qE2Pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Obstructive+Sleep+Apnea+Events+from+a+Single-Lead+Electrocardiogram+Using+a+Convolutional+Neural+Network&rft.jtitle=Journal+of+medical+systems&rft.au=Urtnasan%2C+Erdenebayar&rft.au=Jong-Uk+Park&rft.au=Eun-Yeon+Joo&rft.au=Kyoung-Joung%2C+Lee&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=6&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1007%2Fs10916-018-0963-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |