Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology

Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas i...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 69; no. 23; pp. 9065 - 9072
Main Authors Gravendeel, Lonneke A.M., Kouwenhoven, Mathilde C.M., Gevaert, Olivier, de Rooi, Johan J., Stubbs, Andrew P., Duijm, J. Elza, Daemen, Anneleen, Bleeker, Fonnet E., Bralten, Linda B.C., Kloosterhof, Nanne K., De Moor, Bart, Eilers, Paul H.C., van der Spek, Peter J., Kros, Johan M., Sillevis Smitt, Peter A.E., van den Bent, Martin J., French, Pim J.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1–4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making. [Cancer Res 2009;69(23):9065–72]
AbstractList Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.
Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1–4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making. [Cancer Res 2009;69(23):9065–72]
Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.
Author Gevaert, Olivier
de Rooi, Johan J.
Duijm, J. Elza
Kouwenhoven, Mathilde C.M.
De Moor, Bart
Bralten, Linda B.C.
van der Spek, Peter J.
Daemen, Anneleen
Bleeker, Fonnet E.
Stubbs, Andrew P.
Sillevis Smitt, Peter A.E.
Eilers, Paul H.C.
van den Bent, Martin J.
French, Pim J.
Kloosterhof, Nanne K.
Gravendeel, Lonneke A.M.
Kros, Johan M.
Author_xml – sequence: 1
  givenname: Lonneke A.M.
  surname: Gravendeel
  fullname: Gravendeel, Lonneke A.M.
– sequence: 2
  givenname: Mathilde C.M.
  surname: Kouwenhoven
  fullname: Kouwenhoven, Mathilde C.M.
– sequence: 3
  givenname: Olivier
  surname: Gevaert
  fullname: Gevaert, Olivier
– sequence: 4
  givenname: Johan J.
  surname: de Rooi
  fullname: de Rooi, Johan J.
– sequence: 5
  givenname: Andrew P.
  surname: Stubbs
  fullname: Stubbs, Andrew P.
– sequence: 6
  givenname: J. Elza
  surname: Duijm
  fullname: Duijm, J. Elza
– sequence: 7
  givenname: Anneleen
  surname: Daemen
  fullname: Daemen, Anneleen
– sequence: 8
  givenname: Fonnet E.
  surname: Bleeker
  fullname: Bleeker, Fonnet E.
– sequence: 9
  givenname: Linda B.C.
  surname: Bralten
  fullname: Bralten, Linda B.C.
– sequence: 10
  givenname: Nanne K.
  surname: Kloosterhof
  fullname: Kloosterhof, Nanne K.
– sequence: 11
  givenname: Bart
  surname: De Moor
  fullname: De Moor, Bart
– sequence: 12
  givenname: Paul H.C.
  surname: Eilers
  fullname: Eilers, Paul H.C.
– sequence: 13
  givenname: Peter J.
  surname: van der Spek
  fullname: van der Spek, Peter J.
– sequence: 14
  givenname: Johan M.
  surname: Kros
  fullname: Kros, Johan M.
– sequence: 15
  givenname: Peter A.E.
  surname: Sillevis Smitt
  fullname: Sillevis Smitt, Peter A.E.
– sequence: 16
  givenname: Martin J.
  surname: van den Bent
  fullname: van den Bent, Martin J.
– sequence: 17
  givenname: Pim J.
  surname: French
  fullname: French, Pim J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22375306$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19920198$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rVDEYBeAgFTut_gQlG3F1az4nCa6mQ50WigrqOuRm3mgkk4xJpth_7710rODGVQg8512cc4ZOcsmA0EtKLiiV-i0hRA9SKHaxXn0YiBkYJ-oJWlDJ9aCEkCdo8WhO0VlrP6avpEQ-Q6fUGEao0Qtkb3KvMbfo8QYy4Ktf-wqtxZLxp1pCTNBwCXiTYtm5hlcVsMOX0DvUCcA2-l7qLD4f6l28cwn37y7j69h6SeXb_XP0NLjU4MXxPUdf3199WV8Ptx83N-vV7eAF131wRJmRCbXVo6Y8UC4DBGOE5MKNWsAYPFNm66lkmptRSDpKT7zhQbHl6CQ_R28e7u5r-XmA1u0uNg8puQzl0Kzigi4NJWSSr47yMO5ga_c17ly9t386mcDrI3DNuxSqyz62R8cYV5KT5eTkg_O1tFYh_D1F7LyRnfu3c_922sgSY-eNpty7f3I-dtenynt1Mf0n_RvfjJXr
CODEN CNREA8
CitedBy_id crossref_primary_10_1155_2022_8656865
crossref_primary_10_18632_oncotarget_24594
crossref_primary_10_18632_oncotarget_25562
crossref_primary_10_1111_cns_12220
crossref_primary_10_1016_j_compbiomed_2024_108304
crossref_primary_10_3390_ph18010102
crossref_primary_10_1186_1755_8794_4_34
crossref_primary_10_1016_j_beem_2010_10_012
crossref_primary_10_3389_fimmu_2025_1558881
crossref_primary_10_3892_ijo_2014_2277
crossref_primary_10_1080_20013078_2018_1446660
crossref_primary_10_1158_1541_7786_MCR_11_0411
crossref_primary_10_1177_15330338221109650
crossref_primary_10_3389_fgene_2024_1466617
crossref_primary_10_1016_j_compbiolchem_2017_08_012
crossref_primary_10_1038_s41598_022_10114_1
crossref_primary_10_1016_j_procs_2024_09_616
crossref_primary_10_1186_s13062_020_00264_5
crossref_primary_10_1371_journal_pone_0077769
crossref_primary_10_1186_s12967_023_04382_2
crossref_primary_10_1186_1479_5876_11_100
crossref_primary_10_3390_ijms21124245
crossref_primary_10_1038_s41598_023_41171_9
crossref_primary_10_1038_s41598_024_65717_7
crossref_primary_10_7717_peerj_12070
crossref_primary_10_1007_s12031_019_01281_4
crossref_primary_10_3389_fonc_2021_769188
crossref_primary_10_1038_ncomms11263
crossref_primary_10_1108_LHT_08_2019_0173
crossref_primary_10_1007_s13277_014_2732_0
crossref_primary_10_1111_j_1349_7006_2012_02377_x
crossref_primary_10_1016_j_celrep_2024_115149
crossref_primary_10_1172_JCI138760
crossref_primary_10_1093_neuonc_noy020
crossref_primary_10_1016_j_bbadis_2022_166382
crossref_primary_10_3390_cancers3011129
crossref_primary_10_3390_ph17030401
crossref_primary_10_1002_ijc_29521
crossref_primary_10_1002_tox_24231
crossref_primary_10_1371_journal_pone_0107397
crossref_primary_10_1073_pnas_1712363115
crossref_primary_10_1007_s11060_019_03261_5
crossref_primary_10_1016_j_jocn_2015_02_008
crossref_primary_10_1093_mutage_geu026
crossref_primary_10_1016_j_radonc_2020_11_019
crossref_primary_10_1093_database_bas035
crossref_primary_10_1016_j_radonc_2020_09_005
crossref_primary_10_1371_journal_pone_0062042
crossref_primary_10_3390_cancers13112756
crossref_primary_10_1007_s11912_017_0585_6
crossref_primary_10_1016_j_anndiagpath_2011_08_010
crossref_primary_10_18632_oncotarget_16516
crossref_primary_10_1126_scisignal_aaa1690
crossref_primary_10_1200_JCO_2014_59_0166
crossref_primary_10_3390_cancers14184490
crossref_primary_10_1007_s12031_021_01806_w
crossref_primary_10_1586_ern_11_134
crossref_primary_10_1186_1752_0509_7_S2_S9
crossref_primary_10_1002_ana_22390
crossref_primary_10_3892_ol_2016_4626
crossref_primary_10_1038_ng_3838
crossref_primary_10_3390_cancers13133202
crossref_primary_10_1093_jnci_djv326
crossref_primary_10_1016_j_devcel_2019_04_015
crossref_primary_10_1093_neuonc_noy123
crossref_primary_10_1093_neuonc_noy120
crossref_primary_10_1038_bjc_2017_157
crossref_primary_10_1126_scitranslmed_aar2238
crossref_primary_10_1016_j_jbi_2012_07_008
crossref_primary_10_3389_fonc_2021_657531
crossref_primary_10_1002_gcc_20760
crossref_primary_10_1038_s41467_020_16827_z
crossref_primary_10_1111_cns_12786
crossref_primary_10_1016_j_ejca_2018_02_023
crossref_primary_10_3389_fonc_2021_751792
crossref_primary_10_3390_ijms25053020
crossref_primary_10_1016_j_canlet_2024_217265
crossref_primary_10_1080_2162402X_2024_2386789
crossref_primary_10_1371_journal_pone_0089782
crossref_primary_10_3390_ijms20225625
crossref_primary_10_1016_j_ebiom_2019_01_052
crossref_primary_10_1007_s11302_023_09951_0
crossref_primary_10_3892_ijo_2023_5542
crossref_primary_10_1089_omi_2013_0084
crossref_primary_10_1186_s13046_023_02640_1
crossref_primary_10_3390_biomedicines10020317
crossref_primary_10_3892_ol_2017_7460
crossref_primary_10_1371_journal_pone_0080970
crossref_primary_10_1016_j_stem_2017_06_004
crossref_primary_10_1002_cam4_2075
crossref_primary_10_1007_s00432_010_0873_0
crossref_primary_10_3389_fgene_2022_851427
crossref_primary_10_1371_journal_pone_0077571
crossref_primary_10_1038_s41598_022_20613_w
crossref_primary_10_3892_mmr_2018_9231
crossref_primary_10_1038_s41598_018_36471_4
crossref_primary_10_1158_1078_0432_CCR_12_1707
crossref_primary_10_1038_s41467_019_11614_x
crossref_primary_10_7717_peerj_16104
crossref_primary_10_1038_bjc_2012_174
crossref_primary_10_2217_cns_13_24
crossref_primary_10_3390_cancers13081815
crossref_primary_10_3892_mmr_2019_10184
crossref_primary_10_1016_j_canlet_2017_11_033
crossref_primary_10_1007_s10571_019_00704_5
crossref_primary_10_2217_cns_13_26
crossref_primary_10_1038_s41388_023_02746_y
crossref_primary_10_3390_genes12091335
crossref_primary_10_3390_biology9090264
crossref_primary_10_3390_ijms241914776
crossref_primary_10_1016_j_cell_2012_03_009
crossref_primary_10_1038_s41467_023_41663_2
crossref_primary_10_18632_oncotarget_18843
crossref_primary_10_1016_j_omto_2021_07_011
crossref_primary_10_1038_s41419_018_1186_5
crossref_primary_10_1007_s00401_012_1031_3
crossref_primary_10_1089_ars_2012_4999
crossref_primary_10_3389_fimmu_2024_1475235
crossref_primary_10_1007_s12672_024_01302_8
crossref_primary_10_1007_s11912_010_0138_8
crossref_primary_10_1016_j_canlet_2012_08_033
crossref_primary_10_1155_2020_1872962
crossref_primary_10_1038_s41598_023_45295_w
crossref_primary_10_1007_s12094_024_03739_3
crossref_primary_10_1042_BSR20210231
crossref_primary_10_3390_ijms222010983
crossref_primary_10_1152_japplphysiol_01310_2010
crossref_primary_10_3389_fonc_2021_630482
crossref_primary_10_1038_cddis_2015_77
crossref_primary_10_1016_j_cellsig_2020_109882
crossref_primary_10_1007_s11060_015_1758_5
crossref_primary_10_1007_s00401_010_0725_7
crossref_primary_10_3389_fgene_2021_670240
crossref_primary_10_1371_journal_pone_0066574
crossref_primary_10_1177_1087057112457820
crossref_primary_10_3892_ol_2017_5753
crossref_primary_10_3390_cancers11010053
crossref_primary_10_1186_s12920_019_0532_5
crossref_primary_10_1038_nm_3217
crossref_primary_10_1016_j_jocn_2014_10_029
crossref_primary_10_1172_JCI71048
crossref_primary_10_1155_2019_1802620
crossref_primary_10_1016_j_ebiom_2019_10_062
crossref_primary_10_3390_ijms232415712
crossref_primary_10_18632_oncotarget_13084
crossref_primary_10_1002_ijc_30234
crossref_primary_10_3390_data2010005
crossref_primary_10_1371_journal_pone_0068782
crossref_primary_10_1371_journal_pone_0179920
crossref_primary_10_1016_j_biomaterials_2015_11_031
crossref_primary_10_3390_cancers15112907
crossref_primary_10_1097_NEN_0000000000000015
crossref_primary_10_3389_fmolb_2021_587516
crossref_primary_10_3390_cimb44070206
crossref_primary_10_1097_CCO_0b013e328357f4ea
crossref_primary_10_1038_onc_2010_342
crossref_primary_10_1038_s41467_020_20225_w
crossref_primary_10_1073_pnas_1313814111
crossref_primary_10_1186_s13046_020_01750_4
crossref_primary_10_3389_fonc_2020_01549
crossref_primary_10_1042_BSR20193377
crossref_primary_10_1016_j_jgo_2014_08_003
crossref_primary_10_1016_j_semradonc_2015_02_006
crossref_primary_10_1111_jcmm_14417
crossref_primary_10_1126_sciadv_abf6033
crossref_primary_10_1002_cam4_5688
crossref_primary_10_1158_1078_0432_CCR_17_1529
crossref_primary_10_3390_ijms24043198
crossref_primary_10_3390_ijms23094743
crossref_primary_10_1186_s12885_016_2948_z
crossref_primary_10_1038_s41389_022_00433_3
crossref_primary_10_1371_journal_pone_0118201
crossref_primary_10_3390_molecules26247447
crossref_primary_10_1002_jrs_4350
crossref_primary_10_1093_neuonc_nov013
crossref_primary_10_1007_s12672_024_01229_0
crossref_primary_10_1016_j_neuint_2021_105256
crossref_primary_10_1172_jci_insight_133811
crossref_primary_10_1016_j_gde_2014_12_002
crossref_primary_10_1073_pnas_1907921117
crossref_primary_10_1158_1078_0432_CCR_11_3064
crossref_primary_10_3390_cancers16152752
crossref_primary_10_1080_14737175_2017_1351299
crossref_primary_10_1007_s12031_024_02201_x
crossref_primary_10_1016_j_ejca_2013_06_039
crossref_primary_10_1186_1471_2407_14_526
crossref_primary_10_1083_jcb_202401057
crossref_primary_10_1155_2022_1292648
crossref_primary_10_18632_aging_202239
crossref_primary_10_18632_oncotarget_19404
crossref_primary_10_3892_ol_2020_11792
crossref_primary_10_3389_fcell_2020_00538
crossref_primary_10_1002_glia_21165
crossref_primary_10_1093_neuros_nyy268
crossref_primary_10_1038_s41525_023_00351_2
crossref_primary_10_1126_sciadv_aaz4125
crossref_primary_10_1515_med_2023_0825
crossref_primary_10_18632_aging_203454
crossref_primary_10_1093_jnci_djt168
crossref_primary_10_1016_j_heliyon_2024_e29275
crossref_primary_10_1093_neuonc_nov078
crossref_primary_10_1586_erm_10_20
crossref_primary_10_1093_neuonc_now165
crossref_primary_10_1016_j_stem_2019_06_004
crossref_primary_10_1093_neuonc_now285
crossref_primary_10_1038_srep21141
crossref_primary_10_1155_2014_282815
crossref_primary_10_18632_oncotarget_1620
crossref_primary_10_1158_0008_5472_CAN_17_0736
crossref_primary_10_1089_bio_2015_0086
crossref_primary_10_1093_nar_gkt656
crossref_primary_10_1158_1078_0432_CCR_12_3725
crossref_primary_10_1158_1078_0432_CCR_12_0339
crossref_primary_10_1007_s11060_013_1107_5
crossref_primary_10_1080_15384101_2022_2049157
crossref_primary_10_1038_s41598_023_36410_y
crossref_primary_10_1158_0008_5472_CAN_15_0776
crossref_primary_10_1016_j_brainresbull_2011_06_002
crossref_primary_10_1016_j_bbrc_2019_06_097
crossref_primary_10_1073_pnas_1121623109
crossref_primary_10_3390_cancers13010047
crossref_primary_10_1016_j_heliyon_2023_e21159
crossref_primary_10_1016_j_nbd_2013_05_011
crossref_primary_10_1186_1755_8794_5_41
crossref_primary_10_1002_cncr_28968
crossref_primary_10_1093_carcin_bgaa139
crossref_primary_10_3892_ol_2019_10327
crossref_primary_10_1093_neuonc_nov176
crossref_primary_10_3390_biom13101503
crossref_primary_10_1186_s13073_023_01175_6
crossref_primary_10_1371_journal_pone_0025631
crossref_primary_10_3390_cancers11040544
crossref_primary_10_1371_journal_pone_0022000
crossref_primary_10_3389_fphar_2023_1279370
crossref_primary_10_1111_jcmm_16321
crossref_primary_10_1080_14737175_2016_1194755
crossref_primary_10_1158_1078_0432_CCR_12_3021
crossref_primary_10_3389_fonc_2021_665870
crossref_primary_10_1186_1471_2407_14_718
crossref_primary_10_7555_JBR_36_202200234
crossref_primary_10_1016_S0140_6736_11_61346_9
crossref_primary_10_1172_jci_insight_90019
crossref_primary_10_1111_cas_12969
crossref_primary_10_18632_oncotarget_21634
crossref_primary_10_18632_oncotarget_4008
crossref_primary_10_18632_oncotarget_8720
crossref_primary_10_1016_j_cels_2016_06_006
crossref_primary_10_1093_noajnl_vdz008
crossref_primary_10_1097_NEN_0b013e31820681aa
crossref_primary_10_1007_s00018_024_05553_0
crossref_primary_10_1093_neuonc_nov315
crossref_primary_10_3389_fcell_2021_652599
crossref_primary_10_1007_s40291_017_0299_3
crossref_primary_10_17650_2313_805X_2023_10_4_137_148
crossref_primary_10_7555_JBR_37_20220234
crossref_primary_10_1126_sciadv_abd4676
crossref_primary_10_3390_biomedicines12112579
crossref_primary_10_3390_jcm11195863
crossref_primary_10_1080_15384101_2023_2205204
crossref_primary_10_1186_s40478_015_0265_4
crossref_primary_10_1007_s12035_016_0314_4
crossref_primary_10_1002_jcb_29653
crossref_primary_10_1016_j_canlet_2019_04_003
crossref_primary_10_1155_2017_3017948
crossref_primary_10_1038_s41389_020_0201_8
crossref_primary_10_15252_embj_201797115
crossref_primary_10_1016_j_pharmthera_2018_10_012
crossref_primary_10_1158_1078_0432_CCR_19_0299
crossref_primary_10_18632_oncotarget_2088
crossref_primary_10_1093_narcan_zcac033
crossref_primary_10_1158_0008_5472_CAN_10_2465
crossref_primary_10_3892_ol_2019_10801
crossref_primary_10_1186_s12974_021_02213_z
crossref_primary_10_1073_pnas_1424272112
crossref_primary_10_1371_journal_pone_0173890
crossref_primary_10_1016_j_gendis_2023_101106
crossref_primary_10_1093_neuonc_not116
crossref_primary_10_18632_aging_203079
crossref_primary_10_1158_2326_6066_CIR_18_0939
crossref_primary_10_1093_neuonc_noae028
crossref_primary_10_1080_15384101_2021_1901042
crossref_primary_10_3389_fonc_2020_541401
crossref_primary_10_1007_s13402_021_00635_8
crossref_primary_10_1186_s12974_020_02030_w
crossref_primary_10_1016_j_ebiom_2018_10_024
crossref_primary_10_1371_journal_pone_0094871
crossref_primary_10_2174_1568009618666180706165845
crossref_primary_10_1038_s41467_023_38919_2
crossref_primary_10_1093_neuonc_nos263
crossref_primary_10_3390_cancers12071842
crossref_primary_10_1038_s41419_018_0547_4
crossref_primary_10_1038_s41598_017_12087_y
crossref_primary_10_3389_fonc_2022_956348
crossref_primary_10_3727_096504018X15478559215014
crossref_primary_10_1002_cncr_26298
crossref_primary_10_1186_s12885_022_09330_9
crossref_primary_10_1371_journal_pone_0216050
crossref_primary_10_1586_14737175_2015_1042455
crossref_primary_10_1158_1078_0432_CCR_20_2171
crossref_primary_10_1093_annonc_mds320
crossref_primary_10_1007_s00401_012_1068_3
crossref_primary_10_1038_sj_bjc_6606031
crossref_primary_10_3174_ajnr_A3757
crossref_primary_10_1017_cjn_2020_10
crossref_primary_10_18632_oncotarget_6221
crossref_primary_10_1002_path_5776
crossref_primary_10_1186_s13059_015_0808_9
crossref_primary_10_3389_fcell_2020_588368
crossref_primary_10_3171_2017_9_JNS172036
crossref_primary_10_3389_fonc_2020_586019
crossref_primary_10_1016_j_nbd_2012_06_004
crossref_primary_10_1038_nature10598
crossref_primary_10_3390_biom12121847
crossref_primary_10_1038_s41586_023_06061_0
crossref_primary_10_2174_1381612828666220617085508
crossref_primary_10_1158_0008_5472_CAN_12_3831
crossref_primary_10_7717_peerj_7974
crossref_primary_10_2217_nnm_12_173
crossref_primary_10_1148_radiol_12110227
crossref_primary_10_1002_cam4_4945
crossref_primary_10_1111_j_1750_3639_2010_00456_x
crossref_primary_10_1155_2020_9716720
crossref_primary_10_1093_nar_gkr1071
crossref_primary_10_18632_oncotarget_9983
crossref_primary_10_1038_s41467_020_20379_7
crossref_primary_10_1146_annurev_genom_082509_141536
crossref_primary_10_1089_omi_2014_0077
crossref_primary_10_3390_ijms26030962
crossref_primary_10_1016_j_ccr_2013_08_001
crossref_primary_10_1093_neuonc_not029
crossref_primary_10_1093_neuonc_not145
crossref_primary_10_1371_journal_pone_0185376
crossref_primary_10_3389_fgene_2021_743786
crossref_primary_10_1007_s00424_022_02781_w
crossref_primary_10_2147_OTT_S300623
crossref_primary_10_1016_j_ebiom_2022_104007
crossref_primary_10_1007_s12035_012_8367_5
crossref_primary_10_1016_j_freeradbiomed_2019_11_009
crossref_primary_10_1158_0008_5472_CAN_13_1299
crossref_primary_10_1002_gcc_22255
crossref_primary_10_1158_1078_0432_CCR_11_1274
crossref_primary_10_1186_s12885_024_12976_2
crossref_primary_10_1002_path_6401
crossref_primary_10_1007_s40618_024_02376_5
crossref_primary_10_3389_fcell_2023_1236271
crossref_primary_10_1038_s43018_021_00238_0
crossref_primary_10_1016_j_celrep_2017_06_036
crossref_primary_10_1007_s12264_022_00866_1
crossref_primary_10_1016_j_jgg_2015_06_003
crossref_primary_10_1093_neuonc_nou005
crossref_primary_10_1016_S0513_5117_10_79306_6
crossref_primary_10_1016_j_bbcan_2022_188721
crossref_primary_10_1158_1078_0432_CCR_20_2141
crossref_primary_10_1016_j_jgg_2017_05_007
crossref_primary_10_1186_s12943_015_0290_8
crossref_primary_10_3390_cancers13102338
crossref_primary_10_3390_cells10123529
crossref_primary_10_1002_jcp_30542
crossref_primary_10_1158_1078_0432_CCR_18_1965
crossref_primary_10_1186_s12885_019_6280_2
crossref_primary_10_1007_s11060_019_03228_6
crossref_primary_10_1038_s41556_019_0443_x
crossref_primary_10_1007_s11060_015_1916_9
crossref_primary_10_1158_1541_7786_MCR_13_0268
crossref_primary_10_1016_j_pharmthera_2020_107525
crossref_primary_10_1089_omi_2011_0031
crossref_primary_10_1016_j_nec_2012_04_009
crossref_primary_10_1016_j_praneu_2011_02_010
crossref_primary_10_1093_neuonc_nos313
crossref_primary_10_1186_gm377
crossref_primary_10_1586_era_10_202
crossref_primary_10_3390_cancers13215261
crossref_primary_10_1002_gcc_22062
crossref_primary_10_1038_s42003_022_03538_y
crossref_primary_10_1111_nan_12428
crossref_primary_10_18632_oncotarget_10359
crossref_primary_10_3390_cells12060843
crossref_primary_10_3389_fmolb_2021_720020
crossref_primary_10_18632_oncotarget_2585
crossref_primary_10_3892_etm_2019_7807
crossref_primary_10_1038_s41419_021_04146_0
crossref_primary_10_1007_s11060_011_0793_0
crossref_primary_10_1007_s10571_013_9951_6
crossref_primary_10_3389_fgene_2021_732376
crossref_primary_10_1007_s10142_024_01412_0
crossref_primary_10_1371_journal_pone_0061556
crossref_primary_10_1093_neuonc_nor117
crossref_primary_10_3389_fgene_2022_924802
crossref_primary_10_1007_s00401_015_1398_z
crossref_primary_10_1371_journal_pone_0083250
crossref_primary_10_3389_fonc_2019_01433
crossref_primary_10_3390_brainsci14030275
crossref_primary_10_3390_cells11091481
crossref_primary_10_1038_s41598_024_52841_7
crossref_primary_10_1371_journal_pone_0151815
crossref_primary_10_1038_ng_2682
crossref_primary_10_1007_s00259_021_05196_4
crossref_primary_10_1007_s10143_017_0916_y
crossref_primary_10_3389_fimmu_2020_592389
crossref_primary_10_1200_JCO_2012_46_9627
crossref_primary_10_1016_j_nic_2014_09_007
crossref_primary_10_3390_ijms23137330
crossref_primary_10_1200_JCO_2012_44_1444
crossref_primary_10_3390_cancers13143468
crossref_primary_10_3892_or_2013_2730
crossref_primary_10_1111_cns_13295
crossref_primary_10_1111_cns_14264
crossref_primary_10_1111_cns_14386
crossref_primary_10_1080_21655979_2021_1972197
crossref_primary_10_1038_s41419_023_05788_y
crossref_primary_10_1038_s41698_024_00570_5
crossref_primary_10_1186_s12918_016_0315_y
crossref_primary_10_1002_ijc_25448
crossref_primary_10_1038_srep05260
crossref_primary_10_1007_s00401_013_1106_9
crossref_primary_10_1007_s12021_010_9091_9
crossref_primary_10_1172_JCI62925
crossref_primary_10_3389_fonc_2021_802124
crossref_primary_10_1186_s12885_021_08456_6
crossref_primary_10_1371_journal_pone_0295346
crossref_primary_10_18632_oncotarget_19171
crossref_primary_10_1016_j_celrep_2019_08_031
crossref_primary_10_1016_j_compbiomed_2025_109844
crossref_primary_10_1073_pnas_1700655114
crossref_primary_10_3390_brainsci13020230
crossref_primary_10_1038_s41419_021_04220_7
crossref_primary_10_1038_s43018_023_00658_0
crossref_primary_10_1111_jcmm_18208
crossref_primary_10_1007_s13402_014_0190_8
crossref_primary_10_3390_cells10010184
crossref_primary_10_4103_0366_6999_176065
crossref_primary_10_1093_neuonc_noab158
crossref_primary_10_1016_j_xcrm_2024_101700
crossref_primary_10_1080_02688697_2021_1907306
crossref_primary_10_1093_neuonc_noy088
crossref_primary_10_3109_02688697_2013_771139
crossref_primary_10_1038_srep06444
crossref_primary_10_1038_s41419_024_06735_1
crossref_primary_10_1002_mco2_70014
crossref_primary_10_1016_j_neuint_2014_05_008
crossref_primary_10_18632_oncotarget_20195
crossref_primary_10_1038_s41598_024_77348_z
crossref_primary_10_1371_journal_pone_0124870
crossref_primary_10_3389_fonc_2020_569584
crossref_primary_10_1038_s41420_022_00883_z
crossref_primary_10_1093_neuonc_nor140
crossref_primary_10_1016_j_pharmthera_2016_05_007
crossref_primary_10_1158_1541_7786_MCR_19_0934
crossref_primary_10_1038_s41598_022_18608_8
crossref_primary_10_1126_scitranslmed_aau4972
crossref_primary_10_2116_analsci_20R002
crossref_primary_10_1016_j_intimp_2021_107826
crossref_primary_10_1016_S1470_2045_13_70168_2
crossref_primary_10_1186_s13046_024_03019_6
crossref_primary_10_1371_journal_pone_0098419
crossref_primary_10_18632_oncotarget_10029
crossref_primary_10_2147_IJGM_S343152
crossref_primary_10_1371_journal_pone_0170632
crossref_primary_10_3892_br_2018_1168
crossref_primary_10_1111_jcmm_17182
crossref_primary_10_1016_j_ymthe_2022_02_009
crossref_primary_10_1038_s41598_021_82169_5
crossref_primary_10_1007_s12031_013_9981_z
crossref_primary_10_1158_1078_0432_CCR_19_3257
crossref_primary_10_3389_fgene_2020_514363
crossref_primary_10_1016_j_ccell_2015_10_005
crossref_primary_10_1016_S1470_2045_10_70053_X
crossref_primary_10_1111_cns_13254
crossref_primary_10_1091_mbc_E14_11_1502
crossref_primary_10_1039_D2CC04963E
crossref_primary_10_18632_oncotarget_13329
crossref_primary_10_1126_scitranslmed_aao5253
crossref_primary_10_1016_j_jtbi_2018_12_001
crossref_primary_10_1186_s13073_016_0319_7
crossref_primary_10_1038_onc_2014_122
crossref_primary_10_1186_s12920_018_0407_1
crossref_primary_10_18632_oncotarget_5310
crossref_primary_10_1038_nrc3655
crossref_primary_10_1093_bioinformatics_btt124
crossref_primary_10_1172_JCI63811
crossref_primary_10_1002_1878_0261_12595
crossref_primary_10_18632_oncotarget_3258
crossref_primary_10_1002_1878_0261_13200
crossref_primary_10_1016_j_stemcr_2015_03_005
crossref_primary_10_1093_stmcls_sxac088
crossref_primary_10_3171_2016_9_PEDS16152
crossref_primary_10_1016_j_bbrc_2017_06_056
crossref_primary_10_1097_MD_0000000000033935
crossref_primary_10_18632_oncotarget_14406
crossref_primary_10_3389_fgene_2022_890174
crossref_primary_10_1097_CCO_0000000000000002
crossref_primary_10_1038_bjc_2011_547
crossref_primary_10_1016_j_isci_2022_104398
crossref_primary_10_1038_s41416_021_01294_0
crossref_primary_10_1111_nan_12772
Cites_doi 10.1093/jnci/85.9.704
10.1016/S0378-3758(02)00388-9
10.1158/0008-5472.CAN-04-2921
10.1073/pnas.0402870102
10.1016/j.ijrobp.2007.03.045
10.1186/1471-2199-7-3
10.1111/j.1349-7006.2008.01002.x
10.1158/1535-7163.MCT-07-0177
10.1126/science.1164382
10.1158/0008-5472.CAN-05-1886
10.1200/JCO.2007.15.7164
10.1158/0008-5472.76.65.1
10.1038/nature07385
10.1158/1541-7786.MCR-08-0435
10.1056/NEJMoa040465
10.1093/nar/gni179
10.1200/JCO.2002.08.121
10.1371/journal.pone.0004076
10.1097/01.jnen.0000263869.84188.72
10.1186/gb-2003-4-5-p3
10.1158/0008-5472.CAN-04-0452
10.1016/j.ccr.2006.02.019
10.1038/sj.bjc.6601448
10.1158/1541-7786.MCR-06-0005
10.1158/1078-0432.CCR-06-2789
10.1073/pnas.0506580102
10.1093/biostatistics/kxj029
10.1186/1755-8794-1-52
10.1158/0008-5472.CAN-06-2869
10.1158/0008-5472.CAN-08-2100
10.1158/0008-5472.CAN-04-1337
10.1073/pnas.191367098
10.1002/cncr.11120
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-09-2307
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 9072
ExternalDocumentID 19920198
22375306
10_1158_0008_5472_CAN_09_2307
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
XJT
YKV
YZZ
ZCG
.GJ
ADNWM
D0S
IQODW
J5H
MVM
WHG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VXZ
7X8
ID FETCH-LOGICAL-c438t-a079b247d8b813f135fef994534ab84ebfc279dc152839b451b5c0c93f726ba53
ISSN 0008-5472
1538-7445
IngestDate Tue Aug 05 10:55:19 EDT 2025
Wed Feb 19 01:47:28 EST 2025
Mon Jul 21 09:15:09 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Tue Jul 01 03:44:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Nervous system diseases
Glioma
Central nervous system disease
Tumor
Histology
Predictive factor
Survival
Gene expression profile
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-a079b247d8b813f135fef994534ab84ebfc279dc152839b451b5c0c93f726ba53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19920198
PQID 734169100
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_734169100
pubmed_primary_19920198
pascalfrancis_primary_22375306
crossref_primary_10_1158_0008_5472_CAN_09_2307
crossref_citationtrail_10_1158_0008_5472_CAN_09_2307
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2009
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Kros (2022061701473108300_bib3) 2007; 66
Curran (2022061701473108300_bib30) 1993; 85
Sorlie (2022061701473108300_bib4) 2001; 98
Lee (2022061701473108300_bib35) 2008; 1
Li (2022061701473108300_bib20) 2009; 69
Wong (2022061701473108300_bib33) 2005; 65
Kapp (2022061701473108300_bib25) 2007; 8
Subramanian (2022061701473108300_bib26) 2005; 102
Murat (2022061701473108300_bib16) 2008; 26
Freire (2022061701473108300_bib34) 2008; 3
Nutt (2022061701473108300_bib6) 2003; 63
Freije (2022061701473108300_bib9) 2004; 64
Dai (2022061701473108300_bib23) 2005; 33
Showalter (2022061701473108300_bib29) 2007; 69
TCGARN (2022061701473108300_bib12) 2008; 455
Tortosa (2022061701473108300_bib28) 2003; 97
van der Laan (2022061701473108300_bib24) 2002; 117
Harkes (2022061701473108300_bib22) 2003; 89
Schroeder (2022061701473108300_bib21) 2006; 7
Parsons (2022061701473108300_bib13) 2008; 321
Louis (2022061701473108300_bib1) 2007
Petalidis (2022061701473108300_bib11) 2008; 7
Nigro (2022061701473108300_bib18) 2005; 65
Ohgaki (2022061701473108300_bib2) 2004; 64
French (2022061701473108300_bib15) 2007; 67
Tso (2022061701473108300_bib19) 2006; 4
Shirahata (2022061701473108300_bib7) 2007; 13
Dennis (2022061701473108300_bib27) 2003; 4
French (2022061701473108300_bib14) 2005; 65
Phillips (2022061701473108300_bib8) 2006; 9
Shirahata (2022061701473108300_bib10) 2009; 100
Liang (2022061701473108300_bib17) 2005; 102
Madhavan (2022061701473108300_bib32) 2009; 7
Valk (2022061701473108300_bib5) 2004; 350
Pignatti (2022061701473108300_bib31) 2002; 20
References_xml – volume: 85
  start-page: 704
  year: 1993
  ident: 2022061701473108300_bib30
  article-title: Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/85.9.704
– volume: 63
  start-page: 1602
  year: 2003
  ident: 2022061701473108300_bib6
  article-title: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
  publication-title: Cancer Res
– volume: 117
  start-page: 275
  year: 2002
  ident: 2022061701473108300_bib24
  article-title: A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap
  publication-title: J Stat Plan Infer
  doi: 10.1016/S0378-3758(02)00388-9
– volume: 65
  start-page: 1678
  year: 2005
  ident: 2022061701473108300_bib18
  article-title: Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-2921
– volume: 102
  start-page: 5814
  year: 2005
  ident: 2022061701473108300_bib17
  article-title: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0402870102
– volume: 69
  start-page: 820
  year: 2007
  ident: 2022061701473108300_bib29
  article-title: Multifocal glioblastoma multiforme: prognostic factors and patterns of progression
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2007.03.045
– volume: 7
  start-page: 3
  year: 2006
  ident: 2022061701473108300_bib21
  article-title: The RIN: an RNA integrity number for assigning integrity values to RNA measurements
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-7-3
– volume: 100
  start-page: 165
  year: 2009
  ident: 2022061701473108300_bib10
  article-title: Using gene expression profiling to identify a prognostic molecular spectrum in gliomas
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2008.01002.x
– volume: 7
  start-page: 1013
  year: 2008
  ident: 2022061701473108300_bib11
  article-title: Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-07-0177
– volume: 321
  start-page: 1807
  year: 2008
  ident: 2022061701473108300_bib13
  article-title: An integrated genomic analysis of human glioblastoma multiforme
  publication-title: Science
  doi: 10.1126/science.1164382
– volume: 65
  start-page: 11335
  year: 2005
  ident: 2022061701473108300_bib14
  article-title: Gene expression profiles associated with treatment response in oligodendrogliomas
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1886
– volume: 26
  start-page: 3015
  year: 2008
  ident: 2022061701473108300_bib16
  article-title: Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.15.7164
– volume: 65
  start-page: 76
  year: 2005
  ident: 2022061701473108300_bib33
  article-title: Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.76.65.1
– volume: 455
  start-page: 1061
  year: 2008
  ident: 2022061701473108300_bib12
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 7
  start-page: 157
  year: 2009
  ident: 2022061701473108300_bib32
  article-title: Rembrandt: helping personalized medicine become a reality through integrative translational research
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-08-0435
– volume: 350
  start-page: 1617
  year: 2004
  ident: 2022061701473108300_bib5
  article-title: Prognostically useful gene-expression profiles in acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa040465
– volume: 33
  start-page: e175
  year: 2005
  ident: 2022061701473108300_bib23
  article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni179
– volume: 20
  start-page: 2076
  year: 2002
  ident: 2022061701473108300_bib31
  article-title: Prognostic factors for survival in adult patients with cerebral low-grade glioma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2002.08.121
– volume: 3
  start-page: e4076
  year: 2008
  ident: 2022061701473108300_bib34
  article-title: Exploratory analysis of the copy number alterations in glioblastoma multiforme
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004076
– volume: 66
  start-page: 545
  year: 2007
  ident: 2022061701473108300_bib3
  article-title: Panel review of anaplastic oligodendroglioma from European Organization For Research and Treatment of Cancer Trial 26951: assessment of consensus in diagnosis, influence of 1p/19q loss, and correlations with outcome
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/01.jnen.0000263869.84188.72
– volume: 4
  start-page: P3
  year: 2003
  ident: 2022061701473108300_bib27
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-5-p3
– volume: 64
  start-page: 6503
  year: 2004
  ident: 2022061701473108300_bib9
  article-title: Gene expression profiling of gliomas strongly predicts survival
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-0452
– volume: 9
  start-page: 157
  year: 2006
  ident: 2022061701473108300_bib8
  article-title: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.02.019
– volume-title: WHO classification of tumours of the central nervous system
  year: 2007
  ident: 2022061701473108300_bib1
– volume: 89
  start-page: 2289
  year: 2003
  ident: 2022061701473108300_bib22
  article-title: Allelotype of 28 human breast cancer cell lines and xenografts
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6601448
– volume: 4
  start-page: 607
  year: 2006
  ident: 2022061701473108300_bib19
  article-title: Primary glioblastomas express mesenchymal stem-like properties
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-06-0005
– volume: 13
  start-page: 7341
  year: 2007
  ident: 2022061701473108300_bib7
  article-title: Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-2789
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2022061701473108300_bib26
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume: 8
  start-page: 9
  year: 2007
  ident: 2022061701473108300_bib25
  article-title: Are clusters found in one dataset present in another dataset?
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj029
– volume: 1
  start-page: 52
  year: 2008
  ident: 2022061701473108300_bib35
  article-title: Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age
  publication-title: BMC Med Genomics
  doi: 10.1186/1755-8794-1-52
– volume: 67
  start-page: 5635
  year: 2007
  ident: 2022061701473108300_bib15
  article-title: Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-2869
– volume: 69
  start-page: 2091
  year: 2009
  ident: 2022061701473108300_bib20
  article-title: Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2100
– volume: 64
  start-page: 6892
  year: 2004
  ident: 2022061701473108300_bib2
  article-title: Genetic pathways to glioblastoma: a population-based study
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1337
– volume: 98
  start-page: 10869
  year: 2001
  ident: 2022061701473108300_bib4
  article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.191367098
– volume: 97
  start-page: 1063
  year: 2003
  ident: 2022061701473108300_bib28
  article-title: Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas
  publication-title: Cancer
  doi: 10.1002/cncr.11120
SSID ssj0005105
Score 2.5233815
Snippet Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 9065
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Antineoplastic agents
Biological and medical sciences
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Child
Cluster Analysis
Female
Gene Expression Profiling
Glioma - genetics
Glioma - pathology
Humans
Male
Medical sciences
Middle Aged
Neurology
Pharmacology. Drug treatments
Prognosis
Reproducibility of Results
Survival Rate
Tumors
Tumors of the nervous system. Phacomatoses
Young Adult
Title Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology
URI https://www.ncbi.nlm.nih.gov/pubmed/19920198
https://www.proquest.com/docview/734169100
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISEkhLhTLpMfeIsScrGb-LF0YR1bW1FW2Fvk3LSKKp22lAd-Ir-Kc2wnacfQgJeoinxJfT4fn2N_55iQt1LIknG_tANkuLJcBrYMmLALj8s0zXnmSQwUnkwH4wX7eMbPer2fW6ylTZ062Y8b40r-R6rwDuSKUbL_INm2UXgBv0G-8AQJw_OvZHxU1ZfLCsZZZY_GtMWa1Voh_x8zLimexuFqiSQga4hHBdZ7Fb-D1It8iRv2KmplAwrjO9LOz2G6q8wh7WZ7l8Ugg2omN9C5OvzVLA6lZVYrZ2tP4XA-_BJPD-L4RLn9yKX5VlhDp9t6PZ4tvsbT8QyK6YihGoPKC2u0VeYgtiaz2dycirT0nPjoJJ5_bliN1tgxG73N1oW4TgNpzqS2kKjIleYvNdzDHf0d2ZyFO_pbX_VicOoHW9pYuPoeCrOyC1dX_H3V4JGmWerGHfgmpIQgR75bJhtqwLXVs-U0gp0Frh9mf7_jg8uCt2kcf-oy13NDp206MdFk0PW7GzvesZPuX8grmLKlvmvlz86QMopOH5IHxpuhQw3NR6RXVI_J3YnhazwhSYtQigilHUJpg1C6LqlBKLRTUEk1QmmLUCzRIJQiQmmL0Kdk8SE-HY1tc6WHnbEgqm3phiL1WZhHaeQFpRfwsiiFYDxgMo1YkZaZH4o88zDnkEgZ91KeuZkIytAfpJIHz8heta6KF4SmgygPw9LLXHCJXSZFCVonF74Eh2Ygo7xPWDOASWby3eO1K6tE-b08Qt5FlOC4J6PhNHFFguPeJ05b7UInfLmtwv6OdNpaDSD6hDbiSkB344GcrIr15ioJwYQcgL3u9slzLcauSyHANBfRy9taf0XudVPrNdmrLzfFG7CT63RfAfAXLmq3DA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Gene+Expression+Profiles+of+Gliomas+Are+a+Better+Predictor+of+Survival+than+Histology&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=GRAVENDEEL%2C+Lonneke+A.+M&rft.au=KOUWENHOVEN%2C+Mathilde+C.+M&rft.au=DE+MOOR%2C+Bart&rft.au=EILERS%2C+Paul+H.+C&rft.date=2009-12-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.volume=69&rft.issue=23&rft.spage=9065&rft.epage=9072&rft_id=info:doi/10.1158%2F0008-5472.can-09-2307&rft.externalDBID=n%2Fa&rft.externalDocID=22375306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon