Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record
To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods. The electronic medical charts of...
Saved in:
Published in | Journal of the American Medical Informatics Association : JAMIA Vol. 19; no. e1; pp. e83 - e89 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Group
01.06.2012
|
Series | FOCUS on clinical research informatics |
Subjects | |
Online Access | Get full text |
ISSN | 1067-5027 1527-974X 1527-974X |
DOI | 10.1136/amiajnl-2011-000295 |
Cover
Loading…
Abstract | To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.
The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.
The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.
Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.
Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.
We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories. |
---|---|
AbstractList | To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.OBJECTIVETo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.MATERIALSThe electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.METHODSThe automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.RESULTSAgreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.DISCUSSIONOur approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.CONCLUSIONWe present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories. ObjectiveTo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.MaterialsThe electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.MethodsThe automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.ResultsAgreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.DiscussionOur approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.ConclusionWe present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories. To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods. The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer. The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic. Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%. Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality. We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories. |
Author | Suman, V. J. Olson, J. E. Savova, G. K. Chute, C. G. Ingle, J. N. Murphy, S. P. Cafourek, V. L. Weinshilboum, R. M. Couch, F. J. Goetz, M. P. |
AuthorAffiliation | 1 Mayo Clinic, Rochester, Minnesota, USA 2 Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA |
AuthorAffiliation_xml | – name: 1 Mayo Clinic, Rochester, Minnesota, USA – name: 2 Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA |
Author_xml | – sequence: 1 givenname: G. K. surname: Savova fullname: Savova, G. K. – sequence: 2 givenname: J. E. surname: Olson fullname: Olson, J. E. – sequence: 3 givenname: S. P. surname: Murphy fullname: Murphy, S. P. – sequence: 4 givenname: V. L. surname: Cafourek fullname: Cafourek, V. L. – sequence: 5 givenname: F. J. surname: Couch fullname: Couch, F. J. – sequence: 6 givenname: M. P. surname: Goetz fullname: Goetz, M. P. – sequence: 7 givenname: J. N. surname: Ingle fullname: Ingle, J. N. – sequence: 8 givenname: V. J. surname: Suman fullname: Suman, V. J. – sequence: 9 givenname: C. G. surname: Chute fullname: Chute, C. G. – sequence: 10 givenname: R. M. surname: Weinshilboum fullname: Weinshilboum, R. M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22140207$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhUVJaR7tLygULbtxqodly5tCCH0EAtm0kJ24I11nFGxpKskp8--ryUxC20W7kkDfuTpHOqfkKMSAhLzl7Jxz2X2A2cN9mBrBOG8YY2JQL8gJV6Jvhr69Pap71vWNYqI_Jqc53zPGOyHVK3IsBG-ZYP0J2V4sJc5Q0FHns40PmLY0jtSl5Y6WhFBmDIVuoBRMIdMxJorBRZt8QFrWmGDzKFhVNhdqIVhM9Kcvax8oBIoT2pJi8JbO6LyFiSa0MbnX5OUIU8Y3h_WMfP_86dvl1-b65svV5cV1Y1upSzN0THCl5SgQhtUo5eDcSguFg5OomXWtbHWnhHIMNWoN_VCjAZNtq0cFozwjH_dzN8uqOrA1ToLJbJKfIW1NBG_-PAl-be7ig6lXCd32dcD7w4AUfyyYi5nrS-E0QcC4ZMOV4h1XkrP_o0L2rO8GtUPf_W7r2c_T11RA7gGbYs4Jx2eEM7MrgDkUwOwKYPYFqKrhL5X1BYqPu2x--qf2F31Ouq0 |
CitedBy_id | crossref_primary_10_1186_s12911_016_0358_4 crossref_primary_10_1080_23808993_2017_1322897 crossref_primary_10_1136_amiajnl_2012_000862 crossref_primary_10_1016_j_dss_2019_113137 crossref_primary_10_1111_epi_17629 crossref_primary_10_1200_CCI_19_00037 crossref_primary_10_1136_amiajnl_2012_000968 crossref_primary_10_1145_3462475 crossref_primary_10_1093_aje_kwt441 crossref_primary_10_1136_amiajnl_2012_001409 crossref_primary_10_2196_37833 crossref_primary_10_2196_33799 crossref_primary_10_1371_journal_pone_0192360 crossref_primary_10_1016_j_cmpb_2023_107693 crossref_primary_10_1016_j_jbi_2017_07_012 crossref_primary_10_1097_MIB_0b013e31828133fd crossref_primary_10_1136_amiajnl_2011_000751 crossref_primary_10_1007_s10278_013_9616_5 |
Cites_doi | 10.1136/jamia.2009.002691 10.1001/jama.2011.1219 10.1197/jamia.M2437 10.1136/jamia.2009.000893 10.1136/jamia.2009.001560 10.1001/jama.2009.1420 10.1006/jbin.2001.1029 10.1007/s10278-009-9215-7 10.1038/clpt.2010.260 10.1136/jamia.2010.004366 |
ContentType | Journal Article |
Copyright | 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012 |
Copyright_xml | – notice: 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1136/amiajnl-2011-000295 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-974X |
EndPage | e89 |
ExternalDocumentID | PMC3392847 22140207 10_1136_amiajnl_2011_000295 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM061388 – fundername: NCI NIH HHS grantid: P50 CA116201 – fundername: NCI NIH HHS grantid: CA 116201 – fundername: NCI NIH HHS grantid: R01 CA122340 – fundername: NHGRI NIH HHS grantid: U01 HG 04599 – fundername: NCATS NIH HHS grantid: UL1 TR000002 – fundername: NIGMS NIH HHS grantid: UO1 GM61388 – fundername: NHGRI NIH HHS grantid: U01 HG004599 |
GroupedDBID | --- .DC 0R~ 18M 1TH 29L 2WC 4.4 48X 53G 5GY 5RE 5WD 6PF 7~T AABZA AACZT AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABNHQ ABOCM ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACGOD ACHQT ACUFI ACYHN ADBBV ADGZP ADHKW ADHZD ADIPN ADNBA ADQBN ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AGINJ AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT ATGXG AVWKF AXUDD AYCSE BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 DAKXR DIK DILTD DU5 E3Z EBD EBS EJD EMOBN ENERS F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK G-Q GAUVT GJXCC GX1 H13 HAR IH2 IHE J21 JXSIZ KBUDW KOP KSI KSN LSO MHKGH NOMLY NOYVH NQ- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM Q5Y ROX ROZ RPM RPZ RUSNO RWL RXO SV3 TAE TEORI TJX TMA WOW YAYTL YKOAZ YXANX ~S- --K .GJ 1B1 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AAEDT AAJQQ AALRI AAPGJ AAWDT AAXUO ABSMQ ABUWG ABWVN ACFRR ACRPL ACUTJ ACVCV ACZBC ADJOM ADMTO ADMUD ADNMO AFFQV AFKRA AFYAG AGKRT AGMDO AHGBF AJDVS APJGH AQDSO AQKUS AQUVI ARAPS AVNTJ AZQEC BENPR BGLVJ BKEYQ BPHCQ BVXVI BZKNY C1A CCPQU CGR CUY CVF DWQXO ECM EIF EIHJH EO8 EX3 FYUFA GNUQQ HCIFZ HMCUK K6V K7- M0T M1P M2P M2Q M41 MBLQV NAPCQ NPM NU- OBFPC P62 PCD PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO R53 RIG ROL S0X SSZ UKHRP WOQ YHZ ZGI 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c438t-96021583f2ea9bf339ddb825e9d3e80cd43486525d0e8e88a79402a03448f5af3 |
ISSN | 1067-5027 1527-974X |
IngestDate | Thu Aug 21 18:21:47 EDT 2025 Fri Jul 11 02:24:22 EDT 2025 Fri Jul 11 11:29:03 EDT 2025 Mon Jul 21 06:05:29 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 02:01:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | e1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-96021583f2ea9bf339ddb825e9d3e80cd43486525d0e8e88a79402a03448f5af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://academic.oup.com/jamia/article-pdf/19/e1/e83/5878786/19-e1-e83.pdf |
PMID | 22140207 |
PQID | 1237076950 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3392847 proquest_miscellaneous_1551615310 proquest_miscellaneous_1237076950 pubmed_primary_22140207 crossref_primary_10_1136_amiajnl_2011_000295 crossref_citationtrail_10_1136_amiajnl_2011_000295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: BMA House, Tavistock Square, London, WC1H 9JR |
PublicationSeriesTitle | FOCUS on clinical research informatics |
PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
PublicationTitleAlternate | J Am Med Inform Assoc |
PublicationYear | 2012 |
Publisher | BMJ Group |
Publisher_xml | – name: BMJ Group |
References | (9_49067582) 2010; 17 (13_49043498) 2008; 15 Cheng (15_34976010) 2010; 23 (11_49068190) 2010; 17 Jha (10_40579911) 2011; 306 (8_49067594) 2010; 17 (12_49068167) 2010; 17 Schroth (7_35678314) 2009; 302 Wilke (6_39067302) 2011; 89 Chapman (21_17151558) 2001; 34 20351929 - AMIA Annu Symp Proc. 2009;2009:619-23 19809024 - JAMA. 2009 Oct 7;302(13):1429-36 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5 21862751 - JAMA. 2011 Aug 24;306(8):880-1 12123149 - J Biomed Inform. 2001 Oct;34(5):301-10 21248726 - Clin Pharmacol Ther. 2011 Mar;89(3):379-86 19484309 - J Digit Imaging. 2010 Apr;23(2):119-32 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 17947622 - J Am Med Inform Assoc. 2008 Jan-Feb;15(1):25-8 20190053 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):124-30 21269473 - BMC Med Genomics. 2011;4:13 20819866 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):568-74 20351919 - AMIA Annu Symp Proc. 2009;2009:568-72 |
References_xml | – volume: 17 start-page: 131 issn: 1067-5027 issue: 2 year: 2010 ident: 8_49067594 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.002691 – volume: 306 start-page: 880 issn: 0098-7484 issue: 8 year: 2011 ident: 10_40579911 publication-title: JAMA doi: 10.1001/jama.2011.1219 – volume: 15 start-page: 25 issn: 1067-5027 issue: 1 year: 2008 ident: 13_49043498 publication-title: Journal of the American Medical Informatics Association doi: 10.1197/jamia.M2437 – volume: 17 start-page: 124 issn: 1067-5027 issue: 2 year: 2010 ident: 9_49067582 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.000893 – volume: 17 start-page: 507 issn: 1067-5027 issue: 5 year: 2010 ident: 11_49068190 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.001560 – volume: 302 start-page: 1429 issn: 0098-7484 issue: 13 year: 2009 ident: 7_35678314 publication-title: JAMA doi: 10.1001/jama.2009.1420 – volume: 34 start-page: 301 issn: 1532-0464 issue: 5 year: 2001 ident: 21_17151558 publication-title: Journal of biomedical informatics doi: 10.1006/jbin.2001.1029 – volume: 23 start-page: 119 issn: 0897-1889 issue: 2 year: 2010 ident: 15_34976010 publication-title: Journal of digital imaging : the official journal of the Society for Computer Applications in Radiology doi: 10.1007/s10278-009-9215-7 – volume: 89 start-page: 379 issn: 0009-9236 issue: 3 year: 2011 ident: 6_39067302 publication-title: Clinical pharmacology and therapeutics doi: 10.1038/clpt.2010.260 – volume: 17 start-page: 568 issn: 1067-5027 issue: 5 year: 2010 ident: 12_49068167 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2010.004366 – reference: 12123149 - J Biomed Inform. 2001 Oct;34(5):301-10 – reference: 20351919 - AMIA Annu Symp Proc. 2009;2009:568-72 – reference: 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5 – reference: 21862751 - JAMA. 2011 Aug 24;306(8):880-1 – reference: 19484309 - J Digit Imaging. 2010 Apr;23(2):119-32 – reference: 19809024 - JAMA. 2009 Oct 7;302(13):1429-36 – reference: 21269473 - BMC Med Genomics. 2011;4:13 – reference: 20819866 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):568-74 – reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 – reference: 21248726 - Clin Pharmacol Ther. 2011 Mar;89(3):379-86 – reference: 20351929 - AMIA Annu Symp Proc. 2009;2009:619-23 – reference: 17947622 - J Am Med Inform Assoc. 2008 Jan-Feb;15(1):25-8 – reference: 20190053 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):124-30 |
SSID | ssj0016235 |
Score | 2.1717005 |
Snippet | To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the... ObjectiveTo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e83 |
SubjectTerms | Algorithms Antineoplastic Agents, Hormonal - therapeutic use Antineoplastic Combined Chemotherapy Protocols - therapeutic use Aromatase Inhibitors - therapeutic use Breast Neoplasms - drug therapy Electronic Health Records Female Humans Information Storage and Retrieval - methods Natural Language Processing Research and Applications Sensitivity and Specificity Tamoxifen - therapeutic use |
Title | Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22140207 https://www.proquest.com/docview/1237076950 https://www.proquest.com/docview/1551615310 https://pubmed.ncbi.nlm.nih.gov/PMC3392847 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGIiE2iDdDARmJXQkkcZw4ywr1QdWWRWfQ7CIncSCoTappUqn8FL_IvbbzGDpUhU00SuyxlXtiH98nIe-isOAsUMKRqYeqmzBw4izkjuK4YRShH8UYnHx0HO7Pg4MFX0wmv0ZeS22Tfsh-ro0r-R-pwj2QK0bJ_oNk-z-FG_Ab5AtXkDBcbyXj7bapgXECZ8TgWnTG1PbyfNl-G3mQn-sUmtWFye5d5XWGEX9bJvJKd0jRM71BB7BMLbVqtkQf5a1RjZwza9AxSp2_UNpRmMpgArIBTzod9AgMWhcBS_7nHkIn8rK-1Fx2r1UYIipHVbK7pJIHslLNED4x4OQETQpD-WRZwLSUXuq_lmiYKKUNsLAqDvQV6VyxulXZjxw4-CzMprXmXreUxyPIKm-0MCtTLuf6hqEr2sizUv6oTh2jMEZLJR_2x84n4PhLsjs_PExmO4vZHXLXh3MJlszYW_Q-RR5wSa4T9Nq52TRXMMjHNUOsUqFr55s_3XRHvGf2kDyw0qXbBn2PyERVj8m9I-uS8YRc9SCkPQhpXVAEIe1BSDsQUgAD7UFILQixgwEhNSCkBoRUVnQAIbUgpAaET8l8d2f2ad-x9TycLGCiceCwDARTsMJXMk4LxuI8T4XPVZwzJdwsD1ggQu7z3FVCCSFhr3B9iUkpRcFlwZ6Rjaqu1AtCYZtJlYSzs5RxkCueyjRQQPWZcvOIR96U-N2rTTKb7B5rrpwm-tDLwsTKI0F5JEYeU_K-73Rucr3c3PxtJ7ME1mQ0tMEnULcXCbDByI3CmLs3tEELNdAND9o8N3LuB_V9D9U60ZREKwjoG2BO-NUnVfld54aHl4qE8-Ut5rZJ7g8f2yuy0Sxb9RoYdpO-0aj-DVdh2VE |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+discovery+of+drug+treatment+patterns+for+endocrine+therapy+of+breast+cancer+within+an+electronic+medical+record&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Savova%2C+Guergana+K&rft.au=Olson%2C+Janet+E&rft.au=Murphy%2C+Sean+P&rft.au=Cafourek%2C+Victoria+L&rft.date=2012-06-01&rft.issn=1527-974X&rft.eissn=1527-974X&rft.volume=19&rft.issue=e1&rft.spage=e83&rft_id=info:doi/10.1136%2Famiajnl-2011-000295&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon |