Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record

To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods. The electronic medical charts of...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 19; no. e1; pp. e83 - e89
Main Authors Savova, G. K., Olson, J. E., Murphy, S. P., Cafourek, V. L., Couch, F. J., Goetz, M. P., Ingle, J. N., Suman, V. J., Chute, C. G., Weinshilboum, R. M.
Format Journal Article
LanguageEnglish
Published England BMJ Group 01.06.2012
SeriesFOCUS on clinical research informatics
Subjects
Online AccessGet full text
ISSN1067-5027
1527-974X
1527-974X
DOI10.1136/amiajnl-2011-000295

Cover

Loading…
Abstract To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods. The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer. The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic. Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%. Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality. We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.
AbstractList To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.OBJECTIVETo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.MATERIALSThe electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.METHODSThe automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.RESULTSAgreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.DISCUSSIONOur approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.CONCLUSIONWe present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.
ObjectiveTo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods.MaterialsThe electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer.MethodsThe automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic.ResultsAgreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%.DiscussionOur approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality.ConclusionWe present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.
To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the hypothesis that information extracted using it is comparable to the information found by traditional methods. The electronic medical charts of 1507 patients diagnosed with histologically confirmed primary invasive breast cancer. The automatic drug treatment classification tool consisted of components for: (1) extraction of drug treatment-relevant information from clinical narratives using natural language processing (clinical Text Analysis and Knowledge Extraction System); (2) extraction of drug treatment data from an electronic prescribing system; (3) merging information to create a patient treatment timeline; and (4) final classification logic. Agreement between results from the algorithm and from a nurse abstractor is measured for categories: (0) no tamoxifen or aromatase inhibitor (AI) treatment; (1) tamoxifen only; (2) AI only; (3) tamoxifen before AI; (4) AI before tamoxifen; (5) multiple AIs and tamoxifen cycles in no specific order; and (6) no specific treatment dates. Specificity (all categories): 96.14%-100%; sensitivity (categories (0)-(4)): 90.27%-99.83%; sensitivity (categories (5)-(6)): 0-23.53%; positive predictive values: 80%-97.38%; negative predictive values: 96.91%-99.93%. Our approach illustrates a secondary use of the electronic medical record. The main challenge is event temporality. We present an algorithm for automated treatment classification within an electronic medical record to combine information extracted through natural language processing with that extracted from structured databases. The algorithm has high specificity for all categories, high sensitivity for five categories, and low sensitivity for two categories.
Author Suman, V. J.
Olson, J. E.
Savova, G. K.
Chute, C. G.
Ingle, J. N.
Murphy, S. P.
Cafourek, V. L.
Weinshilboum, R. M.
Couch, F. J.
Goetz, M. P.
AuthorAffiliation 1 Mayo Clinic, Rochester, Minnesota, USA
2 Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA
AuthorAffiliation_xml – name: 1 Mayo Clinic, Rochester, Minnesota, USA
– name: 2 Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA
Author_xml – sequence: 1
  givenname: G. K.
  surname: Savova
  fullname: Savova, G. K.
– sequence: 2
  givenname: J. E.
  surname: Olson
  fullname: Olson, J. E.
– sequence: 3
  givenname: S. P.
  surname: Murphy
  fullname: Murphy, S. P.
– sequence: 4
  givenname: V. L.
  surname: Cafourek
  fullname: Cafourek, V. L.
– sequence: 5
  givenname: F. J.
  surname: Couch
  fullname: Couch, F. J.
– sequence: 6
  givenname: M. P.
  surname: Goetz
  fullname: Goetz, M. P.
– sequence: 7
  givenname: J. N.
  surname: Ingle
  fullname: Ingle, J. N.
– sequence: 8
  givenname: V. J.
  surname: Suman
  fullname: Suman, V. J.
– sequence: 9
  givenname: C. G.
  surname: Chute
  fullname: Chute, C. G.
– sequence: 10
  givenname: R. M.
  surname: Weinshilboum
  fullname: Weinshilboum, R. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22140207$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhUVJaR7tLygULbtxqodly5tCCH0EAtm0kJ24I11nFGxpKskp8--ryUxC20W7kkDfuTpHOqfkKMSAhLzl7Jxz2X2A2cN9mBrBOG8YY2JQL8gJV6Jvhr69Pap71vWNYqI_Jqc53zPGOyHVK3IsBG-ZYP0J2V4sJc5Q0FHns40PmLY0jtSl5Y6WhFBmDIVuoBRMIdMxJorBRZt8QFrWmGDzKFhVNhdqIVhM9Kcvax8oBIoT2pJi8JbO6LyFiSa0MbnX5OUIU8Y3h_WMfP_86dvl1-b65svV5cV1Y1upSzN0THCl5SgQhtUo5eDcSguFg5OomXWtbHWnhHIMNWoN_VCjAZNtq0cFozwjH_dzN8uqOrA1ToLJbJKfIW1NBG_-PAl-be7ig6lXCd32dcD7w4AUfyyYi5nrS-E0QcC4ZMOV4h1XkrP_o0L2rO8GtUPf_W7r2c_T11RA7gGbYs4Jx2eEM7MrgDkUwOwKYPYFqKrhL5X1BYqPu2x--qf2F31Ouq0
CitedBy_id crossref_primary_10_1186_s12911_016_0358_4
crossref_primary_10_1080_23808993_2017_1322897
crossref_primary_10_1136_amiajnl_2012_000862
crossref_primary_10_1016_j_dss_2019_113137
crossref_primary_10_1111_epi_17629
crossref_primary_10_1200_CCI_19_00037
crossref_primary_10_1136_amiajnl_2012_000968
crossref_primary_10_1145_3462475
crossref_primary_10_1093_aje_kwt441
crossref_primary_10_1136_amiajnl_2012_001409
crossref_primary_10_2196_37833
crossref_primary_10_2196_33799
crossref_primary_10_1371_journal_pone_0192360
crossref_primary_10_1016_j_cmpb_2023_107693
crossref_primary_10_1016_j_jbi_2017_07_012
crossref_primary_10_1097_MIB_0b013e31828133fd
crossref_primary_10_1136_amiajnl_2011_000751
crossref_primary_10_1007_s10278_013_9616_5
Cites_doi 10.1136/jamia.2009.002691
10.1001/jama.2011.1219
10.1197/jamia.M2437
10.1136/jamia.2009.000893
10.1136/jamia.2009.001560
10.1001/jama.2009.1420
10.1006/jbin.2001.1029
10.1007/s10278-009-9215-7
10.1038/clpt.2010.260
10.1136/jamia.2010.004366
ContentType Journal Article
Copyright 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012
Copyright_xml – notice: 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1136/amiajnl-2011-000295
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage e89
ExternalDocumentID PMC3392847
22140207
10_1136_amiajnl_2011_000295
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U01 GM061388
– fundername: NCI NIH HHS
  grantid: P50 CA116201
– fundername: NCI NIH HHS
  grantid: CA 116201
– fundername: NCI NIH HHS
  grantid: R01 CA122340
– fundername: NHGRI NIH HHS
  grantid: U01 HG 04599
– fundername: NCATS NIH HHS
  grantid: UL1 TR000002
– fundername: NIGMS NIH HHS
  grantid: UO1 GM61388
– fundername: NHGRI NIH HHS
  grantid: U01 HG004599
GroupedDBID ---
.DC
0R~
18M
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7~T
AABZA
AACZT
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACGOD
ACHQT
ACUFI
ACYHN
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AGINJ
AGORE
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
ATGXG
AVWKF
AXUDD
AYCSE
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
E3Z
EBD
EBS
EJD
EMOBN
ENERS
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
G-Q
GAUVT
GJXCC
GX1
H13
HAR
IH2
IHE
J21
JXSIZ
KBUDW
KOP
KSI
KSN
LSO
MHKGH
NOMLY
NOYVH
NQ-
NVLIB
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
Q5Y
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
SV3
TAE
TEORI
TJX
TMA
WOW
YAYTL
YKOAZ
YXANX
~S-
--K
.GJ
1B1
7RV
7X7
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AAEDT
AAJQQ
AALRI
AAPGJ
AAWDT
AAXUO
ABSMQ
ABUWG
ABWVN
ACFRR
ACRPL
ACUTJ
ACVCV
ACZBC
ADJOM
ADMTO
ADMUD
ADNMO
AFFQV
AFKRA
AFYAG
AGKRT
AGMDO
AHGBF
AJDVS
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
AVNTJ
AZQEC
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
BZKNY
C1A
CCPQU
CGR
CUY
CVF
DWQXO
ECM
EIF
EIHJH
EO8
EX3
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
M0T
M1P
M2P
M2Q
M41
MBLQV
NAPCQ
NPM
NU-
OBFPC
P62
PCD
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
R53
RIG
ROL
S0X
SSZ
UKHRP
WOQ
YHZ
ZGI
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c438t-96021583f2ea9bf339ddb825e9d3e80cd43486525d0e8e88a79402a03448f5af3
ISSN 1067-5027
1527-974X
IngestDate Thu Aug 21 18:21:47 EDT 2025
Fri Jul 11 02:24:22 EDT 2025
Fri Jul 11 11:29:03 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 02:01:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue e1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-96021583f2ea9bf339ddb825e9d3e80cd43486525d0e8e88a79402a03448f5af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/jamia/article-pdf/19/e1/e83/5878786/19-e1-e83.pdf
PMID 22140207
PQID 1237076950
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3392847
proquest_miscellaneous_1551615310
proquest_miscellaneous_1237076950
pubmed_primary_22140207
crossref_primary_10_1136_amiajnl_2011_000295
crossref_citationtrail_10_1136_amiajnl_2011_000295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle FOCUS on clinical research informatics
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2012
Publisher BMJ Group
Publisher_xml – name: BMJ Group
References (9_49067582) 2010; 17
(13_49043498) 2008; 15
Cheng (15_34976010) 2010; 23
(11_49068190) 2010; 17
Jha (10_40579911) 2011; 306
(8_49067594) 2010; 17
(12_49068167) 2010; 17
Schroth (7_35678314) 2009; 302
Wilke (6_39067302) 2011; 89
Chapman (21_17151558) 2001; 34
20351929 - AMIA Annu Symp Proc. 2009;2009:619-23
19809024 - JAMA. 2009 Oct 7;302(13):1429-36
20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5
21862751 - JAMA. 2011 Aug 24;306(8):880-1
12123149 - J Biomed Inform. 2001 Oct;34(5):301-10
21248726 - Clin Pharmacol Ther. 2011 Mar;89(3):379-86
19484309 - J Digit Imaging. 2010 Apr;23(2):119-32
20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
17947622 - J Am Med Inform Assoc. 2008 Jan-Feb;15(1):25-8
20190053 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):124-30
21269473 - BMC Med Genomics. 2011;4:13
20819866 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):568-74
20351919 - AMIA Annu Symp Proc. 2009;2009:568-72
References_xml – volume: 17
  start-page: 131
  issn: 1067-5027
  issue: 2
  year: 2010
  ident: 8_49067594
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.002691
– volume: 306
  start-page: 880
  issn: 0098-7484
  issue: 8
  year: 2011
  ident: 10_40579911
  publication-title: JAMA
  doi: 10.1001/jama.2011.1219
– volume: 15
  start-page: 25
  issn: 1067-5027
  issue: 1
  year: 2008
  ident: 13_49043498
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1197/jamia.M2437
– volume: 17
  start-page: 124
  issn: 1067-5027
  issue: 2
  year: 2010
  ident: 9_49067582
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.000893
– volume: 17
  start-page: 507
  issn: 1067-5027
  issue: 5
  year: 2010
  ident: 11_49068190
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.001560
– volume: 302
  start-page: 1429
  issn: 0098-7484
  issue: 13
  year: 2009
  ident: 7_35678314
  publication-title: JAMA
  doi: 10.1001/jama.2009.1420
– volume: 34
  start-page: 301
  issn: 1532-0464
  issue: 5
  year: 2001
  ident: 21_17151558
  publication-title: Journal of biomedical informatics
  doi: 10.1006/jbin.2001.1029
– volume: 23
  start-page: 119
  issn: 0897-1889
  issue: 2
  year: 2010
  ident: 15_34976010
  publication-title: Journal of digital imaging : the official journal of the Society for Computer Applications in Radiology
  doi: 10.1007/s10278-009-9215-7
– volume: 89
  start-page: 379
  issn: 0009-9236
  issue: 3
  year: 2011
  ident: 6_39067302
  publication-title: Clinical pharmacology and therapeutics
  doi: 10.1038/clpt.2010.260
– volume: 17
  start-page: 568
  issn: 1067-5027
  issue: 5
  year: 2010
  ident: 12_49068167
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2010.004366
– reference: 12123149 - J Biomed Inform. 2001 Oct;34(5):301-10
– reference: 20351919 - AMIA Annu Symp Proc. 2009;2009:568-72
– reference: 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5
– reference: 21862751 - JAMA. 2011 Aug 24;306(8):880-1
– reference: 19484309 - J Digit Imaging. 2010 Apr;23(2):119-32
– reference: 19809024 - JAMA. 2009 Oct 7;302(13):1429-36
– reference: 21269473 - BMC Med Genomics. 2011;4:13
– reference: 20819866 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):568-74
– reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
– reference: 21248726 - Clin Pharmacol Ther. 2011 Mar;89(3):379-86
– reference: 20351929 - AMIA Annu Symp Proc. 2009;2009:619-23
– reference: 17947622 - J Am Med Inform Assoc. 2008 Jan-Feb;15(1):25-8
– reference: 20190053 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):124-30
SSID ssj0016235
Score 2.1717005
Snippet To develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to test the...
ObjectiveTo develop an algorithm for the discovery of drug treatment patterns for endocrine breast cancer therapy within an electronic medical record and to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e83
SubjectTerms Algorithms
Antineoplastic Agents, Hormonal - therapeutic use
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Aromatase Inhibitors - therapeutic use
Breast Neoplasms - drug therapy
Electronic Health Records
Female
Humans
Information Storage and Retrieval - methods
Natural Language Processing
Research and Applications
Sensitivity and Specificity
Tamoxifen - therapeutic use
Title Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record
URI https://www.ncbi.nlm.nih.gov/pubmed/22140207
https://www.proquest.com/docview/1237076950
https://www.proquest.com/docview/1551615310
https://pubmed.ncbi.nlm.nih.gov/PMC3392847
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGIiE2iDdDARmJXQkkcZw4ywr1QdWWRWfQ7CIncSCoTappUqn8FL_IvbbzGDpUhU00SuyxlXtiH98nIe-isOAsUMKRqYeqmzBw4izkjuK4YRShH8UYnHx0HO7Pg4MFX0wmv0ZeS22Tfsh-ro0r-R-pwj2QK0bJ_oNk-z-FG_Ab5AtXkDBcbyXj7bapgXECZ8TgWnTG1PbyfNl-G3mQn-sUmtWFye5d5XWGEX9bJvJKd0jRM71BB7BMLbVqtkQf5a1RjZwza9AxSp2_UNpRmMpgArIBTzod9AgMWhcBS_7nHkIn8rK-1Fx2r1UYIipHVbK7pJIHslLNED4x4OQETQpD-WRZwLSUXuq_lmiYKKUNsLAqDvQV6VyxulXZjxw4-CzMprXmXreUxyPIKm-0MCtTLuf6hqEr2sizUv6oTh2jMEZLJR_2x84n4PhLsjs_PExmO4vZHXLXh3MJlszYW_Q-RR5wSa4T9Nq52TRXMMjHNUOsUqFr55s_3XRHvGf2kDyw0qXbBn2PyERVj8m9I-uS8YRc9SCkPQhpXVAEIe1BSDsQUgAD7UFILQixgwEhNSCkBoRUVnQAIbUgpAaET8l8d2f2ad-x9TycLGCiceCwDARTsMJXMk4LxuI8T4XPVZwzJdwsD1ggQu7z3FVCCSFhr3B9iUkpRcFlwZ6Rjaqu1AtCYZtJlYSzs5RxkCueyjRQQPWZcvOIR96U-N2rTTKb7B5rrpwm-tDLwsTKI0F5JEYeU_K-73Rucr3c3PxtJ7ME1mQ0tMEnULcXCbDByI3CmLs3tEELNdAND9o8N3LuB_V9D9U60ZREKwjoG2BO-NUnVfld54aHl4qE8-Ut5rZJ7g8f2yuy0Sxb9RoYdpO-0aj-DVdh2VE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+discovery+of+drug+treatment+patterns+for+endocrine+therapy+of+breast+cancer+within+an+electronic+medical+record&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Savova%2C+Guergana+K&rft.au=Olson%2C+Janet+E&rft.au=Murphy%2C+Sean+P&rft.au=Cafourek%2C+Victoria+L&rft.date=2012-06-01&rft.issn=1527-974X&rft.eissn=1527-974X&rft.volume=19&rft.issue=e1&rft.spage=e83&rft_id=info:doi/10.1136%2Famiajnl-2011-000295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon