Construction of integrated gene logic-chip

In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products 1 . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes i...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 13; no. 10; pp. 933 - 940
Main Authors Masubuchi, Takeya, Endo, Masayuki, Iizuka, Ryo, Iguchi, Ayaka, Yoon, Dong Hyun, Sekiguchi, Tetsushi, Qi, Hao, Iinuma, Ryosuke, Miyazono, Yuya, Shoji, Shuichi, Funatsu, Takashi, Sugiyama, Hiroshi, Harada, Yoshie, Ueda, Takuya, Tadakuma, Hisashi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products 1 . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced 2 . However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. DNA origami-based integrated gene transcription modules enable the rational design of transcription activity. Architectural modalities between gene and RNA polymerase allow the autonomous response to various signals with reprogrammable logic gates.
AbstractList In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced . However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.
In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.
In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products 1 . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced 2 . However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. DNA origami-based integrated gene transcription modules enable the rational design of transcription activity. Architectural modalities between gene and RNA polymerase allow the autonomous response to various signals with reprogrammable logic gates.
In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.
Author Sekiguchi, Tetsushi
Yoon, Dong Hyun
Miyazono, Yuya
Tadakuma, Hisashi
Masubuchi, Takeya
Qi, Hao
Shoji, Shuichi
Ueda, Takuya
Harada, Yoshie
Endo, Masayuki
Iizuka, Ryo
Iguchi, Ayaka
Iinuma, Ryosuke
Funatsu, Takashi
Sugiyama, Hiroshi
Author_xml – sequence: 1
  givenname: Takeya
  surname: Masubuchi
  fullname: Masubuchi, Takeya
  organization: Graduate School of Frontier Science, The University of Tokyo, Institute for Quantitative Biosciences, The University of Tokyo
– sequence: 2
  givenname: Masayuki
  orcidid: 0000-0003-0957-3764
  surname: Endo
  fullname: Endo, Masayuki
  email: endo@kuchem.kyoto-u.ac.jp
  organization: Graduate School of Science, Department of Chemistry, Kyoto University, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
– sequence: 3
  givenname: Ryo
  surname: Iizuka
  fullname: Iizuka, Ryo
  organization: Graduate School of Pharmaceutical Sciences, The University of Tokyo
– sequence: 4
  givenname: Ayaka
  surname: Iguchi
  fullname: Iguchi, Ayaka
  organization: Department of Nanoscience and Nanoengineering (ASE Graduate School), Waseda University
– sequence: 5
  givenname: Dong Hyun
  surname: Yoon
  fullname: Yoon, Dong Hyun
  organization: Research Organization for Nano & Life Innovation, Waseda University
– sequence: 6
  givenname: Tetsushi
  surname: Sekiguchi
  fullname: Sekiguchi, Tetsushi
  organization: Research Organization for Nano & Life Innovation, Waseda University
– sequence: 7
  givenname: Hao
  surname: Qi
  fullname: Qi, Hao
  organization: Graduate School of Frontier Science, The University of Tokyo, Department of Chemical Engineering and Technology, Tianjin University
– sequence: 8
  givenname: Ryosuke
  surname: Iinuma
  fullname: Iinuma, Ryosuke
  organization: Graduate School of Frontier Science, The University of Tokyo
– sequence: 9
  givenname: Yuya
  surname: Miyazono
  fullname: Miyazono, Yuya
  organization: Graduate School of Frontier Science, The University of Tokyo
– sequence: 10
  givenname: Shuichi
  surname: Shoji
  fullname: Shoji, Shuichi
  organization: Department of Nanoscience and Nanoengineering (ASE Graduate School), Waseda University
– sequence: 11
  givenname: Takashi
  surname: Funatsu
  fullname: Funatsu, Takashi
  organization: Graduate School of Pharmaceutical Sciences, The University of Tokyo
– sequence: 12
  givenname: Hiroshi
  orcidid: 0000-0001-8923-5946
  surname: Sugiyama
  fullname: Sugiyama, Hiroshi
  email: hs@kuchem.kyoto-u.ac.jp
  organization: Graduate School of Science, Department of Chemistry, Kyoto University, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University
– sequence: 13
  givenname: Yoshie
  surname: Harada
  fullname: Harada, Yoshie
  organization: Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Institute for Protein Research, Osaka University
– sequence: 14
  givenname: Takuya
  orcidid: 0000-0002-7760-8271
  surname: Ueda
  fullname: Ueda, Takuya
  email: ueda@edu.k.u-tokyo.ac.jp
  organization: Graduate School of Frontier Science, The University of Tokyo
– sequence: 15
  givenname: Hisashi
  orcidid: 0000-0002-7877-2559
  surname: Tadakuma
  fullname: Tadakuma, Hisashi
  email: tadakuma@protein.osaka-u.ac.jp
  organization: Graduate School of Frontier Science, The University of Tokyo, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Institute for Protein Research, Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30038365$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUQINUbK1-gBspuBFhNO_JLKX4goIbXYc0c2ecMk1qMrPw702ZVqGgq1zCOZfLOUUj5x0gdEHwLcFM3UVOhBQZJirDFNOMHaEJybnKGCvE6GdW-RidxrjCWNCC8hM0ZjjpTIoJupl7F7vQ267xbuarWeM6qIPpoJzV4GDW-rqxmf1oNmfouDJthPPdO0Xvjw9v8-ds8fr0Mr9fZJYz1WUFA2mhtLRQuCRguMBSwFKBxJRxJUxFcqqoFZgDIzjPjVFyWXAijUp_lE3R9bB3E_xnD7HT6yZaaFvjwPdRU5wLwRlnRUKvDtCV74NL12lKiJRYCZYn6nJH9cs1lHoTmrUJX3pfIQH5ANjgYwxQadt0ZlukC6ZpNcF621sPvXXqrbe9NUsmOTD3y_9z6ODExLoawu_Rf0vfNCyN-Q
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00028
crossref_primary_10_1002_adma_202301035
crossref_primary_10_1016_j_bioorg_2023_107080
crossref_primary_10_1002_adfm_202404522
crossref_primary_10_1039_C9LC00788A
crossref_primary_10_3892_mmr_2024_13220
crossref_primary_10_7554_eLife_76357
crossref_primary_10_1039_D0CS00255K
crossref_primary_10_3390_mi11090788
crossref_primary_10_1038_s41929_019_0403_7
crossref_primary_10_1016_j_tibtech_2023_03_005
crossref_primary_10_1002_adhm_201801658
crossref_primary_10_1002_anie_202205460
crossref_primary_10_1038_s41467_022_32548_x
crossref_primary_10_2142_biophysico_bppb_v21_e2004
crossref_primary_10_1002_VIW_20230062
crossref_primary_10_1038_s41427_023_00470_3
crossref_primary_10_1126_sciadv_abm9530
crossref_primary_10_1248_yakushi_20_00111
crossref_primary_10_1039_D0NR08465D
crossref_primary_10_1021_acsnano_9b09163
crossref_primary_10_1002_anie_202006029
crossref_primary_10_1038_s41578_022_00517_x
crossref_primary_10_1039_D2NH00060A
crossref_primary_10_1039_D3NA00088E
crossref_primary_10_1039_C9CC03141C
crossref_primary_10_1021_acs_nanolett_4c02104
crossref_primary_10_1021_acssynbio_3c00726
crossref_primary_10_1021_jacs_3c11067
crossref_primary_10_1002_adfm_202112331
crossref_primary_10_1021_jacs_3c13331
crossref_primary_10_1038_s41467_024_45186_2
crossref_primary_10_1039_D0NR02361B
crossref_primary_10_1007_s00216_019_01622_7
crossref_primary_10_1002_ange_202006029
crossref_primary_10_1007_s12551_020_00646_z
crossref_primary_10_1039_C9CC04661E
crossref_primary_10_1002_ange_202205460
crossref_primary_10_1021_acsnano_9b06466
Cites_doi 10.1038/35002131
10.1038/srep22259
10.1038/ncb3048
10.1016/j.copbio.2011.12.024
10.1126/science.aac7341
10.1038/nnano.2009.50
10.1038/nbt1111
10.1038/nature08016
10.1021/ol801112j
10.1126/science.1214081
10.1126/science.aam5488
10.1038/ncomms10619
10.1016/j.snb.2011.06.043
10.1126/science.1226734
10.1038/ncomms13982
10.1038/emboj.2009.319
10.1002/anie.201005931
10.1038/nprot.2009.234
10.1038/nnano.2014.100
10.1038/nnano.2010.284
10.1038/nature04586
10.1126/science.1206938
10.1093/jb/mvr010
10.1038/nnano.2008.164
10.1021/ja300897h
10.1126/science.1250944
10.1038/90802
10.1073/pnas.0408164102
10.1126/science.1132493
10.1002/anie.200603919
10.1038/nnano.2017.127
10.1126/science.1232758
10.3390/computation2040246
10.1016/j.molcel.2015.05.015
10.1039/c2lc40098g
10.1126/science.1225829
10.1038/416499a
10.1126/science.8079175
10.1038/msb.2013.32
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Oct 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Oct 2018
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-018-0202-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 940
ExternalDocumentID 30038365
10_1038_s41565_018_0202_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c438t-93e6cedc2980d1ea45065eb8e6023485af17282c504e31077aa86b9416a850423
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 01:05:39 EDT 2025
Fri Jul 25 09:09:58 EDT 2025
Mon Jul 21 05:58:29 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-93e6cedc2980d1ea45065eb8e6023485af17282c504e31077aa86b9416a850423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Correspondence-1
content type line 23
ORCID 0000-0001-8923-5946
0000-0003-0957-3764
0000-0002-7760-8271
0000-0002-7877-2559
PMID 30038365
PQID 2116608537
PQPubID 546299
PageCount 8
ParticipantIDs proquest_miscellaneous_2075543439
proquest_journals_2116608537
pubmed_primary_30038365
crossref_citationtrail_10_1038_s41565_018_0202_3
crossref_primary_10_1038_s41565_018_0202_3
springer_journals_10_1038_s41565_018_0202_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nielsen (CR2) 2016; 352
Bentele, Saffert, Rauscher, Ignatova, Bluthgen (CR31) 2013; 9
Douglas, Bachelet, Church (CR8) 2012; 335
Yao, Sasaki, Ueda, Tomari, Tadakuma (CR23) 2015; 59
Kitano, Funahashi, Matsuoka, Oda (CR39) 2005; 23
CR37
Maniatis, Reed (CR3) 2002; 416
Schuler, Lipman, Steinbach, Kumke, Eaton (CR38) 2005; 102
Zhang, Tsitkov, Hess (CR18) 2016; 7
Simmel (CR9) 2012; 23
Okano, Matsuura, Kazuta, Suzuki, Yomo (CR36) 2012; 12
Miyazono, Hayashi, Karagiannis, Harada, Tadakuma (CR20) 2010; 29
Derr (CR32) 2012; 338
Qin, Xia, Whitesides (CR35) 2010; 5
Yoshimura, Fujimoto (CR24) 2008; 10
Rothemund (CR4) 2006; 440
Wilner (CR12) 2009; 4
Gardner, Cantor, Collins (CR1) 2000; 403
Williams, Lund, Liu, Yan, Chaput (CR29) 2007; 46
Dörr, Keller, Zell, Drager (CR40) 2014; 2
Shimizu (CR21) 2001; 19
Bustamante, Marko, Siggia, Smith (CR19) 1994; 265
Torisawa (CR33) 2014; 16
Fu (CR14) 2014; 9
Seelig, Soloveichik, Zhang, Winfree (CR7) 2006; 314
Jinek (CR26) 2012; 337
Rinker, Ke, Liu, Chhabra, Yan (CR28) 2008; 3
Bonnet, Yin, Ortiz, Subsoontorn, Endy (CR30) 2013; 340
Haneoka (CR34) 2011; 159
Chatterjee, Dalchau, Muscat, Phillips, Seelig (CR11) 2017; 12
Zhao (CR15) 2016; 7
Wickham (CR16) 2011; 6
Douglas (CR5) 2009; 459
Delebecque, Lindner, Silver, Aldaye (CR10) 2011; 333
Zhou (CR25) 2010; 149
Iinuma (CR6) 2014; 344
Fu, Liu, Liu, Woodbury, Yan (CR13) 2012; 134
Sacca (CR17) 2010; 49
Nakamura (CR22) 2016; 6
Praetorius, Dietz (CR27) 2017; 355
TS Gardner (202_CR1) 2000; 403
M Haneoka (202_CR34) 2011; 159
FC Simmel (202_CR9) 2012; 23
D Qin (202_CR35) 2010; 5
SFJ Wickham (202_CR16) 2011; 6
G Chatterjee (202_CR11) 2017; 12
J Bonnet (202_CR30) 2013; 340
R Iinuma (202_CR6) 2014; 344
J Fu (202_CR14) 2014; 9
ND Derr (202_CR32) 2012; 338
Z Zhao (202_CR15) 2016; 7
C Yao (202_CR23) 2015; 59
SM Douglas (202_CR8) 2012; 335
T Maniatis (202_CR3) 2002; 416
S Rinker (202_CR28) 2008; 3
K Bentele (202_CR31) 2013; 9
H Kitano (202_CR39) 2005; 23
Y Zhang (202_CR18) 2016; 7
C Bustamante (202_CR19) 1994; 265
K Nakamura (202_CR22) 2016; 6
T Okano (202_CR36) 2012; 12
202_CR37
G Seelig (202_CR7) 2006; 314
F Praetorius (202_CR27) 2017; 355
A Dörr (202_CR40) 2014; 2
SM Douglas (202_CR5) 2009; 459
ZP Zhou (202_CR25) 2010; 149
T Torisawa (202_CR33) 2014; 16
Y Yoshimura (202_CR24) 2008; 10
M Jinek (202_CR26) 2012; 337
OI Wilner (202_CR12) 2009; 4
AA Nielsen (202_CR2) 2016; 352
B Schuler (202_CR38) 2005; 102
BA Williams (202_CR29) 2007; 46
CJ Delebecque (202_CR10) 2011; 333
Y Miyazono (202_CR20) 2010; 29
B Sacca (202_CR17) 2010; 49
J Fu (202_CR13) 2012; 134
Y Shimizu (202_CR21) 2001; 19
PWK Rothemund (202_CR4) 2006; 440
References_xml – volume: 403
  start-page: 339
  year: 2000
  end-page: 342
  ident: CR1
  article-title: Construction of a genetic toggle switch in
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 6
  year: 2016
  ident: CR22
  article-title: Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform
  publication-title: Sci. Rep.
  doi: 10.1038/srep22259
– volume: 16
  start-page: 1118
  year: 2014
  end-page: 1124
  ident: CR33
  article-title: Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3048
– ident: CR37
– volume: 23
  start-page: 516
  year: 2012
  end-page: 521
  ident: CR9
  article-title: DNA-based assembly lines and nanofactories
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.12.024
– volume: 352
  start-page: aac7341
  year: 2016
  ident: CR2
  article-title: Genetic circuit design automation
  publication-title: Science
  doi: 10.1126/science.aac7341
– volume: 4
  start-page: 249
  year: 2009
  end-page: 254
  ident: CR12
  article-title: Enzyme cascades activated on topologically programmed DNA scaffolds
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2009.50
– volume: 23
  start-page: 961
  year: 2005
  end-page: 966
  ident: CR39
  article-title: Using process diagrams for the graphical representation of biological networks
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1111
– volume: 459
  start-page: 414
  year: 2009
  end-page: 418
  ident: CR5
  article-title: Self-assembly of DNA into nanoscale three-dimensional shapes
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 10
  start-page: 3227
  year: 2008
  end-page: 3230
  ident: CR24
  article-title: Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation
  publication-title: Org. Lett.
  doi: 10.1021/ol801112j
– volume: 335
  start-page: 831
  year: 2012
  end-page: 834
  ident: CR8
  article-title: A logic-gated nanorobot for targeted transport of molecular payloads
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 355
  start-page: eaam5488
  year: 2017
  ident: CR27
  article-title: Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes
  publication-title: Science
  doi: 10.1126/science.aam5488
– volume: 7
  year: 2016
  ident: CR15
  article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10619
– volume: 159
  start-page: 314
  year: 2011
  end-page: 320
  ident: CR34
  article-title: Microfluidic active sorting of DNA molecules labeled with single quantum dots using flow switching by a hydrogel sol–gel transition
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2011.06.043
– volume: 338
  start-page: 662
  year: 2012
  end-page: 665
  ident: CR32
  article-title: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold
  publication-title: Science
  doi: 10.1126/science.1226734
– volume: 7
  year: 2016
  ident: CR18
  article-title: Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13982
– volume: 29
  start-page: 93
  year: 2010
  end-page: 106
  ident: CR20
  article-title: Strain through the neck linker ensures processive runs: a DNA–kinesin hybrid nanomachine study
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.319
– volume: 49
  start-page: 9378
  year: 2010
  end-page: 9383
  ident: CR17
  article-title: Orthogonal protein decoration of DNA origami
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005931
– volume: 5
  start-page: 491
  year: 2010
  end-page: 502
  ident: CR35
  article-title: Soft lithography for micro- and nanoscale patterning
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.234
– volume: 9
  start-page: 531
  year: 2014
  end-page: 536
  ident: CR14
  article-title: Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.100
– volume: 6
  start-page: 166
  year: 2011
  end-page: 169
  ident: CR16
  article-title: Direct observation of stepwise movement of a synthetic molecular transporter
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2010.284
– volume: 440
  start-page: 297
  year: 2006
  end-page: 302
  ident: CR4
  article-title: Folding DNA to create nanoscale shapes and patterns
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 333
  start-page: 470
  year: 2011
  end-page: 474
  ident: CR10
  article-title: Organization of intracellular reactions with rationally designed RNA assemblies
  publication-title: Science
  doi: 10.1126/science.1206938
– volume: 149
  start-page: 609
  year: 2010
  end-page: 618
  ident: CR25
  article-title: Single molecule imaging of the trans-translation entry process via anchoring of the tagged ribosome
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvr010
– volume: 3
  start-page: 418
  year: 2008
  end-page: 422
  ident: CR28
  article-title: Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2008.164
– volume: 134
  start-page: 5516
  year: 2012
  end-page: 5519
  ident: CR13
  article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300897h
– volume: 344
  start-page: 65
  year: 2014
  end-page: 69
  ident: CR6
  article-title: Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT
  publication-title: Science
  doi: 10.1126/science.1250944
– volume: 19
  start-page: 751
  year: 2001
  end-page: 755
  ident: CR21
  article-title: Cell-free translation reconstituted with purified components
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90802
– volume: 102
  start-page: 2754
  year: 2005
  end-page: 2759
  ident: CR38
  article-title: Polyproline and the ‘spectroscopic ruler’ revisited with single-molecule fluorescence
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0408164102
– volume: 314
  start-page: 1585
  year: 2006
  end-page: 1588
  ident: CR7
  article-title: Enzyme-free nucleic acid logic circuits
  publication-title: Science
  doi: 10.1126/science.1132493
– volume: 46
  start-page: 3051
  year: 2007
  end-page: 3054
  ident: CR29
  article-title: Self-assembled peptide nanoarrays: an approach to studying protein–protein interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603919
– volume: 12
  start-page: 920
  year: 2017
  end-page: 927
  ident: CR11
  article-title: A spatially localized architecture for fast and modular DNA computing
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.127
– volume: 340
  start-page: 599
  year: 2013
  end-page: 603
  ident: CR30
  article-title: Amplifying genetic logic gates
  publication-title: Science
  doi: 10.1126/science.1232758
– volume: 2
  start-page: 246
  year: 2014
  end-page: 257
  ident: CR40
  article-title: SBMLsimulator: a Java tool for model simulation and parameter estimation in systems biology
  publication-title: Computation
  doi: 10.3390/computation2040246
– volume: 59
  start-page: 125
  year: 2015
  end-page: 132
  ident: CR23
  article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 12
  start-page: 2704
  year: 2012
  end-page: 2711
  ident: CR36
  article-title: Cell-free protein synthesis from a single copy of DNA in a glass microchamber
  publication-title: Lab Chip
  doi: 10.1039/c2lc40098g
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: CR26
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 416
  start-page: 499
  year: 2002
  end-page: 506
  ident: CR3
  article-title: An extensive network of coupling among gene expression machines
  publication-title: Nature
  doi: 10.1038/416499a
– volume: 265
  start-page: 1599
  year: 1994
  end-page: 1600
  ident: CR19
  article-title: Entropic elasticity of lambda-phage DNA
  publication-title: Science
  doi: 10.1126/science.8079175
– volume: 9
  start-page: 675
  year: 2013
  ident: CR31
  article-title: Efficient translation initiation dictates codon usage at gene start
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.32
– volume: 403
  start-page: 339
  year: 2000
  ident: 202_CR1
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 49
  start-page: 9378
  year: 2010
  ident: 202_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005931
– volume: 23
  start-page: 516
  year: 2012
  ident: 202_CR9
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.12.024
– volume: 12
  start-page: 920
  year: 2017
  ident: 202_CR11
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.127
– volume: 19
  start-page: 751
  year: 2001
  ident: 202_CR21
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90802
– volume: 333
  start-page: 470
  year: 2011
  ident: 202_CR10
  publication-title: Science
  doi: 10.1126/science.1206938
– volume: 5
  start-page: 491
  year: 2010
  ident: 202_CR35
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.234
– volume: 7
  year: 2016
  ident: 202_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10619
– volume: 440
  start-page: 297
  year: 2006
  ident: 202_CR4
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 352
  start-page: aac7341
  year: 2016
  ident: 202_CR2
  publication-title: Science
  doi: 10.1126/science.aac7341
– volume: 23
  start-page: 961
  year: 2005
  ident: 202_CR39
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1111
– volume: 344
  start-page: 65
  year: 2014
  ident: 202_CR6
  publication-title: Science
  doi: 10.1126/science.1250944
– ident: 202_CR37
– volume: 9
  start-page: 531
  year: 2014
  ident: 202_CR14
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.100
– volume: 149
  start-page: 609
  year: 2010
  ident: 202_CR25
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvr010
– volume: 3
  start-page: 418
  year: 2008
  ident: 202_CR28
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2008.164
– volume: 265
  start-page: 1599
  year: 1994
  ident: 202_CR19
  publication-title: Science
  doi: 10.1126/science.8079175
– volume: 59
  start-page: 125
  year: 2015
  ident: 202_CR23
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 16
  start-page: 1118
  year: 2014
  ident: 202_CR33
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3048
– volume: 314
  start-page: 1585
  year: 2006
  ident: 202_CR7
  publication-title: Science
  doi: 10.1126/science.1132493
– volume: 355
  start-page: eaam5488
  year: 2017
  ident: 202_CR27
  publication-title: Science
  doi: 10.1126/science.aam5488
– volume: 134
  start-page: 5516
  year: 2012
  ident: 202_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300897h
– volume: 29
  start-page: 93
  year: 2010
  ident: 202_CR20
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.319
– volume: 335
  start-page: 831
  year: 2012
  ident: 202_CR8
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 7
  year: 2016
  ident: 202_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13982
– volume: 6
  year: 2016
  ident: 202_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/srep22259
– volume: 337
  start-page: 816
  year: 2012
  ident: 202_CR26
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 340
  start-page: 599
  year: 2013
  ident: 202_CR30
  publication-title: Science
  doi: 10.1126/science.1232758
– volume: 46
  start-page: 3051
  year: 2007
  ident: 202_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603919
– volume: 12
  start-page: 2704
  year: 2012
  ident: 202_CR36
  publication-title: Lab Chip
  doi: 10.1039/c2lc40098g
– volume: 4
  start-page: 249
  year: 2009
  ident: 202_CR12
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2009.50
– volume: 459
  start-page: 414
  year: 2009
  ident: 202_CR5
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 6
  start-page: 166
  year: 2011
  ident: 202_CR16
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2010.284
– volume: 2
  start-page: 246
  year: 2014
  ident: 202_CR40
  publication-title: Computation
  doi: 10.3390/computation2040246
– volume: 102
  start-page: 2754
  year: 2005
  ident: 202_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0408164102
– volume: 10
  start-page: 3227
  year: 2008
  ident: 202_CR24
  publication-title: Org. Lett.
  doi: 10.1021/ol801112j
– volume: 159
  start-page: 314
  year: 2011
  ident: 202_CR34
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2011.06.043
– volume: 9
  start-page: 675
  year: 2013
  ident: 202_CR31
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.32
– volume: 338
  start-page: 662
  year: 2012
  ident: 202_CR32
  publication-title: Science
  doi: 10.1126/science.1226734
– volume: 416
  start-page: 499
  year: 2002
  ident: 202_CR3
  publication-title: Nature
  doi: 10.1038/416499a
SSID ssj0052924
Score 2.45167
Snippet In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 933
SubjectTerms 639/766/747
639/925/926/1048
Automation
Chemistry and Materials Science
Circuit design
Circuits
Crosstalk
Deoxyribonucleic acid
DNA
DNA-directed RNA polymerase
Enzymes
Gene expression
Genes
Information processing
Letter
Logic circuits
Materials Science
miRNA
Nanotechnology
Nanotechnology and Microengineering
Ribonucleic acid
RNA
RNA polymerase
Signal processing
Substrates
Title Construction of integrated gene logic-chip
URI https://link.springer.com/article/10.1038/s41565-018-0202-3
https://www.ncbi.nlm.nih.gov/pubmed/30038365
https://www.proquest.com/docview/2116608537
https://www.proquest.com/docview/2075543439
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB7UXvQgvo3WEsFTZWndVyYnUWktHoqIhd7CZrNBQdpK9f87m1cV0Usu2U2WmcnsNzuTbwAukGCooaiLOYMUoJCbZLHJYkbhreJ9KTOTF1W-Yz2ayIepmlYHbsuqrLL2iYWjzubWn5H3KFDRmvCBiK4X78x3jfLZ1aqFxjq0PHWZt-po2gRcisdlU9tIIqNQLKqzmgJ7Sx-4-LI1ZASYOBM_96VfYPNXorTYf4Y7sF0Bx_Cm1PQurLnZHmx9oxPch67vvlnzwYbzPGy4ILKQ7MSFhZ9j9uV1cQCT4eD5bsSqXgjMSoEfLBZOW5dZHmM_u3JGKsIOLkWnadOVqEzuG01xq_rSEWKLImNQpzHBLYPK174cwsZsPnPHENLE_Cq1AlMUknOLRnGd5U7Hnh_RYQD9WhKJrYjCfb-Kt6RIWAtMSuElJLzECy8RAXSbKYuSJeO_we1avEn1wSyTlXoDOG9uk6n7_IWZufknjSF4U_wJGwdwVKqleZvwKU6hVQCXtZ5WD_9zKSf_L-UUNrm3kKJ2rw0bpEF3RhjkI-0UhkZXHN53oHU7GD8-fQGLRtSP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK6wDjiIt2ExEi6ks6tf03MQEaz1PJG4tZ6enpDI7soS8af8RtUz24sIN-fpV6qqq76aqq4C2FQIQw16XcQZhQ4KqkmSmjwl6N4K2uQ8N0WZ5Xsl2zf87FbcjsB7eAvj0yqDTiwVdd61_h95Ax0VKREfsGS_90R81ygfXQ0tNCqxOHdvr-iy9fdOj5C_W5S2jq8P22TQVYBYztQzSZmT1uWWpqqZ7zrDBVphlykn0XxxJUzhWzZRK5rcIfZJEmOUzFIELkYJn0WC647CGGdoyf3L9NZJ0PyCplUT3YQrgq5fEqKoTDX63lHyaXKKIECjhH23gz_A7Y_AbGnvWtMwNQCq8UElWTMw4jqzMPmlfOEcbPtun6H-bNwt4mHtiTxGuXRxqVeJvX_ozcPNv1BpAWqdbsctQYwTi93MMpUpxim1yggq88LJ1NdjdCqCZqCEtoPC5L4_xqMuA-RM6Yp4GomnPfE0i2B7OKVXVeX4a3A9kFcPLmhff4pTBBvDz3i1fLzEdFz3BccgnCpf3qYRLFZsGe7GfEiVSRHBTuDT5-K_HmX576Osw3j7-vJCX5xena_ABPXSUuYN1qGG3HSriH-es7VS6GK4-28p_wCdpwzi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgAYbLGyDII2XTlZb_4rzME0bbbVRVE2ISXszjuOISagpahHiX9tft3MSp6BpfdtzHMe6O_u-L3e-AzhUCEMNsi7ijEKCgsckSU2eEqS3gvY5z01RZflO5fkV_3wtrjfgNtyF8WmV4UysDuq8tP4feQ-JipSID1jSK5q0iMvh-GT-i_gOUj7SGtpp1CYycX__IH1bHF8MUdcfKR2Pvn06J02HAWI5U0uSMietyy1NVT8fOMMFemSXKSfRlXElTOHbN1Er-twhDkoSY5TMUgQxRgmfUYLzPoHNxLOiDmyejaaXX4MfEDStW-omXBEkgkmIqTLVW3ja5JPmFEG4Rgn73yveg7r3wrSV9xtvwYsGtsantZ29hA03ewXP_ylmuA1d3_szVKONyyJuK1HkMVqpi6tTltgfN_MduHoUOb2GzqycuV2I8cVikFmmMsU4pVYZQWVeOJn66oxORdAPktC2KVPuu2X81FW4nCldC0-j8LQXnmYRdNtX5nWNjnWD94N4dbNdF3plXBF8aB_jRvPREzNz5W8cg-CquoebRvCmVkv7NeYDrEyKCI6CnlaTP7iUt-uX8h6eooXrLxfTyR48o95YqiTCfeigMt0BgqFl9q6xuhi-P7ah3wEbYhJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+integrated+gene+logic-chip&rft.jtitle=Nature+nanotechnology&rft.au=Takeya+Masubuchi&rft.au=Endo%2C+Masayuki&rft.au=Iizuka%2C+Ryo&rft.au=Iguchi%2C+Ayaka&rft.date=2018-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=10&rft.spage=933&rft.epage=940&rft_id=info:doi/10.1038%2Fs41565-018-0202-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon