Construction of integrated gene logic-chip
In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products 1 . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes i...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 10; pp. 933 - 940 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products
1
. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced
2
. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.
DNA origami-based integrated gene transcription modules enable the rational design of transcription activity. Architectural modalities between gene and RNA polymerase allow the autonomous response to various signals with reprogrammable logic gates. |
---|---|
AbstractList | In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products
. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced
. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products 1 . To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced 2 . However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. DNA origami-based integrated gene transcription modules enable the rational design of transcription activity. Architectural modalities between gene and RNA polymerase allow the autonomous response to various signals with reprogrammable logic gates. In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits. |
Author | Sekiguchi, Tetsushi Yoon, Dong Hyun Miyazono, Yuya Tadakuma, Hisashi Masubuchi, Takeya Qi, Hao Shoji, Shuichi Ueda, Takuya Harada, Yoshie Endo, Masayuki Iizuka, Ryo Iguchi, Ayaka Iinuma, Ryosuke Funatsu, Takashi Sugiyama, Hiroshi |
Author_xml | – sequence: 1 givenname: Takeya surname: Masubuchi fullname: Masubuchi, Takeya organization: Graduate School of Frontier Science, The University of Tokyo, Institute for Quantitative Biosciences, The University of Tokyo – sequence: 2 givenname: Masayuki orcidid: 0000-0003-0957-3764 surname: Endo fullname: Endo, Masayuki email: endo@kuchem.kyoto-u.ac.jp organization: Graduate School of Science, Department of Chemistry, Kyoto University, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University – sequence: 3 givenname: Ryo surname: Iizuka fullname: Iizuka, Ryo organization: Graduate School of Pharmaceutical Sciences, The University of Tokyo – sequence: 4 givenname: Ayaka surname: Iguchi fullname: Iguchi, Ayaka organization: Department of Nanoscience and Nanoengineering (ASE Graduate School), Waseda University – sequence: 5 givenname: Dong Hyun surname: Yoon fullname: Yoon, Dong Hyun organization: Research Organization for Nano & Life Innovation, Waseda University – sequence: 6 givenname: Tetsushi surname: Sekiguchi fullname: Sekiguchi, Tetsushi organization: Research Organization for Nano & Life Innovation, Waseda University – sequence: 7 givenname: Hao surname: Qi fullname: Qi, Hao organization: Graduate School of Frontier Science, The University of Tokyo, Department of Chemical Engineering and Technology, Tianjin University – sequence: 8 givenname: Ryosuke surname: Iinuma fullname: Iinuma, Ryosuke organization: Graduate School of Frontier Science, The University of Tokyo – sequence: 9 givenname: Yuya surname: Miyazono fullname: Miyazono, Yuya organization: Graduate School of Frontier Science, The University of Tokyo – sequence: 10 givenname: Shuichi surname: Shoji fullname: Shoji, Shuichi organization: Department of Nanoscience and Nanoengineering (ASE Graduate School), Waseda University – sequence: 11 givenname: Takashi surname: Funatsu fullname: Funatsu, Takashi organization: Graduate School of Pharmaceutical Sciences, The University of Tokyo – sequence: 12 givenname: Hiroshi orcidid: 0000-0001-8923-5946 surname: Sugiyama fullname: Sugiyama, Hiroshi email: hs@kuchem.kyoto-u.ac.jp organization: Graduate School of Science, Department of Chemistry, Kyoto University, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University – sequence: 13 givenname: Yoshie surname: Harada fullname: Harada, Yoshie organization: Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Institute for Protein Research, Osaka University – sequence: 14 givenname: Takuya orcidid: 0000-0002-7760-8271 surname: Ueda fullname: Ueda, Takuya email: ueda@edu.k.u-tokyo.ac.jp organization: Graduate School of Frontier Science, The University of Tokyo – sequence: 15 givenname: Hisashi orcidid: 0000-0002-7877-2559 surname: Tadakuma fullname: Tadakuma, Hisashi email: tadakuma@protein.osaka-u.ac.jp organization: Graduate School of Frontier Science, The University of Tokyo, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Institute for Protein Research, Osaka University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30038365$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUQINUbK1-gBspuBFhNO_JLKX4goIbXYc0c2ecMk1qMrPw702ZVqGgq1zCOZfLOUUj5x0gdEHwLcFM3UVOhBQZJirDFNOMHaEJybnKGCvE6GdW-RidxrjCWNCC8hM0ZjjpTIoJupl7F7vQ267xbuarWeM6qIPpoJzV4GDW-rqxmf1oNmfouDJthPPdO0Xvjw9v8-ds8fr0Mr9fZJYz1WUFA2mhtLRQuCRguMBSwFKBxJRxJUxFcqqoFZgDIzjPjVFyWXAijUp_lE3R9bB3E_xnD7HT6yZaaFvjwPdRU5wLwRlnRUKvDtCV74NL12lKiJRYCZYn6nJH9cs1lHoTmrUJX3pfIQH5ANjgYwxQadt0ZlukC6ZpNcF621sPvXXqrbe9NUsmOTD3y_9z6ODExLoawu_Rf0vfNCyN-Q |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00028 crossref_primary_10_1002_adma_202301035 crossref_primary_10_1016_j_bioorg_2023_107080 crossref_primary_10_1002_adfm_202404522 crossref_primary_10_1039_C9LC00788A crossref_primary_10_3892_mmr_2024_13220 crossref_primary_10_7554_eLife_76357 crossref_primary_10_1039_D0CS00255K crossref_primary_10_3390_mi11090788 crossref_primary_10_1038_s41929_019_0403_7 crossref_primary_10_1016_j_tibtech_2023_03_005 crossref_primary_10_1002_adhm_201801658 crossref_primary_10_1002_anie_202205460 crossref_primary_10_1038_s41467_022_32548_x crossref_primary_10_2142_biophysico_bppb_v21_e2004 crossref_primary_10_1002_VIW_20230062 crossref_primary_10_1038_s41427_023_00470_3 crossref_primary_10_1126_sciadv_abm9530 crossref_primary_10_1248_yakushi_20_00111 crossref_primary_10_1039_D0NR08465D crossref_primary_10_1021_acsnano_9b09163 crossref_primary_10_1002_anie_202006029 crossref_primary_10_1038_s41578_022_00517_x crossref_primary_10_1039_D2NH00060A crossref_primary_10_1039_D3NA00088E crossref_primary_10_1039_C9CC03141C crossref_primary_10_1021_acs_nanolett_4c02104 crossref_primary_10_1021_acssynbio_3c00726 crossref_primary_10_1021_jacs_3c11067 crossref_primary_10_1002_adfm_202112331 crossref_primary_10_1021_jacs_3c13331 crossref_primary_10_1038_s41467_024_45186_2 crossref_primary_10_1039_D0NR02361B crossref_primary_10_1007_s00216_019_01622_7 crossref_primary_10_1002_ange_202006029 crossref_primary_10_1007_s12551_020_00646_z crossref_primary_10_1039_C9CC04661E crossref_primary_10_1002_ange_202205460 crossref_primary_10_1021_acsnano_9b06466 |
Cites_doi | 10.1038/35002131 10.1038/srep22259 10.1038/ncb3048 10.1016/j.copbio.2011.12.024 10.1126/science.aac7341 10.1038/nnano.2009.50 10.1038/nbt1111 10.1038/nature08016 10.1021/ol801112j 10.1126/science.1214081 10.1126/science.aam5488 10.1038/ncomms10619 10.1016/j.snb.2011.06.043 10.1126/science.1226734 10.1038/ncomms13982 10.1038/emboj.2009.319 10.1002/anie.201005931 10.1038/nprot.2009.234 10.1038/nnano.2014.100 10.1038/nnano.2010.284 10.1038/nature04586 10.1126/science.1206938 10.1093/jb/mvr010 10.1038/nnano.2008.164 10.1021/ja300897h 10.1126/science.1250944 10.1038/90802 10.1073/pnas.0408164102 10.1126/science.1132493 10.1002/anie.200603919 10.1038/nnano.2017.127 10.1126/science.1232758 10.3390/computation2040246 10.1016/j.molcel.2015.05.015 10.1039/c2lc40098g 10.1126/science.1225829 10.1038/416499a 10.1126/science.8079175 10.1038/msb.2013.32 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Oct 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Oct 2018 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0202-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 940 |
ExternalDocumentID | 30038365 10_1038_s41565_018_0202_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c438t-93e6cedc2980d1ea45065eb8e6023485af17282c504e31077aa86b9416a850423 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 01:05:39 EDT 2025 Fri Jul 25 09:09:58 EDT 2025 Mon Jul 21 05:58:29 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-93e6cedc2980d1ea45065eb8e6023485af17282c504e31077aa86b9416a850423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Correspondence-1 content type line 23 |
ORCID | 0000-0001-8923-5946 0000-0003-0957-3764 0000-0002-7760-8271 0000-0002-7877-2559 |
PMID | 30038365 |
PQID | 2116608537 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2075543439 proquest_journals_2116608537 pubmed_primary_30038365 crossref_citationtrail_10_1038_s41565_018_0202_3 crossref_primary_10_1038_s41565_018_0202_3 springer_journals_10_1038_s41565_018_0202_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nielsen (CR2) 2016; 352 Bentele, Saffert, Rauscher, Ignatova, Bluthgen (CR31) 2013; 9 Douglas, Bachelet, Church (CR8) 2012; 335 Yao, Sasaki, Ueda, Tomari, Tadakuma (CR23) 2015; 59 Kitano, Funahashi, Matsuoka, Oda (CR39) 2005; 23 CR37 Maniatis, Reed (CR3) 2002; 416 Schuler, Lipman, Steinbach, Kumke, Eaton (CR38) 2005; 102 Zhang, Tsitkov, Hess (CR18) 2016; 7 Simmel (CR9) 2012; 23 Okano, Matsuura, Kazuta, Suzuki, Yomo (CR36) 2012; 12 Miyazono, Hayashi, Karagiannis, Harada, Tadakuma (CR20) 2010; 29 Derr (CR32) 2012; 338 Qin, Xia, Whitesides (CR35) 2010; 5 Yoshimura, Fujimoto (CR24) 2008; 10 Rothemund (CR4) 2006; 440 Wilner (CR12) 2009; 4 Gardner, Cantor, Collins (CR1) 2000; 403 Williams, Lund, Liu, Yan, Chaput (CR29) 2007; 46 Dörr, Keller, Zell, Drager (CR40) 2014; 2 Shimizu (CR21) 2001; 19 Bustamante, Marko, Siggia, Smith (CR19) 1994; 265 Torisawa (CR33) 2014; 16 Fu (CR14) 2014; 9 Seelig, Soloveichik, Zhang, Winfree (CR7) 2006; 314 Jinek (CR26) 2012; 337 Rinker, Ke, Liu, Chhabra, Yan (CR28) 2008; 3 Bonnet, Yin, Ortiz, Subsoontorn, Endy (CR30) 2013; 340 Haneoka (CR34) 2011; 159 Chatterjee, Dalchau, Muscat, Phillips, Seelig (CR11) 2017; 12 Zhao (CR15) 2016; 7 Wickham (CR16) 2011; 6 Douglas (CR5) 2009; 459 Delebecque, Lindner, Silver, Aldaye (CR10) 2011; 333 Zhou (CR25) 2010; 149 Iinuma (CR6) 2014; 344 Fu, Liu, Liu, Woodbury, Yan (CR13) 2012; 134 Sacca (CR17) 2010; 49 Nakamura (CR22) 2016; 6 Praetorius, Dietz (CR27) 2017; 355 TS Gardner (202_CR1) 2000; 403 M Haneoka (202_CR34) 2011; 159 FC Simmel (202_CR9) 2012; 23 D Qin (202_CR35) 2010; 5 SFJ Wickham (202_CR16) 2011; 6 G Chatterjee (202_CR11) 2017; 12 J Bonnet (202_CR30) 2013; 340 R Iinuma (202_CR6) 2014; 344 J Fu (202_CR14) 2014; 9 ND Derr (202_CR32) 2012; 338 Z Zhao (202_CR15) 2016; 7 C Yao (202_CR23) 2015; 59 SM Douglas (202_CR8) 2012; 335 T Maniatis (202_CR3) 2002; 416 S Rinker (202_CR28) 2008; 3 K Bentele (202_CR31) 2013; 9 H Kitano (202_CR39) 2005; 23 Y Zhang (202_CR18) 2016; 7 C Bustamante (202_CR19) 1994; 265 K Nakamura (202_CR22) 2016; 6 T Okano (202_CR36) 2012; 12 202_CR37 G Seelig (202_CR7) 2006; 314 F Praetorius (202_CR27) 2017; 355 A Dörr (202_CR40) 2014; 2 SM Douglas (202_CR5) 2009; 459 ZP Zhou (202_CR25) 2010; 149 T Torisawa (202_CR33) 2014; 16 Y Yoshimura (202_CR24) 2008; 10 M Jinek (202_CR26) 2012; 337 OI Wilner (202_CR12) 2009; 4 AA Nielsen (202_CR2) 2016; 352 B Schuler (202_CR38) 2005; 102 BA Williams (202_CR29) 2007; 46 CJ Delebecque (202_CR10) 2011; 333 Y Miyazono (202_CR20) 2010; 29 B Sacca (202_CR17) 2010; 49 J Fu (202_CR13) 2012; 134 Y Shimizu (202_CR21) 2001; 19 PWK Rothemund (202_CR4) 2006; 440 |
References_xml | – volume: 403 start-page: 339 year: 2000 end-page: 342 ident: CR1 article-title: Construction of a genetic toggle switch in publication-title: Nature doi: 10.1038/35002131 – volume: 6 year: 2016 ident: CR22 article-title: Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform publication-title: Sci. Rep. doi: 10.1038/srep22259 – volume: 16 start-page: 1118 year: 2014 end-page: 1124 ident: CR33 article-title: Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein publication-title: Nat. Cell Biol. doi: 10.1038/ncb3048 – ident: CR37 – volume: 23 start-page: 516 year: 2012 end-page: 521 ident: CR9 article-title: DNA-based assembly lines and nanofactories publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.12.024 – volume: 352 start-page: aac7341 year: 2016 ident: CR2 article-title: Genetic circuit design automation publication-title: Science doi: 10.1126/science.aac7341 – volume: 4 start-page: 249 year: 2009 end-page: 254 ident: CR12 article-title: Enzyme cascades activated on topologically programmed DNA scaffolds publication-title: Nat. Nanotech. doi: 10.1038/nnano.2009.50 – volume: 23 start-page: 961 year: 2005 end-page: 966 ident: CR39 article-title: Using process diagrams for the graphical representation of biological networks publication-title: Nat. Biotechnol. doi: 10.1038/nbt1111 – volume: 459 start-page: 414 year: 2009 end-page: 418 ident: CR5 article-title: Self-assembly of DNA into nanoscale three-dimensional shapes publication-title: Nature doi: 10.1038/nature08016 – volume: 10 start-page: 3227 year: 2008 end-page: 3230 ident: CR24 article-title: Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation publication-title: Org. Lett. doi: 10.1021/ol801112j – volume: 335 start-page: 831 year: 2012 end-page: 834 ident: CR8 article-title: A logic-gated nanorobot for targeted transport of molecular payloads publication-title: Science doi: 10.1126/science.1214081 – volume: 355 start-page: eaam5488 year: 2017 ident: CR27 article-title: Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes publication-title: Science doi: 10.1126/science.aam5488 – volume: 7 year: 2016 ident: CR15 article-title: Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion publication-title: Nat. Commun. doi: 10.1038/ncomms10619 – volume: 159 start-page: 314 year: 2011 end-page: 320 ident: CR34 article-title: Microfluidic active sorting of DNA molecules labeled with single quantum dots using flow switching by a hydrogel sol–gel transition publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2011.06.043 – volume: 338 start-page: 662 year: 2012 end-page: 665 ident: CR32 article-title: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold publication-title: Science doi: 10.1126/science.1226734 – volume: 7 year: 2016 ident: CR18 article-title: Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade publication-title: Nat. Commun. doi: 10.1038/ncomms13982 – volume: 29 start-page: 93 year: 2010 end-page: 106 ident: CR20 article-title: Strain through the neck linker ensures processive runs: a DNA–kinesin hybrid nanomachine study publication-title: EMBO J. doi: 10.1038/emboj.2009.319 – volume: 49 start-page: 9378 year: 2010 end-page: 9383 ident: CR17 article-title: Orthogonal protein decoration of DNA origami publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005931 – volume: 5 start-page: 491 year: 2010 end-page: 502 ident: CR35 article-title: Soft lithography for micro- and nanoscale patterning publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.234 – volume: 9 start-page: 531 year: 2014 end-page: 536 ident: CR14 article-title: Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.100 – volume: 6 start-page: 166 year: 2011 end-page: 169 ident: CR16 article-title: Direct observation of stepwise movement of a synthetic molecular transporter publication-title: Nat. Nanotech. doi: 10.1038/nnano.2010.284 – volume: 440 start-page: 297 year: 2006 end-page: 302 ident: CR4 article-title: Folding DNA to create nanoscale shapes and patterns publication-title: Nature doi: 10.1038/nature04586 – volume: 333 start-page: 470 year: 2011 end-page: 474 ident: CR10 article-title: Organization of intracellular reactions with rationally designed RNA assemblies publication-title: Science doi: 10.1126/science.1206938 – volume: 149 start-page: 609 year: 2010 end-page: 618 ident: CR25 article-title: Single molecule imaging of the trans-translation entry process via anchoring of the tagged ribosome publication-title: J. Biochem. doi: 10.1093/jb/mvr010 – volume: 3 start-page: 418 year: 2008 end-page: 422 ident: CR28 article-title: Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding publication-title: Nat. Nanotech. doi: 10.1038/nnano.2008.164 – volume: 134 start-page: 5516 year: 2012 end-page: 5519 ident: CR13 article-title: Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300897h – volume: 344 start-page: 65 year: 2014 end-page: 69 ident: CR6 article-title: Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT publication-title: Science doi: 10.1126/science.1250944 – volume: 19 start-page: 751 year: 2001 end-page: 755 ident: CR21 article-title: Cell-free translation reconstituted with purified components publication-title: Nat. Biotechnol. doi: 10.1038/90802 – volume: 102 start-page: 2754 year: 2005 end-page: 2759 ident: CR38 article-title: Polyproline and the ‘spectroscopic ruler’ revisited with single-molecule fluorescence publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0408164102 – volume: 314 start-page: 1585 year: 2006 end-page: 1588 ident: CR7 article-title: Enzyme-free nucleic acid logic circuits publication-title: Science doi: 10.1126/science.1132493 – volume: 46 start-page: 3051 year: 2007 end-page: 3054 ident: CR29 article-title: Self-assembled peptide nanoarrays: an approach to studying protein–protein interactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200603919 – volume: 12 start-page: 920 year: 2017 end-page: 927 ident: CR11 article-title: A spatially localized architecture for fast and modular DNA computing publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.127 – volume: 340 start-page: 599 year: 2013 end-page: 603 ident: CR30 article-title: Amplifying genetic logic gates publication-title: Science doi: 10.1126/science.1232758 – volume: 2 start-page: 246 year: 2014 end-page: 257 ident: CR40 article-title: SBMLsimulator: a Java tool for model simulation and parameter estimation in systems biology publication-title: Computation doi: 10.3390/computation2040246 – volume: 59 start-page: 125 year: 2015 end-page: 132 ident: CR23 article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 12 start-page: 2704 year: 2012 end-page: 2711 ident: CR36 article-title: Cell-free protein synthesis from a single copy of DNA in a glass microchamber publication-title: Lab Chip doi: 10.1039/c2lc40098g – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: CR26 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 416 start-page: 499 year: 2002 end-page: 506 ident: CR3 article-title: An extensive network of coupling among gene expression machines publication-title: Nature doi: 10.1038/416499a – volume: 265 start-page: 1599 year: 1994 end-page: 1600 ident: CR19 article-title: Entropic elasticity of lambda-phage DNA publication-title: Science doi: 10.1126/science.8079175 – volume: 9 start-page: 675 year: 2013 ident: CR31 article-title: Efficient translation initiation dictates codon usage at gene start publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.32 – volume: 403 start-page: 339 year: 2000 ident: 202_CR1 publication-title: Nature doi: 10.1038/35002131 – volume: 49 start-page: 9378 year: 2010 ident: 202_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005931 – volume: 23 start-page: 516 year: 2012 ident: 202_CR9 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.12.024 – volume: 12 start-page: 920 year: 2017 ident: 202_CR11 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.127 – volume: 19 start-page: 751 year: 2001 ident: 202_CR21 publication-title: Nat. Biotechnol. doi: 10.1038/90802 – volume: 333 start-page: 470 year: 2011 ident: 202_CR10 publication-title: Science doi: 10.1126/science.1206938 – volume: 5 start-page: 491 year: 2010 ident: 202_CR35 publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.234 – volume: 7 year: 2016 ident: 202_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms10619 – volume: 440 start-page: 297 year: 2006 ident: 202_CR4 publication-title: Nature doi: 10.1038/nature04586 – volume: 352 start-page: aac7341 year: 2016 ident: 202_CR2 publication-title: Science doi: 10.1126/science.aac7341 – volume: 23 start-page: 961 year: 2005 ident: 202_CR39 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1111 – volume: 344 start-page: 65 year: 2014 ident: 202_CR6 publication-title: Science doi: 10.1126/science.1250944 – ident: 202_CR37 – volume: 9 start-page: 531 year: 2014 ident: 202_CR14 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.100 – volume: 149 start-page: 609 year: 2010 ident: 202_CR25 publication-title: J. Biochem. doi: 10.1093/jb/mvr010 – volume: 3 start-page: 418 year: 2008 ident: 202_CR28 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2008.164 – volume: 265 start-page: 1599 year: 1994 ident: 202_CR19 publication-title: Science doi: 10.1126/science.8079175 – volume: 59 start-page: 125 year: 2015 ident: 202_CR23 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 16 start-page: 1118 year: 2014 ident: 202_CR33 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3048 – volume: 314 start-page: 1585 year: 2006 ident: 202_CR7 publication-title: Science doi: 10.1126/science.1132493 – volume: 355 start-page: eaam5488 year: 2017 ident: 202_CR27 publication-title: Science doi: 10.1126/science.aam5488 – volume: 134 start-page: 5516 year: 2012 ident: 202_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300897h – volume: 29 start-page: 93 year: 2010 ident: 202_CR20 publication-title: EMBO J. doi: 10.1038/emboj.2009.319 – volume: 335 start-page: 831 year: 2012 ident: 202_CR8 publication-title: Science doi: 10.1126/science.1214081 – volume: 7 year: 2016 ident: 202_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms13982 – volume: 6 year: 2016 ident: 202_CR22 publication-title: Sci. Rep. doi: 10.1038/srep22259 – volume: 337 start-page: 816 year: 2012 ident: 202_CR26 publication-title: Science doi: 10.1126/science.1225829 – volume: 340 start-page: 599 year: 2013 ident: 202_CR30 publication-title: Science doi: 10.1126/science.1232758 – volume: 46 start-page: 3051 year: 2007 ident: 202_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200603919 – volume: 12 start-page: 2704 year: 2012 ident: 202_CR36 publication-title: Lab Chip doi: 10.1039/c2lc40098g – volume: 4 start-page: 249 year: 2009 ident: 202_CR12 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2009.50 – volume: 459 start-page: 414 year: 2009 ident: 202_CR5 publication-title: Nature doi: 10.1038/nature08016 – volume: 6 start-page: 166 year: 2011 ident: 202_CR16 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2010.284 – volume: 2 start-page: 246 year: 2014 ident: 202_CR40 publication-title: Computation doi: 10.3390/computation2040246 – volume: 102 start-page: 2754 year: 2005 ident: 202_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0408164102 – volume: 10 start-page: 3227 year: 2008 ident: 202_CR24 publication-title: Org. Lett. doi: 10.1021/ol801112j – volume: 159 start-page: 314 year: 2011 ident: 202_CR34 publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2011.06.043 – volume: 9 start-page: 675 year: 2013 ident: 202_CR31 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.32 – volume: 338 start-page: 662 year: 2012 ident: 202_CR32 publication-title: Science doi: 10.1126/science.1226734 – volume: 416 start-page: 499 year: 2002 ident: 202_CR3 publication-title: Nature doi: 10.1038/416499a |
SSID | ssj0052924 |
Score | 2.45167 |
Snippet | In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 933 |
SubjectTerms | 639/766/747 639/925/926/1048 Automation Chemistry and Materials Science Circuit design Circuits Crosstalk Deoxyribonucleic acid DNA DNA-directed RNA polymerase Enzymes Gene expression Genes Information processing Letter Logic circuits Materials Science miRNA Nanotechnology Nanotechnology and Microengineering Ribonucleic acid RNA RNA polymerase Signal processing Substrates |
Title | Construction of integrated gene logic-chip |
URI | https://link.springer.com/article/10.1038/s41565-018-0202-3 https://www.ncbi.nlm.nih.gov/pubmed/30038365 https://www.proquest.com/docview/2116608537 https://www.proquest.com/docview/2075543439 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB7UXvQgvo3WEsFTZWndVyYnUWktHoqIhd7CZrNBQdpK9f87m1cV0Usu2U2WmcnsNzuTbwAukGCooaiLOYMUoJCbZLHJYkbhreJ9KTOTF1W-Yz2ayIepmlYHbsuqrLL2iYWjzubWn5H3KFDRmvCBiK4X78x3jfLZ1aqFxjq0PHWZt-po2gRcisdlU9tIIqNQLKqzmgJ7Sx-4-LI1ZASYOBM_96VfYPNXorTYf4Y7sF0Bx_Cm1PQurLnZHmx9oxPch67vvlnzwYbzPGy4ILKQ7MSFhZ9j9uV1cQCT4eD5bsSqXgjMSoEfLBZOW5dZHmM_u3JGKsIOLkWnadOVqEzuG01xq_rSEWKLImNQpzHBLYPK174cwsZsPnPHENLE_Cq1AlMUknOLRnGd5U7Hnh_RYQD9WhKJrYjCfb-Kt6RIWAtMSuElJLzECy8RAXSbKYuSJeO_we1avEn1wSyTlXoDOG9uk6n7_IWZufknjSF4U_wJGwdwVKqleZvwKU6hVQCXtZ5WD_9zKSf_L-UUNrm3kKJ2rw0bpEF3RhjkI-0UhkZXHN53oHU7GD8-fQGLRtSP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK6wDjiIt2ExEi6ks6tf03MQEaz1PJG4tZ6enpDI7soS8af8RtUz24sIN-fpV6qqq76aqq4C2FQIQw16XcQZhQ4KqkmSmjwl6N4K2uQ8N0WZ5Xsl2zf87FbcjsB7eAvj0yqDTiwVdd61_h95Ax0VKREfsGS_90R81ygfXQ0tNCqxOHdvr-iy9fdOj5C_W5S2jq8P22TQVYBYztQzSZmT1uWWpqqZ7zrDBVphlykn0XxxJUzhWzZRK5rcIfZJEmOUzFIELkYJn0WC647CGGdoyf3L9NZJ0PyCplUT3YQrgq5fEqKoTDX63lHyaXKKIECjhH23gz_A7Y_AbGnvWtMwNQCq8UElWTMw4jqzMPmlfOEcbPtun6H-bNwt4mHtiTxGuXRxqVeJvX_ozcPNv1BpAWqdbsctQYwTi93MMpUpxim1yggq88LJ1NdjdCqCZqCEtoPC5L4_xqMuA-RM6Yp4GomnPfE0i2B7OKVXVeX4a3A9kFcPLmhff4pTBBvDz3i1fLzEdFz3BccgnCpf3qYRLFZsGe7GfEiVSRHBTuDT5-K_HmX576Osw3j7-vJCX5xena_ABPXSUuYN1qGG3HSriH-es7VS6GK4-28p_wCdpwzi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgAYbLGyDII2XTlZb_4rzME0bbbVRVE2ISXszjuOISagpahHiX9tft3MSp6BpfdtzHMe6O_u-L3e-AzhUCEMNsi7ijEKCgsckSU2eEqS3gvY5z01RZflO5fkV_3wtrjfgNtyF8WmV4UysDuq8tP4feQ-JipSID1jSK5q0iMvh-GT-i_gOUj7SGtpp1CYycX__IH1bHF8MUdcfKR2Pvn06J02HAWI5U0uSMietyy1NVT8fOMMFemSXKSfRlXElTOHbN1Er-twhDkoSY5TMUgQxRgmfUYLzPoHNxLOiDmyejaaXX4MfEDStW-omXBEkgkmIqTLVW3ja5JPmFEG4Rgn73yveg7r3wrSV9xtvwYsGtsantZ29hA03ewXP_ylmuA1d3_szVKONyyJuK1HkMVqpi6tTltgfN_MduHoUOb2GzqycuV2I8cVikFmmMsU4pVYZQWVeOJn66oxORdAPktC2KVPuu2X81FW4nCldC0-j8LQXnmYRdNtX5nWNjnWD94N4dbNdF3plXBF8aB_jRvPREzNz5W8cg-CquoebRvCmVkv7NeYDrEyKCI6CnlaTP7iUt-uX8h6eooXrLxfTyR48o95YqiTCfeigMt0BgqFl9q6xuhi-P7ah3wEbYhJ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+integrated+gene+logic-chip&rft.jtitle=Nature+nanotechnology&rft.au=Takeya+Masubuchi&rft.au=Endo%2C+Masayuki&rft.au=Iizuka%2C+Ryo&rft.au=Iguchi%2C+Ayaka&rft.date=2018-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=10&rft.spage=933&rft.epage=940&rft_id=info:doi/10.1038%2Fs41565-018-0202-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |