A micro-computed tomography-based physical model of macaque larynx reveals effect of vocal membrane on phonation onset pressure
The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressur...
Saved in:
Published in | Acoustical Science and Technology Vol. 46; no. 4; pp. 357 - 360 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
ACOUSTICAL SOCIETY OF JAPAN
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-3969 1347-5177 |
DOI | 10.1250/ast.e24.123 |
Cover
Loading…
Abstract | The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressure required to initiate the vocal fold oscillations. The present study constructed a physical model of the vocal membrane based on a micro-computed tomography measurement of a rhesus macaque larynx. Our physical experiment confirmed that the phonation threshold pressure was indeed lowered and, consequently, the vocal efficiency was increased by the vocal membrane. |
---|---|
AbstractList | The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressure required to initiate the vocal fold oscillations. The present study constructed a physical model of the vocal membrane based on a micro-computed tomography measurement of a rhesus macaque larynx. Our physical experiment confirmed that the phonation threshold pressure was indeed lowered and, consequently, the vocal efficiency was increased by the vocal membrane. |
ArticleNumber | e24.123 |
Author | Tomoki Yoshitani Isao T. Tokuda Manato Fujie Takeshi Nishimura Yasuaki Yamamoto Koki Sugie |
Author_xml | – sequence: 1 givenname: Yasuaki surname: Yamamoto fullname: Yamamoto, Yasuaki – sequence: 2 givenname: Tomoki surname: Yoshitani fullname: Yoshitani, Tomoki – sequence: 3 givenname: Manato surname: Fujie fullname: Fujie, Manato – sequence: 4 givenname: Koki surname: Sugie fullname: Sugie, Koki – sequence: 5 givenname: Takeshi surname: Nishimura fullname: Nishimura, Takeshi – sequence: 6 givenname: Isao T. surname: Tokuda fullname: Tokuda, Isao T. |
BookMark | eNo9kMtuwjAQRa2KSgXaVX_A-yrUrzy8RKgvCambdh05zgSCEju1DSqr_npNQGzsO_a5o5k7QxNjDSD0SMmCspQ8Kx8WwEQs-A2aUi7yJKV5Phl1lnCZyTs0835HCBMyzabob4n7VjubaNsP-wA1Dra3G6eG7TGplI8PUflWqw73toYO2wb3SqufPeBOuaP5xQ4OoDqPoWlAhxNwsCMPfeWUAWxNbGKNCm1U1ngIeHDg_d7BPbptohceLvccfb--fK3ek_Xn28dquU604EVIiopVQHgmWcWpgBqgyZkShAqW1gXLaZVzyUUhC1lLrjLOCloRkNEteQE5n6Onc9-4q_cOmnJwbR_nLykpT9mVMbsyZhcLHunlmd75oDZwZZULre5gZEVWitNx8Vz_9Fa5Egz_B13Nfh4 |
Cites_doi | 10.1038/s41467-019-12588-6 10.1121/1.3455876 10.1016/j.jvoice.2014.03.001 10.1016/S1364-6613(00)01494-7 10.1121/1.426735 10.1007/978-981-15-4250-3_2 10.1016/S0892-1997(05)80127-4 10.1590/S0001-37652004000200009 10.1126/science.abm1574 10.1121/1.1528930 10.1121/10.0015071 10.1371/journal.pbio.3001881 |
ContentType | Journal Article |
Copyright | 2025 by The Acoustical Society of Japan |
Copyright_xml | – notice: 2025 by The Acoustical Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.1250/ast.e24.123 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1347-5177 |
EndPage | 360 |
ExternalDocumentID | 10_1250_ast_e24_123 article_ast_46_4_46_e24_123_article_char_en |
GroupedDBID | 23M 2WC 5GY 6J9 ACGFO ACIWK ALMA_UNASSIGNED_HOLDINGS CS3 E3Z EBS EJD GX1 JSF JSH KQ8 OVT RJT RNS RZJ TR2 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c438t-8b2be03692b314edeef72a401425d8271b739348989d93a63281b0e9c43938e73 |
ISSN | 1346-3969 |
IngestDate | Thu Jul 10 09:52:12 EDT 2025 Wed Sep 03 06:30:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nd/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c438t-8b2be03692b314edeef72a401425d8271b739348989d93a63281b0e9c43938e73 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ast/46/4/46_e24.123/_article/-char/en |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1250_ast_e24_123 jstage_primary_article_ast_46_4_46_e24_123_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acoustical Science and Technology |
PublicationTitleAlternate | Acoustical Science and Technology |
PublicationYear | 2025 |
Publisher | ACOUSTICAL SOCIETY OF JAPAN |
Publisher_xml | – name: ACOUSTICAL SOCIETY OF JAPAN |
References | 4) T. Nishimura, I. T. Tokuda, S. Miyachi, J. C. Dunn, C. T. Herbst, K. Ishimura, A. Kaneko, Y. Kinoshita, H. Koda, J. P. P. Saers, H. Imai, T. Matsuda, O. N. Larsen, U. Jürgens, H. Hirabayashi, S. Kojima and T. W. Fitch, "Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech," Science, 377, 760–763 (2022). 13) A. K. Miri, "Mechanical characterization of vocal fold tissue: A review study," J. Voice, 28, 657–667 (2014). 12) B. A. Pickup and S. L. Thomson, "Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models," J. Acoust. Soc. Am., 128, EL124–EL129 (2010). 9) M. Kanaya, T. Matsumoto, T. Uemura, R. Kawabata, T. Nishimura and I. T. Tokuda, "Physical modeling of the vocal membranes and their influence on animal voice production," JASA Express Lett., 2, 111201 (2022). 5) C. H. Brown, F. Alipour, D. A. Berry and D. Montequin, "Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis)," J. Acoust. Soc. Am., 113, 2114–2126 (2003). 1) W. T. Fitch, "The evolution of speech: A comparative review," Trends Cogn. Sci., 4, 258–267 (2000). 10) T. Yoshitani, "Study on vocal instability using a vocal fold physical model of rhesus macaque," Master Thesis, Ritsumeikan University (2024). 7) J. Håkansson, C. Mikkelsen, L. Jakobsen and C. P. Elemans, "Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication," PLoS Biol., 20, e3001881 (2022). 11) I. R. Titze, "Vocal efficiency," J. Voice, 6, 135–138 (1992). 2) R. A. Suthers, "Vocal mechanisms in birds and bats: A comparative view," An. Acad. Bras. Ciênc., 76, 247–252 (2004). 8) P. Mergell, W. T. Fitch and H. Herzel, "Modeling the role of nonhuman vocal membranes in phonation," J. Acoust. Soc. Am., 105, 2020–2028 (1999). 6) Y. S. Zhang, D. Y. Takahashi, D. A. Liao, A. A. Ghazanfar and C. P. Elemans, "Vocal state change through laryngeal development," Nat. Commun., 10, 1–12 (2019). 3) T. Nishimura, "Primate vocal anatomy and physiology: Similarities and differences between humans and nonhuman primates," in The Origins of Language Revisited: Differentiation from Music and the Emergence of Neurodiversity and Autism, N. Masataka, Ed. (Springer Nature Singapore, Singapore, 2020), pp. 25–53. 11 12 13 1 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: 6) Y. S. Zhang, D. Y. Takahashi, D. A. Liao, A. A. Ghazanfar and C. P. Elemans, "Vocal state change through laryngeal development," Nat. Commun., 10, 1–12 (2019). – reference: 1) W. T. Fitch, "The evolution of speech: A comparative review," Trends Cogn. Sci., 4, 258–267 (2000). – reference: 10) T. Yoshitani, "Study on vocal instability using a vocal fold physical model of rhesus macaque," Master Thesis, Ritsumeikan University (2024). – reference: 8) P. Mergell, W. T. Fitch and H. Herzel, "Modeling the role of nonhuman vocal membranes in phonation," J. Acoust. Soc. Am., 105, 2020–2028 (1999). – reference: 5) C. H. Brown, F. Alipour, D. A. Berry and D. Montequin, "Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis)," J. Acoust. Soc. Am., 113, 2114–2126 (2003). – reference: 12) B. A. Pickup and S. L. Thomson, "Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models," J. Acoust. Soc. Am., 128, EL124–EL129 (2010). – reference: 3) T. Nishimura, "Primate vocal anatomy and physiology: Similarities and differences between humans and nonhuman primates," in The Origins of Language Revisited: Differentiation from Music and the Emergence of Neurodiversity and Autism, N. Masataka, Ed. (Springer Nature Singapore, Singapore, 2020), pp. 25–53. – reference: 4) T. Nishimura, I. T. Tokuda, S. Miyachi, J. C. Dunn, C. T. Herbst, K. Ishimura, A. Kaneko, Y. Kinoshita, H. Koda, J. P. P. Saers, H. Imai, T. Matsuda, O. N. Larsen, U. Jürgens, H. Hirabayashi, S. Kojima and T. W. Fitch, "Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech," Science, 377, 760–763 (2022). – reference: 11) I. R. Titze, "Vocal efficiency," J. Voice, 6, 135–138 (1992). – reference: 9) M. Kanaya, T. Matsumoto, T. Uemura, R. Kawabata, T. Nishimura and I. T. Tokuda, "Physical modeling of the vocal membranes and their influence on animal voice production," JASA Express Lett., 2, 111201 (2022). – reference: 7) J. Håkansson, C. Mikkelsen, L. Jakobsen and C. P. Elemans, "Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication," PLoS Biol., 20, e3001881 (2022). – reference: 2) R. A. Suthers, "Vocal mechanisms in birds and bats: A comparative view," An. Acad. Bras. Ciênc., 76, 247–252 (2004). – reference: 13) A. K. Miri, "Mechanical characterization of vocal fold tissue: A review study," J. Voice, 28, 657–667 (2014). – ident: 6 doi: 10.1038/s41467-019-12588-6 – ident: 12 doi: 10.1121/1.3455876 – ident: 13 doi: 10.1016/j.jvoice.2014.03.001 – ident: 1 doi: 10.1016/S1364-6613(00)01494-7 – ident: 10 – ident: 8 doi: 10.1121/1.426735 – ident: 3 doi: 10.1007/978-981-15-4250-3_2 – ident: 11 doi: 10.1016/S0892-1997(05)80127-4 – ident: 2 doi: 10.1590/S0001-37652004000200009 – ident: 4 doi: 10.1126/science.abm1574 – ident: 5 doi: 10.1121/1.1528930 – ident: 9 doi: 10.1121/10.0015071 – ident: 7 doi: 10.1371/journal.pbio.3001881 |
SSID | ssj0024956 |
Score | 2.3581383 |
Snippet | The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et... |
SourceID | crossref jstage |
SourceType | Index Database Publisher |
StartPage | 357 |
SubjectTerms | Animal vocalization Phonation onset pressure Vocal efficiency Vocal fold oscillation Vocal membrane |
Title | A micro-computed tomography-based physical model of macaque larynx reveals effect of vocal membrane on phonation onset pressure |
URI | https://www.jstage.jst.go.jp/article/ast/46/4/46_e24.123/_article/-char/en |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Acoustical Science and Technology, 2025/07/01, Vol.46(4), pp.357-360 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWAhKXiqcoFORDbyuXTex1Ym6rqlUFgtNW2p6iOHZEK22CSBYBF34T_5AZP5Lt41C4RIkz3iiZbz0Pz4OQA2VmstYJcCAzmgmTzZiel4pVGZoTUuW1xh3dT5_l6Zn4sJqvJpM_W1FLm14fVr9uzSv5H67CGPAVs2T_gbPDj8IAnAN_4QgchuOdeLyYrjGejlW-NYMBRXIdSlAzFE8mOC4wQwQ73rjN9LIqsWQrWLQ_mx-YumKxgrKP60CC762jt2uwo0EDBXRg-HrQLJvO9lMXOxsqkQwVbKvW9QWLOZYhD6G_4bk_L9clwMN5aM_LbgMa7LjydF8uet9karqEVxlvnWwu_UYKhuv07biVFTpFf4y0wYGRzodg17jmciEZV75jy6GNYxmbJ6HDS1iog6_yYtsL4VZd7mtcBwHOfYOCG7IBlD0UfB3QpQIu-SgC47b_Nck4xCuipQTTC5hcwGS44PfI_RQsE9ctZJWM5R2Vaxg8vFNICYXJ77aefEUJenAJdkCMIXRqzfIx2Q32CF14cD0hE9s8JQ9dXHDVPSO_F_QqxOh1iNEIMeogRtuaBohRDzEaIEY9xJDAQYxGiNG2oQPEqIMYjRB7Ts5OjpdHpyz07GCV4HnPcp1qC1qRSjVPhDXW1llaghEPssHkaZZoLMEosGmpUbyUPAW7aWYVzFY8txl_QXaatrEvCc1yJUsuRWW1ECAHQRzaSqo6SeDUGLlHDuJHLL760izFLYzaI-_9Bx6Iwv_VEQlZCDwE4uEe5jzCEvPqbs94TR6NyN4nO_23jX0Dymqv3zp4_AW7qZ4p |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+micro-computed+tomography-based+physical+model+of+macaque+larynx+reveals+effect+of+vocal+membrane+on+phonation+onset+pressure&rft.jtitle=Acoustical+science+and+technology&rft.au=Yamamoto%2C+Yasuaki&rft.au=Yoshitani%2C+Tomoki&rft.au=Fujie%2C+Manato&rft.au=Sugie%2C+Koki&rft.date=2025-07-01&rft.issn=1346-3969&rft.eissn=1347-5177&rft.volume=46&rft.issue=4&rft.spage=357&rft.epage=360&rft_id=info:doi/10.1250%2Fast.e24.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1250_ast_e24_123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-3969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-3969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-3969&client=summon |