A micro-computed tomography-based physical model of macaque larynx reveals effect of vocal membrane on phonation onset pressure

The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressur...

Full description

Saved in:
Bibliographic Details
Published inAcoustical Science and Technology Vol. 46; no. 4; pp. 357 - 360
Main Authors Yamamoto, Yasuaki, Yoshitani, Tomoki, Fujie, Manato, Sugie, Koki, Nishimura, Takeshi, Tokuda, Isao T.
Format Journal Article
LanguageEnglish
Published ACOUSTICAL SOCIETY OF JAPAN 01.07.2025
Subjects
Online AccessGet full text
ISSN1346-3969
1347-5177
DOI10.1250/ast.e24.123

Cover

Loading…
Abstract The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressure required to initiate the vocal fold oscillations. The present study constructed a physical model of the vocal membrane based on a micro-computed tomography measurement of a rhesus macaque larynx. Our physical experiment confirmed that the phonation threshold pressure was indeed lowered and, consequently, the vocal efficiency was increased by the vocal membrane.
AbstractList The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et al. (1999) constructed a mathematical model of the vocal membrane and predicted that the vocal membrane lowers the phonation threshold pressure required to initiate the vocal fold oscillations. The present study constructed a physical model of the vocal membrane based on a micro-computed tomography measurement of a rhesus macaque larynx. Our physical experiment confirmed that the phonation threshold pressure was indeed lowered and, consequently, the vocal efficiency was increased by the vocal membrane.
ArticleNumber e24.123
Author Tomoki Yoshitani
Isao T. Tokuda
Manato Fujie
Takeshi Nishimura
Yasuaki Yamamoto
Koki Sugie
Author_xml – sequence: 1
  givenname: Yasuaki
  surname: Yamamoto
  fullname: Yamamoto, Yasuaki
– sequence: 2
  givenname: Tomoki
  surname: Yoshitani
  fullname: Yoshitani, Tomoki
– sequence: 3
  givenname: Manato
  surname: Fujie
  fullname: Fujie, Manato
– sequence: 4
  givenname: Koki
  surname: Sugie
  fullname: Sugie, Koki
– sequence: 5
  givenname: Takeshi
  surname: Nishimura
  fullname: Nishimura, Takeshi
– sequence: 6
  givenname: Isao T.
  surname: Tokuda
  fullname: Tokuda, Isao T.
BookMark eNo9kMtuwjAQRa2KSgXaVX_A-yrUrzy8RKgvCambdh05zgSCEju1DSqr_npNQGzsO_a5o5k7QxNjDSD0SMmCspQ8Kx8WwEQs-A2aUi7yJKV5Phl1lnCZyTs0835HCBMyzabob4n7VjubaNsP-wA1Dra3G6eG7TGplI8PUflWqw73toYO2wb3SqufPeBOuaP5xQ4OoDqPoWlAhxNwsCMPfeWUAWxNbGKNCm1U1ngIeHDg_d7BPbptohceLvccfb--fK3ek_Xn28dquU604EVIiopVQHgmWcWpgBqgyZkShAqW1gXLaZVzyUUhC1lLrjLOCloRkNEteQE5n6Onc9-4q_cOmnJwbR_nLykpT9mVMbsyZhcLHunlmd75oDZwZZULre5gZEVWitNx8Vz_9Fa5Egz_B13Nfh4
Cites_doi 10.1038/s41467-019-12588-6
10.1121/1.3455876
10.1016/j.jvoice.2014.03.001
10.1016/S1364-6613(00)01494-7
10.1121/1.426735
10.1007/978-981-15-4250-3_2
10.1016/S0892-1997(05)80127-4
10.1590/S0001-37652004000200009
10.1126/science.abm1574
10.1121/1.1528930
10.1121/10.0015071
10.1371/journal.pbio.3001881
ContentType Journal Article
Copyright 2025 by The Acoustical Society of Japan
Copyright_xml – notice: 2025 by The Acoustical Society of Japan
DBID AAYXX
CITATION
DOI 10.1250/ast.e24.123
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1347-5177
EndPage 360
ExternalDocumentID 10_1250_ast_e24_123
article_ast_46_4_46_e24_123_article_char_en
GroupedDBID 23M
2WC
5GY
6J9
ACGFO
ACIWK
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
GX1
JSF
JSH
KQ8
OVT
RJT
RNS
RZJ
TR2
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c438t-8b2be03692b314edeef72a401425d8271b739348989d93a63281b0e9c43938e73
ISSN 1346-3969
IngestDate Thu Jul 10 09:52:12 EDT 2025
Wed Sep 03 06:30:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c438t-8b2be03692b314edeef72a401425d8271b739348989d93a63281b0e9c43938e73
OpenAccessLink https://www.jstage.jst.go.jp/article/ast/46/4/46_e24.123/_article/-char/en
PageCount 4
ParticipantIDs crossref_primary_10_1250_ast_e24_123
jstage_primary_article_ast_46_4_46_e24_123_article_char_en
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Acoustical Science and Technology
PublicationTitleAlternate Acoustical Science and Technology
PublicationYear 2025
Publisher ACOUSTICAL SOCIETY OF JAPAN
Publisher_xml – name: ACOUSTICAL SOCIETY OF JAPAN
References 4) T. Nishimura, I. T. Tokuda, S. Miyachi, J. C. Dunn, C. T. Herbst, K. Ishimura, A. Kaneko, Y. Kinoshita, H. Koda, J. P. P. Saers, H. Imai, T. Matsuda, O. N. Larsen, U. Jürgens, H. Hirabayashi, S. Kojima and T. W. Fitch, "Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech," Science, 377, 760–763 (2022).
13) A. K. Miri, "Mechanical characterization of vocal fold tissue: A review study," J. Voice, 28, 657–667 (2014).
12) B. A. Pickup and S. L. Thomson, "Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models," J. Acoust. Soc. Am., 128, EL124–EL129 (2010).
9) M. Kanaya, T. Matsumoto, T. Uemura, R. Kawabata, T. Nishimura and I. T. Tokuda, "Physical modeling of the vocal membranes and their influence on animal voice production," JASA Express Lett., 2, 111201 (2022).
5) C. H. Brown, F. Alipour, D. A. Berry and D. Montequin, "Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis)," J. Acoust. Soc. Am., 113, 2114–2126 (2003).
1) W. T. Fitch, "The evolution of speech: A comparative review," Trends Cogn. Sci., 4, 258–267 (2000).
10) T. Yoshitani, "Study on vocal instability using a vocal fold physical model of rhesus macaque," Master Thesis, Ritsumeikan University (2024).
7) J. Håkansson, C. Mikkelsen, L. Jakobsen and C. P. Elemans, "Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication," PLoS Biol., 20, e3001881 (2022).
11) I. R. Titze, "Vocal efficiency," J. Voice, 6, 135–138 (1992).
2) R. A. Suthers, "Vocal mechanisms in birds and bats: A comparative view," An. Acad. Bras. Ciênc., 76, 247–252 (2004).
8) P. Mergell, W. T. Fitch and H. Herzel, "Modeling the role of nonhuman vocal membranes in phonation," J. Acoust. Soc. Am., 105, 2020–2028 (1999).
6) Y. S. Zhang, D. Y. Takahashi, D. A. Liao, A. A. Ghazanfar and C. P. Elemans, "Vocal state change through laryngeal development," Nat. Commun., 10, 1–12 (2019).
3) T. Nishimura, "Primate vocal anatomy and physiology: Similarities and differences between humans and nonhuman primates," in The Origins of Language Revisited: Differentiation from Music and the Emergence of Neurodiversity and Autism, N. Masataka, Ed. (Springer Nature Singapore, Singapore, 2020), pp. 25–53.
11
12
13
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 6) Y. S. Zhang, D. Y. Takahashi, D. A. Liao, A. A. Ghazanfar and C. P. Elemans, "Vocal state change through laryngeal development," Nat. Commun., 10, 1–12 (2019).
– reference: 1) W. T. Fitch, "The evolution of speech: A comparative review," Trends Cogn. Sci., 4, 258–267 (2000).
– reference: 10) T. Yoshitani, "Study on vocal instability using a vocal fold physical model of rhesus macaque," Master Thesis, Ritsumeikan University (2024).
– reference: 8) P. Mergell, W. T. Fitch and H. Herzel, "Modeling the role of nonhuman vocal membranes in phonation," J. Acoust. Soc. Am., 105, 2020–2028 (1999).
– reference: 5) C. H. Brown, F. Alipour, D. A. Berry and D. Montequin, "Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis)," J. Acoust. Soc. Am., 113, 2114–2126 (2003).
– reference: 12) B. A. Pickup and S. L. Thomson, "Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models," J. Acoust. Soc. Am., 128, EL124–EL129 (2010).
– reference: 3) T. Nishimura, "Primate vocal anatomy and physiology: Similarities and differences between humans and nonhuman primates," in The Origins of Language Revisited: Differentiation from Music and the Emergence of Neurodiversity and Autism, N. Masataka, Ed. (Springer Nature Singapore, Singapore, 2020), pp. 25–53.
– reference: 4) T. Nishimura, I. T. Tokuda, S. Miyachi, J. C. Dunn, C. T. Herbst, K. Ishimura, A. Kaneko, Y. Kinoshita, H. Koda, J. P. P. Saers, H. Imai, T. Matsuda, O. N. Larsen, U. Jürgens, H. Hirabayashi, S. Kojima and T. W. Fitch, "Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech," Science, 377, 760–763 (2022).
– reference: 11) I. R. Titze, "Vocal efficiency," J. Voice, 6, 135–138 (1992).
– reference: 9) M. Kanaya, T. Matsumoto, T. Uemura, R. Kawabata, T. Nishimura and I. T. Tokuda, "Physical modeling of the vocal membranes and their influence on animal voice production," JASA Express Lett., 2, 111201 (2022).
– reference: 7) J. Håkansson, C. Mikkelsen, L. Jakobsen and C. P. Elemans, "Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication," PLoS Biol., 20, e3001881 (2022).
– reference: 2) R. A. Suthers, "Vocal mechanisms in birds and bats: A comparative view," An. Acad. Bras. Ciênc., 76, 247–252 (2004).
– reference: 13) A. K. Miri, "Mechanical characterization of vocal fold tissue: A review study," J. Voice, 28, 657–667 (2014).
– ident: 6
  doi: 10.1038/s41467-019-12588-6
– ident: 12
  doi: 10.1121/1.3455876
– ident: 13
  doi: 10.1016/j.jvoice.2014.03.001
– ident: 1
  doi: 10.1016/S1364-6613(00)01494-7
– ident: 10
– ident: 8
  doi: 10.1121/1.426735
– ident: 3
  doi: 10.1007/978-981-15-4250-3_2
– ident: 11
  doi: 10.1016/S0892-1997(05)80127-4
– ident: 2
  doi: 10.1590/S0001-37652004000200009
– ident: 4
  doi: 10.1126/science.abm1574
– ident: 5
  doi: 10.1121/1.1528930
– ident: 9
  doi: 10.1121/10.0015071
– ident: 7
  doi: 10.1371/journal.pbio.3001881
SSID ssj0024956
Score 2.3581383
Snippet The vocal membrane, i.e., an extended part of the vocal fold, is present in non-human primates. To understand its function in animal vocalization, Mergell et...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 357
SubjectTerms Animal vocalization
Phonation onset pressure
Vocal efficiency
Vocal fold oscillation
Vocal membrane
Title A micro-computed tomography-based physical model of macaque larynx reveals effect of vocal membrane on phonation onset pressure
URI https://www.jstage.jst.go.jp/article/ast/46/4/46_e24.123/_article/-char/en
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Acoustical Science and Technology, 2025/07/01, Vol.46(4), pp.357-360
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWAhKXiqcoFORDbyuXTex1Ym6rqlUFgtNW2p6iOHZEK22CSBYBF34T_5AZP5Lt41C4RIkz3iiZbz0Pz4OQA2VmstYJcCAzmgmTzZiel4pVGZoTUuW1xh3dT5_l6Zn4sJqvJpM_W1FLm14fVr9uzSv5H67CGPAVs2T_gbPDj8IAnAN_4QgchuOdeLyYrjGejlW-NYMBRXIdSlAzFE8mOC4wQwQ73rjN9LIqsWQrWLQ_mx-YumKxgrKP60CC762jt2uwo0EDBXRg-HrQLJvO9lMXOxsqkQwVbKvW9QWLOZYhD6G_4bk_L9clwMN5aM_LbgMa7LjydF8uet9karqEVxlvnWwu_UYKhuv07biVFTpFf4y0wYGRzodg17jmciEZV75jy6GNYxmbJ6HDS1iog6_yYtsL4VZd7mtcBwHOfYOCG7IBlD0UfB3QpQIu-SgC47b_Nck4xCuipQTTC5hcwGS44PfI_RQsE9ctZJWM5R2Vaxg8vFNICYXJ77aefEUJenAJdkCMIXRqzfIx2Q32CF14cD0hE9s8JQ9dXHDVPSO_F_QqxOh1iNEIMeogRtuaBohRDzEaIEY9xJDAQYxGiNG2oQPEqIMYjRB7Ts5OjpdHpyz07GCV4HnPcp1qC1qRSjVPhDXW1llaghEPssHkaZZoLMEosGmpUbyUPAW7aWYVzFY8txl_QXaatrEvCc1yJUsuRWW1ECAHQRzaSqo6SeDUGLlHDuJHLL760izFLYzaI-_9Bx6Iwv_VEQlZCDwE4uEe5jzCEvPqbs94TR6NyN4nO_23jX0Dymqv3zp4_AW7qZ4p
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+micro-computed+tomography-based+physical+model+of+macaque+larynx+reveals+effect+of+vocal+membrane+on+phonation+onset+pressure&rft.jtitle=Acoustical+science+and+technology&rft.au=Yamamoto%2C+Yasuaki&rft.au=Yoshitani%2C+Tomoki&rft.au=Fujie%2C+Manato&rft.au=Sugie%2C+Koki&rft.date=2025-07-01&rft.issn=1346-3969&rft.eissn=1347-5177&rft.volume=46&rft.issue=4&rft.spage=357&rft.epage=360&rft_id=info:doi/10.1250%2Fast.e24.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1250_ast_e24_123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-3969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-3969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-3969&client=summon