Acetylation of intrinsically disordered regions regulates phase separation
Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we repo...
Saved in:
Published in | Nature chemical biology Vol. 15; no. 1; pp. 51 - 61 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.
HDAC6 modulates acetylation at multiple lysine residues in the N-terminal intrinsically disordered region of RNA helicase DDX3X to regulate liquid–liquid phase separation and stress granule maturation. |
---|---|
AbstractList | Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo. Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo. HDAC6 modulates acetylation at multiple lysine residues in the N-terminal intrinsically disordered region of RNA helicase DDX3X to regulate liquid–liquid phase separation and stress granule maturation. Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo. |
Author | Eglinger, Jan Choudhary, Chunaram Saito, Makoto Matthias, Patrick Hess, Daniel Weinert, Brian T. Fritsch, Anatol W. Kreysing, Moritz |
Author_xml | – sequence: 1 givenname: Makoto orcidid: 0000-0001-8619-5176 surname: Saito fullname: Saito, Makoto organization: Friedrich Miescher Institute for Biomedical Research, Faculty of Sciences, University of Basel – sequence: 2 givenname: Daniel orcidid: 0000-0002-1642-5404 surname: Hess fullname: Hess, Daniel organization: Friedrich Miescher Institute for Biomedical Research – sequence: 3 givenname: Jan orcidid: 0000-0001-7234-1435 surname: Eglinger fullname: Eglinger, Jan organization: Friedrich Miescher Institute for Biomedical Research – sequence: 4 givenname: Anatol W. orcidid: 0000-0003-0986-7068 surname: Fritsch fullname: Fritsch, Anatol W. organization: Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden – sequence: 5 givenname: Moritz orcidid: 0000-0001-7432-3871 surname: Kreysing fullname: Kreysing, Moritz organization: Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden – sequence: 6 givenname: Brian T. surname: Weinert fullname: Weinert, Brian T. organization: Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 7 givenname: Chunaram orcidid: 0000-0002-9863-433X surname: Choudhary fullname: Choudhary, Chunaram organization: Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 8 givenname: Patrick orcidid: 0000-0002-3927-1452 surname: Matthias fullname: Matthias, Patrick email: patrick.matthias@fmi.ch organization: Friedrich Miescher Institute for Biomedical Research, Faculty of Sciences, University of Basel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30531905$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PwzAQhi0Eoh_wA1hQJBaWgM8fiTNWFZ-qxNI9cpJLcZUmxU6G_nucphSpEgyn8_A89vneCTmvmxoJuQH6AJSrRydAqiSkoPqiYXxGxiAlC4WIkvPjWdIRmTi3ppRHEahLMuJUckioHJP3WY7trtKtaeqgKQNTt9bUzuS6qnZBYVxjC7RYBBZXHnF97zyOLth-aoeBw622e_2KXJS6cnh96FOyfH5azl_DxcfL23y2CHPBVRsqJjQtec4yUGXBpYwBULIyYgWLqVQ6ZrLgiaKZKCLFVJkI5IiYiQwANJ-S--HarW2-OnRtujEux6rSNTadS5n_NUSUgfLo3Qm6bjpb--F6SjARJzLy1O2B6rINFunWmo22u_RnSR6AAcht45zF8ogATfsg0iGI1IfQF01j78QnTm7a_Zpaq031r8kG0_lX6hXa36H_lr4BCz2bRg |
CitedBy_id | crossref_primary_10_1016_j_tim_2022_06_005 crossref_primary_10_1038_s41589_018_0179_0 crossref_primary_10_1139_bcb_2020_0590 crossref_primary_10_1146_annurev_biophys_121219_081629 crossref_primary_10_1016_j_isci_2021_102865 crossref_primary_10_1038_s41388_022_02195_z crossref_primary_10_3390_ijms22179624 crossref_primary_10_1016_j_bbagrm_2023_194944 crossref_primary_10_1016_j_ceb_2021_01_002 crossref_primary_10_1016_j_freeradbiomed_2019_04_011 crossref_primary_10_1016_j_jmb_2024_168839 crossref_primary_10_1016_j_molcel_2022_04_022 crossref_primary_10_1074_jbc_TM118_001189 crossref_primary_10_1016_j_chembiol_2022_11_009 crossref_primary_10_3390_cells11132063 crossref_primary_10_1038_s41418_022_00955_8 crossref_primary_10_1074_jbc_RA119_011243 crossref_primary_10_1002_2211_5463_13176 crossref_primary_10_1038_s41570_019_0120_4 crossref_primary_10_1093_bib_bbaa187 crossref_primary_10_1002_cbic_202200216 crossref_primary_10_1038_s41467_021_25530_6 crossref_primary_10_1016_j_cell_2018_12_035 crossref_primary_10_1016_j_mcpro_2022_100231 crossref_primary_10_1016_j_isci_2021_102841 crossref_primary_10_1038_s41580_020_00303_z crossref_primary_10_1016_j_omtn_2024_102190 crossref_primary_10_1038_s41580_021_00441_y crossref_primary_10_1042_ETLS20190160 crossref_primary_10_1016_j_celrep_2024_114940 crossref_primary_10_3389_fnins_2021_745684 crossref_primary_10_3390_ijms20215501 crossref_primary_10_3390_v12010117 crossref_primary_10_3390_biom12101441 crossref_primary_10_1016_j_nbd_2023_106011 crossref_primary_10_1371_journal_pbio_3002871 crossref_primary_10_1007_s00294_019_01036_z crossref_primary_10_1016_j_tcb_2019_05_005 crossref_primary_10_1021_acssynbio_4c00629 crossref_primary_10_1016_j_yexcr_2021_112515 crossref_primary_10_1002_advs_202202855 crossref_primary_10_1063_5_0236610 crossref_primary_10_1016_j_celrep_2024_114272 crossref_primary_10_1039_D3NJ03714B crossref_primary_10_1111_febs_15254 crossref_primary_10_1016_j_matt_2022_07_001 crossref_primary_10_1021_jacs_1c03627 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1016_j_csbj_2021_06_042 crossref_primary_10_1146_annurev_physchem_071819_113553 crossref_primary_10_3390_molecules26082118 crossref_primary_10_15252_embj_2020106632 crossref_primary_10_1016_j_bbadva_2021_100034 crossref_primary_10_1016_j_bbagrm_2023_194989 crossref_primary_10_1038_s41467_020_18224_y crossref_primary_10_1111_febs_16616 crossref_primary_10_1039_D4CP00761A crossref_primary_10_1016_j_celrep_2024_114642 crossref_primary_10_1016_j_molcel_2019_09_014 crossref_primary_10_3390_v12090984 crossref_primary_10_1016_j_molcel_2019_09_016 crossref_primary_10_1128_jvi_00040_24 crossref_primary_10_1186_s12935_024_03353_x crossref_primary_10_3389_fmolb_2019_00021 crossref_primary_10_1146_annurev_biochem_032620_105429 crossref_primary_10_1038_s41467_024_52580_3 crossref_primary_10_1007_s10753_024_02202_3 crossref_primary_10_1016_j_semcdb_2019_06_007 crossref_primary_10_1111_bph_15217 crossref_primary_10_1093_jmcb_mjab028 crossref_primary_10_1186_s13059_022_02755_2 crossref_primary_10_1016_j_tins_2019_08_005 crossref_primary_10_3390_v13030366 crossref_primary_10_1073_pnas_2021719118 crossref_primary_10_5483_BMBRep_2022_55_3_188 crossref_primary_10_1021_acs_biomac_4c01394 crossref_primary_10_1038_s41594_024_01362_y crossref_primary_10_15252_embr_201947952 crossref_primary_10_1139_bcb_2024_0156 crossref_primary_10_3390_biom11081248 crossref_primary_10_1016_j_jbc_2022_102834 crossref_primary_10_1038_s41419_022_04673_4 crossref_primary_10_1016_j_tibs_2022_10_001 crossref_primary_10_3389_fcell_2022_1033684 crossref_primary_10_3389_fimmu_2024_1505123 crossref_primary_10_1021_acs_jpclett_3c01642 crossref_primary_10_3390_ijms23031613 crossref_primary_10_1002_agt2_725 crossref_primary_10_3389_fnmol_2021_686995 crossref_primary_10_1002_anie_202211905 crossref_primary_10_1039_D4SM01091D crossref_primary_10_1042_BST20200355 crossref_primary_10_1016_j_gpb_2020_11_003 crossref_primary_10_1111_bph_15242 crossref_primary_10_3390_microorganisms9061206 crossref_primary_10_1002_advs_202402570 crossref_primary_10_1016_j_tibs_2020_05_002 crossref_primary_10_3389_fmolb_2021_689687 crossref_primary_10_1016_j_ijbiomac_2024_135251 crossref_primary_10_3390_cells10071722 crossref_primary_10_1093_nar_gkac189 crossref_primary_10_1016_j_cossms_2020_100892 crossref_primary_10_1016_j_ejmech_2020_112887 crossref_primary_10_1002_ange_202211905 crossref_primary_10_1039_D2SC04907D crossref_primary_10_1111_mpp_13493 crossref_primary_10_1038_s41419_022_05435_y crossref_primary_10_1186_s43593_023_00049_z crossref_primary_10_3390_ijms22169094 crossref_primary_10_1021_acs_chemrev_2c00608 crossref_primary_10_3390_cells11193040 crossref_primary_10_15252_embr_202051345 crossref_primary_10_1371_journal_pgen_1011251 crossref_primary_10_1002_pro_4093 crossref_primary_10_3390_cells13060490 crossref_primary_10_1038_s41556_023_01270_1 crossref_primary_10_1021_acs_jmedchem_1c01043 crossref_primary_10_1039_D4SM00358F crossref_primary_10_1080_19491034_2023_2296243 crossref_primary_10_1146_annurev_biochem_052521_121259 crossref_primary_10_1021_acs_jpcb_3c06346 crossref_primary_10_1016_j_tig_2024_12_006 crossref_primary_10_1038_s41598_022_05681_2 crossref_primary_10_3390_ijms24043729 crossref_primary_10_1016_j_tins_2023_04_004 crossref_primary_10_1038_s41589_022_01015_5 crossref_primary_10_1016_j_molcel_2024_11_039 crossref_primary_10_1016_j_bpj_2021_01_034 crossref_primary_10_1016_j_tig_2019_05_001 crossref_primary_10_1371_journal_pbio_3000981 crossref_primary_10_1111_jipb_13152 crossref_primary_10_3389_fmolb_2021_693325 crossref_primary_10_1126_sciadv_abj9247 crossref_primary_10_1107_S2053230X20010250 crossref_primary_10_3390_ijms242015418 crossref_primary_10_1038_s41467_019_10792_y crossref_primary_10_1101_sqb_2019_84_040329 crossref_primary_10_1038_s41467_022_31282_8 crossref_primary_10_3390_dna4010004 crossref_primary_10_1021_acs_biochem_9b00934 crossref_primary_10_1016_j_canlet_2024_216614 crossref_primary_10_1111_tra_12704 crossref_primary_10_1021_acssynbio_3c00249 crossref_primary_10_1016_j_ijbiomac_2024_129330 crossref_primary_10_1371_journal_pgen_1011462 crossref_primary_10_1016_j_heliyon_2024_e34035 crossref_primary_10_1186_s12964_024_01787_4 crossref_primary_10_1016_j_celrep_2023_113558 crossref_primary_10_1080_15548627_2022_2148432 crossref_primary_10_1038_s41557_024_01663_1 crossref_primary_10_1002_cbin_11499 crossref_primary_10_3389_fimmu_2023_1216548 crossref_primary_10_1002_adbi_202200006 crossref_primary_10_1016_j_celrep_2024_114248 crossref_primary_10_1016_j_jmb_2019_06_026 crossref_primary_10_1016_j_tplants_2023_06_006 crossref_primary_10_1038_s41467_023_37013_x crossref_primary_10_1038_s41420_022_01226_8 crossref_primary_10_1038_s41589_020_0579_9 crossref_primary_10_3389_fimmu_2023_1086192 crossref_primary_10_1038_s41467_020_19317_4 crossref_primary_10_1038_s41392_024_02013_w crossref_primary_10_1038_s41467_023_39151_8 crossref_primary_10_1016_j_isci_2019_08_001 crossref_primary_10_1038_s41421_022_00426_x crossref_primary_10_1186_s12985_024_02460_5 crossref_primary_10_1186_s12964_023_01380_1 crossref_primary_10_1016_j_celrep_2022_110736 crossref_primary_10_1152_physiol_00013_2024 crossref_primary_10_3390_ijms22158213 crossref_primary_10_1002_anie_202203909 crossref_primary_10_1016_j_jbc_2024_105638 crossref_primary_10_1038_s12276_022_00857_2 crossref_primary_10_1039_D3SC00993A crossref_primary_10_1016_j_cellsig_2023_110848 crossref_primary_10_3390_molecules25041015 crossref_primary_10_1016_j_mitoco_2024_07_002 crossref_primary_10_1016_j_jmb_2023_168217 crossref_primary_10_1039_D1CC05266G crossref_primary_10_1002_ange_202203909 crossref_primary_10_1039_D4CC04264F crossref_primary_10_1016_j_bpj_2019_12_022 crossref_primary_10_1016_j_tibs_2024_01_008 crossref_primary_10_1016_j_bbcan_2024_189206 crossref_primary_10_2174_0109298665285625231222075700 crossref_primary_10_3390_ijms222212271 crossref_primary_10_3724_abbs_2023096 crossref_primary_10_1146_annurev_virology_111821_103226 crossref_primary_10_1002_pro_4029 crossref_primary_10_1039_D3SM00633F crossref_primary_10_1016_j_biopha_2023_115519 crossref_primary_10_1007_s12013_022_01067_3 crossref_primary_10_1016_j_jbc_2023_104907 crossref_primary_10_3389_fphys_2022_910759 crossref_primary_10_1016_j_cellsig_2025_111754 |
Cites_doi | 10.1038/nphys3532 10.1016/S0960-9822(00)00445-0 10.1126/science.aar3958 10.1093/emboj/cdg115 10.1038/s41556-017-0032-9 10.1016/j.tcb.2016.05.004 10.1038/nchembio.2140 10.1016/j.molcel.2015.01.013 10.1146/annurev-cellbio-100913-013325 10.1101/gad.461107 10.1038/nrm.2017.7 10.1007/s13238-014-0102-8 10.1242/jcs.130708 10.1016/S0092-8674(03)00939-5 10.1073/pnas.96.9.4868 10.1016/j.cell.2015.07.047 10.1016/j.molcel.2013.08.016 10.1038/srep25996 10.1038/nbt.3130 10.1126/science.1257037 10.1038/nrm2993 10.1038/nchembio.2134 10.1016/j.cell.2017.02.007 10.1038/ncomms6845 10.1016/j.cell.2015.09.015 10.1016/j.cell.2015.12.038 10.1007/BF03185527 10.15252/embj.201797452 10.1016/j.molcel.2007.05.033 10.1038/nmeth.3901 10.1074/jbc.M115.700625 10.1021/pr101065j 10.1016/j.cell.2017.12.032 10.1016/S1097-2765(03)00038-8 10.1038/sj.onc.1210614 10.1038/417455a 10.1083/jcb.200911091 10.1016/j.cell.2018.03.004 10.1083/jcb.200212128 10.1016/j.celrep.2018.01.036 10.1126/science.1175371 10.15252/embj.201696394 10.1073/pnas.1504822112 10.1016/j.cell.2012.04.017 10.1042/BJ20110739 10.1016/j.cell.2017.02.027 10.1038/ncb1783 10.1038/s41598-017-16959-1 10.1038/nsmb740 10.1038/onc.2011.120 10.1038/s41586-018-0153-8 10.1016/j.tibs.2012.08.004 10.1016/j.molcel.2017.12.020 10.1074/mcp.M113.031591 10.7554/eLife.18413 10.4161/cc.7.1.5186 10.1126/science.aar2555 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2018 Copyright Nature Publishing Group Jan 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2018 – notice: Copyright Nature Publishing Group Jan 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. LK8 M0S M1P M2P M7N M7P P64 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/s41589-018-0180-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1552-4469 |
EndPage | 61 |
ExternalDocumentID | 30531905 10_1038_s41589_018_0180_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ KB. KC. LK5 LK8 M0L M1P M2P M7P M7R NACWA NNMJJ O9- ODYON P2P PCBAR PDBOC PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c438t-824a0f3c2b18fd355711e52f62d27058a725d3980b4d6828f94e3eeeb4b111a3 |
IEDL.DBID | 7X7 |
ISSN | 1552-4450 1552-4469 |
IngestDate | Fri Jul 11 07:02:06 EDT 2025 Fri Jul 25 08:55:48 EDT 2025 Wed Feb 19 02:31:59 EST 2025 Tue Jul 01 01:27:47 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 21 02:39:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-824a0f3c2b18fd355711e52f62d27058a725d3980b4d6828f94e3eeeb4b111a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3927-1452 0000-0001-7234-1435 0000-0003-0986-7068 0000-0001-7432-3871 0000-0002-1642-5404 0000-0001-8619-5176 0000-0002-9863-433X |
PMID | 30531905 |
PQID | 2154247956 |
PQPubID | 29034 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2155160218 proquest_journals_2154247956 pubmed_primary_30531905 crossref_primary_10_1038_s41589_018_0180_7 crossref_citationtrail_10_1038_s41589_018_0180_7 springer_journals_10_1038_s41589_018_0180_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Nature chemical biology |
PublicationTitleAbbrev | Nat Chem Biol |
PublicationTitleAlternate | Nat Chem Biol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Boyault, Sadoul, Pabion, Khochbin (CR17) 2007; 26 Thompson (CR31) 2004; 11 Tourrière (CR18) 2003; 160 Nott (CR9) 2015; 57 Wang (CR33) 2018; 37 Kawaguchi (CR12) 2003; 115 Tompa (CR3) 2012; 37 Monahan (CR11) 2017; 36 Youn (CR36) 2018; 69 Fanfoni, Tomellini (CR42) 1998; 20 Hubner (CR55) 2010; 189 Chong (CR49) 2018; 361 Tyedmers, Mogk, Bukau (CR5) 2010; 11 Mittasch (CR57) 2018; 20 Jain (CR37) 2016; 164 Valentin-Vega (CR43) 2016; 6 Zhang (CR14) 2003; 22 Jedrusik-Bode (CR46) 2013; 126 Cohen (CR47) 2015; 6 Cox (CR53) 2011; 10 Miyake (CR30) 2016; 12 Matthias, Yoshida, Khochbin (CR16) 2008; 7 Protter, Parker (CR4) 2016; 26 Li (CR34) 2017; 7 Cox (CR54) 2014; 13 Zhang (CR22) 2007; 27 Tyanova (CR56) 2016; 13 Brangwynne, Tompa, Pappu (CR8) 2015; 11 Schölz (CR20) 2015; 33 Sabari (CR48) 2018; 361 Hofweber (CR10) 2018; 173 Riback (CR41) 2017; 168 Markmiller (CR40) 2018; 172 Molliex (CR6) 2015; 163 Choudhary (CR23) 2009; 325 Bannister, Miska, Görlich, Kouzarides (CR21) 2000; 10 Hao (CR27) 2013; 51 Ohn, Kedersha, Hickman, Tisdale, Anderson (CR45) 2008; 10 Protter (CR38) 2018; 22 Grozinger, Hassig, Schreiber (CR28) 1999; 96 Patel (CR7) 2015; 162 Hyman, Weber, Jülicher (CR1) 2014; 30 North, Marshall, Borra, Denu, Verdin (CR26) 2003; 11 Hubbert (CR15) 2002; 417 Banerjee (CR51) 2014; 346 Ostapcuk (CR52) 2018; 557 Elbaum-Garfinkle (CR44) 2015; 112 Kato (CR35) 2012; 149 Banani, Lee, Hyman, Rosen (CR2) 2017; 18 Zhang (CR24) 2015; 6 Hai, Christianson (CR29) 2016; 12 Wheeler, Matheny, Jain, Abrisch, Parker (CR39) 2016; 5 Hnisz, Shrinivas, Young, Chakraborty, Sharp (CR50) 2017; 169 Legros (CR19) 2011; 30 Floor, Condon, Sharma, Jankowsky, Doudna (CR32) 2016; 291 Shih (CR25) 2012; 441 Kwon, Zhang, Matthias (CR13) 2007; 21 DSW Protter (180_CR4) 2016; 26 T Ohn (180_CR45) 2008; 10 A Wang (180_CR33) 2018; 37 Y Hai (180_CR29) 2016; 12 M Hofweber (180_CR10) 2018; 173 YA Valentin-Vega (180_CR43) 2016; 6 CM Grozinger (180_CR28) 1999; 96 L Zhang (180_CR24) 2015; 6 S Tyanova (180_CR56) 2016; 13 CP Brangwynne (180_CR8) 2015; 11 C Choudhary (180_CR23) 2009; 325 PR Thompson (180_CR31) 2004; 11 Y Kawaguchi (180_CR12) 2003; 115 J Cox (180_CR53) 2011; 10 D Hnisz (180_CR50) 2017; 169 SN Floor (180_CR32) 2016; 291 Z Monahan (180_CR11) 2017; 36 S Jain (180_CR37) 2016; 164 DSW Protter (180_CR38) 2018; 22 SF Banani (180_CR2) 2017; 18 X Li (180_CR34) 2017; 7 S Markmiller (180_CR40) 2018; 172 J Tyedmers (180_CR5) 2010; 11 P Matthias (180_CR16) 2008; 7 JR Wheeler (180_CR39) 2016; 5 NC Hubner (180_CR55) 2010; 189 C Boyault (180_CR17) 2007; 26 C Hubbert (180_CR15) 2002; 417 M Mittasch (180_CR57) 2018; 20 P Tompa (180_CR3) 2012; 37 A Molliex (180_CR6) 2015; 163 AJ Bannister (180_CR21) 2000; 10 S Legros (180_CR19) 2011; 30 M Fanfoni (180_CR42) 1998; 20 C Schölz (180_CR20) 2015; 33 TJ Cohen (180_CR47) 2015; 6 S Chong (180_CR49) 2018; 361 I Banerjee (180_CR51) 2014; 346 TJ Nott (180_CR9) 2015; 57 AA Hyman (180_CR1) 2014; 30 M Jedrusik-Bode (180_CR46) 2013; 126 S Kwon (180_CR13) 2007; 21 Y Miyake (180_CR30) 2016; 12 Y Zhang (180_CR14) 2003; 22 H Tourrière (180_CR18) 2003; 160 JW Shih (180_CR25) 2012; 441 M Kato (180_CR35) 2012; 149 J Cox (180_CR54) 2014; 13 S Elbaum-Garfinkle (180_CR44) 2015; 112 R Hao (180_CR27) 2013; 51 JA Riback (180_CR41) 2017; 168 V Ostapcuk (180_CR52) 2018; 557 BR Sabari (180_CR48) 2018; 361 A Patel (180_CR7) 2015; 162 BJ North (180_CR26) 2003; 11 JY Youn (180_CR36) 2018; 69 X Zhang (180_CR22) 2007; 27 30531906 - Nat Chem Biol. 2019 Jan;15(1):5-6 |
References_xml | – volume: 11 start-page: 899 year: 2015 end-page: 904 ident: CR8 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys. doi: 10.1038/nphys3532 – volume: 10 start-page: 467 year: 2000 end-page: 470 ident: CR21 article-title: Acetylation of importin-alpha nuclear import factors by CBP/p300 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00445-0 – volume: 361 start-page: eaar3958 year: 2018 ident: CR48 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science doi: 10.1126/science.aar3958 – volume: 22 start-page: 1168 year: 2003 end-page: 1179 ident: CR14 article-title: HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo publication-title: EMBO J. doi: 10.1093/emboj/cdg115 – volume: 20 start-page: 344 year: 2018 end-page: 351 ident: CR57 article-title: Non-invasive perturbations of intracellular flow reveal physical principles of cell organization publication-title: Nat. Cell Biol. doi: 10.1038/s41556-017-0032-9 – volume: 26 start-page: 668 year: 2016 end-page: 679 ident: CR4 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.05.004 – volume: 12 start-page: 748 year: 2016 end-page: 754 ident: CR30 article-title: Structural insights into HDAC6 tubulin deacetylation and its selective inhibition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2140 – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: CR9 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 30 start-page: 39 year: 2014 end-page: 58 ident: CR1 article-title: Liquid-liquid phase separation in biology publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013325 – volume: 21 start-page: 3381 year: 2007 end-page: 3394 ident: CR13 article-title: The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response publication-title: Genes Dev. doi: 10.1101/gad.461107 – volume: 18 start-page: 285 year: 2017 end-page: 298 ident: CR2 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 6 start-page: 42 year: 2015 end-page: 54 ident: CR24 article-title: Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity publication-title: Protein Cell doi: 10.1007/s13238-014-0102-8 – volume: 126 start-page: 5166 year: 2013 end-page: 5177 ident: CR46 article-title: The sirtuin SIRT6 regulates stress granule formation in and mammals publication-title: J. Cell Sci. doi: 10.1242/jcs.130708 – volume: 115 start-page: 727 year: 2003 end-page: 738 ident: CR12 article-title: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress publication-title: Cell doi: 10.1016/S0092-8674(03)00939-5 – volume: 96 start-page: 4868 year: 1999 end-page: 4873 ident: CR28 article-title: Three proteins define a class of human histone deacetylases related to yeast Hda1p publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.9.4868 – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: CR7 article-title: A liquid-to-solid phase transition of the ALS Protein FUS accelerated by disease mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 51 start-page: 819 year: 2013 end-page: 828 ident: CR27 article-title: Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.08.016 – volume: 6 year: 2016 ident: CR43 article-title: Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation publication-title: Sci. Rep. doi: 10.1038/srep25996 – volume: 33 start-page: 415 year: 2015 end-page: 423 ident: CR20 article-title: Acetylation site specificities of lysine deacetylase inhibitors in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3130 – volume: 346 start-page: 473 year: 2014 end-page: 477 ident: CR51 article-title: Influenza A virus uses the aggresome processing machinery for host cell entry publication-title: Science doi: 10.1126/science.1257037 – volume: 11 start-page: 777 year: 2010 end-page: 788 ident: CR5 article-title: Cellular strategies for controlling protein aggregation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2993 – volume: 12 start-page: 741 year: 2016 end-page: 747 ident: CR29 article-title: Histone deacetylase 6 structure and molecular basis of catalysis and inhibition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2134 – volume: 169 start-page: 13 year: 2017 end-page: 23 ident: CR50 article-title: A phase separation model for transcriptional control publication-title: Cell doi: 10.1016/j.cell.2017.02.007 – volume: 6 year: 2015 ident: CR47 article-title: An acetylation switch controls TDP-43 function and aggregation propensity publication-title: Nat. Commun. doi: 10.1038/ncomms6845 – volume: 163 start-page: 123 year: 2015 end-page: 133 ident: CR6 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 164 start-page: 487 year: 2016 end-page: 498 ident: CR37 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 20 start-page: 1171 year: 1998 end-page: 1182 ident: CR42 article-title: The Johnson-Mehl-Avrami-Kohnogorov model: a brief review publication-title: IlNuovo Cimento D doi: 10.1007/BF03185527 – volume: 37 start-page: e97452 year: 2018 ident: CR33 article-title: A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing publication-title: EMBO J. doi: 10.15252/embj.201797452 – volume: 27 start-page: 197 year: 2007 end-page: 213 ident: CR22 article-title: HDAC6 modulates cell motility by altering the acetylation level of cortactin publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.05.033 – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: CR56 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 291 start-page: 2412 year: 2016 end-page: 2421 ident: CR32 article-title: Autoinhibitory interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.700625 – volume: 10 start-page: 1794 year: 2011 end-page: 1805 ident: CR53 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J. Proteome Res. doi: 10.1021/pr101065j – volume: 172 start-page: 590 year: 2018 end-page: 604 e513 ident: CR40 article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules publication-title: Cell doi: 10.1016/j.cell.2017.12.032 – volume: 11 start-page: 437 year: 2003 end-page: 444 ident: CR26 article-title: The human Sir2 ortholog, SIRT2, is an NAD -dependent tubulin deacetylase publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00038-8 – volume: 26 start-page: 5468 year: 2007 end-page: 5476 ident: CR17 article-title: HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination publication-title: Oncogene doi: 10.1038/sj.onc.1210614 – volume: 417 start-page: 455 year: 2002 end-page: 458 ident: CR15 article-title: HDAC6 is a microtubule-associated deacetylase publication-title: Nature doi: 10.1038/417455a – volume: 189 start-page: 739 year: 2010 end-page: 754 ident: CR55 article-title: Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions publication-title: J. Cell Biol. doi: 10.1083/jcb.200911091 – volume: 173 start-page: 706 year: 2018 end-page: 719 e713 ident: CR10 article-title: Phase separation of FUS Is suppressed by its nuclear import receptor and arginine methylation publication-title: Cell doi: 10.1016/j.cell.2018.03.004 – volume: 160 start-page: 823 year: 2003 end-page: 831 ident: CR18 article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules publication-title: J. Cell Biol. doi: 10.1083/jcb.200212128 – volume: 22 start-page: 1401 year: 2018 end-page: 1412 ident: CR38 article-title: Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.036 – volume: 325 start-page: 834 year: 2009 end-page: 840 ident: CR23 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 36 start-page: 2951 year: 2017 end-page: 2967 ident: CR11 article-title: Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity publication-title: EMBO J. doi: 10.15252/embj.201696394 – volume: 112 start-page: 7189 year: 2015 end-page: 7194 ident: CR44 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: CR35 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 441 start-page: 119 year: 2012 end-page: 129 ident: CR25 article-title: Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response publication-title: Biochem. J. doi: 10.1042/BJ20110739 – volume: 168 start-page: 1028 year: 2017 end-page: 1040.e1019 ident: CR41 article-title: Stress-triggered phase separation is an adaptive, evolutionarily tuned response publication-title: Cell doi: 10.1016/j.cell.2017.02.027 – volume: 10 start-page: 1224 year: 2008 end-page: 1231 ident: CR45 article-title: A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly publication-title: Nat. Cell Biol. doi: 10.1038/ncb1783 – volume: 7 year: 2017 ident: CR34 article-title: The repeat region of cortactin is intrinsically disordered in solution publication-title: Sci. Rep. doi: 10.1038/s41598-017-16959-1 – volume: 11 start-page: 308 year: 2004 end-page: 315 ident: CR31 article-title: Regulation of the p300 HAT domain via a novel activation loop publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb740 – volume: 30 start-page: 4050 year: 2011 end-page: 4062 ident: CR19 article-title: The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6 publication-title: Oncogene doi: 10.1038/onc.2011.120 – volume: 557 start-page: 739 year: 2018 end-page: 743 ident: CR52 article-title: Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes publication-title: Nature doi: 10.1038/s41586-018-0153-8 – volume: 37 start-page: 509 year: 2012 end-page: 516 ident: CR3 article-title: Intrinsically disordered proteins: a 10-year recap publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.08.004 – volume: 69 start-page: 517 year: 2018 end-page: 532 e511 ident: CR36 article-title: High-density proximity mapping reveals the subcellular organization of mrna-associated granules and bodies publication-title: Molecular cell doi: 10.1016/j.molcel.2017.12.020 – volume: 13 start-page: 2513 year: 2014 end-page: 2526 ident: CR54 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031591 – volume: 5 start-page: e18413 year: 2016 ident: CR39 article-title: Distinct stages in stress granule assembly and disassembly publication-title: eLife doi: 10.7554/eLife.18413 – volume: 7 start-page: 7 year: 2008 end-page: 10 ident: CR16 article-title: HDAC6 a new cellular stress surveillance factor publication-title: Cell Cycle doi: 10.4161/cc.7.1.5186 – volume: 361 start-page: eaar2555 year: 2018 ident: CR49 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science doi: 10.1126/science.aar2555 – volume: 6 year: 2016 ident: 180_CR43 publication-title: Sci. Rep. doi: 10.1038/srep25996 – volume: 5 start-page: e18413 year: 2016 ident: 180_CR39 publication-title: eLife doi: 10.7554/eLife.18413 – volume: 22 start-page: 1168 year: 2003 ident: 180_CR14 publication-title: EMBO J. doi: 10.1093/emboj/cdg115 – volume: 51 start-page: 819 year: 2013 ident: 180_CR27 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.08.016 – volume: 13 start-page: 2513 year: 2014 ident: 180_CR54 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031591 – volume: 163 start-page: 123 year: 2015 ident: 180_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 162 start-page: 1066 year: 2015 ident: 180_CR7 publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 26 start-page: 5468 year: 2007 ident: 180_CR17 publication-title: Oncogene doi: 10.1038/sj.onc.1210614 – volume: 22 start-page: 1401 year: 2018 ident: 180_CR38 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.036 – volume: 27 start-page: 197 year: 2007 ident: 180_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.05.033 – volume: 361 start-page: eaar2555 year: 2018 ident: 180_CR49 publication-title: Science doi: 10.1126/science.aar2555 – volume: 21 start-page: 3381 year: 2007 ident: 180_CR13 publication-title: Genes Dev. doi: 10.1101/gad.461107 – volume: 441 start-page: 119 year: 2012 ident: 180_CR25 publication-title: Biochem. J. doi: 10.1042/BJ20110739 – volume: 11 start-page: 777 year: 2010 ident: 180_CR5 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2993 – volume: 168 start-page: 1028 year: 2017 ident: 180_CR41 publication-title: Cell doi: 10.1016/j.cell.2017.02.027 – volume: 6 start-page: 42 year: 2015 ident: 180_CR24 publication-title: Protein Cell doi: 10.1007/s13238-014-0102-8 – volume: 291 start-page: 2412 year: 2016 ident: 180_CR32 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.700625 – volume: 189 start-page: 739 year: 2010 ident: 180_CR55 publication-title: J. Cell Biol. doi: 10.1083/jcb.200911091 – volume: 164 start-page: 487 year: 2016 ident: 180_CR37 publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 112 start-page: 7189 year: 2015 ident: 180_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 11 start-page: 899 year: 2015 ident: 180_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys3532 – volume: 7 start-page: 7 year: 2008 ident: 180_CR16 publication-title: Cell Cycle doi: 10.4161/cc.7.1.5186 – volume: 69 start-page: 517 year: 2018 ident: 180_CR36 publication-title: Molecular cell doi: 10.1016/j.molcel.2017.12.020 – volume: 6 year: 2015 ident: 180_CR47 publication-title: Nat. Commun. doi: 10.1038/ncomms6845 – volume: 18 start-page: 285 year: 2017 ident: 180_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 11 start-page: 437 year: 2003 ident: 180_CR26 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00038-8 – volume: 10 start-page: 467 year: 2000 ident: 180_CR21 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00445-0 – volume: 361 start-page: eaar3958 year: 2018 ident: 180_CR48 publication-title: Science doi: 10.1126/science.aar3958 – volume: 26 start-page: 668 year: 2016 ident: 180_CR4 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.05.004 – volume: 20 start-page: 1171 year: 1998 ident: 180_CR42 publication-title: IlNuovo Cimento D doi: 10.1007/BF03185527 – volume: 30 start-page: 4050 year: 2011 ident: 180_CR19 publication-title: Oncogene doi: 10.1038/onc.2011.120 – volume: 37 start-page: e97452 year: 2018 ident: 180_CR33 publication-title: EMBO J. doi: 10.15252/embj.201797452 – volume: 149 start-page: 753 year: 2012 ident: 180_CR35 publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 417 start-page: 455 year: 2002 ident: 180_CR15 publication-title: Nature doi: 10.1038/417455a – volume: 325 start-page: 834 year: 2009 ident: 180_CR23 publication-title: Science doi: 10.1126/science.1175371 – volume: 36 start-page: 2951 year: 2017 ident: 180_CR11 publication-title: EMBO J. doi: 10.15252/embj.201696394 – volume: 12 start-page: 741 year: 2016 ident: 180_CR29 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2134 – volume: 96 start-page: 4868 year: 1999 ident: 180_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.9.4868 – volume: 173 start-page: 706 year: 2018 ident: 180_CR10 publication-title: Cell doi: 10.1016/j.cell.2018.03.004 – volume: 557 start-page: 739 year: 2018 ident: 180_CR52 publication-title: Nature doi: 10.1038/s41586-018-0153-8 – volume: 10 start-page: 1794 year: 2011 ident: 180_CR53 publication-title: J. Proteome Res. doi: 10.1021/pr101065j – volume: 115 start-page: 727 year: 2003 ident: 180_CR12 publication-title: Cell doi: 10.1016/S0092-8674(03)00939-5 – volume: 10 start-page: 1224 year: 2008 ident: 180_CR45 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1783 – volume: 160 start-page: 823 year: 2003 ident: 180_CR18 publication-title: J. Cell Biol. doi: 10.1083/jcb.200212128 – volume: 169 start-page: 13 year: 2017 ident: 180_CR50 publication-title: Cell doi: 10.1016/j.cell.2017.02.007 – volume: 13 start-page: 731 year: 2016 ident: 180_CR56 publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 11 start-page: 308 year: 2004 ident: 180_CR31 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb740 – volume: 172 start-page: 590 year: 2018 ident: 180_CR40 publication-title: Cell doi: 10.1016/j.cell.2017.12.032 – volume: 346 start-page: 473 year: 2014 ident: 180_CR51 publication-title: Science doi: 10.1126/science.1257037 – volume: 12 start-page: 748 year: 2016 ident: 180_CR30 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2140 – volume: 20 start-page: 344 year: 2018 ident: 180_CR57 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-017-0032-9 – volume: 30 start-page: 39 year: 2014 ident: 180_CR1 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013325 – volume: 37 start-page: 509 year: 2012 ident: 180_CR3 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.08.004 – volume: 33 start-page: 415 year: 2015 ident: 180_CR20 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3130 – volume: 57 start-page: 936 year: 2015 ident: 180_CR9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 7 year: 2017 ident: 180_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-017-16959-1 – volume: 126 start-page: 5166 year: 2013 ident: 180_CR46 publication-title: J. Cell Sci. doi: 10.1242/jcs.130708 – reference: 30531906 - Nat Chem Biol. 2019 Jan;15(1):5-6 |
SSID | ssj0036618 |
Score | 2.6342285 |
Snippet | Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation... Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 51 |
SubjectTerms | 631/45 631/80 631/92/458 631/92/475 Acetylation Amyotrophic lateral sclerosis Animals Biochemical Engineering Biochemistry Biology Bioorganic Chemistry Catalytic Domain Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Cytoplasmic Granules - metabolism Deacetylation DEAD-box RNA Helicases - metabolism DNA helicase Gene Knockout Techniques Histone Deacetylase 6 - metabolism Humans Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - metabolism Liquid phases Lysine Lysine - metabolism Mice Models, Theoretical Mutation Organelles Osmotic Pressure Phase separation Proteins Ribonucleic acid RNA RNA helicase RNA Helicases - chemistry RNA Helicases - genetics RNA Helicases - metabolism Substrates |
Title | Acetylation of intrinsically disordered regions regulates phase separation |
URI | https://link.springer.com/article/10.1038/s41589-018-0180-7 https://www.ncbi.nlm.nih.gov/pubmed/30531905 https://www.proquest.com/docview/2154247956 https://www.proquest.com/docview/2155160218 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_ohuiL6OZHdY4I4oMSluajTZ_k3rHrGHgRmXDfSpqkKMz2aruH-997kn4MGe6hH9CkCeekOb_z0XMA3gVTo2OuotyImobsJtRw5WhhUXa4DBltgx3yyzo7_y4vNmozGty6Maxy2hPjRu1aG2zkJyiaJJc5wvlP2980VI0K3tWxhMZ92A-py0JIV76ZFS6Bsif-CqcUp1Kq2asp9EmHgisEC6UhlEszmv8rl26BzVuO0ih_Vk_g8QgcyWLg9FO455sDOFw0qDT_2pH3JIZyRhv5ATxYTncPT6eCbodwsbC-3w2xb6Styc-mx6Eil652xI1pOL0joVgDLsZwDcW9fEe2P1DYkc4PicLb5hlcrs4uT8_pWEqBWil0TzWXhtXC8irVtUOMkaepV7zOuOM5U9rkyCBRaFZJl6ESVhfSC-99JSvcDI14DntN2_iXQHKFKkbGDAItK52RRgZUpq2uLPYq0gTYRMfSjmnGQ7WLqzK6u4UuB9KXSPZwsDJP4MPcZTvk2Lir8dHEnHL83LryZnEk8HZ-jOQN3g_T-PY6tlFpFiBNAi8Gps6jibgVMZXAx4nLNy__71Re3T2V1_AI0VUx2GuOYK__c-3fIILpq-O4TPGsV5-PYX-xWi7XeF2erb9--wsNyO1O |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9UwzBpDaLsg2GArDAgScABFa_PRpgeEHoPH2-fpIe1WpUkqkEb7oJ3Q-1H8R5y0fROa2G2HqpWaL9mO7diODfDKmxptbEvKNK-oz25CNZOW5gZlh00R0cbbIU_P0tlXcXQuz9fgz3gXxodVjjwxMGrbGG8j30fRJJjIUJ3_sPhJfdUo710dS2j0ZHHslr_xyNa-P_yE-H3N2PTz_GBGh6oC1AiuOqqY0HHFDSsTVVkUt1mSOMmqlFmWxVLpDNfKcxWXwqZ4Hqly4bhzrhQl8gXNcdg7cFdwnvsNpaZfRsbPUdSFm3dSMiqEXDlRudpvUU762KTER46pmGb_isFruu01v2wQd9MHcH_QU8mkJ6yHsObqLdie1HhG_7Ekb0iIHA0m-S2493H82jgY68dtw9HEuG7Zh9qRpiLf6w6nCkRxsSR2yPrpLPG1IZD2_dvXEnMtWXxD2Upa1-clb-pHML8NGD-G9bqp3S6QTOKJJo016nVGWC208EqgMqo02CtPIohHOBZmyGrui2tcFMG7zlXRg75AsPsnLrII3q66LPqUHjc13huRUwy7uy2uaDGCl6vfCF7vbNG1ay5DG5mkXoOKYKdH6mo2HjhfLCN4N2L5avD_LuXJzUt5ARuz-elJcXJ4dvwUNlGxy3tT0R6sd78u3TNUnrryeSBZAsUtb5G_PhskeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUsVwQtCyBAkYCDiBrEi-Jc0BoaBl1gYpDkeYWObYjkEoykFRoPo2_49lZKlTRWw9RIsWJrbf4rX4P4KV3NdrYlpRpXlFf3YRqJi3NDcoOmyKijfdDfj5O97-Kw6VcbsCf8SyMT6sc98SwUdvGeB_5DEWTYCJDdX5WDWkRX_YW71c_qe8g5SOtYzuNnkSO3Po3mm_tu4M9xPUrxhYfT3b36dBhgBrBVUcVEzquuGFloiqLojdLEidZlTLLslgqneG6ea7iUtgUbZMqF44750pR4h6hOf72GlzPuEw8i2XLydbjKPbCKTwpGRVCTgFVrmYtykyfp5T4LDIV0-xfkXhBz70Qow2ib3EX7gw6K5n3RHYPNly9BdvzGu31H2vymoQs0uCe34IbH8anW7tjL7ltOJwb1637tDvSVOR73eFUgUBO18QOFUCdJb5PBPKBv_u-Yq4lq28oZ0nr-hrlTX0fTq4Cxg9gs25q9whIJtG6SWONOp4RVgstvEKojCoNfpUnEcQjHAszVDj3jTZOixBp56roQV8g2P0VF1kEb6ZPVn15j8sG74zIKQZOb4tzuozgxfQawesDL7p2zVkYI5PUa1MRPOyROs3Gwy4Yywjejlg-__l_l_L48qU8h5vIHMWng-OjJ3Abdby89xrtwGb368w9RT2qK58FiiVQXDGH_AX38iim |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetylation+of+intrinsically+disordered+regions+regulates+phase+separation&rft.jtitle=Nature+chemical+biology&rft.au=Saito%2C+Makoto&rft.au=Hess%2C+Daniel&rft.au=Eglinger%2C+Jan&rft.au=Fritsch%2C+Anatol+W.&rft.date=2019-01-01&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=15&rft.issue=1&rft.spage=51&rft.epage=61&rft_id=info:doi/10.1038%2Fs41589-018-0180-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41589_018_0180_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon |