Acetylation of intrinsically disordered regions regulates phase separation

Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we repo...

Full description

Saved in:
Bibliographic Details
Published inNature chemical biology Vol. 15; no. 1; pp. 51 - 61
Main Authors Saito, Makoto, Hess, Daniel, Eglinger, Jan, Fritsch, Anatol W., Kreysing, Moritz, Weinert, Brian T., Choudhary, Chunaram, Matthias, Patrick
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo. HDAC6 modulates acetylation at multiple lysine residues in the N-terminal intrinsically disordered region of RNA helicase DDX3X to regulate liquid–liquid phase separation and stress granule maturation.
AbstractList Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.
Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo. HDAC6 modulates acetylation at multiple lysine residues in the N-terminal intrinsically disordered region of RNA helicase DDX3X to regulate liquid–liquid phase separation and stress granule maturation.
Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.
Author Eglinger, Jan
Choudhary, Chunaram
Saito, Makoto
Matthias, Patrick
Hess, Daniel
Weinert, Brian T.
Fritsch, Anatol W.
Kreysing, Moritz
Author_xml – sequence: 1
  givenname: Makoto
  orcidid: 0000-0001-8619-5176
  surname: Saito
  fullname: Saito, Makoto
  organization: Friedrich Miescher Institute for Biomedical Research, Faculty of Sciences, University of Basel
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-1642-5404
  surname: Hess
  fullname: Hess, Daniel
  organization: Friedrich Miescher Institute for Biomedical Research
– sequence: 3
  givenname: Jan
  orcidid: 0000-0001-7234-1435
  surname: Eglinger
  fullname: Eglinger, Jan
  organization: Friedrich Miescher Institute for Biomedical Research
– sequence: 4
  givenname: Anatol W.
  orcidid: 0000-0003-0986-7068
  surname: Fritsch
  fullname: Fritsch, Anatol W.
  organization: Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden
– sequence: 5
  givenname: Moritz
  orcidid: 0000-0001-7432-3871
  surname: Kreysing
  fullname: Kreysing, Moritz
  organization: Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden
– sequence: 6
  givenname: Brian T.
  surname: Weinert
  fullname: Weinert, Brian T.
  organization: Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 7
  givenname: Chunaram
  orcidid: 0000-0002-9863-433X
  surname: Choudhary
  fullname: Choudhary, Chunaram
  organization: Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 8
  givenname: Patrick
  orcidid: 0000-0002-3927-1452
  surname: Matthias
  fullname: Matthias, Patrick
  email: patrick.matthias@fmi.ch
  organization: Friedrich Miescher Institute for Biomedical Research, Faculty of Sciences, University of Basel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30531905$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0Eoh_wA1hQJBaWgM8fiTNWFZ-qxNI9cpJLcZUmxU6G_nucphSpEgyn8_A89vneCTmvmxoJuQH6AJSrRydAqiSkoPqiYXxGxiAlC4WIkvPjWdIRmTi3ppRHEahLMuJUckioHJP3WY7trtKtaeqgKQNTt9bUzuS6qnZBYVxjC7RYBBZXHnF97zyOLth-aoeBw622e_2KXJS6cnh96FOyfH5azl_DxcfL23y2CHPBVRsqJjQtec4yUGXBpYwBULIyYgWLqVQ6ZrLgiaKZKCLFVJkI5IiYiQwANJ-S--HarW2-OnRtujEux6rSNTadS5n_NUSUgfLo3Qm6bjpb--F6SjARJzLy1O2B6rINFunWmo22u_RnSR6AAcht45zF8ogATfsg0iGI1IfQF01j78QnTm7a_Zpaq031r8kG0_lX6hXa36H_lr4BCz2bRg
CitedBy_id crossref_primary_10_1016_j_tim_2022_06_005
crossref_primary_10_1038_s41589_018_0179_0
crossref_primary_10_1139_bcb_2020_0590
crossref_primary_10_1146_annurev_biophys_121219_081629
crossref_primary_10_1016_j_isci_2021_102865
crossref_primary_10_1038_s41388_022_02195_z
crossref_primary_10_3390_ijms22179624
crossref_primary_10_1016_j_bbagrm_2023_194944
crossref_primary_10_1016_j_ceb_2021_01_002
crossref_primary_10_1016_j_freeradbiomed_2019_04_011
crossref_primary_10_1016_j_jmb_2024_168839
crossref_primary_10_1016_j_molcel_2022_04_022
crossref_primary_10_1074_jbc_TM118_001189
crossref_primary_10_1016_j_chembiol_2022_11_009
crossref_primary_10_3390_cells11132063
crossref_primary_10_1038_s41418_022_00955_8
crossref_primary_10_1074_jbc_RA119_011243
crossref_primary_10_1002_2211_5463_13176
crossref_primary_10_1038_s41570_019_0120_4
crossref_primary_10_1093_bib_bbaa187
crossref_primary_10_1002_cbic_202200216
crossref_primary_10_1038_s41467_021_25530_6
crossref_primary_10_1016_j_cell_2018_12_035
crossref_primary_10_1016_j_mcpro_2022_100231
crossref_primary_10_1016_j_isci_2021_102841
crossref_primary_10_1038_s41580_020_00303_z
crossref_primary_10_1016_j_omtn_2024_102190
crossref_primary_10_1038_s41580_021_00441_y
crossref_primary_10_1042_ETLS20190160
crossref_primary_10_1016_j_celrep_2024_114940
crossref_primary_10_3389_fnins_2021_745684
crossref_primary_10_3390_ijms20215501
crossref_primary_10_3390_v12010117
crossref_primary_10_3390_biom12101441
crossref_primary_10_1016_j_nbd_2023_106011
crossref_primary_10_1371_journal_pbio_3002871
crossref_primary_10_1007_s00294_019_01036_z
crossref_primary_10_1016_j_tcb_2019_05_005
crossref_primary_10_1021_acssynbio_4c00629
crossref_primary_10_1016_j_yexcr_2021_112515
crossref_primary_10_1002_advs_202202855
crossref_primary_10_1063_5_0236610
crossref_primary_10_1016_j_celrep_2024_114272
crossref_primary_10_1039_D3NJ03714B
crossref_primary_10_1111_febs_15254
crossref_primary_10_1016_j_matt_2022_07_001
crossref_primary_10_1021_jacs_1c03627
crossref_primary_10_1038_s41392_022_01076_x
crossref_primary_10_1016_j_csbj_2021_06_042
crossref_primary_10_1146_annurev_physchem_071819_113553
crossref_primary_10_3390_molecules26082118
crossref_primary_10_15252_embj_2020106632
crossref_primary_10_1016_j_bbadva_2021_100034
crossref_primary_10_1016_j_bbagrm_2023_194989
crossref_primary_10_1038_s41467_020_18224_y
crossref_primary_10_1111_febs_16616
crossref_primary_10_1039_D4CP00761A
crossref_primary_10_1016_j_celrep_2024_114642
crossref_primary_10_1016_j_molcel_2019_09_014
crossref_primary_10_3390_v12090984
crossref_primary_10_1016_j_molcel_2019_09_016
crossref_primary_10_1128_jvi_00040_24
crossref_primary_10_1186_s12935_024_03353_x
crossref_primary_10_3389_fmolb_2019_00021
crossref_primary_10_1146_annurev_biochem_032620_105429
crossref_primary_10_1038_s41467_024_52580_3
crossref_primary_10_1007_s10753_024_02202_3
crossref_primary_10_1016_j_semcdb_2019_06_007
crossref_primary_10_1111_bph_15217
crossref_primary_10_1093_jmcb_mjab028
crossref_primary_10_1186_s13059_022_02755_2
crossref_primary_10_1016_j_tins_2019_08_005
crossref_primary_10_3390_v13030366
crossref_primary_10_1073_pnas_2021719118
crossref_primary_10_5483_BMBRep_2022_55_3_188
crossref_primary_10_1021_acs_biomac_4c01394
crossref_primary_10_1038_s41594_024_01362_y
crossref_primary_10_15252_embr_201947952
crossref_primary_10_1139_bcb_2024_0156
crossref_primary_10_3390_biom11081248
crossref_primary_10_1016_j_jbc_2022_102834
crossref_primary_10_1038_s41419_022_04673_4
crossref_primary_10_1016_j_tibs_2022_10_001
crossref_primary_10_3389_fcell_2022_1033684
crossref_primary_10_3389_fimmu_2024_1505123
crossref_primary_10_1021_acs_jpclett_3c01642
crossref_primary_10_3390_ijms23031613
crossref_primary_10_1002_agt2_725
crossref_primary_10_3389_fnmol_2021_686995
crossref_primary_10_1002_anie_202211905
crossref_primary_10_1039_D4SM01091D
crossref_primary_10_1042_BST20200355
crossref_primary_10_1016_j_gpb_2020_11_003
crossref_primary_10_1111_bph_15242
crossref_primary_10_3390_microorganisms9061206
crossref_primary_10_1002_advs_202402570
crossref_primary_10_1016_j_tibs_2020_05_002
crossref_primary_10_3389_fmolb_2021_689687
crossref_primary_10_1016_j_ijbiomac_2024_135251
crossref_primary_10_3390_cells10071722
crossref_primary_10_1093_nar_gkac189
crossref_primary_10_1016_j_cossms_2020_100892
crossref_primary_10_1016_j_ejmech_2020_112887
crossref_primary_10_1002_ange_202211905
crossref_primary_10_1039_D2SC04907D
crossref_primary_10_1111_mpp_13493
crossref_primary_10_1038_s41419_022_05435_y
crossref_primary_10_1186_s43593_023_00049_z
crossref_primary_10_3390_ijms22169094
crossref_primary_10_1021_acs_chemrev_2c00608
crossref_primary_10_3390_cells11193040
crossref_primary_10_15252_embr_202051345
crossref_primary_10_1371_journal_pgen_1011251
crossref_primary_10_1002_pro_4093
crossref_primary_10_3390_cells13060490
crossref_primary_10_1038_s41556_023_01270_1
crossref_primary_10_1021_acs_jmedchem_1c01043
crossref_primary_10_1039_D4SM00358F
crossref_primary_10_1080_19491034_2023_2296243
crossref_primary_10_1146_annurev_biochem_052521_121259
crossref_primary_10_1021_acs_jpcb_3c06346
crossref_primary_10_1016_j_tig_2024_12_006
crossref_primary_10_1038_s41598_022_05681_2
crossref_primary_10_3390_ijms24043729
crossref_primary_10_1016_j_tins_2023_04_004
crossref_primary_10_1038_s41589_022_01015_5
crossref_primary_10_1016_j_molcel_2024_11_039
crossref_primary_10_1016_j_bpj_2021_01_034
crossref_primary_10_1016_j_tig_2019_05_001
crossref_primary_10_1371_journal_pbio_3000981
crossref_primary_10_1111_jipb_13152
crossref_primary_10_3389_fmolb_2021_693325
crossref_primary_10_1126_sciadv_abj9247
crossref_primary_10_1107_S2053230X20010250
crossref_primary_10_3390_ijms242015418
crossref_primary_10_1038_s41467_019_10792_y
crossref_primary_10_1101_sqb_2019_84_040329
crossref_primary_10_1038_s41467_022_31282_8
crossref_primary_10_3390_dna4010004
crossref_primary_10_1021_acs_biochem_9b00934
crossref_primary_10_1016_j_canlet_2024_216614
crossref_primary_10_1111_tra_12704
crossref_primary_10_1021_acssynbio_3c00249
crossref_primary_10_1016_j_ijbiomac_2024_129330
crossref_primary_10_1371_journal_pgen_1011462
crossref_primary_10_1016_j_heliyon_2024_e34035
crossref_primary_10_1186_s12964_024_01787_4
crossref_primary_10_1016_j_celrep_2023_113558
crossref_primary_10_1080_15548627_2022_2148432
crossref_primary_10_1038_s41557_024_01663_1
crossref_primary_10_1002_cbin_11499
crossref_primary_10_3389_fimmu_2023_1216548
crossref_primary_10_1002_adbi_202200006
crossref_primary_10_1016_j_celrep_2024_114248
crossref_primary_10_1016_j_jmb_2019_06_026
crossref_primary_10_1016_j_tplants_2023_06_006
crossref_primary_10_1038_s41467_023_37013_x
crossref_primary_10_1038_s41420_022_01226_8
crossref_primary_10_1038_s41589_020_0579_9
crossref_primary_10_3389_fimmu_2023_1086192
crossref_primary_10_1038_s41467_020_19317_4
crossref_primary_10_1038_s41392_024_02013_w
crossref_primary_10_1038_s41467_023_39151_8
crossref_primary_10_1016_j_isci_2019_08_001
crossref_primary_10_1038_s41421_022_00426_x
crossref_primary_10_1186_s12985_024_02460_5
crossref_primary_10_1186_s12964_023_01380_1
crossref_primary_10_1016_j_celrep_2022_110736
crossref_primary_10_1152_physiol_00013_2024
crossref_primary_10_3390_ijms22158213
crossref_primary_10_1002_anie_202203909
crossref_primary_10_1016_j_jbc_2024_105638
crossref_primary_10_1038_s12276_022_00857_2
crossref_primary_10_1039_D3SC00993A
crossref_primary_10_1016_j_cellsig_2023_110848
crossref_primary_10_3390_molecules25041015
crossref_primary_10_1016_j_mitoco_2024_07_002
crossref_primary_10_1016_j_jmb_2023_168217
crossref_primary_10_1039_D1CC05266G
crossref_primary_10_1002_ange_202203909
crossref_primary_10_1039_D4CC04264F
crossref_primary_10_1016_j_bpj_2019_12_022
crossref_primary_10_1016_j_tibs_2024_01_008
crossref_primary_10_1016_j_bbcan_2024_189206
crossref_primary_10_2174_0109298665285625231222075700
crossref_primary_10_3390_ijms222212271
crossref_primary_10_3724_abbs_2023096
crossref_primary_10_1146_annurev_virology_111821_103226
crossref_primary_10_1002_pro_4029
crossref_primary_10_1039_D3SM00633F
crossref_primary_10_1016_j_biopha_2023_115519
crossref_primary_10_1007_s12013_022_01067_3
crossref_primary_10_1016_j_jbc_2023_104907
crossref_primary_10_3389_fphys_2022_910759
crossref_primary_10_1016_j_cellsig_2025_111754
Cites_doi 10.1038/nphys3532
10.1016/S0960-9822(00)00445-0
10.1126/science.aar3958
10.1093/emboj/cdg115
10.1038/s41556-017-0032-9
10.1016/j.tcb.2016.05.004
10.1038/nchembio.2140
10.1016/j.molcel.2015.01.013
10.1146/annurev-cellbio-100913-013325
10.1101/gad.461107
10.1038/nrm.2017.7
10.1007/s13238-014-0102-8
10.1242/jcs.130708
10.1016/S0092-8674(03)00939-5
10.1073/pnas.96.9.4868
10.1016/j.cell.2015.07.047
10.1016/j.molcel.2013.08.016
10.1038/srep25996
10.1038/nbt.3130
10.1126/science.1257037
10.1038/nrm2993
10.1038/nchembio.2134
10.1016/j.cell.2017.02.007
10.1038/ncomms6845
10.1016/j.cell.2015.09.015
10.1016/j.cell.2015.12.038
10.1007/BF03185527
10.15252/embj.201797452
10.1016/j.molcel.2007.05.033
10.1038/nmeth.3901
10.1074/jbc.M115.700625
10.1021/pr101065j
10.1016/j.cell.2017.12.032
10.1016/S1097-2765(03)00038-8
10.1038/sj.onc.1210614
10.1038/417455a
10.1083/jcb.200911091
10.1016/j.cell.2018.03.004
10.1083/jcb.200212128
10.1016/j.celrep.2018.01.036
10.1126/science.1175371
10.15252/embj.201696394
10.1073/pnas.1504822112
10.1016/j.cell.2012.04.017
10.1042/BJ20110739
10.1016/j.cell.2017.02.027
10.1038/ncb1783
10.1038/s41598-017-16959-1
10.1038/nsmb740
10.1038/onc.2011.120
10.1038/s41586-018-0153-8
10.1016/j.tibs.2012.08.004
10.1016/j.molcel.2017.12.020
10.1074/mcp.M113.031591
10.7554/eLife.18413
10.4161/cc.7.1.5186
10.1126/science.aar2555
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
Copyright Nature Publishing Group Jan 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
– notice: Copyright Nature Publishing Group Jan 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
LK8
M0S
M1P
M2P
M7N
M7P
P64
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41589-018-0180-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1552-4469
EndPage 61
ExternalDocumentID 30531905
10_1038_s41589_018_0180_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
KB.
KC.
LK5
LK8
M0L
M1P
M2P
M7P
M7R
NACWA
NNMJJ
O9-
ODYON
P2P
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c438t-824a0f3c2b18fd355711e52f62d27058a725d3980b4d6828f94e3eeeb4b111a3
IEDL.DBID 7X7
ISSN 1552-4450
1552-4469
IngestDate Fri Jul 11 07:02:06 EDT 2025
Fri Jul 25 08:55:48 EDT 2025
Wed Feb 19 02:31:59 EST 2025
Tue Jul 01 01:27:47 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 21 02:39:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-824a0f3c2b18fd355711e52f62d27058a725d3980b4d6828f94e3eeeb4b111a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3927-1452
0000-0001-7234-1435
0000-0003-0986-7068
0000-0001-7432-3871
0000-0002-1642-5404
0000-0001-8619-5176
0000-0002-9863-433X
PMID 30531905
PQID 2154247956
PQPubID 29034
PageCount 11
ParticipantIDs proquest_miscellaneous_2155160218
proquest_journals_2154247956
pubmed_primary_30531905
crossref_primary_10_1038_s41589_018_0180_7
crossref_citationtrail_10_1038_s41589_018_0180_7
springer_journals_10_1038_s41589_018_0180_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Nature chemical biology
PublicationTitleAbbrev Nat Chem Biol
PublicationTitleAlternate Nat Chem Biol
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Boyault, Sadoul, Pabion, Khochbin (CR17) 2007; 26
Thompson (CR31) 2004; 11
Tourrière (CR18) 2003; 160
Nott (CR9) 2015; 57
Wang (CR33) 2018; 37
Kawaguchi (CR12) 2003; 115
Tompa (CR3) 2012; 37
Monahan (CR11) 2017; 36
Youn (CR36) 2018; 69
Fanfoni, Tomellini (CR42) 1998; 20
Hubner (CR55) 2010; 189
Chong (CR49) 2018; 361
Tyedmers, Mogk, Bukau (CR5) 2010; 11
Mittasch (CR57) 2018; 20
Jain (CR37) 2016; 164
Valentin-Vega (CR43) 2016; 6
Zhang (CR14) 2003; 22
Jedrusik-Bode (CR46) 2013; 126
Cohen (CR47) 2015; 6
Cox (CR53) 2011; 10
Miyake (CR30) 2016; 12
Matthias, Yoshida, Khochbin (CR16) 2008; 7
Protter, Parker (CR4) 2016; 26
Li (CR34) 2017; 7
Cox (CR54) 2014; 13
Zhang (CR22) 2007; 27
Tyanova (CR56) 2016; 13
Brangwynne, Tompa, Pappu (CR8) 2015; 11
Schölz (CR20) 2015; 33
Sabari (CR48) 2018; 361
Hofweber (CR10) 2018; 173
Riback (CR41) 2017; 168
Markmiller (CR40) 2018; 172
Molliex (CR6) 2015; 163
Choudhary (CR23) 2009; 325
Bannister, Miska, Görlich, Kouzarides (CR21) 2000; 10
Hao (CR27) 2013; 51
Ohn, Kedersha, Hickman, Tisdale, Anderson (CR45) 2008; 10
Protter (CR38) 2018; 22
Grozinger, Hassig, Schreiber (CR28) 1999; 96
Patel (CR7) 2015; 162
Hyman, Weber, Jülicher (CR1) 2014; 30
North, Marshall, Borra, Denu, Verdin (CR26) 2003; 11
Hubbert (CR15) 2002; 417
Banerjee (CR51) 2014; 346
Ostapcuk (CR52) 2018; 557
Elbaum-Garfinkle (CR44) 2015; 112
Kato (CR35) 2012; 149
Banani, Lee, Hyman, Rosen (CR2) 2017; 18
Zhang (CR24) 2015; 6
Hai, Christianson (CR29) 2016; 12
Wheeler, Matheny, Jain, Abrisch, Parker (CR39) 2016; 5
Hnisz, Shrinivas, Young, Chakraborty, Sharp (CR50) 2017; 169
Legros (CR19) 2011; 30
Floor, Condon, Sharma, Jankowsky, Doudna (CR32) 2016; 291
Shih (CR25) 2012; 441
Kwon, Zhang, Matthias (CR13) 2007; 21
DSW Protter (180_CR4) 2016; 26
T Ohn (180_CR45) 2008; 10
A Wang (180_CR33) 2018; 37
Y Hai (180_CR29) 2016; 12
M Hofweber (180_CR10) 2018; 173
YA Valentin-Vega (180_CR43) 2016; 6
CM Grozinger (180_CR28) 1999; 96
L Zhang (180_CR24) 2015; 6
S Tyanova (180_CR56) 2016; 13
CP Brangwynne (180_CR8) 2015; 11
C Choudhary (180_CR23) 2009; 325
PR Thompson (180_CR31) 2004; 11
Y Kawaguchi (180_CR12) 2003; 115
J Cox (180_CR53) 2011; 10
D Hnisz (180_CR50) 2017; 169
SN Floor (180_CR32) 2016; 291
Z Monahan (180_CR11) 2017; 36
S Jain (180_CR37) 2016; 164
DSW Protter (180_CR38) 2018; 22
SF Banani (180_CR2) 2017; 18
X Li (180_CR34) 2017; 7
S Markmiller (180_CR40) 2018; 172
J Tyedmers (180_CR5) 2010; 11
P Matthias (180_CR16) 2008; 7
JR Wheeler (180_CR39) 2016; 5
NC Hubner (180_CR55) 2010; 189
C Boyault (180_CR17) 2007; 26
C Hubbert (180_CR15) 2002; 417
M Mittasch (180_CR57) 2018; 20
P Tompa (180_CR3) 2012; 37
A Molliex (180_CR6) 2015; 163
AJ Bannister (180_CR21) 2000; 10
S Legros (180_CR19) 2011; 30
M Fanfoni (180_CR42) 1998; 20
C Schölz (180_CR20) 2015; 33
TJ Cohen (180_CR47) 2015; 6
S Chong (180_CR49) 2018; 361
I Banerjee (180_CR51) 2014; 346
TJ Nott (180_CR9) 2015; 57
AA Hyman (180_CR1) 2014; 30
M Jedrusik-Bode (180_CR46) 2013; 126
S Kwon (180_CR13) 2007; 21
Y Miyake (180_CR30) 2016; 12
Y Zhang (180_CR14) 2003; 22
H Tourrière (180_CR18) 2003; 160
JW Shih (180_CR25) 2012; 441
M Kato (180_CR35) 2012; 149
J Cox (180_CR54) 2014; 13
S Elbaum-Garfinkle (180_CR44) 2015; 112
R Hao (180_CR27) 2013; 51
JA Riback (180_CR41) 2017; 168
V Ostapcuk (180_CR52) 2018; 557
BR Sabari (180_CR48) 2018; 361
A Patel (180_CR7) 2015; 162
BJ North (180_CR26) 2003; 11
JY Youn (180_CR36) 2018; 69
X Zhang (180_CR22) 2007; 27
30531906 - Nat Chem Biol. 2019 Jan;15(1):5-6
References_xml – volume: 11
  start-page: 899
  year: 2015
  end-page: 904
  ident: CR8
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3532
– volume: 10
  start-page: 467
  year: 2000
  end-page: 470
  ident: CR21
  article-title: Acetylation of importin-alpha nuclear import factors by CBP/p300
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00445-0
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: CR48
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 22
  start-page: 1168
  year: 2003
  end-page: 1179
  ident: CR14
  article-title: HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg115
– volume: 20
  start-page: 344
  year: 2018
  end-page: 351
  ident: CR57
  article-title: Non-invasive perturbations of intracellular flow reveal physical principles of cell organization
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0032-9
– volume: 26
  start-page: 668
  year: 2016
  end-page: 679
  ident: CR4
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 12
  start-page: 748
  year: 2016
  end-page: 754
  ident: CR30
  article-title: Structural insights into HDAC6 tubulin deacetylation and its selective inhibition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2140
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: CR9
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  ident: CR1
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 21
  start-page: 3381
  year: 2007
  end-page: 3394
  ident: CR13
  article-title: The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response
  publication-title: Genes Dev.
  doi: 10.1101/gad.461107
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  ident: CR2
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 6
  start-page: 42
  year: 2015
  end-page: 54
  ident: CR24
  article-title: Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0102-8
– volume: 126
  start-page: 5166
  year: 2013
  end-page: 5177
  ident: CR46
  article-title: The sirtuin SIRT6 regulates stress granule formation in and mammals
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.130708
– volume: 115
  start-page: 727
  year: 2003
  end-page: 738
  ident: CR12
  article-title: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00939-5
– volume: 96
  start-page: 4868
  year: 1999
  end-page: 4873
  ident: CR28
  article-title: Three proteins define a class of human histone deacetylases related to yeast Hda1p
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.9.4868
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: CR7
  article-title: A liquid-to-solid phase transition of the ALS Protein FUS accelerated by disease mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 51
  start-page: 819
  year: 2013
  end-page: 828
  ident: CR27
  article-title: Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.016
– volume: 6
  year: 2016
  ident: CR43
  article-title: Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation
  publication-title: Sci. Rep.
  doi: 10.1038/srep25996
– volume: 33
  start-page: 415
  year: 2015
  end-page: 423
  ident: CR20
  article-title: Acetylation site specificities of lysine deacetylase inhibitors in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3130
– volume: 346
  start-page: 473
  year: 2014
  end-page: 477
  ident: CR51
  article-title: Influenza A virus uses the aggresome processing machinery for host cell entry
  publication-title: Science
  doi: 10.1126/science.1257037
– volume: 11
  start-page: 777
  year: 2010
  end-page: 788
  ident: CR5
  article-title: Cellular strategies for controlling protein aggregation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2993
– volume: 12
  start-page: 741
  year: 2016
  end-page: 747
  ident: CR29
  article-title: Histone deacetylase 6 structure and molecular basis of catalysis and inhibition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2134
– volume: 169
  start-page: 13
  year: 2017
  end-page: 23
  ident: CR50
  article-title: A phase separation model for transcriptional control
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 6
  year: 2015
  ident: CR47
  article-title: An acetylation switch controls TDP-43 function and aggregation propensity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6845
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  ident: CR6
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: CR37
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 20
  start-page: 1171
  year: 1998
  end-page: 1182
  ident: CR42
  article-title: The Johnson-Mehl-Avrami-Kohnogorov model: a brief review
  publication-title: IlNuovo Cimento D
  doi: 10.1007/BF03185527
– volume: 37
  start-page: e97452
  year: 2018
  ident: CR33
  article-title: A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing
  publication-title: EMBO J.
  doi: 10.15252/embj.201797452
– volume: 27
  start-page: 197
  year: 2007
  end-page: 213
  ident: CR22
  article-title: HDAC6 modulates cell motility by altering the acetylation level of cortactin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.05.033
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: CR56
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
– volume: 291
  start-page: 2412
  year: 2016
  end-page: 2421
  ident: CR32
  article-title: Autoinhibitory interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.700625
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  ident: CR53
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101065j
– volume: 172
  start-page: 590
  year: 2018
  end-page: 604 e513
  ident: CR40
  article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.032
– volume: 11
  start-page: 437
  year: 2003
  end-page: 444
  ident: CR26
  article-title: The human Sir2 ortholog, SIRT2, is an NAD -dependent tubulin deacetylase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00038-8
– volume: 26
  start-page: 5468
  year: 2007
  end-page: 5476
  ident: CR17
  article-title: HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210614
– volume: 417
  start-page: 455
  year: 2002
  end-page: 458
  ident: CR15
  article-title: HDAC6 is a microtubule-associated deacetylase
  publication-title: Nature
  doi: 10.1038/417455a
– volume: 189
  start-page: 739
  year: 2010
  end-page: 754
  ident: CR55
  article-title: Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911091
– volume: 173
  start-page: 706
  year: 2018
  end-page: 719 e713
  ident: CR10
  article-title: Phase separation of FUS Is suppressed by its nuclear import receptor and arginine methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.004
– volume: 160
  start-page: 823
  year: 2003
  end-page: 831
  ident: CR18
  article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212128
– volume: 22
  start-page: 1401
  year: 2018
  end-page: 1412
  ident: CR38
  article-title: Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.036
– volume: 325
  start-page: 834
  year: 2009
  end-page: 840
  ident: CR23
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 36
  start-page: 2951
  year: 2017
  end-page: 2967
  ident: CR11
  article-title: Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity
  publication-title: EMBO J.
  doi: 10.15252/embj.201696394
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  ident: CR44
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: CR35
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 441
  start-page: 119
  year: 2012
  end-page: 129
  ident: CR25
  article-title: Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response
  publication-title: Biochem. J.
  doi: 10.1042/BJ20110739
– volume: 168
  start-page: 1028
  year: 2017
  end-page: 1040.e1019
  ident: CR41
  article-title: Stress-triggered phase separation is an adaptive, evolutionarily tuned response
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.027
– volume: 10
  start-page: 1224
  year: 2008
  end-page: 1231
  ident: CR45
  article-title: A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1783
– volume: 7
  year: 2017
  ident: CR34
  article-title: The repeat region of cortactin is intrinsically disordered in solution
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16959-1
– volume: 11
  start-page: 308
  year: 2004
  end-page: 315
  ident: CR31
  article-title: Regulation of the p300 HAT domain via a novel activation loop
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb740
– volume: 30
  start-page: 4050
  year: 2011
  end-page: 4062
  ident: CR19
  article-title: The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6
  publication-title: Oncogene
  doi: 10.1038/onc.2011.120
– volume: 557
  start-page: 739
  year: 2018
  end-page: 743
  ident: CR52
  article-title: Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes
  publication-title: Nature
  doi: 10.1038/s41586-018-0153-8
– volume: 37
  start-page: 509
  year: 2012
  end-page: 516
  ident: CR3
  article-title: Intrinsically disordered proteins: a 10-year recap
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.08.004
– volume: 69
  start-page: 517
  year: 2018
  end-page: 532 e511
  ident: CR36
  article-title: High-density proximity mapping reveals the subcellular organization of mrna-associated granules and bodies
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2017.12.020
– volume: 13
  start-page: 2513
  year: 2014
  end-page: 2526
  ident: CR54
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031591
– volume: 5
  start-page: e18413
  year: 2016
  ident: CR39
  article-title: Distinct stages in stress granule assembly and disassembly
  publication-title: eLife
  doi: 10.7554/eLife.18413
– volume: 7
  start-page: 7
  year: 2008
  end-page: 10
  ident: CR16
  article-title: HDAC6 a new cellular stress surveillance factor
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.1.5186
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: CR49
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 6
  year: 2016
  ident: 180_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/srep25996
– volume: 5
  start-page: e18413
  year: 2016
  ident: 180_CR39
  publication-title: eLife
  doi: 10.7554/eLife.18413
– volume: 22
  start-page: 1168
  year: 2003
  ident: 180_CR14
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg115
– volume: 51
  start-page: 819
  year: 2013
  ident: 180_CR27
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.016
– volume: 13
  start-page: 2513
  year: 2014
  ident: 180_CR54
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031591
– volume: 163
  start-page: 123
  year: 2015
  ident: 180_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 162
  start-page: 1066
  year: 2015
  ident: 180_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 26
  start-page: 5468
  year: 2007
  ident: 180_CR17
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210614
– volume: 22
  start-page: 1401
  year: 2018
  ident: 180_CR38
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.036
– volume: 27
  start-page: 197
  year: 2007
  ident: 180_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.05.033
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: 180_CR49
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 21
  start-page: 3381
  year: 2007
  ident: 180_CR13
  publication-title: Genes Dev.
  doi: 10.1101/gad.461107
– volume: 441
  start-page: 119
  year: 2012
  ident: 180_CR25
  publication-title: Biochem. J.
  doi: 10.1042/BJ20110739
– volume: 11
  start-page: 777
  year: 2010
  ident: 180_CR5
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2993
– volume: 168
  start-page: 1028
  year: 2017
  ident: 180_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.027
– volume: 6
  start-page: 42
  year: 2015
  ident: 180_CR24
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0102-8
– volume: 291
  start-page: 2412
  year: 2016
  ident: 180_CR32
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.700625
– volume: 189
  start-page: 739
  year: 2010
  ident: 180_CR55
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911091
– volume: 164
  start-page: 487
  year: 2016
  ident: 180_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 112
  start-page: 7189
  year: 2015
  ident: 180_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 11
  start-page: 899
  year: 2015
  ident: 180_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3532
– volume: 7
  start-page: 7
  year: 2008
  ident: 180_CR16
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.1.5186
– volume: 69
  start-page: 517
  year: 2018
  ident: 180_CR36
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2017.12.020
– volume: 6
  year: 2015
  ident: 180_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6845
– volume: 18
  start-page: 285
  year: 2017
  ident: 180_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 11
  start-page: 437
  year: 2003
  ident: 180_CR26
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00038-8
– volume: 10
  start-page: 467
  year: 2000
  ident: 180_CR21
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00445-0
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: 180_CR48
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 26
  start-page: 668
  year: 2016
  ident: 180_CR4
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 20
  start-page: 1171
  year: 1998
  ident: 180_CR42
  publication-title: IlNuovo Cimento D
  doi: 10.1007/BF03185527
– volume: 30
  start-page: 4050
  year: 2011
  ident: 180_CR19
  publication-title: Oncogene
  doi: 10.1038/onc.2011.120
– volume: 37
  start-page: e97452
  year: 2018
  ident: 180_CR33
  publication-title: EMBO J.
  doi: 10.15252/embj.201797452
– volume: 149
  start-page: 753
  year: 2012
  ident: 180_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 417
  start-page: 455
  year: 2002
  ident: 180_CR15
  publication-title: Nature
  doi: 10.1038/417455a
– volume: 325
  start-page: 834
  year: 2009
  ident: 180_CR23
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 36
  start-page: 2951
  year: 2017
  ident: 180_CR11
  publication-title: EMBO J.
  doi: 10.15252/embj.201696394
– volume: 12
  start-page: 741
  year: 2016
  ident: 180_CR29
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2134
– volume: 96
  start-page: 4868
  year: 1999
  ident: 180_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.9.4868
– volume: 173
  start-page: 706
  year: 2018
  ident: 180_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.004
– volume: 557
  start-page: 739
  year: 2018
  ident: 180_CR52
  publication-title: Nature
  doi: 10.1038/s41586-018-0153-8
– volume: 10
  start-page: 1794
  year: 2011
  ident: 180_CR53
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101065j
– volume: 115
  start-page: 727
  year: 2003
  ident: 180_CR12
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00939-5
– volume: 10
  start-page: 1224
  year: 2008
  ident: 180_CR45
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1783
– volume: 160
  start-page: 823
  year: 2003
  ident: 180_CR18
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212128
– volume: 169
  start-page: 13
  year: 2017
  ident: 180_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 13
  start-page: 731
  year: 2016
  ident: 180_CR56
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
– volume: 11
  start-page: 308
  year: 2004
  ident: 180_CR31
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb740
– volume: 172
  start-page: 590
  year: 2018
  ident: 180_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.032
– volume: 346
  start-page: 473
  year: 2014
  ident: 180_CR51
  publication-title: Science
  doi: 10.1126/science.1257037
– volume: 12
  start-page: 748
  year: 2016
  ident: 180_CR30
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2140
– volume: 20
  start-page: 344
  year: 2018
  ident: 180_CR57
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0032-9
– volume: 30
  start-page: 39
  year: 2014
  ident: 180_CR1
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 37
  start-page: 509
  year: 2012
  ident: 180_CR3
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.08.004
– volume: 33
  start-page: 415
  year: 2015
  ident: 180_CR20
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3130
– volume: 57
  start-page: 936
  year: 2015
  ident: 180_CR9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 7
  year: 2017
  ident: 180_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16959-1
– volume: 126
  start-page: 5166
  year: 2013
  ident: 180_CR46
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.130708
– reference: 30531906 - Nat Chem Biol. 2019 Jan;15(1):5-6
SSID ssj0036618
Score 2.6342285
Snippet Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation...
Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 51
SubjectTerms 631/45
631/80
631/92/458
631/92/475
Acetylation
Amyotrophic lateral sclerosis
Animals
Biochemical Engineering
Biochemistry
Biology
Bioorganic Chemistry
Catalytic Domain
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cytoplasmic Granules - metabolism
Deacetylation
DEAD-box RNA Helicases - metabolism
DNA helicase
Gene Knockout Techniques
Histone Deacetylase 6 - metabolism
Humans
Intrinsically Disordered Proteins - chemistry
Intrinsically Disordered Proteins - metabolism
Liquid phases
Lysine
Lysine - metabolism
Mice
Models, Theoretical
Mutation
Organelles
Osmotic Pressure
Phase separation
Proteins
Ribonucleic acid
RNA
RNA helicase
RNA Helicases - chemistry
RNA Helicases - genetics
RNA Helicases - metabolism
Substrates
Title Acetylation of intrinsically disordered regions regulates phase separation
URI https://link.springer.com/article/10.1038/s41589-018-0180-7
https://www.ncbi.nlm.nih.gov/pubmed/30531905
https://www.proquest.com/docview/2154247956
https://www.proquest.com/docview/2155160218
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_ohuiL6OZHdY4I4oMSluajTZ_k3rHrGHgRmXDfSpqkKMz2aruH-997kn4MGe6hH9CkCeekOb_z0XMA3gVTo2OuotyImobsJtRw5WhhUXa4DBltgx3yyzo7_y4vNmozGty6Maxy2hPjRu1aG2zkJyiaJJc5wvlP2980VI0K3tWxhMZ92A-py0JIV76ZFS6Bsif-CqcUp1Kq2asp9EmHgisEC6UhlEszmv8rl26BzVuO0ih_Vk_g8QgcyWLg9FO455sDOFw0qDT_2pH3JIZyRhv5ATxYTncPT6eCbodwsbC-3w2xb6Styc-mx6Eil652xI1pOL0joVgDLsZwDcW9fEe2P1DYkc4PicLb5hlcrs4uT8_pWEqBWil0TzWXhtXC8irVtUOMkaepV7zOuOM5U9rkyCBRaFZJl6ESVhfSC-99JSvcDI14DntN2_iXQHKFKkbGDAItK52RRgZUpq2uLPYq0gTYRMfSjmnGQ7WLqzK6u4UuB9KXSPZwsDJP4MPcZTvk2Lir8dHEnHL83LryZnEk8HZ-jOQN3g_T-PY6tlFpFiBNAi8Gps6jibgVMZXAx4nLNy__71Re3T2V1_AI0VUx2GuOYK__c-3fIILpq-O4TPGsV5-PYX-xWi7XeF2erb9--wsNyO1O
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9UwzBpDaLsg2GArDAgScABFa_PRpgeEHoPH2-fpIe1WpUkqkEb7oJ3Q-1H8R5y0fROa2G2HqpWaL9mO7diODfDKmxptbEvKNK-oz25CNZOW5gZlh00R0cbbIU_P0tlXcXQuz9fgz3gXxodVjjwxMGrbGG8j30fRJJjIUJ3_sPhJfdUo710dS2j0ZHHslr_xyNa-P_yE-H3N2PTz_GBGh6oC1AiuOqqY0HHFDSsTVVkUt1mSOMmqlFmWxVLpDNfKcxWXwqZ4Hqly4bhzrhQl8gXNcdg7cFdwnvsNpaZfRsbPUdSFm3dSMiqEXDlRudpvUU762KTER46pmGb_isFruu01v2wQd9MHcH_QU8mkJ6yHsObqLdie1HhG_7Ekb0iIHA0m-S2493H82jgY68dtw9HEuG7Zh9qRpiLf6w6nCkRxsSR2yPrpLPG1IZD2_dvXEnMtWXxD2Upa1-clb-pHML8NGD-G9bqp3S6QTOKJJo016nVGWC208EqgMqo02CtPIohHOBZmyGrui2tcFMG7zlXRg75AsPsnLrII3q66LPqUHjc13huRUwy7uy2uaDGCl6vfCF7vbNG1ay5DG5mkXoOKYKdH6mo2HjhfLCN4N2L5avD_LuXJzUt5ARuz-elJcXJ4dvwUNlGxy3tT0R6sd78u3TNUnrryeSBZAsUtb5G_PhskeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUsVwQtCyBAkYCDiBrEi-Jc0BoaBl1gYpDkeYWObYjkEoykFRoPo2_49lZKlTRWw9RIsWJrbf4rX4P4KV3NdrYlpRpXlFf3YRqJi3NDcoOmyKijfdDfj5O97-Kw6VcbsCf8SyMT6sc98SwUdvGeB_5DEWTYCJDdX5WDWkRX_YW71c_qe8g5SOtYzuNnkSO3Po3mm_tu4M9xPUrxhYfT3b36dBhgBrBVUcVEzquuGFloiqLojdLEidZlTLLslgqneG6ea7iUtgUbZMqF44750pR4h6hOf72GlzPuEw8i2XLydbjKPbCKTwpGRVCTgFVrmYtykyfp5T4LDIV0-xfkXhBz70Qow2ib3EX7gw6K5n3RHYPNly9BdvzGu31H2vymoQs0uCe34IbH8anW7tjL7ltOJwb1637tDvSVOR73eFUgUBO18QOFUCdJb5PBPKBv_u-Yq4lq28oZ0nr-hrlTX0fTq4Cxg9gs25q9whIJtG6SWONOp4RVgstvEKojCoNfpUnEcQjHAszVDj3jTZOixBp56roQV8g2P0VF1kEb6ZPVn15j8sG74zIKQZOb4tzuozgxfQawesDL7p2zVkYI5PUa1MRPOyROs3Gwy4Yywjejlg-__l_l_L48qU8h5vIHMWng-OjJ3Abdby89xrtwGb368w9RT2qK58FiiVQXDGH_AX38iim
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetylation+of+intrinsically+disordered+regions+regulates+phase+separation&rft.jtitle=Nature+chemical+biology&rft.au=Saito%2C+Makoto&rft.au=Hess%2C+Daniel&rft.au=Eglinger%2C+Jan&rft.au=Fritsch%2C+Anatol+W.&rft.date=2019-01-01&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=15&rft.issue=1&rft.spage=51&rft.epage=61&rft_id=info:doi/10.1038%2Fs41589-018-0180-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41589_018_0180_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon