Coalescence-induced jumping of droplets from superhydrophobic surfaces—The effect of contact-angle hysteresis
Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is describ...
Saved in:
Published in | Physics of fluids (1994) Vol. 34; no. 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity of the results to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid–immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual (i.e., effective) values of contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15°), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment to the surface. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate and quantify the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis. |
---|---|
AbstractList | Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity of the results to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid–immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual (i.e., effective) values of contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15°), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment to the surface. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate and quantify the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis. Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid(VOF)-immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual values of dynamic contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15o), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis. |
Author | Konstantinidis, K. Mark, A. Göhl, J. Sasic, S. |
Author_xml | – sequence: 1 givenname: K. surname: Konstantinidis fullname: Konstantinidis, K. organization: Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences – sequence: 2 givenname: J. surname: Göhl fullname: Göhl, J. organization: Fraunhofer–Chalmers Center – sequence: 3 givenname: A. surname: Mark fullname: Mark, A. organization: Fraunhofer–Chalmers Center – sequence: 4 givenname: S. surname: Sasic fullname: Sasic, S. organization: Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences |
BackLink | https://research.chalmers.se/publication/533827$$DView record from Swedish Publication Index |
BookMark | eNp9kctu1DAUQC3USvTBgj-IxAqktH47WaIR0EqVWFDWlu1cNx5l4mA7oNnxEXwhX0KiGUBCtCtfXZ17fB_n6GSMIyD0kuArgiW7FleYkEZy8QydEdy0tZJSnqyxwrWUjDxH5zlvMcaspfIMxU00A2QHo4M6jN3soKu2824K40MVfdWlOA1QcuVT3FV5niD1-zXZRxvckkjeOMg_v_-476EC78GVtc7FsRhXajM-DFD1-1wgQQ75Ep16M2R4cXwv0Of37-43N_Xdxw-3m7d3teOsKbXyTFBmmSQdcOMltJQ5r4jqLKdWSku5axkm1HDbCAm284rz1gtwqiWiZRfo08Gbv8E0Wz2lsDNpr6MJemkETHK9dr0ZdpCyzqCdaKQyqtGMGqa5tVxbK1vdCVCWwSo2i_XVwTql-GWGXPQ2zmlcBtFUMdzIhmKyUK8PlEsx5wT-z-8E6_VKWujjlRb2-h_WhWJKWNaXTBj-W_HmONlv8kn9o_DXmP6Ceuo8-wWjrrUG |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_5_0222367 crossref_primary_10_1016_j_tsep_2024_102996 crossref_primary_10_1063_5_0149152 crossref_primary_10_1063_5_0156174 crossref_primary_10_1021_acs_langmuir_3c03364 crossref_primary_10_1063_5_0156249 crossref_primary_10_1063_5_0156214 |
Cites_doi | 10.1063/1.2646754 10.1063/1.4914168 10.1146/annurev-fluid-011212-140734 10.1016/j.compfluid.2014.09.018 10.1021/acs.langmuir.0c01494 10.1103/PhysRevFluids.1.064102 10.1016/j.jcp.2008.03.031 10.1017/jfm.2014.319 10.1016/j.ijheatmasstransfer.2019.01.147 10.1103/PhysRevFluids.2.112001 10.1146/annurev.matsci.38.060407.132434 10.1039/C6RA22421K 10.1021/acsnano.5b05607 10.1016/j.applthermaleng.2016.06.128 10.1002/aic.16394 10.1103/RevModPhys.57.827 10.1006/jcph.1999.6276 10.1002/cjce.24591 10.1016/0021-9797(83)90287-4 10.1021/acsnano.7b04481 10.1073/pnas.1506874112 10.1016/j.porgcoat.2019.105381 10.1021/acs.langmuir.9b03968 10.1063/1.5094757 10.1063/1.4932648 10.1063/1.5139417 10.1007/978-0-387-21656-0 10.1016/j.apsusc.2014.07.120 10.1021/la000598o 10.1021/acs.langmuir.7b00901 10.1063/1.4973823 10.1016/j.ijheatmasstransfer.2018.01.027 10.1115/1.4024597 10.1063/1.4932085 10.1021/acsnano.8b06677 10.1016/j.jcp.2005.08.004 10.1063/1.4757122 10.1002/aic.16169 10.1021/acs.langmuir.7b02146 10.1007/s00396-012-2751-6 10.1103/PhysRevLett.103.184501 10.1016/j.ijmultiphaseflow.2018.08.001 10.1201/9781482277500 10.1016/j.jcp.2018.06.078 10.1016/j.jcp.2018.08.030 10.1063/5.0070521 10.1016/j.ijheatmasstransfer.2015.11.074 10.1038/srep03268 10.1088/0034-4885/68/11/R01 10.1021/la990074s 10.1021/acsnano.8b09106 10.1016/j.apsusc.2011.02.057 10.1021/acs.langmuir.8b02428 10.1016/j.jcp.2009.04.027 10.1063/1.4825273 10.1080/01495728408961817 10.1021/la901439c 10.1038/nmat4868 10.1021/acs.langmuir.5b03778 10.1017/S0022112004008663 10.1021/nl303835d 10.1016/j.apsusc.2007.04.006 10.1016/j.cherd.2019.11.038 10.1016/j.ijheatmasstransfer.2015.04.085 10.1088/0953-8984/20/22/225010 10.1016/j.icheatmasstransfer.2015.03.002 10.1016/0021-9991(92)90240-Y 10.3970/fdmp.2011.007.241 10.1016/j.ijhydene.2019.04.256 10.1126/sciadv.aau3488 10.1017/jfm.2014.320 10.1016/j.ces.2019.115252 10.1103/PhysRevFluids.2.123601 10.1080/15567265.2013.862889 10.1006/jcph.2001.6785 10.1021/nn205052a 10.1039/C4SM01647E 10.1016/j.jcp.2015.01.021 10.1146/annurev.fl.11.010179.002103 10.1016/j.mencom.2013.01.002 10.1063/1.5046056 10.1021/acs.jpcc.8b04257 10.1073/pnas.1210770110 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1063/5.0118645 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | oai_research_chalmers_se_c5867a78_32a3_4bb4_bb69_d5e7b3e5ec7a 10_1063_5_0118645 |
GrantInformation_xml | – fundername: Vetenskapsrådet grantid: 2019-04969 funderid: 10.13039/501100004359 – fundername: Vetenskapsrådet grantid: 2018-05973 funderid: 10.13039/501100004359 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M ABBSD ADTPV AOWAS D8T F1S ZZAVC |
ID | FETCH-LOGICAL-c438t-7f3523b361de4af6e923cf717db42b66b24c93012a4b856ebdf7449f5ec791593 |
IEDL.DBID | AJDQP |
ISSN | 1070-6631 1089-7666 |
IngestDate | Thu Aug 21 06:34:47 EDT 2025 Sun Jun 29 16:10:24 EDT 2025 Thu Apr 24 23:12:02 EDT 2025 Tue Jul 01 04:46:51 EDT 2025 Fri Jun 21 00:19:06 EDT 2024 Tue Jul 04 19:18:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Published open access through an agreement with Chalmers tekniska hogskola 11248 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-7f3523b361de4af6e923cf717db42b66b24c93012a4b856ebdf7449f5ec791593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4214-6337 0000-0001-6383-4772 0000-0002-0705-6504 0000-0003-0038-3307 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0118645 |
PQID | 2730868201 |
PQPubID | 2050667 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1063_5_0118645 scitation_primary_10_1063_5_0118645 proquest_journals_2730868201 swepub_primary_oai_research_chalmers_se_c5867a78_32a3_4bb4_bb69_d5e7b3e5ec7a crossref_citationtrail_10_1063_5_0118645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Liu, Ghigliotti, Feng, Chen (c27) 2014 Li, Chu, Zhang, Brutin, Wen (c45) 2020 Li, Yang, Aili, Zhang (c56) 2017 Mark, Rundqvist, Edelvik (c69) 2011 Weiqing, Weinan (c22) 2007 Afkhami, Buongiorno, Guion, Popinet, Saade, Scardovelli, Zaleski (c67) 2018 Boreyko, Chen (c23) 2009 Lu, Zhao, Zhang, Yang, Zheng (c34) 2020 Denner, van Wachem (c80) 2015 Quéré (c1) 2005 Mouterde, Lehoucq, Xavier, Checco, Black, Rahman, Midavaine, Clanet, Quéré (c62) 2017 Yanagisawa, Sakai, Isobe, Matsushita, Nakajima (c29) 2014 Cheng, Xu, Sui (c53) 2016 Liang, Keblinski (c57) 2015 Farokhirad, Morris, Lee (c39) 2015 Gao, Liao, Liu, Liu (c58) 2018 Wang, Yao, Liu, Quéré, Jiang (c10) 2015 Wang, Liang, Jiang, Zheng, Lan, Ma (c32) 2016 Farhadi, Farzaneh, Kulinich (c6) 2011 Miljkovic, Enright, Wang (c25) 2012 Mouterde, Nguyen, Takahashi, Clanet, Shimoyama, Quéré (c46) 2017 Maggiolo, Seemann, Thunman, Santos, Larsson, Sasic, Ström (c11) 2019 Mulroe, Srijanto, Ahmadi, Collier, Boreyko (c31) 2017 Miljkovic, Enright, Wang (c2) 2013 Xie, Lu, Wang, Wang (c59) 2018 Wisdom, Watson, Qu, Liu, Watson, Chen (c9) 2013 Chen, Lian (c54) 2018 Nam, Seo, Lee, Shin (c60) 2015 Konstantinidis, Göhl, Mark, Sasic (c79) 2022 Boinovich, Emelyanenko (c7) 2013 Bartholomew, Denner, Abdol-Azis, Marquis, van Wachem (c77) 2018 Yan, Huang, Sett, Oh, Cha, Li, Feng, Wu, Zhao, Orejon, Chen, Miljkovic (c83) 2019 Moghtadernejad, Tembely, Jadidi, Esmail, Dolatabadi (c50) 2015 Cha, Xu, Sotelo, Chun, Yokoyama, Enright, Miljkovic (c61) 2016 Yan, Zhang, Sett, Feng, Zhao, Huang, Vahabi, Kota, Chen, Miljkovic (c38) 2019 Liu, Cheng (c40) 2015 Brackbill, Kothe, Zemach (c72) 1992 Öner, McCarthy (c16) 2000 Chu, Yuan, Zhang, Wu (c47) 2018 Yuan, Wu, Wu (c48) 2019 Antonini, Amirfazli, Marengo (c8) 2012 Liu, Ghigliotti, Feng, Chen (c28) 2014 Eggers, Stone (c66) 2004 Wang, Liang, Jiang, Zheng, Lan, Ma (c26) 2018 Chen, Fadeev, Hsieh, Öner, Youngblood, McCarthy (c14) 1999 Enright, Miljkovic, Alvarado, Kim, Rose (c24) 2014 Legendre, Maglio (c65) 2015 Francois, Cummins, Dendy, Kothe, Sicilian, Williams (c76) 2006 Mark, van Wachem (c78) 2008 Peng, Yan, Li, Li, Cha, Ding, Dang, Jia, Miljkovic (c35) 2020 Lv, Hao, Zhang, He (c30) 2015 Afkhami, Zaleski, Bussmann (c82) 2009 Liu, Choi (c18) 2013 Quéré (c19) 2008 Vahabi, Wang, Mabry, Kota (c33) 2018 Dussan (c63) 1979 Wang, Tang, Wu, Dai, Qiu (c4) 2007 Yu, Sasic, Liu, Salameh, Ras, van Ommen (c13) 2020 Khatir, Kubiak, Jimack, Mathia (c37) 2016 Nam, Kim, Shin (c52) 2013 Shi, Tang, Xia (c55) 2015 Hoffman (c74) 1983 De Gennes (c64) 1985 Göhl, Mark, Sasic, Edelvik (c68) 2018 Renardy, Renardy, Li (c81) 2001 Kulinich, Farzaneh (c5) 2009 Dalawai, Saad Aly, Latthe, Xing, Sutar, Nagappan, Ha, Kumar Sadasivuni, Liu (c12) 2020 Wang, Ming (c49) 2019 Ubbink, Issa (c71) 1999 Bhushan, Jung (c15) 2008 Chen, Lu, Tryggvason (c44) 2019 Van Doormaal, Raithby (c70) 1984 Kim, Cha, Birbarah, Chavan, Zhong, Xu, Miljkovic (c36) 2015 Hou, Yuan, Hu, Gao, Wu (c51) 2021 Wang, Liang, Jiang, Zheng, Lan, Ma (c41) 2017 Attarzadeh, Dolatabadi (c42) 2017 Snoeijer, Andreotti (c21) 2013 Wu, Xia, Lei, Wang (c17) 2013 Wasserfall, Figueiredo, Kneer, Rohlfs, Pischke (c43) 2017 Jiang, Zhou (c75) 2019 Miljkovic, Enright, Nam, Lopez, Dou, Sack, Wang (c3) 2013 (2023081008211189600_c49) 2019; 31 (2023081008211189600_c42) 2017; 29 (2023081008211189600_c25) 2012; 6 (2023081008211189600_c58) 2018; 122 (2023081008211189600_c15) 2008; 20 (2023081008211189600_c48) 2019; 135 (2023081008211189600_c71) 1999; 153 (2023081008211189600_c26) 2018; 64 (2023081008211189600_c9) 2013; 110 (2023081008211189600_c27) 2014; 752 (2023081008211189600_c23) 2009; 103 (2023081008211189600_c36) 2015; 31 (2023081008211189600_c14) 1999; 15 (2023081008211189600_c61) 2016; 1 (2023081008211189600_c76) 2006; 213 (2023081008211189600_c11) 2019; 65 (2023081008211189600_c54) 2018; 30 (2023081008211189600_c81) 2001; 171 (2023081008211189600_c34) 2020; 36 (2023081008211189600_c60) 2015; 11 (2023081008211189600_c6) 2011; 257 (2023081008211189600_c13) 2020; 155 (2023081008211189600_c63) 1979; 11 (2023081008211189600_c45) 2020; 211 (2023081008211189600_c51) 2021; 33 (2023081008211189600_c24) 2014; 18 (2023081008211189600_c74) 1983; 94 (2023081008211189600_c33) 2018; 4 (2023081008211189600_c70) 1984; 7 (2023081008211189600_c46) 2017; 2 (2023081008211189600_c53) 2016; 95 (2023081008211189600_c17) 2013; 3 (2023081008211189600_c39) 2015; 27 (2023081008211189600_c47) 2018; 121 (2023081008211189600_c1) 2005; 68 (2023081008211189600_c83) 2019; 13 (2023081008211189600_c18) 2013; 291 (2023081008211189600_c22) 2007; 19 (2023081008211189600_c4) 2007; 253 (2023081008211189600_c35) 2020; 36 (2023081008211189600_c68) 2018; 109 (2023081008211189600_c20) 2004 (2023081008211189600_c59) 2018; 34 (2023081008211189600_c10) 2015; 112 (2023081008211189600_c41) 2017; 33 (2023081008211189600_c75) 2019; 44 (2023081008211189600_c82) 2009; 228 (2023081008211189600_c73) 1993 (2023081008211189600_c21) 2013; 45 (2023081008211189600_c30) 2015; 9 (2023081008211189600_c5) 2009; 25 (2023081008211189600_c40) 2015; 64 (2023081008211189600_c62) 2017; 16 (2023081008211189600_c3) 2013; 13 (2023081008211189600_c44) 2019; 31 (2023081008211189600_c56) 2017; 33 (2023081008211189600_c80) 2015; 285 (2023081008211189600_c38) 2019; 13 (2023081008211189600_c16) 2000; 16 (2023081008211189600_c7) 2013; 23 (2023081008211189600_c28) 2014; 752 (2023081008211189600_c37) 2016; 106 (2023081008211189600_c12) 2020; 138 (2023081008211189600_c19) 2008; 38 (2023081008211189600_c64) 1985; 57 (2023081008211189600_c43) 2017; 2 (2023081008211189600_c32) 2016; 6 (2023081008211189600_c77) 2018; 375 (2023081008211189600_c52) 2013; 103 (2023081008211189600_c29) 2014; 315 (2023081008211189600_c57) 2015; 107 (2023081008211189600_c67) 2018; 374 (2023081008211189600_c79) 2022 (2023081008211189600_c65) 2015; 113 (2023081008211189600_c66) 2004; 505 (2023081008211189600_c55) 2015; 88 (2023081008211189600_c72) 1992; 100 (2023081008211189600_c8) 2012; 24 (2023081008211189600_c31) 2017; 11 (2023081008211189600_c50) 2015; 27 (2023081008211189600_c2) 2013; 135 (2023081008211189600_c69) 2011; 7 (2023081008211189600_c78) 2008; 227 |
References_xml | – start-page: 1309 year: 2019 ident: c38 article-title: Droplet jumping: Effects of droplet size, surface structure, pinning, and liquid properties publication-title: ACS Nano – start-page: 11195 year: 2018 ident: c59 article-title: Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces publication-title: Langmuir – start-page: 112102 year: 2018 ident: c54 article-title: Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces publication-title: Phys. Fluids – start-page: 24 year: 2015 ident: c80 article-title: Numerical time-step restrictions as a result of capillary waves publication-title: J. Comput. Phys. – start-page: 5370 year: 2009 ident: c82 article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations publication-title: J. Comput. Phys. – start-page: 6660 year: 2008 ident: c78 article-title: Derivation and validation of a novel implicit second-order accurate immersed boundary method publication-title: J. Comput. Phys. – start-page: 022101 year: 2007 ident: c22 article-title: Boundary conditions for the moving contact line problem publication-title: Phys. Fluids – start-page: 2913 year: 2018 ident: c26 article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces publication-title: AIChE J. – start-page: 4160 year: 2019 ident: c83 article-title: Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces publication-title: ACS Nano – start-page: 212 year: 2014 ident: c29 article-title: Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions publication-title: Appl. Surf. Sci. – start-page: 064102 year: 2016 ident: c61 article-title: Coalescence-induced nanodroplet jumping publication-title: Phys. Rev. Fluids – start-page: 2 year: 2015 ident: c65 article-title: Comparison between numerical models for the simulation of moving contact lines publication-title: Comput. Fluids – start-page: 223 year: 2014 ident: c24 article-title: Dropwise condensation on micro-and nanostructured surfaces publication-title: Nanoscale Microscale Thermophys. Eng. – start-page: 9247 year: 2015 ident: c10 article-title: Self-removal of condensed water on the legs of water striders publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 143105 year: 2015 ident: c57 article-title: Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces publication-title: Appl. Phys. Lett. – start-page: 371 year: 1979 ident: c63 article-title: On the spreading of liquids on solid surfaces: Static and dynamic contact lines publication-title: Annu. Rev. Fluid Mech. – start-page: 269 year: 2013 ident: c21 article-title: Moving contact lines: Scales, regimes, and dynamical transitions publication-title: Annu. Rev. Fluid Mech. – start-page: 179 year: 2013 ident: c3 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Lett. – start-page: 1337 year: 2016 ident: c37 article-title: Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach publication-title: Appl. Therm. Eng. – start-page: 032106 year: 2015 ident: c50 article-title: Shear driven droplet shedding and coalescence on a superhydrophobic surface publication-title: Phys. Fluids – start-page: 99314 year: 2016 ident: c32 article-title: Self-enhancement of droplet jumping velocity: The interaction of liquid bridge and surface texture publication-title: RSC Adv. – start-page: 111004 year: 2013 ident: c2 article-title: Modeling and optimization of superhydrophobic condensation publication-title: J. Heat Transfer – start-page: eaau3488 year: 2018 ident: c33 article-title: Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture publication-title: Sci. Adv. – start-page: 8499 year: 2017 ident: c31 article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation publication-title: ACS Nano – start-page: 115252 year: 2020 ident: c45 article-title: Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity publication-title: Chem. Eng. Sci. – start-page: 345 year: 2019 ident: c48 article-title: Numerical simulations of multi-hop jumping on superhydrophobic surfaces publication-title: Int. J. Heat Mass Transfer – start-page: 658 year: 2017 ident: c62 article-title: Antifogging abilities of model nanotextures publication-title: Nat. Mater. – start-page: 8854 year: 2009 ident: c5 article-title: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces publication-title: Langmuir – start-page: 2495 year: 2005 ident: c1 article-title: Non-sticking drops publication-title: Rep. Prog. Phys. – start-page: 3395 year: 1999 ident: c14 article-title: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples publication-title: Langmuir – start-page: 315 year: 2018 ident: c47 article-title: Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location publication-title: Int. J. Heat Mass Transfer – start-page: 827 year: 1985 ident: c64 article-title: Wetting: Statics and dynamics publication-title: Rev. Mod. Phys. – start-page: 9510 year: 2020 ident: c35 article-title: Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves publication-title: Langmuir – start-page: 112001 year: 2017 ident: c46 article-title: How merging droplets jump off a superhydrophobic surface: Measurements and model publication-title: Phys. Rev. Fluids – start-page: 102104 year: 2012 ident: c8 article-title: Drop impact and wettability: From hydrophilic to superhydrophobic surfaces publication-title: Phys. Fluids – start-page: 48 year: 2020 ident: c13 article-title: Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing publication-title: Chem. Eng. Res. Des. – start-page: 052107 year: 2019 ident: c44 article-title: Numerical simulation of self-propelled non-equal sized droplets publication-title: Phys. Fluids – start-page: 177 year: 2018 ident: c77 article-title: Unified formulation of the momentum-weighted interpolation for collocated variable arrangements publication-title: J. Comput. Phys. – start-page: 3 year: 2013 ident: c7 article-title: Anti-icing potential of superhydrophobic coatings publication-title: Mendeleev Commun. – start-page: 12311 year: 2015 ident: c30 article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces publication-title: ACS Nano – start-page: 16898 year: 2019 ident: c75 article-title: Improvement and further investigation on Hoffman-function-based dynamic contact angle model publication-title: Int. J. Hydrogen Energy – start-page: 6264 year: 2011 ident: c6 article-title: Anti-icing performance of superhydrophobic surfaces publication-title: Appl. Surf. Sci. – start-page: 13452 year: 2015 ident: c36 article-title: Enhanced jumping-droplet departure publication-title: Langmuir – start-page: 22 year: 2014 ident: c28 article-title: Self-propelled jumping upon drop coalescence on Leidenfrost surfaces publication-title: J. Fluid Mech. – start-page: 7 year: 2015 ident: c40 article-title: 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces publication-title: Int. Commun. Heat Mass Transfer – start-page: 012104 year: 2017 ident: c42 article-title: Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces publication-title: Phys. Fluids – start-page: 20521 year: 2018 ident: c58 article-title: Self-removal of multiple and multisize coalescing nanodroplets on nanostructured surfaces publication-title: J. Phys. Chem. C – start-page: 161601 year: 2013 ident: c52 article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets publication-title: Appl. Phys. Lett. – start-page: 317 year: 2019 ident: c11 article-title: Self-cleaning surfaces for heat recovery during industrial hydrocarbon-rich gas cooling: An experimental and numerical study publication-title: AIChE J. – start-page: 225010 year: 2008 ident: c15 article-title: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces publication-title: J. Phys.: Condens. Matter – start-page: 71 year: 2008 ident: c19 article-title: Wetting and roughness publication-title: Annu. Rev. Mater. Res. – year: 2022 ident: c79 article-title: Coalescence-induced jumping of microdroplets on superhydrophobic surfaces—A numerical study publication-title: Can. J. Chem. Eng. – start-page: 1776 year: 2012 ident: c25 article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano – start-page: 5444 year: 2020 ident: c34 article-title: Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove publication-title: Langmuir – start-page: 184501 year: 2009 ident: c23 article-title: Self-propelled dropwise condensate on superhydrophobic surfaces publication-title: Phys. Rev. Lett. – start-page: 506 year: 2016 ident: c53 article-title: Numerical investigation of coalescence-induced droplet jumping on superhydrophobic surfaces for efficient dropwise condensation heat transfer publication-title: Int. J. Heat Mass Transfer – start-page: 7992 year: 2013 ident: c9 article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate publication-title: Proc. Natl. Acad. Sci. – start-page: 26 year: 1999 ident: c71 article-title: A method for capturing sharp fluid interfaces on arbitrary meshes publication-title: J. Comput. Phys. – start-page: 470 year: 1983 ident: c74 article-title: A study of the advancing interface. II. Theoretical prediction of the dynamic contact angle in liquid-gas systems publication-title: J. Colloid Interface Sci. – start-page: 3268 year: 2013 ident: c17 article-title: Advanced understanding of stickiness on superhydrophobic surfaces publication-title: Sci. Rep. – start-page: 243 year: 2001 ident: c81 article-title: Numerical simulation of moving contact line problems using a volume-of-fluid method publication-title: J. Comput. Phys. – start-page: 335 year: 1992 ident: c72 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. – start-page: 102102 year: 2015 ident: c39 article-title: Coalescence-induced jumping of droplet: Inertia and viscosity effects publication-title: Phys. Fluids – start-page: 122108 year: 2019 ident: c49 article-title: Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets publication-title: Phys. Fluids – start-page: 445 year: 2015 ident: c55 article-title: Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins publication-title: Int. J. Heat Mass Transfer – start-page: 241 year: 2011 ident: c69 article-title: Comparison between different immersed boundary conditions for simulation of complex fluid flows publication-title: Fluid Dyn. Mater. Process. – start-page: 147 year: 1984 ident: c70 article-title: Enhancements of the simple method for predicting incompressible fluid flows publication-title: Numer. Heat Transfer – start-page: 6258 year: 2017 ident: c41 article-title: Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces: Initial droplet arrangement effect publication-title: Langmuir – start-page: 437 year: 2013 ident: c18 article-title: Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves publication-title: Colloid Polym. Sci. – start-page: 8574 year: 2017 ident: c56 article-title: Insights into the impact of surface hydrophobicity on droplet coalescence and jumping dynamics publication-title: Langmuir – start-page: 141 year: 2006 ident: c76 article-title: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework publication-title: J. Comput. Phys. – start-page: 39 year: 2014 ident: c27 article-title: Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces publication-title: J. Fluid Mech. – start-page: 1061 year: 2018 ident: c67 article-title: Transition in a numerical model of contact line dynamics and forced dewetting publication-title: J. Comput. Phys. – start-page: 8818 year: 2007 ident: c4 article-title: Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate publication-title: Appl. Surf. Sci. – start-page: 309 year: 2004 ident: c66 article-title: Characteristic lengths at moving contact lines for a perfectly wetting fluid: The influence of speed on the dynamic contact angle publication-title: J. Fluid Mech. – start-page: 105381 year: 2020 ident: c12 article-title: Recent advances in durability of superhydrophobic self-cleaning technology: A critical review publication-title: Prog. Org. Coat. – start-page: 154 year: 2015 ident: c60 article-title: Droplet coalescence on water repellant surfaces publication-title: Soft Matter – start-page: 7777 year: 2000 ident: c16 article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability publication-title: Langmuir – start-page: 112101 year: 2021 ident: c51 article-title: Effects of the surface tension gradient and viscosity on coalescence-induced droplet jumping on superamphiphobic surfaces publication-title: Phys. Fluids – start-page: 123601 year: 2017 ident: c43 article-title: Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch publication-title: Phys. Rev. Fluids – start-page: 164 year: 2018 ident: c68 article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities publication-title: Int. J. Multiphase Flow – volume: 19 start-page: 022101 year: 2007 ident: 2023081008211189600_c22 article-title: Boundary conditions for the moving contact line problem publication-title: Phys. Fluids doi: 10.1063/1.2646754 – volume: 27 start-page: 032106 year: 2015 ident: 2023081008211189600_c50 article-title: Shear driven droplet shedding and coalescence on a superhydrophobic surface publication-title: Phys. Fluids doi: 10.1063/1.4914168 – volume: 45 start-page: 269 year: 2013 ident: 2023081008211189600_c21 article-title: Moving contact lines: Scales, regimes, and dynamical transitions publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-011212-140734 – volume: 113 start-page: 2 year: 2015 ident: 2023081008211189600_c65 article-title: Comparison between numerical models for the simulation of moving contact lines publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.09.018 – volume: 36 start-page: 9510 year: 2020 ident: 2023081008211189600_c35 article-title: Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01494 – volume: 1 start-page: 064102 year: 2016 ident: 2023081008211189600_c61 article-title: Coalescence-induced nanodroplet jumping publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.1.064102 – volume: 227 start-page: 6660 year: 2008 ident: 2023081008211189600_c78 article-title: Derivation and validation of a novel implicit second-order accurate immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.03.031 – volume: 752 start-page: 22 year: 2014 ident: 2023081008211189600_c28 article-title: Self-propelled jumping upon drop coalescence on Leidenfrost surfaces publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.319 – volume: 135 start-page: 345 year: 2019 ident: 2023081008211189600_c48 article-title: Numerical simulations of multi-hop jumping on superhydrophobic surfaces publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.01.147 – volume: 2 start-page: 112001 year: 2017 ident: 2023081008211189600_c46 article-title: How merging droplets jump off a superhydrophobic surface: Measurements and model publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.112001 – volume: 38 start-page: 71 year: 2008 ident: 2023081008211189600_c19 article-title: Wetting and roughness publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.38.060407.132434 – volume: 6 start-page: 99314 year: 2016 ident: 2023081008211189600_c32 article-title: Self-enhancement of droplet jumping velocity: The interaction of liquid bridge and surface texture publication-title: RSC Adv. doi: 10.1039/C6RA22421K – volume: 9 start-page: 12311 year: 2015 ident: 2023081008211189600_c30 article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces publication-title: ACS Nano doi: 10.1021/acsnano.5b05607 – volume: 106 start-page: 1337 year: 2016 ident: 2023081008211189600_c37 article-title: Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.128 – volume: 65 start-page: 317 year: 2019 ident: 2023081008211189600_c11 article-title: Self-cleaning surfaces for heat recovery during industrial hydrocarbon-rich gas cooling: An experimental and numerical study publication-title: AIChE J. doi: 10.1002/aic.16394 – volume: 57 start-page: 827 year: 1985 ident: 2023081008211189600_c64 article-title: Wetting: Statics and dynamics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.827 – volume: 153 start-page: 26 year: 1999 ident: 2023081008211189600_c71 article-title: A method for capturing sharp fluid interfaces on arbitrary meshes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6276 – year: 2022 ident: 2023081008211189600_c79 article-title: Coalescence-induced jumping of microdroplets on superhydrophobic surfaces—A numerical study publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24591 – volume: 94 start-page: 470 year: 1983 ident: 2023081008211189600_c74 article-title: A study of the advancing interface. II. Theoretical prediction of the dynamic contact angle in liquid-gas systems publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(83)90287-4 – volume: 11 start-page: 8499 year: 2017 ident: 2023081008211189600_c31 article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation publication-title: ACS Nano doi: 10.1021/acsnano.7b04481 – volume: 112 start-page: 9247 year: 2015 ident: 2023081008211189600_c10 article-title: Self-removal of condensed water on the legs of water striders publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1506874112 – volume: 138 start-page: 105381 year: 2020 ident: 2023081008211189600_c12 article-title: Recent advances in durability of superhydrophobic self-cleaning technology: A critical review publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105381 – volume: 36 start-page: 5444 year: 2020 ident: 2023081008211189600_c34 article-title: Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03968 – volume: 31 start-page: 052107 year: 2019 ident: 2023081008211189600_c44 article-title: Numerical simulation of self-propelled non-equal sized droplets publication-title: Phys. Fluids doi: 10.1063/1.5094757 – volume: 107 start-page: 143105 year: 2015 ident: 2023081008211189600_c57 article-title: Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932648 – volume: 31 start-page: 122108 year: 2019 ident: 2023081008211189600_c49 article-title: Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets publication-title: Phys. Fluids doi: 10.1063/1.5139417 – volume-title: Capillarity Wetting Phenomena year: 2004 ident: 2023081008211189600_c20 doi: 10.1007/978-0-387-21656-0 – volume: 315 start-page: 212 year: 2014 ident: 2023081008211189600_c29 article-title: Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.120 – volume: 16 start-page: 7777 year: 2000 ident: 2023081008211189600_c16 article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability publication-title: Langmuir doi: 10.1021/la000598o – volume: 33 start-page: 6258 year: 2017 ident: 2023081008211189600_c41 article-title: Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces: Initial droplet arrangement effect publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00901 – volume: 29 start-page: 012104 year: 2017 ident: 2023081008211189600_c42 article-title: Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces publication-title: Phys. Fluids doi: 10.1063/1.4973823 – volume: 121 start-page: 315 year: 2018 ident: 2023081008211189600_c47 article-title: Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.01.027 – volume: 135 start-page: 111004 year: 2013 ident: 2023081008211189600_c2 article-title: Modeling and optimization of superhydrophobic condensation publication-title: J. Heat Transfer doi: 10.1115/1.4024597 – volume: 27 start-page: 102102 year: 2015 ident: 2023081008211189600_c39 article-title: Coalescence-induced jumping of droplet: Inertia and viscosity effects publication-title: Phys. Fluids doi: 10.1063/1.4932085 – volume: 13 start-page: 1309 year: 2019 ident: 2023081008211189600_c38 article-title: Droplet jumping: Effects of droplet size, surface structure, pinning, and liquid properties publication-title: ACS Nano doi: 10.1021/acsnano.8b06677 – volume: 213 start-page: 141 year: 2006 ident: 2023081008211189600_c76 article-title: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.08.004 – volume: 24 start-page: 102104 year: 2012 ident: 2023081008211189600_c8 article-title: Drop impact and wettability: From hydrophilic to superhydrophobic surfaces publication-title: Phys. Fluids doi: 10.1063/1.4757122 – volume: 64 start-page: 2913 year: 2018 ident: 2023081008211189600_c26 article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces publication-title: AIChE J. doi: 10.1002/aic.16169 – volume: 33 start-page: 8574 year: 2017 ident: 2023081008211189600_c56 article-title: Insights into the impact of surface hydrophobicity on droplet coalescence and jumping dynamics publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02146 – volume: 291 start-page: 437 year: 2013 ident: 2023081008211189600_c18 article-title: Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-012-2751-6 – volume: 103 start-page: 184501 year: 2009 ident: 2023081008211189600_c23 article-title: Self-propelled dropwise condensate on superhydrophobic surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.184501 – volume: 109 start-page: 164 year: 2018 ident: 2023081008211189600_c68 article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.08.001 – volume-title: Wettability year: 1993 ident: 2023081008211189600_c73 article-title: Hydrodynamics of wetting doi: 10.1201/9781482277500 – volume: 374 start-page: 1061 year: 2018 ident: 2023081008211189600_c67 article-title: Transition in a numerical model of contact line dynamics and forced dewetting publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.06.078 – volume: 375 start-page: 177 year: 2018 ident: 2023081008211189600_c77 article-title: Unified formulation of the momentum-weighted interpolation for collocated variable arrangements publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.030 – volume: 33 start-page: 112101 year: 2021 ident: 2023081008211189600_c51 article-title: Effects of the surface tension gradient and viscosity on coalescence-induced droplet jumping on superamphiphobic surfaces publication-title: Phys. Fluids doi: 10.1063/5.0070521 – volume: 95 start-page: 506 year: 2016 ident: 2023081008211189600_c53 article-title: Numerical investigation of coalescence-induced droplet jumping on superhydrophobic surfaces for efficient dropwise condensation heat transfer publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.11.074 – volume: 3 start-page: 3268 year: 2013 ident: 2023081008211189600_c17 article-title: Advanced understanding of stickiness on superhydrophobic surfaces publication-title: Sci. Rep. doi: 10.1038/srep03268 – volume: 68 start-page: 2495 year: 2005 ident: 2023081008211189600_c1 article-title: Non-sticking drops publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/11/R01 – volume: 15 start-page: 3395 year: 1999 ident: 2023081008211189600_c14 article-title: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples publication-title: Langmuir doi: 10.1021/la990074s – volume: 13 start-page: 4160 year: 2019 ident: 2023081008211189600_c83 article-title: Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces publication-title: ACS Nano doi: 10.1021/acsnano.8b09106 – volume: 257 start-page: 6264 year: 2011 ident: 2023081008211189600_c6 article-title: Anti-icing performance of superhydrophobic surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.02.057 – volume: 34 start-page: 11195 year: 2018 ident: 2023081008211189600_c59 article-title: Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02428 – volume: 228 start-page: 5370 year: 2009 ident: 2023081008211189600_c82 article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.027 – volume: 103 start-page: 161601 year: 2013 ident: 2023081008211189600_c52 article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets publication-title: Appl. Phys. Lett. doi: 10.1063/1.4825273 – volume: 7 start-page: 147 year: 1984 ident: 2023081008211189600_c70 article-title: Enhancements of the simple method for predicting incompressible fluid flows publication-title: Numer. Heat Transfer doi: 10.1080/01495728408961817 – volume: 25 start-page: 8854 year: 2009 ident: 2023081008211189600_c5 article-title: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la901439c – volume: 16 start-page: 658 year: 2017 ident: 2023081008211189600_c62 article-title: Antifogging abilities of model nanotextures publication-title: Nat. Mater. doi: 10.1038/nmat4868 – volume: 31 start-page: 13452 year: 2015 ident: 2023081008211189600_c36 article-title: Enhanced jumping-droplet departure publication-title: Langmuir doi: 10.1021/acs.langmuir.5b03778 – volume: 505 start-page: 309 year: 2004 ident: 2023081008211189600_c66 article-title: Characteristic lengths at moving contact lines for a perfectly wetting fluid: The influence of speed on the dynamic contact angle publication-title: J. Fluid Mech. doi: 10.1017/S0022112004008663 – volume: 13 start-page: 179 year: 2013 ident: 2023081008211189600_c3 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Lett. doi: 10.1021/nl303835d – volume: 253 start-page: 8818 year: 2007 ident: 2023081008211189600_c4 article-title: Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.04.006 – volume: 155 start-page: 48 year: 2020 ident: 2023081008211189600_c13 article-title: Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.11.038 – volume: 88 start-page: 445 year: 2015 ident: 2023081008211189600_c55 article-title: Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.04.085 – volume: 20 start-page: 225010 year: 2008 ident: 2023081008211189600_c15 article-title: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/22/225010 – volume: 64 start-page: 7 year: 2015 ident: 2023081008211189600_c40 article-title: 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2015.03.002 – volume: 100 start-page: 335 year: 1992 ident: 2023081008211189600_c72 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 7 start-page: 241 year: 2011 ident: 2023081008211189600_c69 article-title: Comparison between different immersed boundary conditions for simulation of complex fluid flows publication-title: Fluid Dyn. Mater. Process. doi: 10.3970/fdmp.2011.007.241 – volume: 44 start-page: 16898 year: 2019 ident: 2023081008211189600_c75 article-title: Improvement and further investigation on Hoffman-function-based dynamic contact angle model publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.256 – volume: 4 start-page: eaau3488 year: 2018 ident: 2023081008211189600_c33 article-title: Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture publication-title: Sci. Adv. doi: 10.1126/sciadv.aau3488 – volume: 752 start-page: 39 year: 2014 ident: 2023081008211189600_c27 article-title: Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.320 – volume: 211 start-page: 115252 year: 2020 ident: 2023081008211189600_c45 article-title: Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115252 – volume: 2 start-page: 123601 year: 2017 ident: 2023081008211189600_c43 article-title: Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.123601 – volume: 18 start-page: 223 year: 2014 ident: 2023081008211189600_c24 article-title: Dropwise condensation on micro-and nanostructured surfaces publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567265.2013.862889 – volume: 171 start-page: 243 year: 2001 ident: 2023081008211189600_c81 article-title: Numerical simulation of moving contact line problems using a volume-of-fluid method publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6785 – volume: 6 start-page: 1776 year: 2012 ident: 2023081008211189600_c25 article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces publication-title: ACS Nano doi: 10.1021/nn205052a – volume: 11 start-page: 154 year: 2015 ident: 2023081008211189600_c60 article-title: Droplet coalescence on water repellant surfaces publication-title: Soft Matter doi: 10.1039/C4SM01647E – volume: 285 start-page: 24 year: 2015 ident: 2023081008211189600_c80 article-title: Numerical time-step restrictions as a result of capillary waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.01.021 – volume: 11 start-page: 371 year: 1979 ident: 2023081008211189600_c63 article-title: On the spreading of liquids on solid surfaces: Static and dynamic contact lines publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.11.010179.002103 – volume: 23 start-page: 3 year: 2013 ident: 2023081008211189600_c7 article-title: Anti-icing potential of superhydrophobic coatings publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2013.01.002 – volume: 30 start-page: 112102 year: 2018 ident: 2023081008211189600_c54 article-title: Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces publication-title: Phys. Fluids doi: 10.1063/1.5046056 – volume: 122 start-page: 20521 year: 2018 ident: 2023081008211189600_c58 article-title: Self-removal of multiple and multisize coalescing nanodroplets on nanostructured surfaces publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04257 – volume: 110 start-page: 7992 year: 2013 ident: 2023081008211189600_c9 article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1210770110 |
SSID | ssj0003926 |
Score | 2.446357 |
Snippet | Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high... |
SourceID | swepub proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | capillary flows Contact angle contact lines Droplets gas / liquid flows Hydrophobic surfaces Hydrophobicity Hysteresis interfacial flows liquid bridge Mathematical models |
Title | Coalescence-induced jumping of droplets from superhydrophobic surfaces—The effect of contact-angle hysteresis |
URI | http://dx.doi.org/10.1063/5.0118645 https://www.proquest.com/docview/2730868201 https://research.chalmers.se/publication/533827 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRBcChQQS0tlUQ5cIojtOMmxaqmqqkUgqNSb5Y8xKao2qyRF6q0_gl_YX9Jxkt0CKoirNbYiv3HmjTzzDPAmRxNVumTiuPeUoEifGCfTxCkZjCidcSF2Ix9_VAcn8vA0O12B7b_c4CvxLspqpoWS2T1Y5USOiwms7hzuff60_OFSiFdDaSFlQkqkCwGhXyf_HnZuueQDCjTDnfcfWqF9fNl_DGsjMWQ7A5JPYAVn6_BoJIlsPILtOtzvazZd-xTq3doMakwOE0qtCSTPvhM8FI1YHZhvYnF417LYQsLaizk21WUcrGp75migCbEe6_rqJ_kKGwo74rxYvW5cl5jZt3NkVZR6ppz8rH0GJ_sfvu4eJOP7CYmTouiSPBC7Elao1KM0QSGRORcof_NWcquU5dKVdMC5kbbIFFofcinLkKHLS6I54jlMZvUMXwCz79E7YxXPiS5mAU2OKUdawlseyiCm8HaxvXqxofGNi3PdX3IroTM9IjGF10vT-aCocZfR5gIjPR6qVhPTogQsUpYpbC9x-9cid1j9qJtbCz33YQpHA-5Lk6i4PUotVdpV_Ts2rW5Ru6xQuckLLbgRWlortbWq1D7D3AqM-2Ze_tenbcBDHvso-qbGTZh0zQW-InbT2S3y7r3joy9bo5ffAFtV-j0 |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence-induced+jumping+of+droplets+from+superhydrophobic+surfaces%E2%80%94The+effect+of+contact-angle+hysteresis&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Konstantinidis%2C+K.&rft.au=G%C3%B6hl%2C+J.&rft.au=Mark%2C+A.&rft.au=Sasic%2C+S.&rft.date=2022-11-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1063%2F5.0118645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |