Coalescence-induced jumping of droplets from superhydrophobic surfaces—The effect of contact-angle hysteresis

Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is describ...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 34; no. 11
Main Authors Konstantinidis, K., Göhl, J., Mark, A., Sasic, S.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity of the results to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid–immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual (i.e., effective) values of contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15°), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment to the surface. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate and quantify the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis.
AbstractList Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity of the results to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid–immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual (i.e., effective) values of contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15°), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment to the surface. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate and quantify the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis.
Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high contact angles. This phenomenon has been a subject of intensive numerical research mostly for cases when the degree of hydrophobicity is described by a single contact-angle value (a static contact angle). The introduction of various degrees of contact-angle hysteresis complicates the numerical modeling of the jumping process due to the sensitivity to the effective value of the contact angle. We have developed and validated a comprehensive volume-of-fluid(VOF)-immersed boundary numerical framework that accounts for the effect of hysteresis by focusing on the representation of actual values of dynamic contact angles. By comparing the behavior of jumping droplets on superhydrophobic surfaces with several degrees of hysteresis (up to 15o), we quantified the influence of hysteresis on the jumping process and identified various stages of the merged droplet's detachment and re-attachment. The latter phenomena were observed in all our simulations with droplets of different initial radii. In all the cases with hysteresis, the merged droplet eventually jumps, but we point out the decrease in the jumping velocity as compared to cases with only a static contact angle imposed. Finally, by using the Kistler dynamic contact-angle model, we demonstrate the importance of accurately capturing the dynamic receding contact angle when droplets jump from superhydrophobic surfaces with various degrees of hysteresis.
Author Konstantinidis, K.
Mark, A.
Göhl, J.
Sasic, S.
Author_xml – sequence: 1
  givenname: K.
  surname: Konstantinidis
  fullname: Konstantinidis, K.
  organization: Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences
– sequence: 2
  givenname: J.
  surname: Göhl
  fullname: Göhl, J.
  organization: Fraunhofer–Chalmers Center
– sequence: 3
  givenname: A.
  surname: Mark
  fullname: Mark, A.
  organization: Fraunhofer–Chalmers Center
– sequence: 4
  givenname: S.
  surname: Sasic
  fullname: Sasic, S.
  organization: Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences
BackLink https://research.chalmers.se/publication/533827$$DView record from Swedish Publication Index
BookMark eNp9kctu1DAUQC3USvTBgj-IxAqktH47WaIR0EqVWFDWlu1cNx5l4mA7oNnxEXwhX0KiGUBCtCtfXZ17fB_n6GSMIyD0kuArgiW7FleYkEZy8QydEdy0tZJSnqyxwrWUjDxH5zlvMcaspfIMxU00A2QHo4M6jN3soKu2824K40MVfdWlOA1QcuVT3FV5niD1-zXZRxvckkjeOMg_v_-476EC78GVtc7FsRhXajM-DFD1-1wgQQ75Ep16M2R4cXwv0Of37-43N_Xdxw-3m7d3teOsKbXyTFBmmSQdcOMltJQ5r4jqLKdWSku5axkm1HDbCAm284rz1gtwqiWiZRfo08Gbv8E0Wz2lsDNpr6MJemkETHK9dr0ZdpCyzqCdaKQyqtGMGqa5tVxbK1vdCVCWwSo2i_XVwTql-GWGXPQ2zmlcBtFUMdzIhmKyUK8PlEsx5wT-z-8E6_VKWujjlRb2-h_WhWJKWNaXTBj-W_HmONlv8kn9o_DXmP6Ceuo8-wWjrrUG
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_5_0222367
crossref_primary_10_1016_j_tsep_2024_102996
crossref_primary_10_1063_5_0149152
crossref_primary_10_1063_5_0156174
crossref_primary_10_1021_acs_langmuir_3c03364
crossref_primary_10_1063_5_0156249
crossref_primary_10_1063_5_0156214
Cites_doi 10.1063/1.2646754
10.1063/1.4914168
10.1146/annurev-fluid-011212-140734
10.1016/j.compfluid.2014.09.018
10.1021/acs.langmuir.0c01494
10.1103/PhysRevFluids.1.064102
10.1016/j.jcp.2008.03.031
10.1017/jfm.2014.319
10.1016/j.ijheatmasstransfer.2019.01.147
10.1103/PhysRevFluids.2.112001
10.1146/annurev.matsci.38.060407.132434
10.1039/C6RA22421K
10.1021/acsnano.5b05607
10.1016/j.applthermaleng.2016.06.128
10.1002/aic.16394
10.1103/RevModPhys.57.827
10.1006/jcph.1999.6276
10.1002/cjce.24591
10.1016/0021-9797(83)90287-4
10.1021/acsnano.7b04481
10.1073/pnas.1506874112
10.1016/j.porgcoat.2019.105381
10.1021/acs.langmuir.9b03968
10.1063/1.5094757
10.1063/1.4932648
10.1063/1.5139417
10.1007/978-0-387-21656-0
10.1016/j.apsusc.2014.07.120
10.1021/la000598o
10.1021/acs.langmuir.7b00901
10.1063/1.4973823
10.1016/j.ijheatmasstransfer.2018.01.027
10.1115/1.4024597
10.1063/1.4932085
10.1021/acsnano.8b06677
10.1016/j.jcp.2005.08.004
10.1063/1.4757122
10.1002/aic.16169
10.1021/acs.langmuir.7b02146
10.1007/s00396-012-2751-6
10.1103/PhysRevLett.103.184501
10.1016/j.ijmultiphaseflow.2018.08.001
10.1201/9781482277500
10.1016/j.jcp.2018.06.078
10.1016/j.jcp.2018.08.030
10.1063/5.0070521
10.1016/j.ijheatmasstransfer.2015.11.074
10.1038/srep03268
10.1088/0034-4885/68/11/R01
10.1021/la990074s
10.1021/acsnano.8b09106
10.1016/j.apsusc.2011.02.057
10.1021/acs.langmuir.8b02428
10.1016/j.jcp.2009.04.027
10.1063/1.4825273
10.1080/01495728408961817
10.1021/la901439c
10.1038/nmat4868
10.1021/acs.langmuir.5b03778
10.1017/S0022112004008663
10.1021/nl303835d
10.1016/j.apsusc.2007.04.006
10.1016/j.cherd.2019.11.038
10.1016/j.ijheatmasstransfer.2015.04.085
10.1088/0953-8984/20/22/225010
10.1016/j.icheatmasstransfer.2015.03.002
10.1016/0021-9991(92)90240-Y
10.3970/fdmp.2011.007.241
10.1016/j.ijhydene.2019.04.256
10.1126/sciadv.aau3488
10.1017/jfm.2014.320
10.1016/j.ces.2019.115252
10.1103/PhysRevFluids.2.123601
10.1080/15567265.2013.862889
10.1006/jcph.2001.6785
10.1021/nn205052a
10.1039/C4SM01647E
10.1016/j.jcp.2015.01.021
10.1146/annurev.fl.11.010179.002103
10.1016/j.mencom.2013.01.002
10.1063/1.5046056
10.1021/acs.jpcc.8b04257
10.1073/pnas.1210770110
ContentType Journal Article
Copyright Author(s)
2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1063/5.0118645
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database


Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID oai_research_chalmers_se_c5867a78_32a3_4bb4_bb69_d5e7b3e5ec7a
10_1063_5_0118645
GrantInformation_xml – fundername: Vetenskapsrådet
  grantid: 2019-04969
  funderid: 10.13039/501100004359
– fundername: Vetenskapsrådet
  grantid: 2018-05973
  funderid: 10.13039/501100004359
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c438t-7f3523b361de4af6e923cf717db42b66b24c93012a4b856ebdf7449f5ec791593
IEDL.DBID AJDQP
ISSN 1070-6631
1089-7666
IngestDate Thu Aug 21 06:34:47 EDT 2025
Sun Jun 29 16:10:24 EDT 2025
Thu Apr 24 23:12:02 EDT 2025
Tue Jul 01 04:46:51 EDT 2025
Fri Jun 21 00:19:06 EDT 2024
Tue Jul 04 19:18:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Published open access through an agreement with Chalmers tekniska hogskola 11248
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-7f3523b361de4af6e923cf717db42b66b24c93012a4b856ebdf7449f5ec791593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4214-6337
0000-0001-6383-4772
0000-0002-0705-6504
0000-0003-0038-3307
OpenAccessLink http://dx.doi.org/10.1063/5.0118645
PQID 2730868201
PQPubID 2050667
PageCount 16
ParticipantIDs crossref_primary_10_1063_5_0118645
scitation_primary_10_1063_5_0118645
proquest_journals_2730868201
swepub_primary_oai_research_chalmers_se_c5867a78_32a3_4bb4_bb69_d5e7b3e5ec7a
crossref_citationtrail_10_1063_5_0118645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Liu, Ghigliotti, Feng, Chen (c27) 2014
Li, Chu, Zhang, Brutin, Wen (c45) 2020
Li, Yang, Aili, Zhang (c56) 2017
Mark, Rundqvist, Edelvik (c69) 2011
Weiqing, Weinan (c22) 2007
Afkhami, Buongiorno, Guion, Popinet, Saade, Scardovelli, Zaleski (c67) 2018
Boreyko, Chen (c23) 2009
Lu, Zhao, Zhang, Yang, Zheng (c34) 2020
Denner, van Wachem (c80) 2015
Quéré (c1) 2005
Mouterde, Lehoucq, Xavier, Checco, Black, Rahman, Midavaine, Clanet, Quéré (c62) 2017
Yanagisawa, Sakai, Isobe, Matsushita, Nakajima (c29) 2014
Cheng, Xu, Sui (c53) 2016
Liang, Keblinski (c57) 2015
Farokhirad, Morris, Lee (c39) 2015
Gao, Liao, Liu, Liu (c58) 2018
Wang, Yao, Liu, Quéré, Jiang (c10) 2015
Wang, Liang, Jiang, Zheng, Lan, Ma (c32) 2016
Farhadi, Farzaneh, Kulinich (c6) 2011
Miljkovic, Enright, Wang (c25) 2012
Mouterde, Nguyen, Takahashi, Clanet, Shimoyama, Quéré (c46) 2017
Maggiolo, Seemann, Thunman, Santos, Larsson, Sasic, Ström (c11) 2019
Mulroe, Srijanto, Ahmadi, Collier, Boreyko (c31) 2017
Miljkovic, Enright, Wang (c2) 2013
Xie, Lu, Wang, Wang (c59) 2018
Wisdom, Watson, Qu, Liu, Watson, Chen (c9) 2013
Chen, Lian (c54) 2018
Nam, Seo, Lee, Shin (c60) 2015
Konstantinidis, Göhl, Mark, Sasic (c79) 2022
Boinovich, Emelyanenko (c7) 2013
Bartholomew, Denner, Abdol-Azis, Marquis, van Wachem (c77) 2018
Yan, Huang, Sett, Oh, Cha, Li, Feng, Wu, Zhao, Orejon, Chen, Miljkovic (c83) 2019
Moghtadernejad, Tembely, Jadidi, Esmail, Dolatabadi (c50) 2015
Cha, Xu, Sotelo, Chun, Yokoyama, Enright, Miljkovic (c61) 2016
Yan, Zhang, Sett, Feng, Zhao, Huang, Vahabi, Kota, Chen, Miljkovic (c38) 2019
Liu, Cheng (c40) 2015
Brackbill, Kothe, Zemach (c72) 1992
Öner, McCarthy (c16) 2000
Chu, Yuan, Zhang, Wu (c47) 2018
Yuan, Wu, Wu (c48) 2019
Antonini, Amirfazli, Marengo (c8) 2012
Liu, Ghigliotti, Feng, Chen (c28) 2014
Eggers, Stone (c66) 2004
Wang, Liang, Jiang, Zheng, Lan, Ma (c26) 2018
Chen, Fadeev, Hsieh, Öner, Youngblood, McCarthy (c14) 1999
Enright, Miljkovic, Alvarado, Kim, Rose (c24) 2014
Legendre, Maglio (c65) 2015
Francois, Cummins, Dendy, Kothe, Sicilian, Williams (c76) 2006
Mark, van Wachem (c78) 2008
Peng, Yan, Li, Li, Cha, Ding, Dang, Jia, Miljkovic (c35) 2020
Lv, Hao, Zhang, He (c30) 2015
Afkhami, Zaleski, Bussmann (c82) 2009
Liu, Choi (c18) 2013
Quéré (c19) 2008
Vahabi, Wang, Mabry, Kota (c33) 2018
Dussan (c63) 1979
Wang, Tang, Wu, Dai, Qiu (c4) 2007
Yu, Sasic, Liu, Salameh, Ras, van Ommen (c13) 2020
Khatir, Kubiak, Jimack, Mathia (c37) 2016
Nam, Kim, Shin (c52) 2013
Shi, Tang, Xia (c55) 2015
Hoffman (c74) 1983
De Gennes (c64) 1985
Göhl, Mark, Sasic, Edelvik (c68) 2018
Renardy, Renardy, Li (c81) 2001
Kulinich, Farzaneh (c5) 2009
Dalawai, Saad Aly, Latthe, Xing, Sutar, Nagappan, Ha, Kumar Sadasivuni, Liu (c12) 2020
Wang, Ming (c49) 2019
Ubbink, Issa (c71) 1999
Bhushan, Jung (c15) 2008
Chen, Lu, Tryggvason (c44) 2019
Van Doormaal, Raithby (c70) 1984
Kim, Cha, Birbarah, Chavan, Zhong, Xu, Miljkovic (c36) 2015
Hou, Yuan, Hu, Gao, Wu (c51) 2021
Wang, Liang, Jiang, Zheng, Lan, Ma (c41) 2017
Attarzadeh, Dolatabadi (c42) 2017
Snoeijer, Andreotti (c21) 2013
Wu, Xia, Lei, Wang (c17) 2013
Wasserfall, Figueiredo, Kneer, Rohlfs, Pischke (c43) 2017
Jiang, Zhou (c75) 2019
Miljkovic, Enright, Nam, Lopez, Dou, Sack, Wang (c3) 2013
(2023081008211189600_c49) 2019; 31
(2023081008211189600_c42) 2017; 29
(2023081008211189600_c25) 2012; 6
(2023081008211189600_c58) 2018; 122
(2023081008211189600_c15) 2008; 20
(2023081008211189600_c48) 2019; 135
(2023081008211189600_c71) 1999; 153
(2023081008211189600_c26) 2018; 64
(2023081008211189600_c9) 2013; 110
(2023081008211189600_c27) 2014; 752
(2023081008211189600_c23) 2009; 103
(2023081008211189600_c36) 2015; 31
(2023081008211189600_c14) 1999; 15
(2023081008211189600_c61) 2016; 1
(2023081008211189600_c76) 2006; 213
(2023081008211189600_c11) 2019; 65
(2023081008211189600_c54) 2018; 30
(2023081008211189600_c81) 2001; 171
(2023081008211189600_c34) 2020; 36
(2023081008211189600_c60) 2015; 11
(2023081008211189600_c6) 2011; 257
(2023081008211189600_c13) 2020; 155
(2023081008211189600_c63) 1979; 11
(2023081008211189600_c45) 2020; 211
(2023081008211189600_c51) 2021; 33
(2023081008211189600_c24) 2014; 18
(2023081008211189600_c74) 1983; 94
(2023081008211189600_c33) 2018; 4
(2023081008211189600_c70) 1984; 7
(2023081008211189600_c46) 2017; 2
(2023081008211189600_c53) 2016; 95
(2023081008211189600_c17) 2013; 3
(2023081008211189600_c39) 2015; 27
(2023081008211189600_c47) 2018; 121
(2023081008211189600_c1) 2005; 68
(2023081008211189600_c83) 2019; 13
(2023081008211189600_c18) 2013; 291
(2023081008211189600_c22) 2007; 19
(2023081008211189600_c4) 2007; 253
(2023081008211189600_c35) 2020; 36
(2023081008211189600_c68) 2018; 109
(2023081008211189600_c20) 2004
(2023081008211189600_c59) 2018; 34
(2023081008211189600_c10) 2015; 112
(2023081008211189600_c41) 2017; 33
(2023081008211189600_c75) 2019; 44
(2023081008211189600_c82) 2009; 228
(2023081008211189600_c73) 1993
(2023081008211189600_c21) 2013; 45
(2023081008211189600_c30) 2015; 9
(2023081008211189600_c5) 2009; 25
(2023081008211189600_c40) 2015; 64
(2023081008211189600_c62) 2017; 16
(2023081008211189600_c3) 2013; 13
(2023081008211189600_c44) 2019; 31
(2023081008211189600_c56) 2017; 33
(2023081008211189600_c80) 2015; 285
(2023081008211189600_c38) 2019; 13
(2023081008211189600_c16) 2000; 16
(2023081008211189600_c7) 2013; 23
(2023081008211189600_c28) 2014; 752
(2023081008211189600_c37) 2016; 106
(2023081008211189600_c12) 2020; 138
(2023081008211189600_c19) 2008; 38
(2023081008211189600_c64) 1985; 57
(2023081008211189600_c43) 2017; 2
(2023081008211189600_c32) 2016; 6
(2023081008211189600_c77) 2018; 375
(2023081008211189600_c52) 2013; 103
(2023081008211189600_c29) 2014; 315
(2023081008211189600_c57) 2015; 107
(2023081008211189600_c67) 2018; 374
(2023081008211189600_c79) 2022
(2023081008211189600_c65) 2015; 113
(2023081008211189600_c66) 2004; 505
(2023081008211189600_c55) 2015; 88
(2023081008211189600_c72) 1992; 100
(2023081008211189600_c8) 2012; 24
(2023081008211189600_c31) 2017; 11
(2023081008211189600_c50) 2015; 27
(2023081008211189600_c2) 2013; 135
(2023081008211189600_c69) 2011; 7
(2023081008211189600_c78) 2008; 227
References_xml – start-page: 1309
  year: 2019
  ident: c38
  article-title: Droplet jumping: Effects of droplet size, surface structure, pinning, and liquid properties
  publication-title: ACS Nano
– start-page: 11195
  year: 2018
  ident: c59
  article-title: Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces
  publication-title: Langmuir
– start-page: 112102
  year: 2018
  ident: c54
  article-title: Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces
  publication-title: Phys. Fluids
– start-page: 24
  year: 2015
  ident: c80
  article-title: Numerical time-step restrictions as a result of capillary waves
  publication-title: J. Comput. Phys.
– start-page: 5370
  year: 2009
  ident: c82
  article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations
  publication-title: J. Comput. Phys.
– start-page: 6660
  year: 2008
  ident: c78
  article-title: Derivation and validation of a novel implicit second-order accurate immersed boundary method
  publication-title: J. Comput. Phys.
– start-page: 022101
  year: 2007
  ident: c22
  article-title: Boundary conditions for the moving contact line problem
  publication-title: Phys. Fluids
– start-page: 2913
  year: 2018
  ident: c26
  article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces
  publication-title: AIChE J.
– start-page: 4160
  year: 2019
  ident: c83
  article-title: Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces
  publication-title: ACS Nano
– start-page: 212
  year: 2014
  ident: c29
  article-title: Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions
  publication-title: Appl. Surf. Sci.
– start-page: 064102
  year: 2016
  ident: c61
  article-title: Coalescence-induced nanodroplet jumping
  publication-title: Phys. Rev. Fluids
– start-page: 2
  year: 2015
  ident: c65
  article-title: Comparison between numerical models for the simulation of moving contact lines
  publication-title: Comput. Fluids
– start-page: 223
  year: 2014
  ident: c24
  article-title: Dropwise condensation on micro-and nanostructured surfaces
  publication-title: Nanoscale Microscale Thermophys. Eng.
– start-page: 9247
  year: 2015
  ident: c10
  article-title: Self-removal of condensed water on the legs of water striders
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 143105
  year: 2015
  ident: c57
  article-title: Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces
  publication-title: Appl. Phys. Lett.
– start-page: 371
  year: 1979
  ident: c63
  article-title: On the spreading of liquids on solid surfaces: Static and dynamic contact lines
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 269
  year: 2013
  ident: c21
  article-title: Moving contact lines: Scales, regimes, and dynamical transitions
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 179
  year: 2013
  ident: c3
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Lett.
– start-page: 1337
  year: 2016
  ident: c37
  article-title: Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach
  publication-title: Appl. Therm. Eng.
– start-page: 032106
  year: 2015
  ident: c50
  article-title: Shear driven droplet shedding and coalescence on a superhydrophobic surface
  publication-title: Phys. Fluids
– start-page: 99314
  year: 2016
  ident: c32
  article-title: Self-enhancement of droplet jumping velocity: The interaction of liquid bridge and surface texture
  publication-title: RSC Adv.
– start-page: 111004
  year: 2013
  ident: c2
  article-title: Modeling and optimization of superhydrophobic condensation
  publication-title: J. Heat Transfer
– start-page: eaau3488
  year: 2018
  ident: c33
  article-title: Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture
  publication-title: Sci. Adv.
– start-page: 8499
  year: 2017
  ident: c31
  article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation
  publication-title: ACS Nano
– start-page: 115252
  year: 2020
  ident: c45
  article-title: Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity
  publication-title: Chem. Eng. Sci.
– start-page: 345
  year: 2019
  ident: c48
  article-title: Numerical simulations of multi-hop jumping on superhydrophobic surfaces
  publication-title: Int. J. Heat Mass Transfer
– start-page: 658
  year: 2017
  ident: c62
  article-title: Antifogging abilities of model nanotextures
  publication-title: Nat. Mater.
– start-page: 8854
  year: 2009
  ident: c5
  article-title: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces
  publication-title: Langmuir
– start-page: 2495
  year: 2005
  ident: c1
  article-title: Non-sticking drops
  publication-title: Rep. Prog. Phys.
– start-page: 3395
  year: 1999
  ident: c14
  article-title: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples
  publication-title: Langmuir
– start-page: 315
  year: 2018
  ident: c47
  article-title: Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location
  publication-title: Int. J. Heat Mass Transfer
– start-page: 827
  year: 1985
  ident: c64
  article-title: Wetting: Statics and dynamics
  publication-title: Rev. Mod. Phys.
– start-page: 9510
  year: 2020
  ident: c35
  article-title: Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves
  publication-title: Langmuir
– start-page: 112001
  year: 2017
  ident: c46
  article-title: How merging droplets jump off a superhydrophobic surface: Measurements and model
  publication-title: Phys. Rev. Fluids
– start-page: 102104
  year: 2012
  ident: c8
  article-title: Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
  publication-title: Phys. Fluids
– start-page: 48
  year: 2020
  ident: c13
  article-title: Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing
  publication-title: Chem. Eng. Res. Des.
– start-page: 052107
  year: 2019
  ident: c44
  article-title: Numerical simulation of self-propelled non-equal sized droplets
  publication-title: Phys. Fluids
– start-page: 177
  year: 2018
  ident: c77
  article-title: Unified formulation of the momentum-weighted interpolation for collocated variable arrangements
  publication-title: J. Comput. Phys.
– start-page: 3
  year: 2013
  ident: c7
  article-title: Anti-icing potential of superhydrophobic coatings
  publication-title: Mendeleev Commun.
– start-page: 12311
  year: 2015
  ident: c30
  article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces
  publication-title: ACS Nano
– start-page: 16898
  year: 2019
  ident: c75
  article-title: Improvement and further investigation on Hoffman-function-based dynamic contact angle model
  publication-title: Int. J. Hydrogen Energy
– start-page: 6264
  year: 2011
  ident: c6
  article-title: Anti-icing performance of superhydrophobic surfaces
  publication-title: Appl. Surf. Sci.
– start-page: 13452
  year: 2015
  ident: c36
  article-title: Enhanced jumping-droplet departure
  publication-title: Langmuir
– start-page: 22
  year: 2014
  ident: c28
  article-title: Self-propelled jumping upon drop coalescence on Leidenfrost surfaces
  publication-title: J. Fluid Mech.
– start-page: 7
  year: 2015
  ident: c40
  article-title: 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces
  publication-title: Int. Commun. Heat Mass Transfer
– start-page: 012104
  year: 2017
  ident: c42
  article-title: Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
  publication-title: Phys. Fluids
– start-page: 20521
  year: 2018
  ident: c58
  article-title: Self-removal of multiple and multisize coalescing nanodroplets on nanostructured surfaces
  publication-title: J. Phys. Chem. C
– start-page: 161601
  year: 2013
  ident: c52
  article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets
  publication-title: Appl. Phys. Lett.
– start-page: 317
  year: 2019
  ident: c11
  article-title: Self-cleaning surfaces for heat recovery during industrial hydrocarbon-rich gas cooling: An experimental and numerical study
  publication-title: AIChE J.
– start-page: 225010
  year: 2008
  ident: c15
  article-title: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces
  publication-title: J. Phys.: Condens. Matter
– start-page: 71
  year: 2008
  ident: c19
  article-title: Wetting and roughness
  publication-title: Annu. Rev. Mater. Res.
– year: 2022
  ident: c79
  article-title: Coalescence-induced jumping of microdroplets on superhydrophobic surfaces—A numerical study
  publication-title: Can. J. Chem. Eng.
– start-page: 1776
  year: 2012
  ident: c25
  article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
– start-page: 5444
  year: 2020
  ident: c34
  article-title: Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove
  publication-title: Langmuir
– start-page: 184501
  year: 2009
  ident: c23
  article-title: Self-propelled dropwise condensate on superhydrophobic surfaces
  publication-title: Phys. Rev. Lett.
– start-page: 506
  year: 2016
  ident: c53
  article-title: Numerical investigation of coalescence-induced droplet jumping on superhydrophobic surfaces for efficient dropwise condensation heat transfer
  publication-title: Int. J. Heat Mass Transfer
– start-page: 7992
  year: 2013
  ident: c9
  article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 26
  year: 1999
  ident: c71
  article-title: A method for capturing sharp fluid interfaces on arbitrary meshes
  publication-title: J. Comput. Phys.
– start-page: 470
  year: 1983
  ident: c74
  article-title: A study of the advancing interface. II. Theoretical prediction of the dynamic contact angle in liquid-gas systems
  publication-title: J. Colloid Interface Sci.
– start-page: 3268
  year: 2013
  ident: c17
  article-title: Advanced understanding of stickiness on superhydrophobic surfaces
  publication-title: Sci. Rep.
– start-page: 243
  year: 2001
  ident: c81
  article-title: Numerical simulation of moving contact line problems using a volume-of-fluid method
  publication-title: J. Comput. Phys.
– start-page: 335
  year: 1992
  ident: c72
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
– start-page: 102102
  year: 2015
  ident: c39
  article-title: Coalescence-induced jumping of droplet: Inertia and viscosity effects
  publication-title: Phys. Fluids
– start-page: 122108
  year: 2019
  ident: c49
  article-title: Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets
  publication-title: Phys. Fluids
– start-page: 445
  year: 2015
  ident: c55
  article-title: Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins
  publication-title: Int. J. Heat Mass Transfer
– start-page: 241
  year: 2011
  ident: c69
  article-title: Comparison between different immersed boundary conditions for simulation of complex fluid flows
  publication-title: Fluid Dyn. Mater. Process.
– start-page: 147
  year: 1984
  ident: c70
  article-title: Enhancements of the simple method for predicting incompressible fluid flows
  publication-title: Numer. Heat Transfer
– start-page: 6258
  year: 2017
  ident: c41
  article-title: Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces: Initial droplet arrangement effect
  publication-title: Langmuir
– start-page: 437
  year: 2013
  ident: c18
  article-title: Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves
  publication-title: Colloid Polym. Sci.
– start-page: 8574
  year: 2017
  ident: c56
  article-title: Insights into the impact of surface hydrophobicity on droplet coalescence and jumping dynamics
  publication-title: Langmuir
– start-page: 141
  year: 2006
  ident: c76
  article-title: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework
  publication-title: J. Comput. Phys.
– start-page: 39
  year: 2014
  ident: c27
  article-title: Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
  publication-title: J. Fluid Mech.
– start-page: 1061
  year: 2018
  ident: c67
  article-title: Transition in a numerical model of contact line dynamics and forced dewetting
  publication-title: J. Comput. Phys.
– start-page: 8818
  year: 2007
  ident: c4
  article-title: Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate
  publication-title: Appl. Surf. Sci.
– start-page: 309
  year: 2004
  ident: c66
  article-title: Characteristic lengths at moving contact lines for a perfectly wetting fluid: The influence of speed on the dynamic contact angle
  publication-title: J. Fluid Mech.
– start-page: 105381
  year: 2020
  ident: c12
  article-title: Recent advances in durability of superhydrophobic self-cleaning technology: A critical review
  publication-title: Prog. Org. Coat.
– start-page: 154
  year: 2015
  ident: c60
  article-title: Droplet coalescence on water repellant surfaces
  publication-title: Soft Matter
– start-page: 7777
  year: 2000
  ident: c16
  article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability
  publication-title: Langmuir
– start-page: 112101
  year: 2021
  ident: c51
  article-title: Effects of the surface tension gradient and viscosity on coalescence-induced droplet jumping on superamphiphobic surfaces
  publication-title: Phys. Fluids
– start-page: 123601
  year: 2017
  ident: c43
  article-title: Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
  publication-title: Phys. Rev. Fluids
– start-page: 164
  year: 2018
  ident: c68
  article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities
  publication-title: Int. J. Multiphase Flow
– volume: 19
  start-page: 022101
  year: 2007
  ident: 2023081008211189600_c22
  article-title: Boundary conditions for the moving contact line problem
  publication-title: Phys. Fluids
  doi: 10.1063/1.2646754
– volume: 27
  start-page: 032106
  year: 2015
  ident: 2023081008211189600_c50
  article-title: Shear driven droplet shedding and coalescence on a superhydrophobic surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.4914168
– volume: 45
  start-page: 269
  year: 2013
  ident: 2023081008211189600_c21
  article-title: Moving contact lines: Scales, regimes, and dynamical transitions
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-011212-140734
– volume: 113
  start-page: 2
  year: 2015
  ident: 2023081008211189600_c65
  article-title: Comparison between numerical models for the simulation of moving contact lines
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.09.018
– volume: 36
  start-page: 9510
  year: 2020
  ident: 2023081008211189600_c35
  article-title: Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01494
– volume: 1
  start-page: 064102
  year: 2016
  ident: 2023081008211189600_c61
  article-title: Coalescence-induced nanodroplet jumping
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.1.064102
– volume: 227
  start-page: 6660
  year: 2008
  ident: 2023081008211189600_c78
  article-title: Derivation and validation of a novel implicit second-order accurate immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.03.031
– volume: 752
  start-page: 22
  year: 2014
  ident: 2023081008211189600_c28
  article-title: Self-propelled jumping upon drop coalescence on Leidenfrost surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.319
– volume: 135
  start-page: 345
  year: 2019
  ident: 2023081008211189600_c48
  article-title: Numerical simulations of multi-hop jumping on superhydrophobic surfaces
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.01.147
– volume: 2
  start-page: 112001
  year: 2017
  ident: 2023081008211189600_c46
  article-title: How merging droplets jump off a superhydrophobic surface: Measurements and model
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.112001
– volume: 38
  start-page: 71
  year: 2008
  ident: 2023081008211189600_c19
  article-title: Wetting and roughness
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.38.060407.132434
– volume: 6
  start-page: 99314
  year: 2016
  ident: 2023081008211189600_c32
  article-title: Self-enhancement of droplet jumping velocity: The interaction of liquid bridge and surface texture
  publication-title: RSC Adv.
  doi: 10.1039/C6RA22421K
– volume: 9
  start-page: 12311
  year: 2015
  ident: 2023081008211189600_c30
  article-title: Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05607
– volume: 106
  start-page: 1337
  year: 2016
  ident: 2023081008211189600_c37
  article-title: Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.128
– volume: 65
  start-page: 317
  year: 2019
  ident: 2023081008211189600_c11
  article-title: Self-cleaning surfaces for heat recovery during industrial hydrocarbon-rich gas cooling: An experimental and numerical study
  publication-title: AIChE J.
  doi: 10.1002/aic.16394
– volume: 57
  start-page: 827
  year: 1985
  ident: 2023081008211189600_c64
  article-title: Wetting: Statics and dynamics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.827
– volume: 153
  start-page: 26
  year: 1999
  ident: 2023081008211189600_c71
  article-title: A method for capturing sharp fluid interfaces on arbitrary meshes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6276
– year: 2022
  ident: 2023081008211189600_c79
  article-title: Coalescence-induced jumping of microdroplets on superhydrophobic surfaces—A numerical study
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24591
– volume: 94
  start-page: 470
  year: 1983
  ident: 2023081008211189600_c74
  article-title: A study of the advancing interface. II. Theoretical prediction of the dynamic contact angle in liquid-gas systems
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(83)90287-4
– volume: 11
  start-page: 8499
  year: 2017
  ident: 2023081008211189600_c31
  article-title: Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04481
– volume: 112
  start-page: 9247
  year: 2015
  ident: 2023081008211189600_c10
  article-title: Self-removal of condensed water on the legs of water striders
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1506874112
– volume: 138
  start-page: 105381
  year: 2020
  ident: 2023081008211189600_c12
  article-title: Recent advances in durability of superhydrophobic self-cleaning technology: A critical review
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105381
– volume: 36
  start-page: 5444
  year: 2020
  ident: 2023081008211189600_c34
  article-title: Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03968
– volume: 31
  start-page: 052107
  year: 2019
  ident: 2023081008211189600_c44
  article-title: Numerical simulation of self-propelled non-equal sized droplets
  publication-title: Phys. Fluids
  doi: 10.1063/1.5094757
– volume: 107
  start-page: 143105
  year: 2015
  ident: 2023081008211189600_c57
  article-title: Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932648
– volume: 31
  start-page: 122108
  year: 2019
  ident: 2023081008211189600_c49
  article-title: Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets
  publication-title: Phys. Fluids
  doi: 10.1063/1.5139417
– volume-title: Capillarity Wetting Phenomena
  year: 2004
  ident: 2023081008211189600_c20
  doi: 10.1007/978-0-387-21656-0
– volume: 315
  start-page: 212
  year: 2014
  ident: 2023081008211189600_c29
  article-title: Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.120
– volume: 16
  start-page: 7777
  year: 2000
  ident: 2023081008211189600_c16
  article-title: Ultrahydrophobic surfaces. Effects of topography length scales on wettability
  publication-title: Langmuir
  doi: 10.1021/la000598o
– volume: 33
  start-page: 6258
  year: 2017
  ident: 2023081008211189600_c41
  article-title: Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces: Initial droplet arrangement effect
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00901
– volume: 29
  start-page: 012104
  year: 2017
  ident: 2023081008211189600_c42
  article-title: Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.4973823
– volume: 121
  start-page: 315
  year: 2018
  ident: 2023081008211189600_c47
  article-title: Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.01.027
– volume: 135
  start-page: 111004
  year: 2013
  ident: 2023081008211189600_c2
  article-title: Modeling and optimization of superhydrophobic condensation
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4024597
– volume: 27
  start-page: 102102
  year: 2015
  ident: 2023081008211189600_c39
  article-title: Coalescence-induced jumping of droplet: Inertia and viscosity effects
  publication-title: Phys. Fluids
  doi: 10.1063/1.4932085
– volume: 13
  start-page: 1309
  year: 2019
  ident: 2023081008211189600_c38
  article-title: Droplet jumping: Effects of droplet size, surface structure, pinning, and liquid properties
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06677
– volume: 213
  start-page: 141
  year: 2006
  ident: 2023081008211189600_c76
  article-title: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.004
– volume: 24
  start-page: 102104
  year: 2012
  ident: 2023081008211189600_c8
  article-title: Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.4757122
– volume: 64
  start-page: 2913
  year: 2018
  ident: 2023081008211189600_c26
  article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces
  publication-title: AIChE J.
  doi: 10.1002/aic.16169
– volume: 33
  start-page: 8574
  year: 2017
  ident: 2023081008211189600_c56
  article-title: Insights into the impact of surface hydrophobicity on droplet coalescence and jumping dynamics
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02146
– volume: 291
  start-page: 437
  year: 2013
  ident: 2023081008211189600_c18
  article-title: Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-012-2751-6
– volume: 103
  start-page: 184501
  year: 2009
  ident: 2023081008211189600_c23
  article-title: Self-propelled dropwise condensate on superhydrophobic surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.184501
– volume: 109
  start-page: 164
  year: 2018
  ident: 2023081008211189600_c68
  article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.08.001
– volume-title: Wettability
  year: 1993
  ident: 2023081008211189600_c73
  article-title: Hydrodynamics of wetting
  doi: 10.1201/9781482277500
– volume: 374
  start-page: 1061
  year: 2018
  ident: 2023081008211189600_c67
  article-title: Transition in a numerical model of contact line dynamics and forced dewetting
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.06.078
– volume: 375
  start-page: 177
  year: 2018
  ident: 2023081008211189600_c77
  article-title: Unified formulation of the momentum-weighted interpolation for collocated variable arrangements
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.030
– volume: 33
  start-page: 112101
  year: 2021
  ident: 2023081008211189600_c51
  article-title: Effects of the surface tension gradient and viscosity on coalescence-induced droplet jumping on superamphiphobic surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/5.0070521
– volume: 95
  start-page: 506
  year: 2016
  ident: 2023081008211189600_c53
  article-title: Numerical investigation of coalescence-induced droplet jumping on superhydrophobic surfaces for efficient dropwise condensation heat transfer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.11.074
– volume: 3
  start-page: 3268
  year: 2013
  ident: 2023081008211189600_c17
  article-title: Advanced understanding of stickiness on superhydrophobic surfaces
  publication-title: Sci. Rep.
  doi: 10.1038/srep03268
– volume: 68
  start-page: 2495
  year: 2005
  ident: 2023081008211189600_c1
  article-title: Non-sticking drops
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/11/R01
– volume: 15
  start-page: 3395
  year: 1999
  ident: 2023081008211189600_c14
  article-title: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples
  publication-title: Langmuir
  doi: 10.1021/la990074s
– volume: 13
  start-page: 4160
  year: 2019
  ident: 2023081008211189600_c83
  article-title: Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09106
– volume: 257
  start-page: 6264
  year: 2011
  ident: 2023081008211189600_c6
  article-title: Anti-icing performance of superhydrophobic surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.02.057
– volume: 34
  start-page: 11195
  year: 2018
  ident: 2023081008211189600_c59
  article-title: Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02428
– volume: 228
  start-page: 5370
  year: 2009
  ident: 2023081008211189600_c82
  article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.027
– volume: 103
  start-page: 161601
  year: 2013
  ident: 2023081008211189600_c52
  article-title: Energy and hydrodynamic analyses of coalescence-induced jumping droplets
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4825273
– volume: 7
  start-page: 147
  year: 1984
  ident: 2023081008211189600_c70
  article-title: Enhancements of the simple method for predicting incompressible fluid flows
  publication-title: Numer. Heat Transfer
  doi: 10.1080/01495728408961817
– volume: 25
  start-page: 8854
  year: 2009
  ident: 2023081008211189600_c5
  article-title: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la901439c
– volume: 16
  start-page: 658
  year: 2017
  ident: 2023081008211189600_c62
  article-title: Antifogging abilities of model nanotextures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4868
– volume: 31
  start-page: 13452
  year: 2015
  ident: 2023081008211189600_c36
  article-title: Enhanced jumping-droplet departure
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03778
– volume: 505
  start-page: 309
  year: 2004
  ident: 2023081008211189600_c66
  article-title: Characteristic lengths at moving contact lines for a perfectly wetting fluid: The influence of speed on the dynamic contact angle
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004008663
– volume: 13
  start-page: 179
  year: 2013
  ident: 2023081008211189600_c3
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Lett.
  doi: 10.1021/nl303835d
– volume: 253
  start-page: 8818
  year: 2007
  ident: 2023081008211189600_c4
  article-title: Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.04.006
– volume: 155
  start-page: 48
  year: 2020
  ident: 2023081008211189600_c13
  article-title: Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.11.038
– volume: 88
  start-page: 445
  year: 2015
  ident: 2023081008211189600_c55
  article-title: Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.04.085
– volume: 20
  start-page: 225010
  year: 2008
  ident: 2023081008211189600_c15
  article-title: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/22/225010
– volume: 64
  start-page: 7
  year: 2015
  ident: 2023081008211189600_c40
  article-title: 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2015.03.002
– volume: 100
  start-page: 335
  year: 1992
  ident: 2023081008211189600_c72
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 7
  start-page: 241
  year: 2011
  ident: 2023081008211189600_c69
  article-title: Comparison between different immersed boundary conditions for simulation of complex fluid flows
  publication-title: Fluid Dyn. Mater. Process.
  doi: 10.3970/fdmp.2011.007.241
– volume: 44
  start-page: 16898
  year: 2019
  ident: 2023081008211189600_c75
  article-title: Improvement and further investigation on Hoffman-function-based dynamic contact angle model
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.256
– volume: 4
  start-page: eaau3488
  year: 2018
  ident: 2023081008211189600_c33
  article-title: Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3488
– volume: 752
  start-page: 39
  year: 2014
  ident: 2023081008211189600_c27
  article-title: Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.320
– volume: 211
  start-page: 115252
  year: 2020
  ident: 2023081008211189600_c45
  article-title: Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115252
– volume: 2
  start-page: 123601
  year: 2017
  ident: 2023081008211189600_c43
  article-title: Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.123601
– volume: 18
  start-page: 223
  year: 2014
  ident: 2023081008211189600_c24
  article-title: Dropwise condensation on micro-and nanostructured surfaces
  publication-title: Nanoscale Microscale Thermophys. Eng.
  doi: 10.1080/15567265.2013.862889
– volume: 171
  start-page: 243
  year: 2001
  ident: 2023081008211189600_c81
  article-title: Numerical simulation of moving contact line problems using a volume-of-fluid method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6785
– volume: 6
  start-page: 1776
  year: 2012
  ident: 2023081008211189600_c25
  article-title: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
  publication-title: ACS Nano
  doi: 10.1021/nn205052a
– volume: 11
  start-page: 154
  year: 2015
  ident: 2023081008211189600_c60
  article-title: Droplet coalescence on water repellant surfaces
  publication-title: Soft Matter
  doi: 10.1039/C4SM01647E
– volume: 285
  start-page: 24
  year: 2015
  ident: 2023081008211189600_c80
  article-title: Numerical time-step restrictions as a result of capillary waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.01.021
– volume: 11
  start-page: 371
  year: 1979
  ident: 2023081008211189600_c63
  article-title: On the spreading of liquids on solid surfaces: Static and dynamic contact lines
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.11.010179.002103
– volume: 23
  start-page: 3
  year: 2013
  ident: 2023081008211189600_c7
  article-title: Anti-icing potential of superhydrophobic coatings
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2013.01.002
– volume: 30
  start-page: 112102
  year: 2018
  ident: 2023081008211189600_c54
  article-title: Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.5046056
– volume: 122
  start-page: 20521
  year: 2018
  ident: 2023081008211189600_c58
  article-title: Self-removal of multiple and multisize coalescing nanodroplets on nanostructured surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04257
– volume: 110
  start-page: 7992
  year: 2013
  ident: 2023081008211189600_c9
  article-title: Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1210770110
SSID ssj0003926
Score 2.446357
Snippet Droplets coalesce and jump from superhydrophobic surfaces, a result that stems from the dominance of capillary and inertial forces and the presence of high...
SourceID swepub
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms capillary flows
Contact angle
contact lines
Droplets
gas / liquid flows
Hydrophobic surfaces
Hydrophobicity
Hysteresis
interfacial flows
liquid bridge
Mathematical models
Title Coalescence-induced jumping of droplets from superhydrophobic surfaces—The effect of contact-angle hysteresis
URI http://dx.doi.org/10.1063/5.0118645
https://www.proquest.com/docview/2730868201
https://research.chalmers.se/publication/533827
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRBcChQQS0tlUQ5cIojtOMmxaqmqqkUgqNSb5Y8xKao2qyRF6q0_gl_YX9Jxkt0CKoirNbYiv3HmjTzzDPAmRxNVumTiuPeUoEifGCfTxCkZjCidcSF2Ix9_VAcn8vA0O12B7b_c4CvxLspqpoWS2T1Y5USOiwms7hzuff60_OFSiFdDaSFlQkqkCwGhXyf_HnZuueQDCjTDnfcfWqF9fNl_DGsjMWQ7A5JPYAVn6_BoJIlsPILtOtzvazZd-xTq3doMakwOE0qtCSTPvhM8FI1YHZhvYnF417LYQsLaizk21WUcrGp75migCbEe6_rqJ_kKGwo74rxYvW5cl5jZt3NkVZR6ppz8rH0GJ_sfvu4eJOP7CYmTouiSPBC7Elao1KM0QSGRORcof_NWcquU5dKVdMC5kbbIFFofcinLkKHLS6I54jlMZvUMXwCz79E7YxXPiS5mAU2OKUdawlseyiCm8HaxvXqxofGNi3PdX3IroTM9IjGF10vT-aCocZfR5gIjPR6qVhPTogQsUpYpbC9x-9cid1j9qJtbCz33YQpHA-5Lk6i4PUotVdpV_Ts2rW5Ru6xQuckLLbgRWlortbWq1D7D3AqM-2Ze_tenbcBDHvso-qbGTZh0zQW-InbT2S3y7r3joy9bo5ffAFtV-j0
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence-induced+jumping+of+droplets+from+superhydrophobic+surfaces%E2%80%94The+effect+of+contact-angle+hysteresis&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Konstantinidis%2C+K.&rft.au=G%C3%B6hl%2C+J.&rft.au=Mark%2C+A.&rft.au=Sasic%2C+S.&rft.date=2022-11-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1063%2F5.0118645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon