Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate
[Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation. In order to realize effective controlled release...
Saved in:
Published in | European Polymer Journal Vol. 146; p. 110267 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Oxford
Elsevier Ltd
05.03.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation.
In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely “on demand” via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely. |
---|---|
AbstractList | In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely "on demand" via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely. [Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation. In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely “on demand” via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely. |
ArticleNumber | 110267 |
Author | Niu, Chunqing Liu, Xinyu Li, Xiang Wang, Yiyu Shi, Jian |
Author_xml | – sequence: 1 givenname: Chunqing surname: Niu fullname: Niu, Chunqing organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China – sequence: 2 givenname: Xinyu surname: Liu fullname: Liu, Xinyu organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China – sequence: 3 givenname: Yiyu orcidid: 0000-0001-6640-2107 surname: Wang fullname: Wang, Yiyu email: wangyiyu@hbeu.edu.cn organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China – sequence: 4 givenname: Xiang surname: Li fullname: Li, Xiang organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China – sequence: 5 givenname: Jian surname: Shi fullname: Shi, Jian organization: Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan |
BackLink | https://cir.nii.ac.jp/crid/1872553967636311552$$DView record in CiNii |
BookMark | eNqNkUuPFCEURokZE3sev2FIdFstjwKahYvJxFcyiS50TWi41U1ZBS1QJv3vh04ZF250w13wnfsl516jq5giIHRPyZYSKt-OW1jyKU3nedwywuiWUsKkeoE2dKd4R3UvrtCGENp3nAj1Cl2XMhJCFJd8gw5fj6mmeoQ826mbk18mW8Fjn5cDzjCBLYCHnGZssUvzKZVQAR_PPqcDTHjfvj1OEZcw_cBD2OcUIrbR45J8WBo1HUJsG2_Ry8FOBe5-zxv0_cP7b4-fuqcvHz8_Pjx1rue72snBE7l3DrwVwAavvJa0J4pRIbUfPOO93msntNy5XgpQjEjgVvmdJsTpgd-g1-veU04_FyjVjGnJsVUaJghvDGe6pd6tKZdTKRkG40K1NaRYsw2TocRc3JrR_HFrLm7N6rbx6i_-lMNs8_k_yDcrGUNopZe3nYkJwbVUsp2EUiFYiz2sMWiufgXIprgAsXkJGVw1PoV_Vj0DjsOnQA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2021_10_132 crossref_primary_10_1021_acsbiomaterials_3c00059 crossref_primary_10_1039_D2TB02808E crossref_primary_10_3390_foods11142147 crossref_primary_10_1016_j_colsurfa_2023_132668 crossref_primary_10_1016_j_polymertesting_2022_107762 crossref_primary_10_1021_acsomega_3c01401 crossref_primary_10_1016_j_trechm_2024_08_003 crossref_primary_10_1016_j_cclet_2023_109442 crossref_primary_10_1002_adfm_202305154 crossref_primary_10_3390_molecules28052107 crossref_primary_10_1007_s10934_023_01535_y crossref_primary_10_1016_j_jics_2024_101339 crossref_primary_10_1007_s10876_024_02588_y crossref_primary_10_1016_j_cej_2024_152933 crossref_primary_10_1016_j_ijbiomac_2023_127020 crossref_primary_10_1021_acsapm_2c00952 crossref_primary_10_3390_ma17020278 crossref_primary_10_1080_00914037_2025_2481423 crossref_primary_10_1002_mabi_202100352 crossref_primary_10_1016_j_ijbiomac_2023_126596 crossref_primary_10_1016_j_mtcomm_2024_111329 |
Cites_doi | 10.1021/cm200733s 10.1039/C8BM01541D 10.1016/j.eurpolymj.2019.05.049 10.1046/j.1442-6404.2002.00494.x 10.1038/srep33594 10.1016/j.tibtech.2018.04.004 10.1002/pat.159 10.1038/nrd2309 10.1016/j.eurpolymj.2020.109607 10.1016/j.carbpol.2018.09.083 10.1016/j.actbio.2019.07.024 10.1016/j.carbpol.2019.115070 10.1016/j.eurpolymj.2019.06.001 10.1021/acsbiomaterials.5b00111 10.1016/j.colsurfb.2017.03.036 10.2147/IJN.S144986 10.1016/j.actbio.2006.12.009 10.1002/adma.201302810 10.1016/j.eurpolymj.2018.11.025 10.1016/j.compscitech.2013.06.011 10.2147/IJN.S133078 10.1021/acsbiomaterials.9b01676 10.1016/j.eurpolymj.2019.109220 10.1016/j.addr.2012.09.043 10.1016/j.progpolymsci.2011.06.003 10.1038/srep39477 10.1038/nmat3776 10.1016/j.apsusc.2014.02.160 10.1002/adma.201502454 10.1039/C9BM00734B 10.1002/adfm.201400526 10.1016/j.compositesb.2019.107204 10.1016/j.biomaterials.2009.06.054 10.1016/j.ijbiomac.2019.10.141 10.1021/bm1010504 10.1016/j.jpha.2016.10.001 10.1016/j.progpolymsci.2015.02.001 10.1002/anie.201501705 10.1016/j.jconrel.2015.11.022 10.1039/C5CC08391E 10.1016/j.jphotobiol.2020.111960 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 5, 2021 |
DBID | RYH AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1016/j.eurpolymj.2021.110267 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1945 |
ExternalDocumentID | 10_1016_j_eurpolymj_2021_110267 S001430572100001X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K XPP ZMT ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH 29G AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SMS T9H WUQ 7SR 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c438t-6fd06bcceda5e2fd7d96140721569dfd2349b9c5968c465e7206e3a7d8900c9f3 |
IEDL.DBID | .~1 |
ISSN | 0014-3057 |
IngestDate | Fri Jul 25 08:03:27 EDT 2025 Tue Jul 01 01:58:47 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Thu Jun 26 23:54:41 EDT 2025 Fri Feb 23 02:44:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Drug release Silk fibroin Sodium alginate NIR responsive hydrogels |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-6fd06bcceda5e2fd7d96140721569dfd2349b9c5968c465e7206e3a7d8900c9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6640-2107 0000-0002-0481-3442 |
PQID | 2503465329 |
PQPubID | 2045478 |
ParticipantIDs | proquest_journals_2503465329 crossref_citationtrail_10_1016_j_eurpolymj_2021_110267 crossref_primary_10_1016_j_eurpolymj_2021_110267 nii_cinii_1872553967636311552 elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2021_110267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-05 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | European Polymer Journal |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Liu, Guo, Ruan, Hu, Jiang, Liang, Shen (b0150) 2019; 96 Buddanavar, Nandibewoor (b0175) 2017; 7 Rasool, Ata, Islam (b0030) 2019; 203 Hu, Lu, Sun, Cebe, Wang, Zhang, Kaplan (b0165) 2010; 11 Gao, Chen, Zhao, Yan, Wang, Zhou, Shi, Xue (b0215) 2018; 110 Y. Wang, S. Fan, Y. Li, C. Niu, X. Li, Y. Guo, J. Zhang, J. Shi, X. Wang, Silk fibroin/sodium alginate composite porous materials with controllable degradation, Int. J. Biol. Macromol. (2019). Anugrah, Ramesh, Kim, Hyun, Lim (b0090) 2019; 223 Ahadi, Khorshidi, Karkhaneh (b0210) 2019; 118 Zhang, Qu, Li, Zhang, Wei, Shi, Chen (b0185) 2014; 303 Partlow, Hanna, Rnjak-Kovacina, Moreau, Applegate, Burke, Marelli, Mitropoulos, Omenetto, Kaplan (b0190) 2014; 24 Mandru, Bercea, Gradinaru, Ciobanu, Albulescu (b0015) 2019; 118 Dong, Wei, Liang, Liu, Kong, Lv (b0040) 2017; 154 Wang, Wang, Zhang, Cheng (b0070) 2016; 52 Lee, Ahn, Kim (b0170) 2011; 24 Yan, Han, Wang, Zhang, You, Luo, Xu, Li, Li, Zhang, Kaplan (b0195) 2019; 176 Tu, Cao, Jing, Fan, Zhang, Liao, Liu (b0200) 2013; 85 Mura, Nicolas, Couvreur (b0045) 2013; 12 Wang, Wang, Shi, Zhu, Zhang, Zhang, Ma, Hou, Lin, Yang (b0130) 2016; 6 Ansari, Sadati, Mozafari, Ashrafi, Azadi (b0010) 2020; 128 Strong, West (b0060) 2015; 1 Liu, Ruan, Shi, Jiang, Ji, Shen (b0145) 2019; 7 Harley, Leung, Silva, Gibson (b0205) 2007; 3 Kim, Shin, Jeon, Kweon, Lee (b0180) 2012; 25 Cho, Kim, Shin, Heo, Noh, Hong, Cho, Lim (b0080) 2017; 12 Lee, Mooney (b0100) 2012; 37 Zou, Liu, Abbas, Yan (b0020) 2016; 28 Peppas, Van Blarcom (b0050) 2016; 240 Koh, Cheng, Teng, Khin, Loh, Tee, Low, Ye, Yu, Zhang (b0115) 2015; 46 S. Gou, D. Xie, Y. Ma, Y. Huang, B. Xiao, Injectable, Thixotropic, and Multi-Responsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy, ACS Biomater. Sci. Eng. 6 (2019) 1052–1063. Liao, Liu, Kempson, Fa, Huang (b0075) 2017; 12 Li, Zhang, Lu, Wu, Yan (b0140) 2002; 13 Farokhi, Mottaghitalab, Fatahi, Khademhosseini, Kaplan (b0120) 2018; 36 GhavamiNejad, SamariKhalaj, Aguilar, Park, Kim (b0065) 2016; 6 Shikanov, Xu, Woodruff, Shea (b0105) 2009; 30 Ma, Shi, Pena, Peng, Yu (b0025) 2015; 54 Tortelli, Cancedda (b0125) 2009; 17 Phuong, Jhon, In, Park (b0035) 2019; 7 Kong, Mooney (b0005) 2007; 6 Kundu, Rajkhowa, Kundu, Wang (b0110) 2013; 65 Qureshi, Nayak, Maji, Anis, Pal (b0055) 2019; 120 Schütt, Fischer, Kopitz, Holz (b0095) 2002; 30 Matai, Kaur, Soni, Sachdev, Mishra (b0160) 2020; 210 Li, Wang, Ren, Qu (b0085) 2013; 25 Li (10.1016/j.eurpolymj.2021.110267_b0085) 2013; 25 Ansari (10.1016/j.eurpolymj.2021.110267_b0010) 2020; 128 Ma (10.1016/j.eurpolymj.2021.110267_b0025) 2015; 54 Wang (10.1016/j.eurpolymj.2021.110267_b0070) 2016; 52 Li (10.1016/j.eurpolymj.2021.110267_b0140) 2002; 13 10.1016/j.eurpolymj.2021.110267_b0155 10.1016/j.eurpolymj.2021.110267_b0135 Matai (10.1016/j.eurpolymj.2021.110267_b0160) 2020; 210 Dong (10.1016/j.eurpolymj.2021.110267_b0040) 2017; 154 Hu (10.1016/j.eurpolymj.2021.110267_b0165) 2010; 11 Mandru (10.1016/j.eurpolymj.2021.110267_b0015) 2019; 118 Koh (10.1016/j.eurpolymj.2021.110267_b0115) 2015; 46 Kim (10.1016/j.eurpolymj.2021.110267_b0180) 2012; 25 Gao (10.1016/j.eurpolymj.2021.110267_b0215) 2018; 110 GhavamiNejad (10.1016/j.eurpolymj.2021.110267_b0065) 2016; 6 Liu (10.1016/j.eurpolymj.2021.110267_b0150) 2019; 96 Strong (10.1016/j.eurpolymj.2021.110267_b0060) 2015; 1 Mura (10.1016/j.eurpolymj.2021.110267_b0045) 2013; 12 Schütt (10.1016/j.eurpolymj.2021.110267_b0095) 2002; 30 Phuong (10.1016/j.eurpolymj.2021.110267_b0035) 2019; 7 Liao (10.1016/j.eurpolymj.2021.110267_b0075) 2017; 12 Anugrah (10.1016/j.eurpolymj.2021.110267_b0090) 2019; 223 Liu (10.1016/j.eurpolymj.2021.110267_b0145) 2019; 7 Tu (10.1016/j.eurpolymj.2021.110267_b0200) 2013; 85 Harley (10.1016/j.eurpolymj.2021.110267_b0205) 2007; 3 Peppas (10.1016/j.eurpolymj.2021.110267_b0050) 2016; 240 Qureshi (10.1016/j.eurpolymj.2021.110267_b0055) 2019; 120 Farokhi (10.1016/j.eurpolymj.2021.110267_b0120) 2018; 36 Partlow (10.1016/j.eurpolymj.2021.110267_b0190) 2014; 24 Tortelli (10.1016/j.eurpolymj.2021.110267_b0125) 2009; 17 Yan (10.1016/j.eurpolymj.2021.110267_b0195) 2019; 176 Wang (10.1016/j.eurpolymj.2021.110267_b0130) 2016; 6 Zhang (10.1016/j.eurpolymj.2021.110267_b0185) 2014; 303 Lee (10.1016/j.eurpolymj.2021.110267_b0170) 2011; 24 Buddanavar (10.1016/j.eurpolymj.2021.110267_b0175) 2017; 7 Rasool (10.1016/j.eurpolymj.2021.110267_b0030) 2019; 203 Kong (10.1016/j.eurpolymj.2021.110267_b0005) 2007; 6 Cho (10.1016/j.eurpolymj.2021.110267_b0080) 2017; 12 Lee (10.1016/j.eurpolymj.2021.110267_b0100) 2012; 37 Ahadi (10.1016/j.eurpolymj.2021.110267_b0210) 2019; 118 Zou (10.1016/j.eurpolymj.2021.110267_b0020) 2016; 28 Shikanov (10.1016/j.eurpolymj.2021.110267_b0105) 2009; 30 Kundu (10.1016/j.eurpolymj.2021.110267_b0110) 2013; 65 |
References_xml | – volume: 223 year: 2019 ident: b0090 article-title: Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release publication-title: Carbohydr. Polym. – volume: 118 start-page: 265 year: 2019 end-page: 274 ident: b0210 article-title: A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride publication-title: Eur. Polym. J. – volume: 3 start-page: 463 year: 2007 end-page: 474 ident: b0205 article-title: Mechanical characterization of collagen–glycosaminoglycan scaffolds publication-title: Acta Biomater. – volume: 7 start-page: 1705 year: 2019 end-page: 1715 ident: b0145 article-title: A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy publication-title: Biomater. Sci. – volume: 210 year: 2020 ident: b0160 article-title: Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery publication-title: J. Photochem. Photobiol., B – volume: 6 start-page: 39477 year: 2016 ident: b0130 article-title: A Biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering publication-title: Sci. Rep. – volume: 25 start-page: 129 year: 2012 end-page: 132 ident: b0180 article-title: Tetracycline-incorporated silk fibroin films publication-title: Int. J. Ind. Entomol. – volume: 17 start-page: 1 year: 2009 ident: b0125 article-title: Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro publication-title: Eur. Cells Mater. – volume: 118 start-page: 137 year: 2019 end-page: 145 ident: b0015 article-title: Polyurethane/poly(vinyl alcohol) hydrogels: preparation, characterization and drug delivery publication-title: Eur. Polym. J. – volume: 12 start-page: 2607 year: 2017 ident: b0080 article-title: Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly (γ-glutamic acid) hydrogel publication-title: Int. J. Nanomed. – volume: 303 start-page: 255 year: 2014 end-page: 262 ident: b0185 article-title: Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces publication-title: Appl. Surf. Sci. – volume: 203 start-page: 423 year: 2019 end-page: 429 ident: b0030 article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application publication-title: Carbohydr. Polym. – volume: 120 year: 2019 ident: b0055 article-title: Environment sensitive hydrogels for drug delivery applications publication-title: Eur. Polym. J. – volume: 30 start-page: 110 year: 2002 end-page: 114 ident: b0095 article-title: Indocyanine green angiography in the presence of subretinal or intraretinal haemorrhages: clinical and experimental investigations publication-title: Clin. Exp. Ophthal. – volume: 176 year: 2019 ident: b0195 article-title: Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels publication-title: Compos. B – volume: 28 start-page: 1031 year: 2016 end-page: 1043 ident: b0020 article-title: Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics publication-title: Adv. Mater. – volume: 128 year: 2020 ident: b0010 article-title: Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders publication-title: Eur. Polym. J. – volume: 11 start-page: 3178 year: 2010 end-page: 3188 ident: b0165 article-title: Biomaterials from ultrasonication-induced silk fibroin− hyaluronic acid hydrogels publication-title: Biomacromolecules – volume: 36 start-page: 907 year: 2018 end-page: 922 ident: b0120 article-title: Overview of silk fibroin use in wound dressings publication-title: Trends Biotechnol. – volume: 85 start-page: 126 year: 2013 end-page: 130 ident: b0200 article-title: Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior publication-title: Compos. Sci. Technol. – reference: S. Gou, D. Xie, Y. Ma, Y. Huang, B. Xiao, Injectable, Thixotropic, and Multi-Responsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy, ACS Biomater. Sci. Eng. 6 (2019) 1052–1063. – volume: 12 start-page: 7603 year: 2017 ident: b0075 article-title: Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes publication-title: Int. J. Nanomed. – volume: 7 start-page: 148 year: 2017 end-page: 155 ident: b0175 article-title: Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine publication-title: J. Pharm. Anal. – volume: 24 start-page: 4615 year: 2014 end-page: 4624 ident: b0190 article-title: Highly tunable elastomeric silk biomaterials publication-title: Adv. Funct. Mater. – volume: 12 start-page: 991 year: 2013 end-page: 1003 ident: b0045 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. – volume: 30 start-page: 5476 year: 2009 end-page: 5485 ident: b0105 article-title: Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development publication-title: Biomaterials – volume: 65 start-page: 457 year: 2013 end-page: 470 ident: b0110 article-title: Silk fibroin biomaterials for tissue regenerations publication-title: Adv. Drug Del. Rev. – volume: 54 start-page: 7376 year: 2015 end-page: 7380 ident: b0025 article-title: Thermally responsive hydrogel blends: a general drug carrier model for controlled drug release publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 978 year: 2016 end-page: 981 ident: b0070 article-title: Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery publication-title: Chem. Commun. – volume: 6 start-page: 33594 year: 2016 ident: b0065 article-title: pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy publication-title: Sci. Rep. – volume: 110 start-page: 192 year: 2018 end-page: 201 ident: b0215 article-title: Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery publication-title: Eur. Polym. J. – volume: 46 start-page: 86 year: 2015 end-page: 110 ident: b0115 article-title: Structures, mechanical properties and applications of silk fibroin materials publication-title: Prog. Polym. Sci. – volume: 7 start-page: 4800 year: 2019 end-page: 4812 ident: b0035 article-title: Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots publication-title: Biomater. Sci. – volume: 24 start-page: 881 year: 2011 end-page: 891 ident: b0170 article-title: Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration publication-title: Chem. Mater. – volume: 13 start-page: 605 year: 2002 end-page: 610 ident: b0140 article-title: Study on porous silk fibroin materials: 3. Influence of repeated freeze–thawing on the structure and properties of porous silk fibroin materials publication-title: Polym. Adv. Technol. – volume: 6 start-page: 455 year: 2007 end-page: 463 ident: b0005 article-title: Microenvironmental regulation of biomacromolecular therapies publication-title: Nat. Rev. Drug Discovery – volume: 154 start-page: 253 year: 2017 end-page: 262 ident: b0040 article-title: Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery publication-title: Colloids Surf. B. Biointerfaces – reference: Y. Wang, S. Fan, Y. Li, C. Niu, X. Li, Y. Guo, J. Zhang, J. Shi, X. Wang, Silk fibroin/sodium alginate composite porous materials with controllable degradation, Int. J. Biol. Macromol. (2019). – volume: 37 start-page: 106 year: 2012 end-page: 126 ident: b0100 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. – volume: 25 start-page: 6737 year: 2013 end-page: 6743 ident: b0085 article-title: 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release publication-title: Adv. Mater. – volume: 240 start-page: 142 year: 2016 end-page: 150 ident: b0050 article-title: Hydrogel-based biosensors and sensing devices for drug delivery publication-title: J. Control. Release – volume: 1 start-page: 685 year: 2015 end-page: 692 ident: b0060 article-title: Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles publication-title: ACS Biomater. Sci. Eng. – volume: 96 start-page: 281 year: 2019 end-page: 294 ident: b0150 article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy publication-title: Acta Biomater. – volume: 24 start-page: 881 issue: 5 year: 2011 ident: 10.1016/j.eurpolymj.2021.110267_b0170 article-title: Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration publication-title: Chem. Mater. doi: 10.1021/cm200733s – volume: 7 start-page: 1705 issue: 4 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0145 article-title: A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy publication-title: Biomater. Sci. doi: 10.1039/C8BM01541D – volume: 118 start-page: 137 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0015 article-title: Polyurethane/poly(vinyl alcohol) hydrogels: preparation, characterization and drug delivery publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.05.049 – volume: 30 start-page: 110 issue: 2 year: 2002 ident: 10.1016/j.eurpolymj.2021.110267_b0095 article-title: Indocyanine green angiography in the presence of subretinal or intraretinal haemorrhages: clinical and experimental investigations publication-title: Clin. Exp. Ophthal. doi: 10.1046/j.1442-6404.2002.00494.x – volume: 6 start-page: 33594 year: 2016 ident: 10.1016/j.eurpolymj.2021.110267_b0065 article-title: pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy publication-title: Sci. Rep. doi: 10.1038/srep33594 – volume: 36 start-page: 907 issue: 9 year: 2018 ident: 10.1016/j.eurpolymj.2021.110267_b0120 article-title: Overview of silk fibroin use in wound dressings publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.04.004 – volume: 13 start-page: 605 issue: 8 year: 2002 ident: 10.1016/j.eurpolymj.2021.110267_b0140 article-title: Study on porous silk fibroin materials: 3. Influence of repeated freeze–thawing on the structure and properties of porous silk fibroin materials publication-title: Polym. Adv. Technol. doi: 10.1002/pat.159 – volume: 6 start-page: 455 issue: 6 year: 2007 ident: 10.1016/j.eurpolymj.2021.110267_b0005 article-title: Microenvironmental regulation of biomacromolecular therapies publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2309 – volume: 128 year: 2020 ident: 10.1016/j.eurpolymj.2021.110267_b0010 article-title: Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109607 – volume: 203 start-page: 423 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0030 article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.09.083 – volume: 96 start-page: 281 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0150 article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.024 – volume: 223 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0090 article-title: Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115070 – volume: 17 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.eurpolymj.2021.110267_b0125 article-title: Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro publication-title: Eur. Cells Mater. – volume: 118 start-page: 265 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0210 article-title: A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.06.001 – volume: 1 start-page: 685 issue: 8 year: 2015 ident: 10.1016/j.eurpolymj.2021.110267_b0060 article-title: Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.5b00111 – volume: 154 start-page: 253 year: 2017 ident: 10.1016/j.eurpolymj.2021.110267_b0040 article-title: Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2017.03.036 – volume: 12 start-page: 7603 year: 2017 ident: 10.1016/j.eurpolymj.2021.110267_b0075 article-title: Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S144986 – volume: 25 start-page: 129 issue: 1 year: 2012 ident: 10.1016/j.eurpolymj.2021.110267_b0180 article-title: Tetracycline-incorporated silk fibroin films publication-title: Int. J. Ind. Entomol. – volume: 3 start-page: 463 issue: 4 year: 2007 ident: 10.1016/j.eurpolymj.2021.110267_b0205 article-title: Mechanical characterization of collagen–glycosaminoglycan scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2006.12.009 – volume: 25 start-page: 6737 issue: 46 year: 2013 ident: 10.1016/j.eurpolymj.2021.110267_b0085 article-title: 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release publication-title: Adv. Mater. doi: 10.1002/adma.201302810 – volume: 110 start-page: 192 year: 2018 ident: 10.1016/j.eurpolymj.2021.110267_b0215 article-title: Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.11.025 – volume: 85 start-page: 126 year: 2013 ident: 10.1016/j.eurpolymj.2021.110267_b0200 article-title: Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.06.011 – volume: 12 start-page: 2607 year: 2017 ident: 10.1016/j.eurpolymj.2021.110267_b0080 article-title: Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly (γ-glutamic acid) hydrogel publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S133078 – ident: 10.1016/j.eurpolymj.2021.110267_b0155 doi: 10.1021/acsbiomaterials.9b01676 – volume: 120 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0055 article-title: Environment sensitive hydrogels for drug delivery applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.109220 – volume: 65 start-page: 457 issue: 4 year: 2013 ident: 10.1016/j.eurpolymj.2021.110267_b0110 article-title: Silk fibroin biomaterials for tissue regenerations publication-title: Adv. Drug Del. Rev. doi: 10.1016/j.addr.2012.09.043 – volume: 37 start-page: 106 issue: 1 year: 2012 ident: 10.1016/j.eurpolymj.2021.110267_b0100 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.06.003 – volume: 6 start-page: 39477 issue: 1 year: 2016 ident: 10.1016/j.eurpolymj.2021.110267_b0130 article-title: A Biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering publication-title: Sci. Rep. doi: 10.1038/srep39477 – volume: 12 start-page: 991 issue: 11 year: 2013 ident: 10.1016/j.eurpolymj.2021.110267_b0045 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 303 start-page: 255 year: 2014 ident: 10.1016/j.eurpolymj.2021.110267_b0185 article-title: Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.02.160 – volume: 28 start-page: 1031 issue: 6 year: 2016 ident: 10.1016/j.eurpolymj.2021.110267_b0020 article-title: Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics publication-title: Adv. Mater. doi: 10.1002/adma.201502454 – volume: 7 start-page: 4800 issue: 11 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0035 article-title: Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots publication-title: Biomater. Sci. doi: 10.1039/C9BM00734B – volume: 24 start-page: 4615 issue: 29 year: 2014 ident: 10.1016/j.eurpolymj.2021.110267_b0190 article-title: Highly tunable elastomeric silk biomaterials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400526 – volume: 176 year: 2019 ident: 10.1016/j.eurpolymj.2021.110267_b0195 article-title: Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels publication-title: Compos. B doi: 10.1016/j.compositesb.2019.107204 – volume: 30 start-page: 5476 issue: 29 year: 2009 ident: 10.1016/j.eurpolymj.2021.110267_b0105 article-title: Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.06.054 – ident: 10.1016/j.eurpolymj.2021.110267_b0135 doi: 10.1016/j.ijbiomac.2019.10.141 – volume: 11 start-page: 3178 issue: 11 year: 2010 ident: 10.1016/j.eurpolymj.2021.110267_b0165 article-title: Biomaterials from ultrasonication-induced silk fibroin− hyaluronic acid hydrogels publication-title: Biomacromolecules doi: 10.1021/bm1010504 – volume: 7 start-page: 148 issue: 3 year: 2017 ident: 10.1016/j.eurpolymj.2021.110267_b0175 article-title: Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2016.10.001 – volume: 46 start-page: 86 year: 2015 ident: 10.1016/j.eurpolymj.2021.110267_b0115 article-title: Structures, mechanical properties and applications of silk fibroin materials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.02.001 – volume: 54 start-page: 7376 issue: 25 year: 2015 ident: 10.1016/j.eurpolymj.2021.110267_b0025 article-title: Thermally responsive hydrogel blends: a general drug carrier model for controlled drug release publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501705 – volume: 240 start-page: 142 year: 2016 ident: 10.1016/j.eurpolymj.2021.110267_b0050 article-title: Hydrogel-based biosensors and sensing devices for drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.11.022 – volume: 52 start-page: 978 issue: 5 year: 2016 ident: 10.1016/j.eurpolymj.2021.110267_b0070 article-title: Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery publication-title: Chem. Commun. doi: 10.1039/C5CC08391E – volume: 210 year: 2020 ident: 10.1016/j.eurpolymj.2021.110267_b0160 article-title: Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2020.111960 |
SSID | ssj0007363 |
Score | 2.428172 |
Snippet | [Display omitted]
•A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects... In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110267 |
SubjectTerms | Composite materials Controlled release Drug delivery systems Drug release Hydrogels Modulus of elasticity Near infrared radiation NIR responsive hydrogels Polymers Pore size Porosity Radiation effects Scanning electron microscopy Serum albumin Silk fibroin Sodium alginate Stiffness |
Title | Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate |
URI | https://dx.doi.org/10.1016/j.eurpolymj.2021.110267 https://cir.nii.ac.jp/crid/1872553967636311552 https://www.proquest.com/docview/2503465329 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHOilamlRtwXkA9eUJH7FvaFV0bZIiANIe7Oc2F5CswnazR649Ld3xptQoVbi0EukRBklGU_mkXwzHyGnoqxssFInqdUu4SKoxHLOE2XjfDBfchenfV7J2S3_MRfzHTIde2EQVjn4_q1Pj956OHI2aPPsoa6xxzfDeVVQwsRP1HPsYOcKrfzLrz8wD8UGNrUM_wAI9Qzj5eFhuuZxeQ-FYp4hJD6PhPP_jFCv2rr-y2PHMHTxlrwZ8kd6vr3Fd2THtwdkfzrStr0ni-u7ro9tVUvbJMvOIT-Xd9StNguKDCkQtig2lVBLEU-OoC1P7x7dqlv4hmJUc7Rr6bpuftIAxXRXt9S2jq47V29AqkEmh95_ILcX326ms2RgU0gqzoo-kcGlsqxAr1b4PDjlNIRmHI8mpHbB5YzrUldCy6LiUniVp9Izq1yh07TSgR2S3bZr_UdCmYc0zMtS2RC4ZKzM4ERRpqLSWQE10oTIUYOmGkaNI-NFY0ZM2b15Ur1B1Zut6ickfRJ82E7beFnk67hE5pnhGIgJLwsfw6LCPeI2KxTUV0yDiYLNZDibbkKOxuU2w7u9NpA0MpxKl-tP_3Ptz-Q17kU8mzgiu_1q448hwenLk2jBJ2Tv_Pvl7Oo3qqz6MQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEF4lziG9ROlLdZu0e-gVBdgX21tkJXKa1OohkXxbLezikGKIbHzIv88MXixFrZRDLxyAETA7zANmvo-Q7yIvbGmljmKrXcRFqSLLOY-U7fHBfM5dj_Y5k9M7_nMu5ntkMszCYFtl8P1bn95767DnLGjz7LGqcMY3QbwqKGH6T9TzfXKA6FRiRA7Or66ns51DViwQqiX4E0CoF21eHp6nrZ-WD1Arpgl2xac95_w_g9R-U1V_Oe0-El0ek6OQQtLz7V2-JXu-eUcOJwNz23uy-H3fdv1k1dLW0bJ1SNHlHXWrzYIiSQpELopzJdRSbCnHvi1P75_cql34mmJgc7Rt6Lqq_9AS6um2aqhtHF23rtqAVI1kDp3_QO4uL24n0ygQKkQFZ1kXydLFMi9AtVb4tHTKaYjOiJAmpHalSxnXuS6EllnBpfAqjaVnVrlMx3GhS_aRjJq28Z8IZR4yMS9zZcuSS8byBE4UeSwKnWRQJo2JHDRoioA2jqQXtRnayh7MTvUGVW-2qh-TeCf4uAXceF3kx7BE5oXtGAgLrwufwqLCPeI2yRSUWEyDlYLNJAhPNyYnw3Kb8HqvDeSNDIHpUv35f679jRxOb3_dmJur2fUX8gaP9O1t4oSMutXGn0K-0-Vfgz0_Azx8_OI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photothermal-modulated+drug+release+from+a+composite+hydrogel+based+on+silk+fibroin+and+sodium+alginate&rft.jtitle=European+Polymer+Journal&rft.au=Chunqing+Niu&rft.au=Xinyu+Liu&rft.au=Yiyu+Wang&rft.au=Xiang+Li&rft.date=2021-03-05&rft.pub=Elsevier+BV&rft.issn=0014-3057&rft.volume=146&rft.spage=110267&rft_id=info:doi/10.1016%2Fj.eurpolymj.2021.110267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon |