Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate

[Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation. In order to realize effective controlled release...

Full description

Saved in:
Bibliographic Details
Published inEuropean Polymer Journal Vol. 146; p. 110267
Main Authors Niu, Chunqing, Liu, Xinyu, Wang, Yiyu, Li, Xiang, Shi, Jian
Format Journal Article
LanguageEnglish
Japanese
Published Oxford Elsevier Ltd 05.03.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation. In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely “on demand” via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely.
AbstractList In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely "on demand" via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely.
[Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects after NIR irradiation.•Drug release profiles from the gels can be controlled by NIR irradiation. In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted noticeable attention as an innovative vehicle for a reserving and releasing the drug remotely “on demand” via stimuli-responsive NIR irradiation on/off. Herein, a modulated drug delivery platform was developed based on a silk fibroin (SF)/sodium alginate (SA) composite hydrogel incorporated with indocyanine green (ICG) as components. The gelation time of the crosslinked composite hydrogel ranged from 15 to 35 min, mainly depending on the concentration of SF. These materials are typical elastic hydrogels display stiffness between 260 and 2210 Pa. Besides, the compressive modulus E of the hydrogels varied in the range of 0.89–1.71 kPa by changing blend ratios. Scanning electron microscope (SEM) revealed the hydrogels showed highly porous (~89%) and tailored pore size in the range of 132–215 µm. And SF mainly remained silk I structure in the composite hydrogel and bovine serum albumin (BSA) and tetracycline hydrochloride (TH) still kept their own structure after encapsulation. SF/SA@ICG hydrogels exhibited desirable stability and swelling properties. Additionally, these hydrogel extracts displayed good cellular compatibility in vitro. Under near-infrared (NIR) radiation exposure, the hydrogels exhibited photothermal properties such as temperature rise by 8 °C, sufficient to stimulate drug release. Furthermore, hydrogels demonstrated NIR stimulated drug release, which was evaluated using BSA and TH, the drug loaded photothermal hydrogels can effectively increase the amount of drug released under NIR light trigger for just 1 min. The NIR-responsive hydrogels can provide a new option for developing natural ploymer based delivery vehicles to regulate drug release on demond using NIR irradiation remotely.
ArticleNumber 110267
Author Niu, Chunqing
Liu, Xinyu
Li, Xiang
Wang, Yiyu
Shi, Jian
Author_xml – sequence: 1
  givenname: Chunqing
  surname: Niu
  fullname: Niu, Chunqing
  organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
– sequence: 2
  givenname: Xinyu
  surname: Liu
  fullname: Liu, Xinyu
  organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
– sequence: 3
  givenname: Yiyu
  orcidid: 0000-0001-6640-2107
  surname: Wang
  fullname: Wang, Yiyu
  email: wangyiyu@hbeu.edu.cn
  organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, People’s Republic of China
– sequence: 5
  givenname: Jian
  surname: Shi
  fullname: Shi, Jian
  organization: Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
BackLink https://cir.nii.ac.jp/crid/1872553967636311552$$DView record in CiNii
BookMark eNqNkUuPFCEURokZE3sev2FIdFstjwKahYvJxFcyiS50TWi41U1ZBS1QJv3vh04ZF250w13wnfsl516jq5giIHRPyZYSKt-OW1jyKU3nedwywuiWUsKkeoE2dKd4R3UvrtCGENp3nAj1Cl2XMhJCFJd8gw5fj6mmeoQ826mbk18mW8Fjn5cDzjCBLYCHnGZssUvzKZVQAR_PPqcDTHjfvj1OEZcw_cBD2OcUIrbR45J8WBo1HUJsG2_Ry8FOBe5-zxv0_cP7b4-fuqcvHz8_Pjx1rue72snBE7l3DrwVwAavvJa0J4pRIbUfPOO93msntNy5XgpQjEjgVvmdJsTpgd-g1-veU04_FyjVjGnJsVUaJghvDGe6pd6tKZdTKRkG40K1NaRYsw2TocRc3JrR_HFrLm7N6rbx6i_-lMNs8_k_yDcrGUNopZe3nYkJwbVUsp2EUiFYiz2sMWiufgXIprgAsXkJGVw1PoV_Vj0DjsOnQA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2021_10_132
crossref_primary_10_1021_acsbiomaterials_3c00059
crossref_primary_10_1039_D2TB02808E
crossref_primary_10_3390_foods11142147
crossref_primary_10_1016_j_colsurfa_2023_132668
crossref_primary_10_1016_j_polymertesting_2022_107762
crossref_primary_10_1021_acsomega_3c01401
crossref_primary_10_1016_j_trechm_2024_08_003
crossref_primary_10_1016_j_cclet_2023_109442
crossref_primary_10_1002_adfm_202305154
crossref_primary_10_3390_molecules28052107
crossref_primary_10_1007_s10934_023_01535_y
crossref_primary_10_1016_j_jics_2024_101339
crossref_primary_10_1007_s10876_024_02588_y
crossref_primary_10_1016_j_cej_2024_152933
crossref_primary_10_1016_j_ijbiomac_2023_127020
crossref_primary_10_1021_acsapm_2c00952
crossref_primary_10_3390_ma17020278
crossref_primary_10_1080_00914037_2025_2481423
crossref_primary_10_1002_mabi_202100352
crossref_primary_10_1016_j_ijbiomac_2023_126596
crossref_primary_10_1016_j_mtcomm_2024_111329
Cites_doi 10.1021/cm200733s
10.1039/C8BM01541D
10.1016/j.eurpolymj.2019.05.049
10.1046/j.1442-6404.2002.00494.x
10.1038/srep33594
10.1016/j.tibtech.2018.04.004
10.1002/pat.159
10.1038/nrd2309
10.1016/j.eurpolymj.2020.109607
10.1016/j.carbpol.2018.09.083
10.1016/j.actbio.2019.07.024
10.1016/j.carbpol.2019.115070
10.1016/j.eurpolymj.2019.06.001
10.1021/acsbiomaterials.5b00111
10.1016/j.colsurfb.2017.03.036
10.2147/IJN.S144986
10.1016/j.actbio.2006.12.009
10.1002/adma.201302810
10.1016/j.eurpolymj.2018.11.025
10.1016/j.compscitech.2013.06.011
10.2147/IJN.S133078
10.1021/acsbiomaterials.9b01676
10.1016/j.eurpolymj.2019.109220
10.1016/j.addr.2012.09.043
10.1016/j.progpolymsci.2011.06.003
10.1038/srep39477
10.1038/nmat3776
10.1016/j.apsusc.2014.02.160
10.1002/adma.201502454
10.1039/C9BM00734B
10.1002/adfm.201400526
10.1016/j.compositesb.2019.107204
10.1016/j.biomaterials.2009.06.054
10.1016/j.ijbiomac.2019.10.141
10.1021/bm1010504
10.1016/j.jpha.2016.10.001
10.1016/j.progpolymsci.2015.02.001
10.1002/anie.201501705
10.1016/j.jconrel.2015.11.022
10.1039/C5CC08391E
10.1016/j.jphotobiol.2020.111960
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2021
DBID RYH
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.eurpolymj.2021.110267
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1945
ExternalDocumentID 10_1016_j_eurpolymj_2021_110267
S001430572100001X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
29G
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SCB
SEW
SMS
T9H
WUQ
7SR
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c438t-6fd06bcceda5e2fd7d96140721569dfd2349b9c5968c465e7206e3a7d8900c9f3
IEDL.DBID .~1
ISSN 0014-3057
IngestDate Fri Jul 25 08:03:27 EDT 2025
Tue Jul 01 01:58:47 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Thu Jun 26 23:54:41 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Drug release
Silk fibroin
Sodium alginate
NIR responsive hydrogels
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6fd06bcceda5e2fd7d96140721569dfd2349b9c5968c465e7206e3a7d8900c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6640-2107
0000-0002-0481-3442
PQID 2503465329
PQPubID 2045478
ParticipantIDs proquest_journals_2503465329
crossref_citationtrail_10_1016_j_eurpolymj_2021_110267
crossref_primary_10_1016_j_eurpolymj_2021_110267
nii_cinii_1872553967636311552
elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2021_110267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle European Polymer Journal
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Guo, Ruan, Hu, Jiang, Liang, Shen (b0150) 2019; 96
Buddanavar, Nandibewoor (b0175) 2017; 7
Rasool, Ata, Islam (b0030) 2019; 203
Hu, Lu, Sun, Cebe, Wang, Zhang, Kaplan (b0165) 2010; 11
Gao, Chen, Zhao, Yan, Wang, Zhou, Shi, Xue (b0215) 2018; 110
Y. Wang, S. Fan, Y. Li, C. Niu, X. Li, Y. Guo, J. Zhang, J. Shi, X. Wang, Silk fibroin/sodium alginate composite porous materials with controllable degradation, Int. J. Biol. Macromol. (2019).
Anugrah, Ramesh, Kim, Hyun, Lim (b0090) 2019; 223
Ahadi, Khorshidi, Karkhaneh (b0210) 2019; 118
Zhang, Qu, Li, Zhang, Wei, Shi, Chen (b0185) 2014; 303
Partlow, Hanna, Rnjak-Kovacina, Moreau, Applegate, Burke, Marelli, Mitropoulos, Omenetto, Kaplan (b0190) 2014; 24
Mandru, Bercea, Gradinaru, Ciobanu, Albulescu (b0015) 2019; 118
Dong, Wei, Liang, Liu, Kong, Lv (b0040) 2017; 154
Wang, Wang, Zhang, Cheng (b0070) 2016; 52
Lee, Ahn, Kim (b0170) 2011; 24
Yan, Han, Wang, Zhang, You, Luo, Xu, Li, Li, Zhang, Kaplan (b0195) 2019; 176
Tu, Cao, Jing, Fan, Zhang, Liao, Liu (b0200) 2013; 85
Mura, Nicolas, Couvreur (b0045) 2013; 12
Wang, Wang, Shi, Zhu, Zhang, Zhang, Ma, Hou, Lin, Yang (b0130) 2016; 6
Ansari, Sadati, Mozafari, Ashrafi, Azadi (b0010) 2020; 128
Strong, West (b0060) 2015; 1
Liu, Ruan, Shi, Jiang, Ji, Shen (b0145) 2019; 7
Harley, Leung, Silva, Gibson (b0205) 2007; 3
Kim, Shin, Jeon, Kweon, Lee (b0180) 2012; 25
Cho, Kim, Shin, Heo, Noh, Hong, Cho, Lim (b0080) 2017; 12
Lee, Mooney (b0100) 2012; 37
Zou, Liu, Abbas, Yan (b0020) 2016; 28
Peppas, Van Blarcom (b0050) 2016; 240
Koh, Cheng, Teng, Khin, Loh, Tee, Low, Ye, Yu, Zhang (b0115) 2015; 46
S. Gou, D. Xie, Y. Ma, Y. Huang, B. Xiao, Injectable, Thixotropic, and Multi-Responsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy, ACS Biomater. Sci. Eng. 6 (2019) 1052–1063.
Liao, Liu, Kempson, Fa, Huang (b0075) 2017; 12
Li, Zhang, Lu, Wu, Yan (b0140) 2002; 13
Farokhi, Mottaghitalab, Fatahi, Khademhosseini, Kaplan (b0120) 2018; 36
GhavamiNejad, SamariKhalaj, Aguilar, Park, Kim (b0065) 2016; 6
Shikanov, Xu, Woodruff, Shea (b0105) 2009; 30
Ma, Shi, Pena, Peng, Yu (b0025) 2015; 54
Tortelli, Cancedda (b0125) 2009; 17
Phuong, Jhon, In, Park (b0035) 2019; 7
Kong, Mooney (b0005) 2007; 6
Kundu, Rajkhowa, Kundu, Wang (b0110) 2013; 65
Qureshi, Nayak, Maji, Anis, Pal (b0055) 2019; 120
Schütt, Fischer, Kopitz, Holz (b0095) 2002; 30
Matai, Kaur, Soni, Sachdev, Mishra (b0160) 2020; 210
Li, Wang, Ren, Qu (b0085) 2013; 25
Li (10.1016/j.eurpolymj.2021.110267_b0085) 2013; 25
Ansari (10.1016/j.eurpolymj.2021.110267_b0010) 2020; 128
Ma (10.1016/j.eurpolymj.2021.110267_b0025) 2015; 54
Wang (10.1016/j.eurpolymj.2021.110267_b0070) 2016; 52
Li (10.1016/j.eurpolymj.2021.110267_b0140) 2002; 13
10.1016/j.eurpolymj.2021.110267_b0155
10.1016/j.eurpolymj.2021.110267_b0135
Matai (10.1016/j.eurpolymj.2021.110267_b0160) 2020; 210
Dong (10.1016/j.eurpolymj.2021.110267_b0040) 2017; 154
Hu (10.1016/j.eurpolymj.2021.110267_b0165) 2010; 11
Mandru (10.1016/j.eurpolymj.2021.110267_b0015) 2019; 118
Koh (10.1016/j.eurpolymj.2021.110267_b0115) 2015; 46
Kim (10.1016/j.eurpolymj.2021.110267_b0180) 2012; 25
Gao (10.1016/j.eurpolymj.2021.110267_b0215) 2018; 110
GhavamiNejad (10.1016/j.eurpolymj.2021.110267_b0065) 2016; 6
Liu (10.1016/j.eurpolymj.2021.110267_b0150) 2019; 96
Strong (10.1016/j.eurpolymj.2021.110267_b0060) 2015; 1
Mura (10.1016/j.eurpolymj.2021.110267_b0045) 2013; 12
Schütt (10.1016/j.eurpolymj.2021.110267_b0095) 2002; 30
Phuong (10.1016/j.eurpolymj.2021.110267_b0035) 2019; 7
Liao (10.1016/j.eurpolymj.2021.110267_b0075) 2017; 12
Anugrah (10.1016/j.eurpolymj.2021.110267_b0090) 2019; 223
Liu (10.1016/j.eurpolymj.2021.110267_b0145) 2019; 7
Tu (10.1016/j.eurpolymj.2021.110267_b0200) 2013; 85
Harley (10.1016/j.eurpolymj.2021.110267_b0205) 2007; 3
Peppas (10.1016/j.eurpolymj.2021.110267_b0050) 2016; 240
Qureshi (10.1016/j.eurpolymj.2021.110267_b0055) 2019; 120
Farokhi (10.1016/j.eurpolymj.2021.110267_b0120) 2018; 36
Partlow (10.1016/j.eurpolymj.2021.110267_b0190) 2014; 24
Tortelli (10.1016/j.eurpolymj.2021.110267_b0125) 2009; 17
Yan (10.1016/j.eurpolymj.2021.110267_b0195) 2019; 176
Wang (10.1016/j.eurpolymj.2021.110267_b0130) 2016; 6
Zhang (10.1016/j.eurpolymj.2021.110267_b0185) 2014; 303
Lee (10.1016/j.eurpolymj.2021.110267_b0170) 2011; 24
Buddanavar (10.1016/j.eurpolymj.2021.110267_b0175) 2017; 7
Rasool (10.1016/j.eurpolymj.2021.110267_b0030) 2019; 203
Kong (10.1016/j.eurpolymj.2021.110267_b0005) 2007; 6
Cho (10.1016/j.eurpolymj.2021.110267_b0080) 2017; 12
Lee (10.1016/j.eurpolymj.2021.110267_b0100) 2012; 37
Ahadi (10.1016/j.eurpolymj.2021.110267_b0210) 2019; 118
Zou (10.1016/j.eurpolymj.2021.110267_b0020) 2016; 28
Shikanov (10.1016/j.eurpolymj.2021.110267_b0105) 2009; 30
Kundu (10.1016/j.eurpolymj.2021.110267_b0110) 2013; 65
References_xml – volume: 223
  year: 2019
  ident: b0090
  article-title: Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release
  publication-title: Carbohydr. Polym.
– volume: 118
  start-page: 265
  year: 2019
  end-page: 274
  ident: b0210
  article-title: A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride
  publication-title: Eur. Polym. J.
– volume: 3
  start-page: 463
  year: 2007
  end-page: 474
  ident: b0205
  article-title: Mechanical characterization of collagen–glycosaminoglycan scaffolds
  publication-title: Acta Biomater.
– volume: 7
  start-page: 1705
  year: 2019
  end-page: 1715
  ident: b0145
  article-title: A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy
  publication-title: Biomater. Sci.
– volume: 210
  year: 2020
  ident: b0160
  article-title: Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery
  publication-title: J. Photochem. Photobiol., B
– volume: 6
  start-page: 39477
  year: 2016
  ident: b0130
  article-title: A Biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering
  publication-title: Sci. Rep.
– volume: 25
  start-page: 129
  year: 2012
  end-page: 132
  ident: b0180
  article-title: Tetracycline-incorporated silk fibroin films
  publication-title: Int. J. Ind. Entomol.
– volume: 17
  start-page: 1
  year: 2009
  ident: b0125
  article-title: Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro
  publication-title: Eur. Cells Mater.
– volume: 118
  start-page: 137
  year: 2019
  end-page: 145
  ident: b0015
  article-title: Polyurethane/poly(vinyl alcohol) hydrogels: preparation, characterization and drug delivery
  publication-title: Eur. Polym. J.
– volume: 12
  start-page: 2607
  year: 2017
  ident: b0080
  article-title: Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly (γ-glutamic acid) hydrogel
  publication-title: Int. J. Nanomed.
– volume: 303
  start-page: 255
  year: 2014
  end-page: 262
  ident: b0185
  article-title: Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces
  publication-title: Appl. Surf. Sci.
– volume: 203
  start-page: 423
  year: 2019
  end-page: 429
  ident: b0030
  article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application
  publication-title: Carbohydr. Polym.
– volume: 120
  year: 2019
  ident: b0055
  article-title: Environment sensitive hydrogels for drug delivery applications
  publication-title: Eur. Polym. J.
– volume: 30
  start-page: 110
  year: 2002
  end-page: 114
  ident: b0095
  article-title: Indocyanine green angiography in the presence of subretinal or intraretinal haemorrhages: clinical and experimental investigations
  publication-title: Clin. Exp. Ophthal.
– volume: 176
  year: 2019
  ident: b0195
  article-title: Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels
  publication-title: Compos. B
– volume: 28
  start-page: 1031
  year: 2016
  end-page: 1043
  ident: b0020
  article-title: Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics
  publication-title: Adv. Mater.
– volume: 128
  year: 2020
  ident: b0010
  article-title: Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders
  publication-title: Eur. Polym. J.
– volume: 11
  start-page: 3178
  year: 2010
  end-page: 3188
  ident: b0165
  article-title: Biomaterials from ultrasonication-induced silk fibroin− hyaluronic acid hydrogels
  publication-title: Biomacromolecules
– volume: 36
  start-page: 907
  year: 2018
  end-page: 922
  ident: b0120
  article-title: Overview of silk fibroin use in wound dressings
  publication-title: Trends Biotechnol.
– volume: 85
  start-page: 126
  year: 2013
  end-page: 130
  ident: b0200
  article-title: Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior
  publication-title: Compos. Sci. Technol.
– reference: S. Gou, D. Xie, Y. Ma, Y. Huang, B. Xiao, Injectable, Thixotropic, and Multi-Responsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy, ACS Biomater. Sci. Eng. 6 (2019) 1052–1063.
– volume: 12
  start-page: 7603
  year: 2017
  ident: b0075
  article-title: Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes
  publication-title: Int. J. Nanomed.
– volume: 7
  start-page: 148
  year: 2017
  end-page: 155
  ident: b0175
  article-title: Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine
  publication-title: J. Pharm. Anal.
– volume: 24
  start-page: 4615
  year: 2014
  end-page: 4624
  ident: b0190
  article-title: Highly tunable elastomeric silk biomaterials
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: b0045
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
– volume: 30
  start-page: 5476
  year: 2009
  end-page: 5485
  ident: b0105
  article-title: Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development
  publication-title: Biomaterials
– volume: 65
  start-page: 457
  year: 2013
  end-page: 470
  ident: b0110
  article-title: Silk fibroin biomaterials for tissue regenerations
  publication-title: Adv. Drug Del. Rev.
– volume: 54
  start-page: 7376
  year: 2015
  end-page: 7380
  ident: b0025
  article-title: Thermally responsive hydrogel blends: a general drug carrier model for controlled drug release
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 978
  year: 2016
  end-page: 981
  ident: b0070
  article-title: Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery
  publication-title: Chem. Commun.
– volume: 6
  start-page: 33594
  year: 2016
  ident: b0065
  article-title: pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy
  publication-title: Sci. Rep.
– volume: 110
  start-page: 192
  year: 2018
  end-page: 201
  ident: b0215
  article-title: Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery
  publication-title: Eur. Polym. J.
– volume: 46
  start-page: 86
  year: 2015
  end-page: 110
  ident: b0115
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 4800
  year: 2019
  end-page: 4812
  ident: b0035
  article-title: Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots
  publication-title: Biomater. Sci.
– volume: 24
  start-page: 881
  year: 2011
  end-page: 891
  ident: b0170
  article-title: Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration
  publication-title: Chem. Mater.
– volume: 13
  start-page: 605
  year: 2002
  end-page: 610
  ident: b0140
  article-title: Study on porous silk fibroin materials: 3. Influence of repeated freeze–thawing on the structure and properties of porous silk fibroin materials
  publication-title: Polym. Adv. Technol.
– volume: 6
  start-page: 455
  year: 2007
  end-page: 463
  ident: b0005
  article-title: Microenvironmental regulation of biomacromolecular therapies
  publication-title: Nat. Rev. Drug Discovery
– volume: 154
  start-page: 253
  year: 2017
  end-page: 262
  ident: b0040
  article-title: Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery
  publication-title: Colloids Surf. B. Biointerfaces
– reference: Y. Wang, S. Fan, Y. Li, C. Niu, X. Li, Y. Guo, J. Zhang, J. Shi, X. Wang, Silk fibroin/sodium alginate composite porous materials with controllable degradation, Int. J. Biol. Macromol. (2019).
– volume: 37
  start-page: 106
  year: 2012
  end-page: 126
  ident: b0100
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
– volume: 25
  start-page: 6737
  year: 2013
  end-page: 6743
  ident: b0085
  article-title: 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release
  publication-title: Adv. Mater.
– volume: 240
  start-page: 142
  year: 2016
  end-page: 150
  ident: b0050
  article-title: Hydrogel-based biosensors and sensing devices for drug delivery
  publication-title: J. Control. Release
– volume: 1
  start-page: 685
  year: 2015
  end-page: 692
  ident: b0060
  article-title: Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles
  publication-title: ACS Biomater. Sci. Eng.
– volume: 96
  start-page: 281
  year: 2019
  end-page: 294
  ident: b0150
  article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy
  publication-title: Acta Biomater.
– volume: 24
  start-page: 881
  issue: 5
  year: 2011
  ident: 10.1016/j.eurpolymj.2021.110267_b0170
  article-title: Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration
  publication-title: Chem. Mater.
  doi: 10.1021/cm200733s
– volume: 7
  start-page: 1705
  issue: 4
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0145
  article-title: A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01541D
– volume: 118
  start-page: 137
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0015
  article-title: Polyurethane/poly(vinyl alcohol) hydrogels: preparation, characterization and drug delivery
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.05.049
– volume: 30
  start-page: 110
  issue: 2
  year: 2002
  ident: 10.1016/j.eurpolymj.2021.110267_b0095
  article-title: Indocyanine green angiography in the presence of subretinal or intraretinal haemorrhages: clinical and experimental investigations
  publication-title: Clin. Exp. Ophthal.
  doi: 10.1046/j.1442-6404.2002.00494.x
– volume: 6
  start-page: 33594
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110267_b0065
  article-title: pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy
  publication-title: Sci. Rep.
  doi: 10.1038/srep33594
– volume: 36
  start-page: 907
  issue: 9
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110267_b0120
  article-title: Overview of silk fibroin use in wound dressings
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.04.004
– volume: 13
  start-page: 605
  issue: 8
  year: 2002
  ident: 10.1016/j.eurpolymj.2021.110267_b0140
  article-title: Study on porous silk fibroin materials: 3. Influence of repeated freeze–thawing on the structure and properties of porous silk fibroin materials
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.159
– volume: 6
  start-page: 455
  issue: 6
  year: 2007
  ident: 10.1016/j.eurpolymj.2021.110267_b0005
  article-title: Microenvironmental regulation of biomacromolecular therapies
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2309
– volume: 128
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110267_b0010
  article-title: Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109607
– volume: 203
  start-page: 423
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0030
  article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.09.083
– volume: 96
  start-page: 281
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0150
  article-title: An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.07.024
– volume: 223
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0090
  article-title: Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115070
– volume: 17
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.eurpolymj.2021.110267_b0125
  article-title: Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro
  publication-title: Eur. Cells Mater.
– volume: 118
  start-page: 265
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0210
  article-title: A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.06.001
– volume: 1
  start-page: 685
  issue: 8
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110267_b0060
  article-title: Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00111
– volume: 154
  start-page: 253
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110267_b0040
  article-title: Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery
  publication-title: Colloids Surf. B. Biointerfaces
  doi: 10.1016/j.colsurfb.2017.03.036
– volume: 12
  start-page: 7603
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110267_b0075
  article-title: Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S144986
– volume: 25
  start-page: 129
  issue: 1
  year: 2012
  ident: 10.1016/j.eurpolymj.2021.110267_b0180
  article-title: Tetracycline-incorporated silk fibroin films
  publication-title: Int. J. Ind. Entomol.
– volume: 3
  start-page: 463
  issue: 4
  year: 2007
  ident: 10.1016/j.eurpolymj.2021.110267_b0205
  article-title: Mechanical characterization of collagen–glycosaminoglycan scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2006.12.009
– volume: 25
  start-page: 6737
  issue: 46
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110267_b0085
  article-title: 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302810
– volume: 110
  start-page: 192
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110267_b0215
  article-title: Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.11.025
– volume: 85
  start-page: 126
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110267_b0200
  article-title: Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.06.011
– volume: 12
  start-page: 2607
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110267_b0080
  article-title: Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly (γ-glutamic acid) hydrogel
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S133078
– ident: 10.1016/j.eurpolymj.2021.110267_b0155
  doi: 10.1021/acsbiomaterials.9b01676
– volume: 120
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0055
  article-title: Environment sensitive hydrogels for drug delivery applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.109220
– volume: 65
  start-page: 457
  issue: 4
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110267_b0110
  article-title: Silk fibroin biomaterials for tissue regenerations
  publication-title: Adv. Drug Del. Rev.
  doi: 10.1016/j.addr.2012.09.043
– volume: 37
  start-page: 106
  issue: 1
  year: 2012
  ident: 10.1016/j.eurpolymj.2021.110267_b0100
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.06.003
– volume: 6
  start-page: 39477
  issue: 1
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110267_b0130
  article-title: A Biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering
  publication-title: Sci. Rep.
  doi: 10.1038/srep39477
– volume: 12
  start-page: 991
  issue: 11
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110267_b0045
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 303
  start-page: 255
  year: 2014
  ident: 10.1016/j.eurpolymj.2021.110267_b0185
  article-title: Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.160
– volume: 28
  start-page: 1031
  issue: 6
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110267_b0020
  article-title: Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502454
– volume: 7
  start-page: 4800
  issue: 11
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0035
  article-title: Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00734B
– volume: 24
  start-page: 4615
  issue: 29
  year: 2014
  ident: 10.1016/j.eurpolymj.2021.110267_b0190
  article-title: Highly tunable elastomeric silk biomaterials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400526
– volume: 176
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110267_b0195
  article-title: Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels
  publication-title: Compos. B
  doi: 10.1016/j.compositesb.2019.107204
– volume: 30
  start-page: 5476
  issue: 29
  year: 2009
  ident: 10.1016/j.eurpolymj.2021.110267_b0105
  article-title: Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.054
– ident: 10.1016/j.eurpolymj.2021.110267_b0135
  doi: 10.1016/j.ijbiomac.2019.10.141
– volume: 11
  start-page: 3178
  issue: 11
  year: 2010
  ident: 10.1016/j.eurpolymj.2021.110267_b0165
  article-title: Biomaterials from ultrasonication-induced silk fibroin− hyaluronic acid hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm1010504
– volume: 7
  start-page: 148
  issue: 3
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110267_b0175
  article-title: Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2016.10.001
– volume: 46
  start-page: 86
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110267_b0115
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.02.001
– volume: 54
  start-page: 7376
  issue: 25
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110267_b0025
  article-title: Thermally responsive hydrogel blends: a general drug carrier model for controlled drug release
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501705
– volume: 240
  start-page: 142
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110267_b0050
  article-title: Hydrogel-based biosensors and sensing devices for drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.11.022
– volume: 52
  start-page: 978
  issue: 5
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110267_b0070
  article-title: Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08391E
– volume: 210
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110267_b0160
  article-title: Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2020.111960
SSID ssj0007363
Score 2.428172
Snippet [Display omitted] •A NIR-responsive hydrogel was developed via combination of a SF/SA gel and ICG.•The hydrogel exhibited significant photothermal effects...
In order to realize effective controlled release of medicine to specific sites, the near-infrared (NIR) light responsive hydrogel has recently attracted...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110267
SubjectTerms Composite materials
Controlled release
Drug delivery systems
Drug release
Hydrogels
Modulus of elasticity
Near infrared radiation
NIR responsive hydrogels
Polymers
Pore size
Porosity
Radiation effects
Scanning electron microscopy
Serum albumin
Silk fibroin
Sodium alginate
Stiffness
Title Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate
URI https://dx.doi.org/10.1016/j.eurpolymj.2021.110267
https://cir.nii.ac.jp/crid/1872553967636311552
https://www.proquest.com/docview/2503465329
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHOilamlRtwXkA9eUJH7FvaFV0bZIiANIe7Oc2F5CswnazR649Ld3xptQoVbi0EukRBklGU_mkXwzHyGnoqxssFInqdUu4SKoxHLOE2XjfDBfchenfV7J2S3_MRfzHTIde2EQVjn4_q1Pj956OHI2aPPsoa6xxzfDeVVQwsRP1HPsYOcKrfzLrz8wD8UGNrUM_wAI9Qzj5eFhuuZxeQ-FYp4hJD6PhPP_jFCv2rr-y2PHMHTxlrwZ8kd6vr3Fd2THtwdkfzrStr0ni-u7ro9tVUvbJMvOIT-Xd9StNguKDCkQtig2lVBLEU-OoC1P7x7dqlv4hmJUc7Rr6bpuftIAxXRXt9S2jq47V29AqkEmh95_ILcX326ms2RgU0gqzoo-kcGlsqxAr1b4PDjlNIRmHI8mpHbB5YzrUldCy6LiUniVp9Izq1yh07TSgR2S3bZr_UdCmYc0zMtS2RC4ZKzM4ERRpqLSWQE10oTIUYOmGkaNI-NFY0ZM2b15Ur1B1Zut6ickfRJ82E7beFnk67hE5pnhGIgJLwsfw6LCPeI2KxTUV0yDiYLNZDibbkKOxuU2w7u9NpA0MpxKl-tP_3Ptz-Q17kU8mzgiu_1q448hwenLk2jBJ2Tv_Pvl7Oo3qqz6MQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEF4lziG9ROlLdZu0e-gVBdgX21tkJXKa1OohkXxbLezikGKIbHzIv88MXixFrZRDLxyAETA7zANmvo-Q7yIvbGmljmKrXcRFqSLLOY-U7fHBfM5dj_Y5k9M7_nMu5ntkMszCYFtl8P1bn95767DnLGjz7LGqcMY3QbwqKGH6T9TzfXKA6FRiRA7Or66ns51DViwQqiX4E0CoF21eHp6nrZ-WD1Arpgl2xac95_w_g9R-U1V_Oe0-El0ek6OQQtLz7V2-JXu-eUcOJwNz23uy-H3fdv1k1dLW0bJ1SNHlHXWrzYIiSQpELopzJdRSbCnHvi1P75_cql34mmJgc7Rt6Lqq_9AS6um2aqhtHF23rtqAVI1kDp3_QO4uL24n0ygQKkQFZ1kXydLFMi9AtVb4tHTKaYjOiJAmpHalSxnXuS6EllnBpfAqjaVnVrlMx3GhS_aRjJq28Z8IZR4yMS9zZcuSS8byBE4UeSwKnWRQJo2JHDRoioA2jqQXtRnayh7MTvUGVW-2qh-TeCf4uAXceF3kx7BE5oXtGAgLrwufwqLCPeI2yRSUWEyDlYLNJAhPNyYnw3Kb8HqvDeSNDIHpUv35f679jRxOb3_dmJur2fUX8gaP9O1t4oSMutXGn0K-0-Vfgz0_Azx8_OI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photothermal-modulated+drug+release+from+a+composite+hydrogel+based+on+silk+fibroin+and+sodium+alginate&rft.jtitle=European+Polymer+Journal&rft.au=Chunqing+Niu&rft.au=Xinyu+Liu&rft.au=Yiyu+Wang&rft.au=Xiang+Li&rft.date=2021-03-05&rft.pub=Elsevier+BV&rft.issn=0014-3057&rft.volume=146&rft.spage=110267&rft_id=info:doi/10.1016%2Fj.eurpolymj.2021.110267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon