Side-Aware Meta-Learning for Cross-Dataset Listener Diagnosis With Subjective Tinnitus

With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 2352 - 2361
Main Authors Liu, Zhe, Li, Yun, Yao, Lina, Lucas, Molly, Monaghan, Jessica J. M., Zhang, Yu
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.
AbstractList With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.
With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.
Author Liu, Zhe
Monaghan, Jessica J. M.
Lucas, Molly
Li, Yun
Zhang, Yu
Yao, Lina
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0003-2692-2110
  surname: Liu
  fullname: Liu, Zhe
  email: zheliu912@gmail.com
  organization: Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 2
  givenname: Yun
  orcidid: 0000-0003-4442-3825
  surname: Li
  fullname: Li, Yun
  email: yun.li5@unsw.edu.au
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 3
  givenname: Lina
  orcidid: 0000-0002-4149-839X
  surname: Yao
  fullname: Yao, Lina
  email: lina.yao@unsw.edu.au
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 4
  givenname: Molly
  surname: Lucas
  fullname: Lucas, Molly
  email: molly.v.lucas@gmail.com
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
– sequence: 5
  givenname: Jessica J. M.
  surname: Monaghan
  fullname: Monaghan, Jessica J. M.
  email: jessica.monaghan@gmail.com
  organization: National Acoustic Laboratories, The Australian Hearing Hub, Macquarie University, Sydney, NSW, Australia
– sequence: 6
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: yuzi20@lehigh.edu
  organization: Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
BookMark eNp9kUtv1DAUhS3Uij7gD8AmEhs2GfyIX8tqWmiloZU6AywtJ74ZPErt1nZA_PsmnaqLLljZ8j3fudf3nKCDEAMg9IHgBSFYf9lcr28vFhRTumAUE8LVG3RMOFc1pgQfzHfW1M1UO0InOe8wJlJw-RYdMa61IkIeo59r76A--2sTVN-h2HoFNgUftlUfU7VMMef63BaboVQrnwsESNW5t9sQs8_VL19-V-ux3UFX_B-oNj4EX8b8Dh32dsjw_vk8RT--XmyWl_Xq5tvV8mxVdw1TpRadpQx4b4lgUmhHeq4JEwxzThnpQDqrtNayUZoIcI46JnjrWqlxJ5S07BRd7X1dtDtzn_ydTf9MtN48PcS0NTYV3w1gJlIxrFqKnWhaaOy8DMcAJG-nFnzy-rz3uk_xYYRczJ3PHQyDDRDHbKjEXDZasmaSfnol3cUxhemns0qJhjHOJhXdq7p5jQn6lwEJNnOC5ilBMydonhOcIPUK6nyxxcdQkvXD_9GPe9QDwEsvPY0jsGKP5nSm0Q
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_eij_2024_100525
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_1007_s42979_024_03166_9
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1109_JBHI_2023_3264521
crossref_primary_10_2196_57678
crossref_primary_10_1109_JBHI_2022_3225089
Cites_doi 10.1109/MeMeA.2017.7985906
10.1109/TNSRE.2019.2905894
10.1007/s10484-015-9318-5
10.1109/IJCNN.1992.287172
10.1109/IJCNN.2019.8852100
10.1007/978-3-319-09903-3
10.1109/TMM.2021.3139211
10.3390/brainsci11111525
10.1186/s13063-016-1399-9
10.3390/s20072034
10.1007/s11063-018-9845-1
10.1109/TCDS.2018.2826840
10.3389/fncom.2019.00094
10.1007/s001060050704
10.1145/3340531.3412084
10.1145/3144457.3144477
10.1109/MSPEC.2019.8701198
10.1016/S1474-4422(13)70160-1
10.3389/fdgth.2021.724370
10.1007/978-3-319-49685-6_19
10.1016/j.heares.2016.12.002
10.1088/1741-2552/aace8c
10.1007/978-3-319-70093-9_84
10.1002/hbm.23730
10.1145/2939672.2939785
10.3389/fnhum.2020.00103
10.1109/CVPR.2018.00131
10.1523/JNEUROSCI.2156-11.2011
10.18653/v1/P19-1589
10.1109/MLSP.2018.8517037
10.1109/EMBC46164.2021.9629964
10.1109/TNSRE.2017.2721116
10.1007/s00106-004-1066-4
10.11591/ijece.v11i1.pp424-433
10.1145/3458754
10.1109/JBHI.2019.2934172
10.1109/TNSRE.2021.3095298
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3201158
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2361
ExternalDocumentID oai_doaj_org_article_3658308b20d64be4a1765d3ee75b9975
10_1109_TNSRE_2022_3201158
9864608
Genre orig-research
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c438t-6ca23e5fa163769d1f591363055231ce7da8999748916edd2d365bdb790c687a3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:28:28 EDT 2025
Thu Jul 10 19:32:21 EDT 2025
Fri Jul 25 07:51:12 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Wed Aug 27 02:29:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6ca23e5fa163769d1f591363055231ce7da8999748916edd2d365bdb790c687a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2692-2110
0000-0003-4442-3825
0000-0002-4149-839X
OpenAccessLink https://doaj.org/article/3658308b20d64be4a1765d3ee75b9975
PMID 35998167
PQID 2708643353
PQPubID 85423
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNSRE_2022_3201158
proquest_journals_2708643353
proquest_miscellaneous_2705749734
ieee_primary_9864608
doaj_primary_oai_doaj_org_article_3658308b20d64be4a1765d3ee75b9975
crossref_citationtrail_10_1109_TNSRE_2022_3201158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ravi (ref48) 2016
ref56
ref15
ref14
ref53
ref52
hunn (ref2) 2016
ref55
ref11
ref10
van der maaten (ref59) 2008; 9
ref17
ref16
crisp (ref54) 2000
ref18
ref51
mishra (ref44) 2017
gregor hartmann (ref31) 2018
ref8
ref7
ref9
ref4
ref6
finn (ref19) 2017
ref5
koch (ref37) 2015; 2
ref35
hospedales (ref22) 2022; 44
andrychowicz (ref47) 2016
ref34
weiler (ref12) 2002; 8
ref36
ref33
ref1
ref39
liu (ref30) 2021
grant (ref49) 2018
satorras (ref41) 2018
ref24
ref23
ref26
kumar (ref58) 2021; 11
ref25
ref20
liu (ref32) 2022
munkhdalai (ref43) 2017
ref21
finn (ref50) 2019
crum (ref3) 2019; 56
ref28
ref27
duan (ref45) 2016
santoro (ref42) 2016
ref29
wang (ref46) 2016
snell (ref38) 2017
vinyals (ref40) 2016; 29
References_xml – year: 2016
  ident: ref48
  article-title: Optimization as a model for few-shot learning
  publication-title: Proc 5th Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2018
  ident: ref41
  article-title: Few-shot learning with graph neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref11
  doi: 10.1109/MeMeA.2017.7985906
– ident: ref55
  doi: 10.1109/TNSRE.2019.2905894
– ident: ref27
  doi: 10.1007/s10484-015-9318-5
– volume: 2
  start-page: 1
  year: 2015
  ident: ref37
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: Proc ICML Deep Learn Workshop
– ident: ref36
  doi: 10.1109/IJCNN.1992.287172
– ident: ref21
  doi: 10.1109/IJCNN.2019.8852100
– year: 2017
  ident: ref38
  article-title: Prototypical networks for few-shot learning
  publication-title: arXiv 1703 05175
– ident: ref4
  doi: 10.1007/978-3-319-09903-3
– ident: ref33
  doi: 10.1109/TMM.2021.3139211
– ident: ref10
  doi: 10.3390/brainsci11111525
– ident: ref24
  doi: 10.1186/s13063-016-1399-9
– ident: ref14
  doi: 10.3390/s20072034
– start-page: 1920
  year: 2019
  ident: ref50
  article-title: Online meta-learning
  publication-title: Proc 36th Int Conf Mach Learn
– ident: ref8
  doi: 10.1007/s11063-018-9845-1
– ident: ref16
  doi: 10.1109/TCDS.2018.2826840
– start-page: 1126
  year: 2017
  ident: ref19
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref7
  doi: 10.3389/fncom.2019.00094
– ident: ref25
  doi: 10.1007/s001060050704
– ident: ref35
  doi: 10.1145/3340531.3412084
– ident: ref29
  doi: 10.1145/3144457.3144477
– volume: 56
  start-page: 38
  year: 2019
  ident: ref3
  article-title: Hearables: Here come the: Technology tucked inside your ears will augment your daily life
  publication-title: IEEE Spectr
  doi: 10.1109/MSPEC.2019.8701198
– ident: ref23
  doi: 10.1016/S1474-4422(13)70160-1
– year: 2018
  ident: ref31
  article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
  publication-title: arXiv 1806 01875
– ident: ref1
  doi: 10.3389/fdgth.2021.724370
– volume: 29
  start-page: 3630
  year: 2016
  ident: ref40
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 8
  start-page: 87
  year: 2002
  ident: ref12
  article-title: Neurofeedback and quantitative electroencephalography
  publication-title: Int Tinnitus J
– ident: ref9
  doi: 10.1007/978-3-319-49685-6_19
– ident: ref52
  doi: 10.1016/j.heares.2016.12.002
– year: 2016
  ident: ref45
  article-title: RL2: Fast reinforcement learning via slow reinforcement learning
  publication-title: arXiv 1611 02779
– ident: ref57
  doi: 10.1088/1741-2552/aace8c
– ident: ref13
  doi: 10.1007/978-3-319-70093-9_84
– ident: ref56
  doi: 10.1002/hbm.23730
– year: 2016
  ident: ref2
  article-title: The market for hearable devices 2016-2020
– ident: ref53
  doi: 10.1145/2939672.2939785
– year: 2021
  ident: ref30
  article-title: Task aligned generative meta-learning for zero-shot learning
  publication-title: Proc 35th AAAI Conf Artif Intell
– year: 2016
  ident: ref46
  article-title: Learning to reinforcement learn
  publication-title: arXiv 1611 05763
– ident: ref15
  doi: 10.3389/fnhum.2020.00103
– ident: ref39
  doi: 10.1109/CVPR.2018.00131
– ident: ref51
  doi: 10.1523/JNEUROSCI.2156-11.2011
– year: 2017
  ident: ref44
  article-title: A simple neural attentive meta-learner
  publication-title: arXiv 1707 03141
– ident: ref20
  doi: 10.18653/v1/P19-1589
– ident: ref18
  doi: 10.1109/MLSP.2018.8517037
– ident: ref5
  doi: 10.1109/EMBC46164.2021.9629964
– year: 2022
  ident: ref32
  article-title: Disentangled and side-aware unsupervised domain adaptation for cross-dataset subjective tinnitus diagnosis
  publication-title: arXiv 2205 03230
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref59
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1109/TNSRE.2017.2721116
– volume: 44
  start-page: 5149
  year: 2022
  ident: ref22
  article-title: Meta-learning in neural networks: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref26
  doi: 10.1007/s00106-004-1066-4
– volume: 11
  start-page: 424
  year: 2021
  ident: ref58
  article-title: Bio-signals compression using auto-encoder
  publication-title: Int J Electr Comput Eng (IJECE)
  doi: 10.11591/ijece.v11i1.pp424-433
– start-page: 3981
  year: 2016
  ident: ref47
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1145/3458754
– ident: ref17
  doi: 10.1109/JBHI.2019.2934172
– start-page: 1842
  year: 2016
  ident: ref42
  article-title: Meta-learning with memory-augmented neural networks
  publication-title: Proc 33rd Int Conf Mach Learn
– year: 2018
  ident: ref49
  article-title: Recasting gradient-based meta-learning as hierarchical Bayes
  publication-title: arXiv 1801 08930
– ident: ref6
  doi: 10.1109/TNSRE.2021.3095298
– start-page: 244
  year: 2000
  ident: ref54
  article-title: A geometric interpretation of v-SVM classifiers
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2554
  year: 2017
  ident: ref43
  article-title: Meta networks
  publication-title: Proc 34th Int Conf Mach Learn
SSID ssj0017657
Score 2.3983665
Snippet With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2352
SubjectTerms Brain modeling
cross-dataset
Data collection
Datasets
Deep learning
Diagnosis
Ear
EEG
Electroencephalography
Learning algorithms
Machine learning
Medical diagnosis
meta-learning
Signs and symptoms
subject-independent
Task analysis
Tinnitus
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1ygUBBLCzIScIFss_ErPpY-VCG2h3YLvUV-zMICyqLdREj8emacbHgKcYsSx_Jo3rbnG8aeYpbhgywlNTQRmYylzbwiWaZNC4y_5zaB6UzP9dmVfH2trrfYy6EWBgDS5TMY02M6y4_L0NJW2QFBiWuq7L2BiVtXqzWcGBidUD1RgWUmRZFvCmRyezA7v7w4wVSwKMaC_J2iJn1CYaIxSe3lf_ijBNvf91n5wzgnj3N6m003a-0umnwat40fh2-_wTj-LzE77FYfevLDTlbusC2o77JnP8MM81mHMcCf84tfELx32dvLRYTs8KtbAZ9C47IemPU9x6iXHxFt2bFr0Cc2_A2JTg0rftzd41us-btF84GjkfrY2Vc-W9RoS9r1PXZ1ejI7Osv6ngxZkKJsMh1cIUDNHcZxRts4mSs7EZpwwzBSDGCiwwzOEqbNREOMRRRa-eiNzYMujRP32Xa9rOEB45SbYfjlc-1QWsA4G0rhQmFAzMEEMWKTDWeq0JNLfTM-VylxyW2VGFsRY6uesSP2YvjnSwfX8c_Rr4jhw0iC2k4vkFFVr7kVrr8UeemLPGrpQToStSgAjPJIqBqxXWLuMEnP1xHb34hP1ZuFdVUYzCClEAqJezJ8RoWmUxpXw7JNY5SR1gj58O8z77GbRES3D7TPtptVC48wMmr846QS3wHjqgVl
  priority: 102
  providerName: IEEE
Title Side-Aware Meta-Learning for Cross-Dataset Listener Diagnosis With Subjective Tinnitus
URI https://ieeexplore.ieee.org/document/9864608
https://www.proquest.com/docview/2708643353
https://www.proquest.com/docview/2705749734
https://doaj.org/article/3658308b20d64be4a1765d3ee75b9975
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUQEEslMpIwAWFJrFjx8fSh6qK9tBuaW-WH7PtIpSi3az4-8w43tWiSvTSazKJ7Jmx5xs_vmHsI2YZPshWUkETUcjYmsI35Mu0aIH4e2ISmc7ZuTq5kqc3zc1aqS86EzbQAw-K2xMYIkXZ-rqMSnqQrtKqiQJAN94YndhLMeYtk6m8f4AyenlFpjR74_PLiyNMBuv6q6CIRwXe18JQYuvP5VUezMkp0Bw_Z1sZIfL9oWUv2AZ0L9mndTZgPh6oAPhnfvEP0fY2-3E5jVDs_3Ez4GfQuyLzp95yBKf8gNpSHLoeQ1fPv5OFO5jxw-G43XTOr6f9Hce55OcwDfLxtMMhv5i_YlfHR-ODkyKXTiiCFG1fqOBqAc3EIdzSysRq0phKKKL3QkAXQEeHiZYh6plKQYx1RD376LUpg2q1E6_ZZnffwRvGKYVClORL5dCooJ0JrXCh1iAmoIMYsWqpSRtyd6m8xS-b8ovS2KR9S9q3Wfsj9mX1ze-BVeO_0t_IQCtJYsROD9BPbPYT-5ifjNg2mXf1E6KlVyX-e2dpbptH79zWGhM9KUSDnfuweo3jjjZTXAf3iyTTaGm0kG-fonnv2DPq8rC4s8M2-9kC3iPc6f1u8uzddDPxL8_G-Ds
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALBQpioYCRgAtkm8Sv5Fj60AK7e2hT6C1y7NmyBWXRblZI_HpmnGx4CnGLEsfyaN625xvGnmGWUTmZSWpoIiLpszyqFMkybVpg_D3LA5jOZKpH5_LthbrYYq_6WhgACJfPYEiP4SzfL9yatsr2CUpcU2XvNfT7KmmrtfozA6MDrieqsIykSONNiUyc7xfTs9NjTAbTdCjI4ylq0ycUphpJaDD_wyMF4P6u08of5jn4nJMdNtmstr1q8mm4bqqh-_YbkOP_knOL3eyCT37QSstttgX1Hfb8Z6BhXrQoA_wFP_0Fw3uXvT-be4gOvtol8Ak0NuqgWS85xr38kGiLjmyDXrHhYxKeGpb8qL3JN1_xD_PmI0czddVaWF7Ma7Qm69Vddn5yXByOoq4rQ-SkyJpIO5sKUDOLkZzRuU9mKk-EJuQwjBUdGG8xh8sJ1SbR4H3qhVaVr0weO50ZK-6x7XpRw33GKTvDAKyKtUV5AWNzlwnrUgNiBsaJAUs2nCldRy51zvhchtQlzsvA2JIYW3aMHbCX_T9fWsCOf45-TQzvRxLYdniBjCo73S1x_ZmIsyqNvZYVSEui5gWAURUSqgZsl5jbT9LxdcD2NuJTdoZhVaYGc0gphELinvafUaXpnMbWsFiHMcrI3Aj54O8zP2HXR8VkXI7fTN89ZDeIoHZXaI9tN8s1PMI4qakeB_X4DqfNCK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side-Aware+Meta-Learning+for+Cross-Dataset+Listener+Diagnosis+With+Subjective+Tinnitus&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Zhe&rft.au=Li%2C+Yun&rft.au=Yao%2C+Lina&rft.au=Lucas%2C+Molly&rft.date=2022&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=30&rft.spage=2352&rft.epage=2361&rft_id=info:doi/10.1109%2FTNSRE.2022.3201158&rft_id=info%3Apmid%2F35998167&rft.externalDocID=9864608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon