Side-Aware Meta-Learning for Cross-Dataset Listener Diagnosis With Subjective Tinnitus
With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 2352 - 2361 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features. |
---|---|
AbstractList | With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features. With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features. |
Author | Liu, Zhe Monaghan, Jessica J. M. Lucas, Molly Li, Yun Zhang, Yu Yao, Lina |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0003-2692-2110 surname: Liu fullname: Liu, Zhe email: zheliu912@gmail.com organization: Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China – sequence: 2 givenname: Yun orcidid: 0000-0003-4442-3825 surname: Li fullname: Li, Yun email: yun.li5@unsw.edu.au organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia – sequence: 3 givenname: Lina orcidid: 0000-0002-4149-839X surname: Yao fullname: Yao, Lina email: lina.yao@unsw.edu.au organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia – sequence: 4 givenname: Molly surname: Lucas fullname: Lucas, Molly email: molly.v.lucas@gmail.com organization: Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA – sequence: 5 givenname: Jessica J. M. surname: Monaghan fullname: Monaghan, Jessica J. M. email: jessica.monaghan@gmail.com organization: National Acoustic Laboratories, The Australian Hearing Hub, Macquarie University, Sydney, NSW, Australia – sequence: 6 givenname: Yu surname: Zhang fullname: Zhang, Yu email: yuzi20@lehigh.edu organization: Department of Bioengineering, Lehigh University, Bethlehem, PA, USA |
BookMark | eNp9kUtv1DAUhS3Uij7gD8AmEhs2GfyIX8tqWmiloZU6AywtJ74ZPErt1nZA_PsmnaqLLljZ8j3fudf3nKCDEAMg9IHgBSFYf9lcr28vFhRTumAUE8LVG3RMOFc1pgQfzHfW1M1UO0InOe8wJlJw-RYdMa61IkIeo59r76A--2sTVN-h2HoFNgUftlUfU7VMMef63BaboVQrnwsESNW5t9sQs8_VL19-V-ux3UFX_B-oNj4EX8b8Dh32dsjw_vk8RT--XmyWl_Xq5tvV8mxVdw1TpRadpQx4b4lgUmhHeq4JEwxzThnpQDqrtNayUZoIcI46JnjrWqlxJ5S07BRd7X1dtDtzn_ydTf9MtN48PcS0NTYV3w1gJlIxrFqKnWhaaOy8DMcAJG-nFnzy-rz3uk_xYYRczJ3PHQyDDRDHbKjEXDZasmaSfnol3cUxhemns0qJhjHOJhXdq7p5jQn6lwEJNnOC5ilBMydonhOcIPUK6nyxxcdQkvXD_9GPe9QDwEsvPY0jsGKP5nSm0Q |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_eij_2024_100525 crossref_primary_10_3389_fnhum_2023_1126938 crossref_primary_10_1007_s42979_024_03166_9 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1109_JBHI_2023_3264521 crossref_primary_10_2196_57678 crossref_primary_10_1109_JBHI_2022_3225089 |
Cites_doi | 10.1109/MeMeA.2017.7985906 10.1109/TNSRE.2019.2905894 10.1007/s10484-015-9318-5 10.1109/IJCNN.1992.287172 10.1109/IJCNN.2019.8852100 10.1007/978-3-319-09903-3 10.1109/TMM.2021.3139211 10.3390/brainsci11111525 10.1186/s13063-016-1399-9 10.3390/s20072034 10.1007/s11063-018-9845-1 10.1109/TCDS.2018.2826840 10.3389/fncom.2019.00094 10.1007/s001060050704 10.1145/3340531.3412084 10.1145/3144457.3144477 10.1109/MSPEC.2019.8701198 10.1016/S1474-4422(13)70160-1 10.3389/fdgth.2021.724370 10.1007/978-3-319-49685-6_19 10.1016/j.heares.2016.12.002 10.1088/1741-2552/aace8c 10.1007/978-3-319-70093-9_84 10.1002/hbm.23730 10.1145/2939672.2939785 10.3389/fnhum.2020.00103 10.1109/CVPR.2018.00131 10.1523/JNEUROSCI.2156-11.2011 10.18653/v1/P19-1589 10.1109/MLSP.2018.8517037 10.1109/EMBC46164.2021.9629964 10.1109/TNSRE.2017.2721116 10.1007/s00106-004-1066-4 10.11591/ijece.v11i1.pp424-433 10.1145/3458754 10.1109/JBHI.2019.2934172 10.1109/TNSRE.2021.3095298 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2022.3201158 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2361 |
ExternalDocumentID | oai_doaj_org_article_3658308b20d64be4a1765d3ee75b9975 10_1109_TNSRE_2022_3201158 9864608 |
Genre | orig-research |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c438t-6ca23e5fa163769d1f591363055231ce7da8999748916edd2d365bdb790c687a3 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:28:28 EDT 2025 Thu Jul 10 19:32:21 EDT 2025 Fri Jul 25 07:51:12 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 00:43:26 EDT 2025 Wed Aug 27 02:29:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-6ca23e5fa163769d1f591363055231ce7da8999748916edd2d365bdb790c687a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2692-2110 0000-0003-4442-3825 0000-0002-4149-839X |
OpenAccessLink | https://doaj.org/article/3658308b20d64be4a1765d3ee75b9975 |
PMID | 35998167 |
PQID | 2708643353 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TNSRE_2022_3201158 proquest_journals_2708643353 proquest_miscellaneous_2705749734 ieee_primary_9864608 doaj_primary_oai_doaj_org_article_3658308b20d64be4a1765d3ee75b9975 crossref_citationtrail_10_1109_TNSRE_2022_3201158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ravi (ref48) 2016 ref56 ref15 ref14 ref53 ref52 hunn (ref2) 2016 ref55 ref11 ref10 van der maaten (ref59) 2008; 9 ref17 ref16 crisp (ref54) 2000 ref18 ref51 mishra (ref44) 2017 gregor hartmann (ref31) 2018 ref8 ref7 ref9 ref4 ref6 finn (ref19) 2017 ref5 koch (ref37) 2015; 2 ref35 hospedales (ref22) 2022; 44 andrychowicz (ref47) 2016 ref34 weiler (ref12) 2002; 8 ref36 ref33 ref1 ref39 liu (ref30) 2021 grant (ref49) 2018 satorras (ref41) 2018 ref24 ref23 ref26 kumar (ref58) 2021; 11 ref25 ref20 liu (ref32) 2022 munkhdalai (ref43) 2017 ref21 finn (ref50) 2019 crum (ref3) 2019; 56 ref28 ref27 duan (ref45) 2016 santoro (ref42) 2016 ref29 wang (ref46) 2016 snell (ref38) 2017 vinyals (ref40) 2016; 29 |
References_xml | – year: 2016 ident: ref48 article-title: Optimization as a model for few-shot learning publication-title: Proc 5th Int Conf Learn Represent (ICLR) – start-page: 1 year: 2018 ident: ref41 article-title: Few-shot learning with graph neural networks publication-title: Proc Int Conf Learn Represent – ident: ref11 doi: 10.1109/MeMeA.2017.7985906 – ident: ref55 doi: 10.1109/TNSRE.2019.2905894 – ident: ref27 doi: 10.1007/s10484-015-9318-5 – volume: 2 start-page: 1 year: 2015 ident: ref37 article-title: Siamese neural networks for one-shot image recognition publication-title: Proc ICML Deep Learn Workshop – ident: ref36 doi: 10.1109/IJCNN.1992.287172 – ident: ref21 doi: 10.1109/IJCNN.2019.8852100 – year: 2017 ident: ref38 article-title: Prototypical networks for few-shot learning publication-title: arXiv 1703 05175 – ident: ref4 doi: 10.1007/978-3-319-09903-3 – ident: ref33 doi: 10.1109/TMM.2021.3139211 – ident: ref10 doi: 10.3390/brainsci11111525 – ident: ref24 doi: 10.1186/s13063-016-1399-9 – ident: ref14 doi: 10.3390/s20072034 – start-page: 1920 year: 2019 ident: ref50 article-title: Online meta-learning publication-title: Proc 36th Int Conf Mach Learn – ident: ref8 doi: 10.1007/s11063-018-9845-1 – ident: ref16 doi: 10.1109/TCDS.2018.2826840 – start-page: 1126 year: 2017 ident: ref19 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref7 doi: 10.3389/fncom.2019.00094 – ident: ref25 doi: 10.1007/s001060050704 – ident: ref35 doi: 10.1145/3340531.3412084 – ident: ref29 doi: 10.1145/3144457.3144477 – volume: 56 start-page: 38 year: 2019 ident: ref3 article-title: Hearables: Here come the: Technology tucked inside your ears will augment your daily life publication-title: IEEE Spectr doi: 10.1109/MSPEC.2019.8701198 – ident: ref23 doi: 10.1016/S1474-4422(13)70160-1 – year: 2018 ident: ref31 article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals publication-title: arXiv 1806 01875 – ident: ref1 doi: 10.3389/fdgth.2021.724370 – volume: 29 start-page: 3630 year: 2016 ident: ref40 article-title: Matching networks for one shot learning publication-title: Proc Adv Neural Inf Process Syst – volume: 8 start-page: 87 year: 2002 ident: ref12 article-title: Neurofeedback and quantitative electroencephalography publication-title: Int Tinnitus J – ident: ref9 doi: 10.1007/978-3-319-49685-6_19 – ident: ref52 doi: 10.1016/j.heares.2016.12.002 – year: 2016 ident: ref45 article-title: RL2: Fast reinforcement learning via slow reinforcement learning publication-title: arXiv 1611 02779 – ident: ref57 doi: 10.1088/1741-2552/aace8c – ident: ref13 doi: 10.1007/978-3-319-70093-9_84 – ident: ref56 doi: 10.1002/hbm.23730 – year: 2016 ident: ref2 article-title: The market for hearable devices 2016-2020 – ident: ref53 doi: 10.1145/2939672.2939785 – year: 2021 ident: ref30 article-title: Task aligned generative meta-learning for zero-shot learning publication-title: Proc 35th AAAI Conf Artif Intell – year: 2016 ident: ref46 article-title: Learning to reinforcement learn publication-title: arXiv 1611 05763 – ident: ref15 doi: 10.3389/fnhum.2020.00103 – ident: ref39 doi: 10.1109/CVPR.2018.00131 – ident: ref51 doi: 10.1523/JNEUROSCI.2156-11.2011 – year: 2017 ident: ref44 article-title: A simple neural attentive meta-learner publication-title: arXiv 1707 03141 – ident: ref20 doi: 10.18653/v1/P19-1589 – ident: ref18 doi: 10.1109/MLSP.2018.8517037 – ident: ref5 doi: 10.1109/EMBC46164.2021.9629964 – year: 2022 ident: ref32 article-title: Disentangled and side-aware unsupervised domain adaptation for cross-dataset subjective tinnitus diagnosis publication-title: arXiv 2205 03230 – volume: 9 start-page: 2579 year: 2008 ident: ref59 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref28 doi: 10.1109/TNSRE.2017.2721116 – volume: 44 start-page: 5149 year: 2022 ident: ref22 article-title: Meta-learning in neural networks: A survey publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref26 doi: 10.1007/s00106-004-1066-4 – volume: 11 start-page: 424 year: 2021 ident: ref58 article-title: Bio-signals compression using auto-encoder publication-title: Int J Electr Comput Eng (IJECE) doi: 10.11591/ijece.v11i1.pp424-433 – start-page: 3981 year: 2016 ident: ref47 article-title: Learning to learn by gradient descent by gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref34 doi: 10.1145/3458754 – ident: ref17 doi: 10.1109/JBHI.2019.2934172 – start-page: 1842 year: 2016 ident: ref42 article-title: Meta-learning with memory-augmented neural networks publication-title: Proc 33rd Int Conf Mach Learn – year: 2018 ident: ref49 article-title: Recasting gradient-based meta-learning as hierarchical Bayes publication-title: arXiv 1801 08930 – ident: ref6 doi: 10.1109/TNSRE.2021.3095298 – start-page: 244 year: 2000 ident: ref54 article-title: A geometric interpretation of v-SVM classifiers publication-title: Proc Adv Neural Inf Process Syst – start-page: 2554 year: 2017 ident: ref43 article-title: Meta networks publication-title: Proc 34th Int Conf Mach Learn |
SSID | ssj0017657 |
Score | 2.3983665 |
Snippet | With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2352 |
SubjectTerms | Brain modeling cross-dataset Data collection Datasets Deep learning Diagnosis Ear EEG Electroencephalography Learning algorithms Machine learning Medical diagnosis meta-learning Signs and symptoms subject-independent Task analysis Tinnitus Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1ygUBBLCzIScIFss_ErPpY-VCG2h3YLvUV-zMICyqLdREj8emacbHgKcYsSx_Jo3rbnG8aeYpbhgywlNTQRmYylzbwiWaZNC4y_5zaB6UzP9dmVfH2trrfYy6EWBgDS5TMY02M6y4_L0NJW2QFBiWuq7L2BiVtXqzWcGBidUD1RgWUmRZFvCmRyezA7v7w4wVSwKMaC_J2iJn1CYaIxSe3lf_ijBNvf91n5wzgnj3N6m003a-0umnwat40fh2-_wTj-LzE77FYfevLDTlbusC2o77JnP8MM81mHMcCf84tfELx32dvLRYTs8KtbAZ9C47IemPU9x6iXHxFt2bFr0Cc2_A2JTg0rftzd41us-btF84GjkfrY2Vc-W9RoS9r1PXZ1ejI7Osv6ngxZkKJsMh1cIUDNHcZxRts4mSs7EZpwwzBSDGCiwwzOEqbNREOMRRRa-eiNzYMujRP32Xa9rOEB45SbYfjlc-1QWsA4G0rhQmFAzMEEMWKTDWeq0JNLfTM-VylxyW2VGFsRY6uesSP2YvjnSwfX8c_Rr4jhw0iC2k4vkFFVr7kVrr8UeemLPGrpQToStSgAjPJIqBqxXWLuMEnP1xHb34hP1ZuFdVUYzCClEAqJezJ8RoWmUxpXw7JNY5SR1gj58O8z77GbRES3D7TPtptVC48wMmr846QS3wHjqgVl priority: 102 providerName: IEEE |
Title | Side-Aware Meta-Learning for Cross-Dataset Listener Diagnosis With Subjective Tinnitus |
URI | https://ieeexplore.ieee.org/document/9864608 https://www.proquest.com/docview/2708643353 https://www.proquest.com/docview/2705749734 https://doaj.org/article/3658308b20d64be4a1765d3ee75b9975 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUQEEslMpIwAWFJrFjx8fSh6qK9tBuaW-WH7PtIpSi3az4-8w43tWiSvTSazKJ7Jmx5xs_vmHsI2YZPshWUkETUcjYmsI35Mu0aIH4e2ISmc7ZuTq5kqc3zc1aqS86EzbQAw-K2xMYIkXZ-rqMSnqQrtKqiQJAN94YndhLMeYtk6m8f4AyenlFpjR74_PLiyNMBuv6q6CIRwXe18JQYuvP5VUezMkp0Bw_Z1sZIfL9oWUv2AZ0L9mndTZgPh6oAPhnfvEP0fY2-3E5jVDs_3Ez4GfQuyLzp95yBKf8gNpSHLoeQ1fPv5OFO5jxw-G43XTOr6f9Hce55OcwDfLxtMMhv5i_YlfHR-ODkyKXTiiCFG1fqOBqAc3EIdzSysRq0phKKKL3QkAXQEeHiZYh6plKQYx1RD376LUpg2q1E6_ZZnffwRvGKYVClORL5dCooJ0JrXCh1iAmoIMYsWqpSRtyd6m8xS-b8ovS2KR9S9q3Wfsj9mX1ze-BVeO_0t_IQCtJYsROD9BPbPYT-5ifjNg2mXf1E6KlVyX-e2dpbptH79zWGhM9KUSDnfuweo3jjjZTXAf3iyTTaGm0kG-fonnv2DPq8rC4s8M2-9kC3iPc6f1u8uzddDPxL8_G-Ds |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALBQpioYCRgAtkm8Sv5Fj60AK7e2hT6C1y7NmyBWXRblZI_HpmnGx4CnGLEsfyaN625xvGnmGWUTmZSWpoIiLpszyqFMkybVpg_D3LA5jOZKpH5_LthbrYYq_6WhgACJfPYEiP4SzfL9yatsr2CUpcU2XvNfT7KmmrtfozA6MDrieqsIykSONNiUyc7xfTs9NjTAbTdCjI4ylq0ycUphpJaDD_wyMF4P6u08of5jn4nJMdNtmstr1q8mm4bqqh-_YbkOP_knOL3eyCT37QSstttgX1Hfb8Z6BhXrQoA_wFP_0Fw3uXvT-be4gOvtol8Ak0NuqgWS85xr38kGiLjmyDXrHhYxKeGpb8qL3JN1_xD_PmI0czddVaWF7Ma7Qm69Vddn5yXByOoq4rQ-SkyJpIO5sKUDOLkZzRuU9mKk-EJuQwjBUdGG8xh8sJ1SbR4H3qhVaVr0weO50ZK-6x7XpRw33GKTvDAKyKtUV5AWNzlwnrUgNiBsaJAUs2nCldRy51zvhchtQlzsvA2JIYW3aMHbCX_T9fWsCOf45-TQzvRxLYdniBjCo73S1x_ZmIsyqNvZYVSEui5gWAURUSqgZsl5jbT9LxdcD2NuJTdoZhVaYGc0gphELinvafUaXpnMbWsFiHMcrI3Aj54O8zP2HXR8VkXI7fTN89ZDeIoHZXaI9tN8s1PMI4qakeB_X4DqfNCK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side-Aware+Meta-Learning+for+Cross-Dataset+Listener+Diagnosis+With+Subjective+Tinnitus&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Zhe&rft.au=Li%2C+Yun&rft.au=Yao%2C+Lina&rft.au=Lucas%2C+Molly&rft.date=2022&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=30&rft.spage=2352&rft.epage=2361&rft_id=info:doi/10.1109%2FTNSRE.2022.3201158&rft_id=info%3Apmid%2F35998167&rft.externalDocID=9864608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |