Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma

Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Methods This single-institutional retrospective study included 58 patient...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 28; no. 4; pp. 1625 - 1633
Main Authors Feng, Zhichao, Rong, Pengfei, Cao, Peng, Zhou, Qingyu, Zhu, Wenwei, Yan, Zhimin, Liu, Qianyun, Wang, Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Methods This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Results Of the 42 extracted features, 16 candidate features showed significant intergroup differences ( P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Conclusion Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. Key Points • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf .
AbstractList To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).OBJECTIVETo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.METHODSThis single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.RESULTSOf the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.CONCLUSIONMachine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.• Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.KEY POINTS• Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
ObjectiveTo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).MethodsThis single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.ResultsOf the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.ConclusionMachine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.Key Points• Although conventional CT is useful for diagnosis of SRMs, it has limitations.• Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC.• The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %.• Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Methods This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Results Of the 42 extracted features, 16 candidate features showed significant intergroup differences ( P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Conclusion Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. Key Points • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf .
Author Feng, Zhichao
Rong, Pengfei
Zhu, Wenwei
Wang, Wei
Liu, Qianyun
Yan, Zhimin
Cao, Peng
Zhou, Qingyu
Author_xml – sequence: 1
  givenname: Zhichao
  surname: Feng
  fullname: Feng, Zhichao
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 2
  givenname: Pengfei
  surname: Rong
  fullname: Rong, Pengfei
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 3
  givenname: Peng
  surname: Cao
  fullname: Cao, Peng
  organization: GE Healthcare
– sequence: 4
  givenname: Qingyu
  surname: Zhou
  fullname: Zhou, Qingyu
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 5
  givenname: Wenwei
  surname: Zhu
  fullname: Zhu, Wenwei
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 6
  givenname: Zhimin
  surname: Yan
  fullname: Yan, Zhimin
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 7
  givenname: Qianyun
  surname: Liu
  fullname: Liu, Qianyun
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
– sequence: 8
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: cjr.wangwei@vip.163.com
  organization: Department of Radiology, The Third Xiangya Hospital, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29134348$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u3CAYxFGVqtmkfYBeKqReenELBi-mt2r7L1KiXNIzwvhjQ2TDBnDSzRP1MYt3N1IUqT0h4Dej0cwJOvLBA0JvKflICRGfEiGMkYpQUTWUttXDC7SgnNUVJS0_QgsiWVsJKfkxOknphhAiKRev0HEtKeOMtwv050Kba-cBD6Cjd35ddTpBj28n7bPLOrs7wBl-5ykC1l4P2-QSDhavrrAb9Rp2lzTqYcARyj8edUqQPuOvzlooT9kVk-BnTPu1C-M2DG4TRo3vXb4OU8Z3LrluAGx1xjaG8WBkoHgaHY3zhX6NXlo9JHhzOE_Rr-_frlY_q_PLH2erL-eV4azN1bJbWmap6ajlmjWiB07Z0jSkp9IwWUveUl2TxpLSwA6VfVvTIhZ9U1vBTtGHve8mhtsJUlajS3MU7SFMSVG55LUo7c3o-2foTZhiib6jyjJMkLpQ7w7U1I3Qq00svcWtetygAGIPmBhSimCV2RUffI7aDYoSNa-t9mursraa11YPRUmfKR_N_6ep95pUWL-G-CT0P0V_AWYZvsw
CitedBy_id crossref_primary_10_3390_ijms24054615
crossref_primary_10_1007_s00261_020_02832_9
crossref_primary_10_1007_s00261_020_02414_9
crossref_primary_10_1016_j_urology_2023_07_017
crossref_primary_10_1080_10408363_2018_1561640
crossref_primary_10_1007_s00261_022_03699_8
crossref_primary_10_4111_icu_20230435
crossref_primary_10_1007_s00330_020_06787_9
crossref_primary_10_1097_RCT_0000000000001433
crossref_primary_10_1371_journal_pone_0287299
crossref_primary_10_1007_s00261_021_03213_6
crossref_primary_10_1007_s11912_019_0815_1
crossref_primary_10_1007_s00261_021_03090_z
crossref_primary_10_1017_pcm_2022_9
crossref_primary_10_1097_MD_0000000000019725
crossref_primary_10_1590_0100_6991e_20233561_en
crossref_primary_10_1016_j_ejrad_2018_10_005
crossref_primary_10_1186_s12885_023_10562_6
crossref_primary_10_1007_s00330_022_09109_3
crossref_primary_10_1186_s40644_020_00359_2
crossref_primary_10_2214_AJR_19_22608
crossref_primary_10_1002_cam4_1746
crossref_primary_10_1007_s00261_020_02802_1
crossref_primary_10_1002_jmri_27900
crossref_primary_10_3389_fonc_2022_869982
crossref_primary_10_1002_cam4_2711
crossref_primary_10_1038_s41467_025_56784_z
crossref_primary_10_1007_s00261_020_02632_1
crossref_primary_10_1111_bju_16276
crossref_primary_10_3390_cancers14153609
crossref_primary_10_3389_fonc_2020_570396
crossref_primary_10_1097_MOU_0000000000000881
crossref_primary_10_1200_EDBK_350862
crossref_primary_10_3389_fonc_2023_1167328
crossref_primary_10_1016_j_ejrad_2019_108738
crossref_primary_10_1155_2021_6595212
crossref_primary_10_21886_2308_6424_2024_12_4_91_101
crossref_primary_10_3389_fonc_2022_847805
crossref_primary_10_1016_j_phro_2021_10_007
crossref_primary_10_1007_s00345_021_03602_y
crossref_primary_10_4018_IJCCP_2018070103
crossref_primary_10_3748_wjg_v26_i19_2387
crossref_primary_10_1002_jmri_26327
crossref_primary_10_3748_wjg_v26_i19_2388
crossref_primary_10_1007_s40747_021_00521_8
crossref_primary_10_1007_s10278_020_00336_y
crossref_primary_10_1097_MD_0000000000021262
crossref_primary_10_3389_fonc_2021_742547
crossref_primary_10_2214_AJR_19_22074
crossref_primary_10_1007_s00330_021_07758_4
crossref_primary_10_1155_2022_6283618
crossref_primary_10_3389_fdgth_2021_797607
crossref_primary_10_1016_j_urolonc_2021_03_012
crossref_primary_10_32604_cmes_2023_024909
crossref_primary_10_1016_j_tranon_2018_10_012
crossref_primary_10_1016_j_clinimag_2022_11_007
crossref_primary_10_3390_bdcc6010029
crossref_primary_10_1007_s11547_024_01825_8
crossref_primary_10_1186_s12880_025_01606_3
crossref_primary_10_1007_s00261_022_03571_9
crossref_primary_10_1007_s00330_018_5698_2
crossref_primary_10_3390_app10217512
crossref_primary_10_3389_fonc_2022_889833
crossref_primary_10_1007_s00261_021_02981_5
crossref_primary_10_1097_RCT_0000000000001041
crossref_primary_10_1007_s13167_018_0149_3
crossref_primary_10_5812_iranjradiol_119266
crossref_primary_10_3390_jcm13020547
crossref_primary_10_1038_s41598_021_84244_3
crossref_primary_10_3390_e24040471
crossref_primary_10_1097_MOU_0000000000000816
crossref_primary_10_3389_fsurg_2022_914903
crossref_primary_10_1016_j_ultrasmedbio_2022_10_009
crossref_primary_10_1016_j_tranon_2023_101627
crossref_primary_10_1016_j_rcl_2020_06_001
crossref_primary_10_2147_CMAR_S297094
crossref_primary_10_1177_1536012119883161
crossref_primary_10_3389_fonc_2023_1169922
crossref_primary_10_1016_j_ultrasmedbio_2019_04_009
crossref_primary_10_3389_fmed_2022_974485
crossref_primary_10_1155_2020_7103647
crossref_primary_10_3389_fonc_2023_1284040
crossref_primary_10_1007_s11255_024_04082_w
crossref_primary_10_1007_s00330_018_5872_6
crossref_primary_10_1016_j_metrad_2024_100081
crossref_primary_10_1155_2023_6403556
crossref_primary_10_1186_s12885_023_11454_5
crossref_primary_10_1007_s00432_023_05339_0
crossref_primary_10_1002_phar_2749
crossref_primary_10_1615_CritRevOncog_2023051084
crossref_primary_10_1002_cam4_3957
crossref_primary_10_1007_s00261_019_02303_w
crossref_primary_10_1007_s00261_022_03486_5
crossref_primary_10_17650_1726_9776_2024_20_3_159_167
crossref_primary_10_4015_S1016237222500363
crossref_primary_10_1155_2022_9108129
crossref_primary_10_22465_kjuo_2022_20_3_163
crossref_primary_10_20517_2574_1225_2023_79
crossref_primary_10_5213_inj_2346286_143
crossref_primary_10_1007_s00330_019_06427_x
crossref_primary_10_1007_s44326_024_00033_y
crossref_primary_10_1007_s00330_024_10731_6
crossref_primary_10_1016_j_diii_2018_11_007
crossref_primary_10_1016_j_ejrad_2020_108929
crossref_primary_10_1021_acsnano_4c16949
crossref_primary_10_1111_iju_13579
crossref_primary_10_3390_cancers15102835
crossref_primary_10_1117_1_JMI_10_2_024501
crossref_primary_10_3390_diagnostics13193070
crossref_primary_10_1007_s00330_020_07099_8
crossref_primary_10_1016_j_ucl_2023_01_006
crossref_primary_10_1097_RCT_0000000000001181
crossref_primary_10_1186_s12894_022_01099_0
crossref_primary_10_3389_fonc_2021_633034
crossref_primary_10_1007_s00521_020_04861_3
crossref_primary_10_1016_j_acra_2019_12_015
crossref_primary_10_3389_fonc_2021_659969
crossref_primary_10_1007_s00330_019_06080_4
crossref_primary_10_1038_s41598_024_60921_x
crossref_primary_10_1111_bju_15026
crossref_primary_10_1590_0100_6991e_20233561
crossref_primary_10_1007_s11831_023_09915_y
crossref_primary_10_3390_cancers12061387
crossref_primary_10_2214_AJR_20_22847
crossref_primary_10_1038_s41598_021_90163_0
crossref_primary_10_1186_s40644_021_00412_8
crossref_primary_10_2214_AJR_19_21709
crossref_primary_10_3390_cancers12103010
crossref_primary_10_1259_bjr_20200569
crossref_primary_10_1177_17562872231164803
crossref_primary_10_2214_AJR_21_25456
crossref_primary_10_2214_AJR_19_21625
crossref_primary_10_1002_mp_14193
crossref_primary_10_1016_j_ejrad_2018_08_014
crossref_primary_10_1111_bju_14985
crossref_primary_10_1259_bjr_20190974
crossref_primary_10_1007_s10278_019_00230_2
crossref_primary_10_3390_diagnostics13172743
crossref_primary_10_3389_fonc_2020_01192
crossref_primary_10_3389_fonc_2020_579619
crossref_primary_10_1007_s00330_020_07233_6
crossref_primary_10_1177_15330338211039125
crossref_primary_10_2214_AJR_19_21617
crossref_primary_10_1016_j_compmedimag_2019_101675
crossref_primary_10_1158_1078_0432_CCR_19_0374
crossref_primary_10_3389_fonc_2021_744756
crossref_primary_10_2214_AJR_19_21212
crossref_primary_10_2214_AJR_19_21696
crossref_primary_10_3390_cancers15184565
crossref_primary_10_1007_s00345_019_03000_5
crossref_primary_10_1016_j_jrras_2023_100769
crossref_primary_10_1108_GS_03_2021_0041
crossref_primary_10_1038_s41598_021_93069_z
crossref_primary_10_2214_AJR_19_21172
crossref_primary_10_1016_j_bspc_2020_102311
crossref_primary_10_1016_j_bspc_2023_105134
crossref_primary_10_1007_s00330_020_07158_0
crossref_primary_10_1007_s00330_021_08528_y
crossref_primary_10_1186_s12885_025_13547_9
crossref_primary_10_12677_ACM_2023_132310
crossref_primary_10_1016_j_acra_2019_05_004
crossref_primary_10_1186_s40644_021_00417_3
crossref_primary_10_1007_s00330_019_06384_5
crossref_primary_10_1177_0284185119830282
crossref_primary_10_3390_jcm10173888
crossref_primary_10_2196_23415
crossref_primary_10_1111_risa_14124
crossref_primary_10_3389_fonc_2024_1365897
Cites_doi 10.1111/j.1464-410X.2011.10184.x
10.1007/s00330-015-3701-8
10.1016/j.jchromb.2012.05.020
10.1148/radiology.205.2.9356635
10.1007/s00261-017-1079-6
10.3892/ol.2016.4214
10.1073/pnas.1505935112
10.1371/journal.pone.0178944
10.1016/j.clinimag.2014.09.008
10.1016/j.ejrad.2012.10.023
10.1148/radiol.2303030003
10.1023/A:1012487302797
10.2214/AJR.09.3033
10.2214/AJR.12.10204
10.1007/s00330-015-3851-8
10.1016/j.mri.2012.06.010
10.2214/AJR.14.14183
10.1016/j.juro.2015.07.126
10.1016/j.acra.2015.04.004
10.1016/j.urology.2008.04.054
10.1002/mp.12258
10.1016/j.crad.2012.08.028
10.1148/rg.274065147
10.1038/srep13087
10.1038/srep46349
10.1111/iju.12117
10.1007/s00330-016-4579-9
10.1016/j.urology.2006.04.011
10.1007/s13244-012-0196-6
10.1148/radiol.2015142215
10.1016/j.cell.2011.02.013
10.1007/s00330-016-4663-1
10.1002/jmri.25669
10.1007/s00261-017-1144-1
10.1002/jmri.25752
10.18632/oncotarget.18001
10.1613/jair.953
10.18632/oncotarget.11693
10.1038/ncomms5006
10.1007/s00330-017-4800-5
ContentType Journal Article
Copyright European Society of Radiology 2017
European Radiology is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2017
– notice: European Radiology is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-017-5118-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 1633
ExternalDocumentID 29134348
10_1007_s00330_017_5118_z
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c438t-6b6f3f1cb1f4a357de4136c50d19c3929481a205f01346f3f19d821c437d52f73
IEDL.DBID 7X7
ISSN 0938-7994
1432-1084
IngestDate Thu Jul 10 19:07:49 EDT 2025
Fri Jul 25 18:53:38 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 03:08:02 EDT 2025
Fri Feb 21 02:32:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Texture analysis
Angiomyolipoma
Computed tomography
Renal cell carcinoma
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6b6f3f1cb1f4a357de4136c50d19c3929481a205f01346f3f19d821c437d52f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29134348
PQID 1963303702
PQPubID 54162
PageCount 9
ParticipantIDs proquest_miscellaneous_1964273437
proquest_journals_1963303702
pubmed_primary_29134348
crossref_citationtrail_10_1007_s00330_017_5118_z
crossref_primary_10_1007_s00330_017_5118_z
springer_journals_10_1007_s00330_017_5118_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tsukada, Jinzaki, Yao (CR29) 2013; 20
Sidhu, Benigno, Ganeshan (CR34) 2017; 27
Davnall, Yip, Ljungqvist (CR10) 2012; 3
Zhang, Yan, Hu (CR15) 2017; 8
Parmar, Grossmann, Bussink (CR14) 2015; 5
Fujii, Komai, Saito (CR2) 2008; 72
Chawla, Bowyer, Hall (CR23) 2011; 16
Hakim, Schieda, Hodgdon (CR7) 2016; 26
Zhang, Oikonomou, Wong (CR24) 2017; 7
CR32
Yip, Parmar, Blezek (CR39) 2017; 12
Guyon, Weston, Barnhill (CR19) 2002; 46
Ng, Kozarski, Ganeshan (CR40) 2013; 82
Takahashi, Leng, Kitajima (CR37) 2015; 205
Xie, Yang, Yuan (CR9) 2016; 11
Aerts, Velazquez, Leijenaar (CR18) 2014; 5
Choi, Lee, Jeong (CR33) 2016; 7
Yang, Shen, Chang (CR8) 2013; 201
Nketiah, Elschot, Kim (CR16) 2017; 27
Jinzaki, Tanimoto, Narimatsu (CR28) 1997; 205
Hodgdon, Mcinnes, Schieda (CR11) 2015; 276
Wibmer, Hricak, Gondo (CR17) 2015; 25
Ishigami, Pakalniskis, Leite (CR30) 2015; 39
Flum, Hamoui, Said (CR3) 2016; 195
Lee, Hong, Jung (CR26) 2017; 44
Silverman, Mortele, Tuncali (CR31) 2007; 27
Umbreit, Shimko, Childs (CR4) 2012; 109
CR25
Zhang, Luo, Liu (CR6) 2013; 68
CR22
Xu, Liu, Zhang (CR38) 2017; 42
CR21
Kutikov, Fossett, Ramchandani (CR1) 2006; 68
Fehr, Veeraraghavan, Wibmer (CR20) 2015; 112
Johnson, Horton, Fishman (CR36) 2010; 194
Hanahan, Weinberg (CR35) 2011; 144
Yan, Liu, Wang (CR12) 2015; 22
Kim, Park, Shon (CR5) 2004; 230
Lin, Yang, Zhou (CR27) 2012; 910
Kumar, Gu, Basu (CR13) 2012; 30
V Kumar (5118_CR13) 2012; 30
SSF Yip (5118_CR39) 2017; 12
G Nketiah (5118_CR16) 2017; 27
HS Lee (5118_CR26) 2017; 44
T Hodgdon (5118_CR11) 2015; 276
L Yan (5118_CR12) 2015; 22
D Hanahan (5118_CR35) 2011; 144
SG Silverman (5118_CR31) 2007; 27
5118_CR25
X Xu (5118_CR38) 2017; 42
5118_CR22
A Kutikov (5118_CR1) 2006; 68
A Wibmer (5118_CR17) 2015; 25
5118_CR21
AS Flum (5118_CR3) 2016; 195
JK Kim (5118_CR5) 2004; 230
YY Zhang (5118_CR6) 2013; 68
M Jinzaki (5118_CR28) 1997; 205
N Takahashi (5118_CR37) 2015; 205
ER Choi (5118_CR33) 2016; 7
HJ Aerts (5118_CR18) 2014; 5
P Xie (5118_CR9) 2016; 11
HS Sidhu (5118_CR34) 2017; 27
X Lin (5118_CR27) 2012; 910
Y Zhang (5118_CR24) 2017; 7
C Parmar (5118_CR14) 2015; 5
J Tsukada (5118_CR29) 2013; 20
K Ishigami (5118_CR30) 2015; 39
EC Umbreit (5118_CR4) 2012; 109
NV Chawla (5118_CR23) 2011; 16
SW Hakim (5118_CR7) 2016; 26
5118_CR32
PT Johnson (5118_CR36) 2010; 194
D Fehr (5118_CR20) 2015; 112
Y Fujii (5118_CR2) 2008; 72
X Zhang (5118_CR15) 2017; 8
F Davnall (5118_CR10) 2012; 3
F Ng (5118_CR40) 2013; 82
CW Yang (5118_CR8) 2013; 201
I Guyon (5118_CR19) 2002; 46
References_xml – ident: CR22
– volume: 16
  start-page: 321
  year: 2011
  end-page: 357
  ident: CR23
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
– volume: 109
  start-page: 190
  year: 2012
  end-page: 194
  ident: CR4
  article-title: Metastatic potential of a renal mass according to original tumour size at presentation
  publication-title: Bju Int
  doi: 10.1111/j.1464-410X.2011.10184.x
– volume: 25
  start-page: 2840
  year: 2015
  end-page: 2850
  ident: CR17
  article-title: Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3701-8
– volume: 910
  start-page: 149
  year: 2012
  end-page: 155
  ident: CR27
  article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2012.05.020
– volume: 205
  start-page: 497
  year: 1997
  end-page: 502
  ident: CR28
  article-title: Angiomyolipoma: imaging findings in lesions with minimal fat
  publication-title: Radiology
  doi: 10.1148/radiology.205.2.9356635
– volume: 42
  start-page: 1896
  year: 2017
  end-page: 1905
  ident: CR38
  article-title: Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1079-6
– volume: 11
  start-page: 2327
  year: 2016
  end-page: 2331
  ident: CR9
  article-title: Lipid-poor renal angiomyolipoma: Differentiation from clear cell renal cell carcinoma using wash-in and washout characteristics on contrast-enhanced computed tomography
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.4214
– volume: 112
  start-page: E6265
  year: 2015
  end-page: E6273
  ident: CR20
  article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1505935112
– volume: 12
  start-page: e0178944
  year: 2017
  ident: CR39
  article-title: Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation
  publication-title: Plos One
  doi: 10.1371/journal.pone.0178944
– volume: 39
  start-page: 76
  year: 2015
  end-page: 84
  ident: CR30
  article-title: Characterization of renal cell carcinoma, oncocytoma, and lipid-poor angiomyolipoma by unenhanced, nephrographic, and delayed phase contrast-enhanced computed tomography
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2014.09.008
– volume: 82
  start-page: 342
  year: 2013
  end-page: 348
  ident: CR40
  article-title: Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis?
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.10.023
– volume: 230
  start-page: 677
  year: 2004
  end-page: 684
  ident: CR5
  article-title: Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT
  publication-title: Radiology
  doi: 10.1148/radiol.2303030003
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: CR19
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 194
  start-page: W307
  year: 2010
  end-page: W315
  ident: CR36
  article-title: How not to miss or mischaracterize a renal cell carcinoma: protocols, pearls, and pitfalls
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.3033
– volume: 201
  start-page: 1017
  year: 2013
  end-page: 1028
  ident: CR8
  article-title: Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma?
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.12.10204
– volume: 26
  start-page: 592
  year: 2016
  end-page: 600
  ident: CR7
  article-title: Angiomyolipoma (AML) without visible fat: Ultrasound, CT and MR imaging features with pathological correlation
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3851-8
– volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  ident: CR13
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 205
  start-page: 1194
  year: 2015
  end-page: 1202
  ident: CR37
  article-title: Small (< 4 cm) Renal Masses: Differentiation of Angiomyolipoma Without Visible Fat From Renal Cell Carcinoma Using Unenhanced and Contrast-Enhanced CT
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.14183
– volume: 195
  start-page: 834
  year: 2016
  end-page: 846
  ident: CR3
  article-title: Update on the Diagnosis and Management of Renal Angiomyolipoma
  publication-title: J Urol
  doi: 10.1016/j.juro.2015.07.126
– ident: CR25
– volume: 22
  start-page: 1115
  year: 2015
  end-page: 1121
  ident: CR12
  article-title: Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2015.04.004
– volume: 72
  start-page: 598
  year: 2008
  end-page: 602
  ident: CR2
  article-title: Incidence of benign pathologic lesions at partial nephrectomy for presumed RCC renal masses: Japanese dual-center experience with 176 consecutive patients
  publication-title: Urology
  doi: 10.1016/j.urology.2008.04.054
– volume: 44
  start-page: 3604
  year: 2017
  end-page: 3614
  ident: CR26
  article-title: Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification
  publication-title: Med Phys
  doi: 10.1002/mp.12258
– volume: 68
  start-page: 365
  year: 2013
  end-page: 370
  ident: CR6
  article-title: Angiomyolipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2012.08.028
– ident: CR21
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR18
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 7
  start-page: 67302
  year: 2016
  end-page: 67313
  ident: CR33
  article-title: Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma
  publication-title: Oncotarget
– volume: 27
  start-page: 1131
  year: 2007
  end-page: 1143
  ident: CR31
  article-title: Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation
  publication-title: Radiographics
  doi: 10.1148/rg.274065147
– volume: 5
  start-page: 13087
  year: 2015
  ident: CR14
  article-title: Machine Learning methods for Quantitative Radiomic Biomarkers
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 7
  start-page: 46349
  year: 2017
  ident: CR24
  article-title: Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer
  publication-title: Sci Rep
  doi: 10.1038/srep46349
– volume: 20
  start-page: 1105
  year: 2013
  end-page: 1111
  ident: CR29
  article-title: Epithelioid angiomyolipoma of the kidney: radiological imaging
  publication-title: Int J Urol
  doi: 10.1111/iju.12117
– volume: 8
  start-page: 47816
  year: 2017
  end-page: 47830
  ident: CR15
  article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features
  publication-title: Oncotarget
– ident: CR32
– volume: 27
  start-page: 2348
  year: 2017
  end-page: 2358
  ident: CR34
  article-title: Textural analysis of multiparametric MRI detects transition zone prostate cancer
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4579-9
– volume: 68
  start-page: 737
  year: 2006
  end-page: 740
  ident: CR1
  article-title: Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging
  publication-title: Urology
  doi: 10.1016/j.urology.2006.04.011
– volume: 3
  start-page: 573
  year: 2012
  end-page: 589
  ident: CR10
  article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 276
  start-page: 787
  year: 2015
  end-page: 796
  ident: CR11
  article-title: Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images?
  publication-title: Radiology
  doi: 10.1148/radiol.2015142215
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: CR35
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 27
  start-page: 3050
  year: 2017
  end-page: 3059
  ident: CR16
  article-title: T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4663-1
– volume: 109
  start-page: 190
  year: 2012
  ident: 5118_CR4
  publication-title: Bju Int
  doi: 10.1111/j.1464-410X.2011.10184.x
– volume: 205
  start-page: 497
  year: 1997
  ident: 5118_CR28
  publication-title: Radiology
  doi: 10.1148/radiology.205.2.9356635
– ident: 5118_CR22
  doi: 10.1002/jmri.25669
– volume: 11
  start-page: 2327
  year: 2016
  ident: 5118_CR9
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.4214
– volume: 22
  start-page: 1115
  year: 2015
  ident: 5118_CR12
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2015.04.004
– volume: 5
  start-page: 13087
  year: 2015
  ident: 5118_CR14
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 205
  start-page: 1194
  year: 2015
  ident: 5118_CR37
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.14183
– ident: 5118_CR25
  doi: 10.1007/s00261-017-1144-1
– volume: 7
  start-page: 46349
  year: 2017
  ident: 5118_CR24
  publication-title: Sci Rep
  doi: 10.1038/srep46349
– volume: 276
  start-page: 787
  year: 2015
  ident: 5118_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2015142215
– volume: 195
  start-page: 834
  year: 2016
  ident: 5118_CR3
  publication-title: J Urol
  doi: 10.1016/j.juro.2015.07.126
– volume: 201
  start-page: 1017
  year: 2013
  ident: 5118_CR8
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.12.10204
– volume: 3
  start-page: 573
  year: 2012
  ident: 5118_CR10
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 27
  start-page: 1131
  year: 2007
  ident: 5118_CR31
  publication-title: Radiographics
  doi: 10.1148/rg.274065147
– ident: 5118_CR32
  doi: 10.1002/jmri.25752
– volume: 194
  start-page: W307
  year: 2010
  ident: 5118_CR36
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.3033
– volume: 26
  start-page: 592
  year: 2016
  ident: 5118_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3851-8
– volume: 8
  start-page: 47816
  year: 2017
  ident: 5118_CR15
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18001
– volume: 27
  start-page: 3050
  year: 2017
  ident: 5118_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4663-1
– volume: 144
  start-page: 646
  year: 2011
  ident: 5118_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 910
  start-page: 149
  year: 2012
  ident: 5118_CR27
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2012.05.020
– volume: 16
  start-page: 321
  year: 2011
  ident: 5118_CR23
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 44
  start-page: 3604
  year: 2017
  ident: 5118_CR26
  publication-title: Med Phys
  doi: 10.1002/mp.12258
– volume: 20
  start-page: 1105
  year: 2013
  ident: 5118_CR29
  publication-title: Int J Urol
  doi: 10.1111/iju.12117
– volume: 12
  start-page: e0178944
  year: 2017
  ident: 5118_CR39
  publication-title: Plos One
  doi: 10.1371/journal.pone.0178944
– volume: 30
  start-page: 1234
  year: 2012
  ident: 5118_CR13
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 42
  start-page: 1896
  year: 2017
  ident: 5118_CR38
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1079-6
– volume: 27
  start-page: 2348
  year: 2017
  ident: 5118_CR34
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4579-9
– volume: 112
  start-page: E6265
  year: 2015
  ident: 5118_CR20
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1505935112
– volume: 68
  start-page: 365
  year: 2013
  ident: 5118_CR6
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2012.08.028
– volume: 7
  start-page: 67302
  year: 2016
  ident: 5118_CR33
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11693
– volume: 230
  start-page: 677
  year: 2004
  ident: 5118_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2303030003
– volume: 68
  start-page: 737
  year: 2006
  ident: 5118_CR1
  publication-title: Urology
  doi: 10.1016/j.urology.2006.04.011
– volume: 25
  start-page: 2840
  year: 2015
  ident: 5118_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3701-8
– volume: 72
  start-page: 598
  year: 2008
  ident: 5118_CR2
  publication-title: Urology
  doi: 10.1016/j.urology.2008.04.054
– volume: 5
  start-page: 4006
  year: 2014
  ident: 5118_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 46
  start-page: 389
  year: 2002
  ident: 5118_CR19
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– ident: 5118_CR21
  doi: 10.1007/s00330-017-4800-5
– volume: 39
  start-page: 76
  year: 2015
  ident: 5118_CR30
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2014.09.008
– volume: 82
  start-page: 342
  year: 2013
  ident: 5118_CR40
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.10.023
SSID ssj0009147
Score 2.5963593
Snippet Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm)...
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma...
ObjectiveTo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1625
SubjectTerms Angiomyolipoma
Angiomyolipoma - diagnostic imaging
Angiomyolipoma - pathology
Artificial intelligence
Carcinoma, Renal Cell - diagnostic imaging
Carcinoma, Renal Cell - pathology
Classifiers
Computed tomography
Diagnosis, Differential
Diagnostic Radiology
Diagnostic systems
Differentiation
Feature extraction
Female
Humans
Image processing
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Kidney cancer
Kidney Neoplasms - diagnostic imaging
Kidney Neoplasms - pathology
Learning algorithms
Machine learning
Male
Medicine
Medicine & Public Health
Middle Aged
Neuroradiology
Oversampling
Radiology
Renal cell carcinoma
Reproducibility of Results
Retrospective Studies
Sensitivity and Specificity
Support Vector Machine
Support vector machines
Surgery
Texture
Tomography, X-Ray Computed - methods
Ultrasound
Urogenital
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-6gngRv62uEsGTEnhN0yb1tqwui_A87YO9lTQfy4N-rO-1B_cv2j9zZ9K0KquCx9JJUjqTmUlm5jeEvFdeCSPrmsHpSjHBLey5WmmWam9LEGorA_D8-ltxuhFfz_PzWMe9n7Pd55Bk0NRLsRu2HcMkKsnQK2ZXd8m9HI7umMe14Uc_kXbT0FUMTuqKybIUcyjzT1P8boxueZi3oqPB6Jw8Ig-jt0iPJvY-Jndc94TcX8d4-FNyvQ65kI7G5g8XDK2Spd9H3YXqMdBlFHM7xp2jOuKP0N7T4zO6bUGVhId9q5uG7hwu1WqMAn-in2PjlGFiHZLp7mLbtz_6ZnvZt5riDW4_DhSr0-vGUa8HisUqcSKMCFCDnYo6oH5GNidfzo5PWey9wIzI1MCKuvCZT02deqGzXFoH1q4w-cqmpUGfSqhU81XuwYUUgbS0iqcwWNqce5k9Jwdd37mXhGKk1jouOdhFIQujCsVdYQSMraUVZUJWMxMqE4HJsT9GUy2QyoFvFfCtQr5VVwn5sAy5nFA5_kV8OHO2iht0X6HiAestVzwh75bXsLXw7-jO9WOgEYj-k8mEvJgkYlmNY8ZCJlRCPs4i8svkf_uUV_9F_Zo8APdMTXlCh-Rg2I3uDbhAQ_02iPwN6Tn-zQ
  priority: 102
  providerName: Springer Nature
Title Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma
URI https://link.springer.com/article/10.1007/s00330-017-5118-z
https://www.ncbi.nlm.nih.gov/pubmed/29134348
https://www.proquest.com/docview/1963303702
https://www.proquest.com/docview/1964273437
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAviO8FxmQknkAWTeLEDi-oHe0mUCuEVqk8RU7sTJXy0bXJA_uL-DO5c5wONLGXRJHPjpU73118598R8k4Wkuciyxj8XUnGAw1rLpOK-arQCQi1FhZ4fr6Iz5f86ypauQ23nUurHHSiVdS6yXGP_CNKCqhbMQo-b64YVo3C6KoroXGfHCJ0GUq1WIkb0F3fFhiDn3bJRJLwIao5siCiMBxDHY0-Nrv-1y7dcjZvBUqt_Zk9Jo-c40jHPaefkHumfkoezF1o_Bn5PbdpkYa6OhCXDA2Upledqu1BMlBrFNM8uq2hykGR0Kagpxd0XYFWsQ-7SpUl3Rp8VaUwIPyJfnE1VNqei0im6st1U_1qyvWmqRTFzdymaykeVM9KQwvVUjy34gbC4ADNsWhRDdTPyXI2vTg9Z64MA8t5KFsWZ3ERFn6e-QVXYSS0AcMX59FI-0mO7hWXvgpGUQHeJLekiZaBD52FjoJChC_IQd3U5ohQDNpqE4gATCQXcS5jGZg459A3E5onHhkNTEhzh1GOpTLKdI-ubPmWAt9S5Ft67ZH3-y6bHqDjLuLjgbOpW6u79EayPPJ23wyrDL-Oqk3TWRqOQECh8MjLXiL2bwsweSHk0iMfBhH5a_D_TeXV3VN5TR6Cayb7HKFjctBuO_MG3J82O7EyDlc5Ozshh-PZZLLA-9nPb1O4T6aL7z-gdRmM_wB-JwhM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYBLxZuUAkaCC8gicZzYQUIItSxb2u1pK_UWnNipVtok291EqP1FnPiNzDjJFlTRW49Rxg9lPs9MPC9C3qhCiVxmGYO_K8UEN3DmMqVZoAuTAKiNdIXnJ0fx-Fh8P4lONsjvIRcGwyoHmegEtalzvCP_gEgBcSt9_nlxxrBrFHpXhxYaHSwO7PlP-GVbfdrfA_6-5Xz0dbo7Zn1XAZaLUDUszuIiLII8Cwqhw0gaC3I8ziPfBEmO1oJQgeZ-VIBxJBxpYhQPYLA0ES9kCPPeIrdFCJocM9NH3y6L_AauoZmfgBCRSSIGL6rvipbC9hnqBLTp2cW_evCKcXvFMev03eg-2eoNVfqlQ9YDsmGrh-TOpHfFPyK_Ji4M09K-78QpQ4Vo6FmrK5e4BmKUYlhJu7RU96VPaF3Q3SmdlSDF3MOq1PM5XVpcqtTogP5I9_qeLU2HGiTT1emsLs_r-WxRl5ri5XHdNhQT47O5pYVuKObJ9BOhM4Lm2CSpAurH5PhGGPSEbFZ1ZZ8Rik5iY7nkoJKFjHMVK27jXMDYTBqReMQfmJDmfU10bM0xT9fVnB3fUuBbinxLLzzybj1k0RUEuY54Z-Bs2suGVXqJZI-8Xr-GU41fR1e2bh2NwMJDofTI0w4R69U4BkuEQnnk_QCRvyb_31a2r9_KK3J3PJ0cpof7RwfPyT0wC1UXn7RDNptla1-A6dVkLx3eKflx0wfsD-bnPPU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ028oPG_MMBI8AKKljhO7CAhBOuqjdFqQpu0t8yJnalSm3Rtomn7RHwGPh13jtOBJva2xyhnO_H9fHf2ne8IeScLyXORZR7srqTHmYY1l0nlBarQCYBaC5t4fjSO947595PoZI387u7CYFhlJxOtoNZVjmfk24gUELfCZ9uFC4s4HAy_zM89rCCFntaunEYLkQNzeQHbt-Xn_QHw-j1jw92jnT3PVRjwch7K2ouzuAiLIM-CgqswEtqATI_zyNdBkqPlwGWgmB8VYChxS5poyQJoLHTEChFCv_fIusBdUY-sf9sdH_68Tvkb2PJmfgIiRSQJ73yqvk1hCj_joYZAC9-7-lcr3jB1b7hprfYbbpIHzmylX1ucPSRrpnxENkbOMf-Y_BrZoExDXRWKMw_Vo6bnjSrtNTYQqhRns1kYqlwiFFoVdOeITmYg0-zDcqamU7owONRMoTv6Ex24Ci51iyEkU-XZpJpdVtPJvJopikfJVVNTvCafTQ0tVE3x1ozrCF0TNMeSSSVQPyHHd8Kip6RXVqV5Tii6jLVhgoGC5iLOZSyZiXMObTOhedInfseENHcZ0rFQxzRd5Xa2fEuBbynyLb3qkw-rJvM2PchtxFsdZ1MnKZbpNa775O3qNaxxnB1VmqqxNBzTEIWiT561iFiNxjB0IuSyTz52EPmr8_99yovbP-UN2YDFlf7YHx-8JPfBRpRtsNIW6dWLxrwCO6zOXjvAU3J612vsDyEUQoc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+quantitative+texture+analysis+of+CT+images+of+small+renal+masses%3A+Differentiation+of+angiomyolipoma+without+visible+fat+from+renal+cell+carcinoma&rft.jtitle=European+radiology&rft.au=Feng%2C+Zhichao&rft.au=Rong%2C+Pengfei&rft.au=Cao%2C+Peng&rft.au=Zhou%2C+Qingyu&rft.date=2018-04-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=28&rft.issue=4&rft.spage=1625&rft.epage=1633&rft_id=info:doi/10.1007%2Fs00330-017-5118-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_017_5118_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon