Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma
Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Methods This single-institutional retrospective study included 58 patient...
Saved in:
Published in | European radiology Vol. 28; no. 4; pp. 1625 - 1633 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).
Methods
This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.
Results
Of the 42 extracted features, 16 candidate features showed significant intergroup differences (
P
< 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.
Conclusion
Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.
Key Points
•
Although conventional CT is useful for diagnosis of SRMs, it has limitations.
•
Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC.
•
The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %.
•
Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf
. |
---|---|
AbstractList | To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).OBJECTIVETo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.METHODSThis single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.RESULTSOf the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.CONCLUSIONMachine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.• Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.KEY POINTS• Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf. ObjectiveTo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).MethodsThis single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.ResultsOf the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.ConclusionMachine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.Key Points• Although conventional CT is useful for diagnosis of SRMs, it has limitations.• Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC.• The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %.• Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf. To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf. Objective To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Methods This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Results Of the 42 extracted features, 16 candidate features showed significant intergroup differences ( P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Conclusion Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. Key Points • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf . |
Author | Feng, Zhichao Rong, Pengfei Zhu, Wenwei Wang, Wei Liu, Qianyun Yan, Zhimin Cao, Peng Zhou, Qingyu |
Author_xml | – sequence: 1 givenname: Zhichao surname: Feng fullname: Feng, Zhichao organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 2 givenname: Pengfei surname: Rong fullname: Rong, Pengfei organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 3 givenname: Peng surname: Cao fullname: Cao, Peng organization: GE Healthcare – sequence: 4 givenname: Qingyu surname: Zhou fullname: Zhou, Qingyu organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 5 givenname: Wenwei surname: Zhu fullname: Zhu, Wenwei organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 6 givenname: Zhimin surname: Yan fullname: Yan, Zhimin organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 7 givenname: Qianyun surname: Liu fullname: Liu, Qianyun organization: Department of Radiology, The Third Xiangya Hospital, Central South University – sequence: 8 givenname: Wei surname: Wang fullname: Wang, Wei email: cjr.wangwei@vip.163.com organization: Department of Radiology, The Third Xiangya Hospital, Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29134348$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u3CAYxFGVqtmkfYBeKqReenELBi-mt2r7L1KiXNIzwvhjQ2TDBnDSzRP1MYt3N1IUqT0h4Dej0cwJOvLBA0JvKflICRGfEiGMkYpQUTWUttXDC7SgnNUVJS0_QgsiWVsJKfkxOknphhAiKRev0HEtKeOMtwv050Kba-cBD6Cjd35ddTpBj28n7bPLOrs7wBl-5ykC1l4P2-QSDhavrrAb9Rp2lzTqYcARyj8edUqQPuOvzlooT9kVk-BnTPu1C-M2DG4TRo3vXb4OU8Z3LrluAGx1xjaG8WBkoHgaHY3zhX6NXlo9JHhzOE_Rr-_frlY_q_PLH2erL-eV4azN1bJbWmap6ajlmjWiB07Z0jSkp9IwWUveUl2TxpLSwA6VfVvTIhZ9U1vBTtGHve8mhtsJUlajS3MU7SFMSVG55LUo7c3o-2foTZhiib6jyjJMkLpQ7w7U1I3Qq00svcWtetygAGIPmBhSimCV2RUffI7aDYoSNa-t9mursraa11YPRUmfKR_N_6ep95pUWL-G-CT0P0V_AWYZvsw |
CitedBy_id | crossref_primary_10_3390_ijms24054615 crossref_primary_10_1007_s00261_020_02832_9 crossref_primary_10_1007_s00261_020_02414_9 crossref_primary_10_1016_j_urology_2023_07_017 crossref_primary_10_1080_10408363_2018_1561640 crossref_primary_10_1007_s00261_022_03699_8 crossref_primary_10_4111_icu_20230435 crossref_primary_10_1007_s00330_020_06787_9 crossref_primary_10_1097_RCT_0000000000001433 crossref_primary_10_1371_journal_pone_0287299 crossref_primary_10_1007_s00261_021_03213_6 crossref_primary_10_1007_s11912_019_0815_1 crossref_primary_10_1007_s00261_021_03090_z crossref_primary_10_1017_pcm_2022_9 crossref_primary_10_1097_MD_0000000000019725 crossref_primary_10_1590_0100_6991e_20233561_en crossref_primary_10_1016_j_ejrad_2018_10_005 crossref_primary_10_1186_s12885_023_10562_6 crossref_primary_10_1007_s00330_022_09109_3 crossref_primary_10_1186_s40644_020_00359_2 crossref_primary_10_2214_AJR_19_22608 crossref_primary_10_1002_cam4_1746 crossref_primary_10_1007_s00261_020_02802_1 crossref_primary_10_1002_jmri_27900 crossref_primary_10_3389_fonc_2022_869982 crossref_primary_10_1002_cam4_2711 crossref_primary_10_1038_s41467_025_56784_z crossref_primary_10_1007_s00261_020_02632_1 crossref_primary_10_1111_bju_16276 crossref_primary_10_3390_cancers14153609 crossref_primary_10_3389_fonc_2020_570396 crossref_primary_10_1097_MOU_0000000000000881 crossref_primary_10_1200_EDBK_350862 crossref_primary_10_3389_fonc_2023_1167328 crossref_primary_10_1016_j_ejrad_2019_108738 crossref_primary_10_1155_2021_6595212 crossref_primary_10_21886_2308_6424_2024_12_4_91_101 crossref_primary_10_3389_fonc_2022_847805 crossref_primary_10_1016_j_phro_2021_10_007 crossref_primary_10_1007_s00345_021_03602_y crossref_primary_10_4018_IJCCP_2018070103 crossref_primary_10_3748_wjg_v26_i19_2387 crossref_primary_10_1002_jmri_26327 crossref_primary_10_3748_wjg_v26_i19_2388 crossref_primary_10_1007_s40747_021_00521_8 crossref_primary_10_1007_s10278_020_00336_y crossref_primary_10_1097_MD_0000000000021262 crossref_primary_10_3389_fonc_2021_742547 crossref_primary_10_2214_AJR_19_22074 crossref_primary_10_1007_s00330_021_07758_4 crossref_primary_10_1155_2022_6283618 crossref_primary_10_3389_fdgth_2021_797607 crossref_primary_10_1016_j_urolonc_2021_03_012 crossref_primary_10_32604_cmes_2023_024909 crossref_primary_10_1016_j_tranon_2018_10_012 crossref_primary_10_1016_j_clinimag_2022_11_007 crossref_primary_10_3390_bdcc6010029 crossref_primary_10_1007_s11547_024_01825_8 crossref_primary_10_1186_s12880_025_01606_3 crossref_primary_10_1007_s00261_022_03571_9 crossref_primary_10_1007_s00330_018_5698_2 crossref_primary_10_3390_app10217512 crossref_primary_10_3389_fonc_2022_889833 crossref_primary_10_1007_s00261_021_02981_5 crossref_primary_10_1097_RCT_0000000000001041 crossref_primary_10_1007_s13167_018_0149_3 crossref_primary_10_5812_iranjradiol_119266 crossref_primary_10_3390_jcm13020547 crossref_primary_10_1038_s41598_021_84244_3 crossref_primary_10_3390_e24040471 crossref_primary_10_1097_MOU_0000000000000816 crossref_primary_10_3389_fsurg_2022_914903 crossref_primary_10_1016_j_ultrasmedbio_2022_10_009 crossref_primary_10_1016_j_tranon_2023_101627 crossref_primary_10_1016_j_rcl_2020_06_001 crossref_primary_10_2147_CMAR_S297094 crossref_primary_10_1177_1536012119883161 crossref_primary_10_3389_fonc_2023_1169922 crossref_primary_10_1016_j_ultrasmedbio_2019_04_009 crossref_primary_10_3389_fmed_2022_974485 crossref_primary_10_1155_2020_7103647 crossref_primary_10_3389_fonc_2023_1284040 crossref_primary_10_1007_s11255_024_04082_w crossref_primary_10_1007_s00330_018_5872_6 crossref_primary_10_1016_j_metrad_2024_100081 crossref_primary_10_1155_2023_6403556 crossref_primary_10_1186_s12885_023_11454_5 crossref_primary_10_1007_s00432_023_05339_0 crossref_primary_10_1002_phar_2749 crossref_primary_10_1615_CritRevOncog_2023051084 crossref_primary_10_1002_cam4_3957 crossref_primary_10_1007_s00261_019_02303_w crossref_primary_10_1007_s00261_022_03486_5 crossref_primary_10_17650_1726_9776_2024_20_3_159_167 crossref_primary_10_4015_S1016237222500363 crossref_primary_10_1155_2022_9108129 crossref_primary_10_22465_kjuo_2022_20_3_163 crossref_primary_10_20517_2574_1225_2023_79 crossref_primary_10_5213_inj_2346286_143 crossref_primary_10_1007_s00330_019_06427_x crossref_primary_10_1007_s44326_024_00033_y crossref_primary_10_1007_s00330_024_10731_6 crossref_primary_10_1016_j_diii_2018_11_007 crossref_primary_10_1016_j_ejrad_2020_108929 crossref_primary_10_1021_acsnano_4c16949 crossref_primary_10_1111_iju_13579 crossref_primary_10_3390_cancers15102835 crossref_primary_10_1117_1_JMI_10_2_024501 crossref_primary_10_3390_diagnostics13193070 crossref_primary_10_1007_s00330_020_07099_8 crossref_primary_10_1016_j_ucl_2023_01_006 crossref_primary_10_1097_RCT_0000000000001181 crossref_primary_10_1186_s12894_022_01099_0 crossref_primary_10_3389_fonc_2021_633034 crossref_primary_10_1007_s00521_020_04861_3 crossref_primary_10_1016_j_acra_2019_12_015 crossref_primary_10_3389_fonc_2021_659969 crossref_primary_10_1007_s00330_019_06080_4 crossref_primary_10_1038_s41598_024_60921_x crossref_primary_10_1111_bju_15026 crossref_primary_10_1590_0100_6991e_20233561 crossref_primary_10_1007_s11831_023_09915_y crossref_primary_10_3390_cancers12061387 crossref_primary_10_2214_AJR_20_22847 crossref_primary_10_1038_s41598_021_90163_0 crossref_primary_10_1186_s40644_021_00412_8 crossref_primary_10_2214_AJR_19_21709 crossref_primary_10_3390_cancers12103010 crossref_primary_10_1259_bjr_20200569 crossref_primary_10_1177_17562872231164803 crossref_primary_10_2214_AJR_21_25456 crossref_primary_10_2214_AJR_19_21625 crossref_primary_10_1002_mp_14193 crossref_primary_10_1016_j_ejrad_2018_08_014 crossref_primary_10_1111_bju_14985 crossref_primary_10_1259_bjr_20190974 crossref_primary_10_1007_s10278_019_00230_2 crossref_primary_10_3390_diagnostics13172743 crossref_primary_10_3389_fonc_2020_01192 crossref_primary_10_3389_fonc_2020_579619 crossref_primary_10_1007_s00330_020_07233_6 crossref_primary_10_1177_15330338211039125 crossref_primary_10_2214_AJR_19_21617 crossref_primary_10_1016_j_compmedimag_2019_101675 crossref_primary_10_1158_1078_0432_CCR_19_0374 crossref_primary_10_3389_fonc_2021_744756 crossref_primary_10_2214_AJR_19_21212 crossref_primary_10_2214_AJR_19_21696 crossref_primary_10_3390_cancers15184565 crossref_primary_10_1007_s00345_019_03000_5 crossref_primary_10_1016_j_jrras_2023_100769 crossref_primary_10_1108_GS_03_2021_0041 crossref_primary_10_1038_s41598_021_93069_z crossref_primary_10_2214_AJR_19_21172 crossref_primary_10_1016_j_bspc_2020_102311 crossref_primary_10_1016_j_bspc_2023_105134 crossref_primary_10_1007_s00330_020_07158_0 crossref_primary_10_1007_s00330_021_08528_y crossref_primary_10_1186_s12885_025_13547_9 crossref_primary_10_12677_ACM_2023_132310 crossref_primary_10_1016_j_acra_2019_05_004 crossref_primary_10_1186_s40644_021_00417_3 crossref_primary_10_1007_s00330_019_06384_5 crossref_primary_10_1177_0284185119830282 crossref_primary_10_3390_jcm10173888 crossref_primary_10_2196_23415 crossref_primary_10_1111_risa_14124 crossref_primary_10_3389_fonc_2024_1365897 |
Cites_doi | 10.1111/j.1464-410X.2011.10184.x 10.1007/s00330-015-3701-8 10.1016/j.jchromb.2012.05.020 10.1148/radiology.205.2.9356635 10.1007/s00261-017-1079-6 10.3892/ol.2016.4214 10.1073/pnas.1505935112 10.1371/journal.pone.0178944 10.1016/j.clinimag.2014.09.008 10.1016/j.ejrad.2012.10.023 10.1148/radiol.2303030003 10.1023/A:1012487302797 10.2214/AJR.09.3033 10.2214/AJR.12.10204 10.1007/s00330-015-3851-8 10.1016/j.mri.2012.06.010 10.2214/AJR.14.14183 10.1016/j.juro.2015.07.126 10.1016/j.acra.2015.04.004 10.1016/j.urology.2008.04.054 10.1002/mp.12258 10.1016/j.crad.2012.08.028 10.1148/rg.274065147 10.1038/srep13087 10.1038/srep46349 10.1111/iju.12117 10.1007/s00330-016-4579-9 10.1016/j.urology.2006.04.011 10.1007/s13244-012-0196-6 10.1148/radiol.2015142215 10.1016/j.cell.2011.02.013 10.1007/s00330-016-4663-1 10.1002/jmri.25669 10.1007/s00261-017-1144-1 10.1002/jmri.25752 10.18632/oncotarget.18001 10.1613/jair.953 10.18632/oncotarget.11693 10.1038/ncomms5006 10.1007/s00330-017-4800-5 |
ContentType | Journal Article |
Copyright | European Society of Radiology 2017 European Radiology is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: European Society of Radiology 2017 – notice: European Radiology is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-017-5118-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 1633 |
ExternalDocumentID | 29134348 10_1007_s00330_017_5118_z |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c438t-6b6f3f1cb1f4a357de4136c50d19c3929481a205f01346f3f19d821c437d52f73 |
IEDL.DBID | 7X7 |
ISSN | 0938-7994 1432-1084 |
IngestDate | Thu Jul 10 19:07:49 EDT 2025 Fri Jul 25 18:53:38 EDT 2025 Wed Feb 19 02:31:25 EST 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 03:08:02 EDT 2025 Fri Feb 21 02:32:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Texture analysis Angiomyolipoma Computed tomography Renal cell carcinoma Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-6b6f3f1cb1f4a357de4136c50d19c3929481a205f01346f3f19d821c437d52f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29134348 |
PQID | 1963303702 |
PQPubID | 54162 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1964273437 proquest_journals_1963303702 pubmed_primary_29134348 crossref_citationtrail_10_1007_s00330_017_5118_z crossref_primary_10_1007_s00330_017_5118_z springer_journals_10_1007_s00330_017_5118_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Tsukada, Jinzaki, Yao (CR29) 2013; 20 Sidhu, Benigno, Ganeshan (CR34) 2017; 27 Davnall, Yip, Ljungqvist (CR10) 2012; 3 Zhang, Yan, Hu (CR15) 2017; 8 Parmar, Grossmann, Bussink (CR14) 2015; 5 Fujii, Komai, Saito (CR2) 2008; 72 Chawla, Bowyer, Hall (CR23) 2011; 16 Hakim, Schieda, Hodgdon (CR7) 2016; 26 Zhang, Oikonomou, Wong (CR24) 2017; 7 CR32 Yip, Parmar, Blezek (CR39) 2017; 12 Guyon, Weston, Barnhill (CR19) 2002; 46 Ng, Kozarski, Ganeshan (CR40) 2013; 82 Takahashi, Leng, Kitajima (CR37) 2015; 205 Xie, Yang, Yuan (CR9) 2016; 11 Aerts, Velazquez, Leijenaar (CR18) 2014; 5 Choi, Lee, Jeong (CR33) 2016; 7 Yang, Shen, Chang (CR8) 2013; 201 Nketiah, Elschot, Kim (CR16) 2017; 27 Jinzaki, Tanimoto, Narimatsu (CR28) 1997; 205 Hodgdon, Mcinnes, Schieda (CR11) 2015; 276 Wibmer, Hricak, Gondo (CR17) 2015; 25 Ishigami, Pakalniskis, Leite (CR30) 2015; 39 Flum, Hamoui, Said (CR3) 2016; 195 Lee, Hong, Jung (CR26) 2017; 44 Silverman, Mortele, Tuncali (CR31) 2007; 27 Umbreit, Shimko, Childs (CR4) 2012; 109 CR25 Zhang, Luo, Liu (CR6) 2013; 68 CR22 Xu, Liu, Zhang (CR38) 2017; 42 CR21 Kutikov, Fossett, Ramchandani (CR1) 2006; 68 Fehr, Veeraraghavan, Wibmer (CR20) 2015; 112 Johnson, Horton, Fishman (CR36) 2010; 194 Hanahan, Weinberg (CR35) 2011; 144 Yan, Liu, Wang (CR12) 2015; 22 Kim, Park, Shon (CR5) 2004; 230 Lin, Yang, Zhou (CR27) 2012; 910 Kumar, Gu, Basu (CR13) 2012; 30 V Kumar (5118_CR13) 2012; 30 SSF Yip (5118_CR39) 2017; 12 G Nketiah (5118_CR16) 2017; 27 HS Lee (5118_CR26) 2017; 44 T Hodgdon (5118_CR11) 2015; 276 L Yan (5118_CR12) 2015; 22 D Hanahan (5118_CR35) 2011; 144 SG Silverman (5118_CR31) 2007; 27 5118_CR25 X Xu (5118_CR38) 2017; 42 5118_CR22 A Kutikov (5118_CR1) 2006; 68 A Wibmer (5118_CR17) 2015; 25 5118_CR21 AS Flum (5118_CR3) 2016; 195 JK Kim (5118_CR5) 2004; 230 YY Zhang (5118_CR6) 2013; 68 M Jinzaki (5118_CR28) 1997; 205 N Takahashi (5118_CR37) 2015; 205 ER Choi (5118_CR33) 2016; 7 HJ Aerts (5118_CR18) 2014; 5 P Xie (5118_CR9) 2016; 11 HS Sidhu (5118_CR34) 2017; 27 X Lin (5118_CR27) 2012; 910 Y Zhang (5118_CR24) 2017; 7 C Parmar (5118_CR14) 2015; 5 J Tsukada (5118_CR29) 2013; 20 K Ishigami (5118_CR30) 2015; 39 EC Umbreit (5118_CR4) 2012; 109 NV Chawla (5118_CR23) 2011; 16 SW Hakim (5118_CR7) 2016; 26 5118_CR32 PT Johnson (5118_CR36) 2010; 194 D Fehr (5118_CR20) 2015; 112 Y Fujii (5118_CR2) 2008; 72 X Zhang (5118_CR15) 2017; 8 F Davnall (5118_CR10) 2012; 3 F Ng (5118_CR40) 2013; 82 CW Yang (5118_CR8) 2013; 201 I Guyon (5118_CR19) 2002; 46 |
References_xml | – ident: CR22 – volume: 16 start-page: 321 year: 2011 end-page: 357 ident: CR23 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res – volume: 109 start-page: 190 year: 2012 end-page: 194 ident: CR4 article-title: Metastatic potential of a renal mass according to original tumour size at presentation publication-title: Bju Int doi: 10.1111/j.1464-410X.2011.10184.x – volume: 25 start-page: 2840 year: 2015 end-page: 2850 ident: CR17 article-title: Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores publication-title: Eur Radiol doi: 10.1007/s00330-015-3701-8 – volume: 910 start-page: 149 year: 2012 end-page: 155 ident: CR27 article-title: A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2012.05.020 – volume: 205 start-page: 497 year: 1997 end-page: 502 ident: CR28 article-title: Angiomyolipoma: imaging findings in lesions with minimal fat publication-title: Radiology doi: 10.1148/radiology.205.2.9356635 – volume: 42 start-page: 1896 year: 2017 end-page: 1905 ident: CR38 article-title: Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1079-6 – volume: 11 start-page: 2327 year: 2016 end-page: 2331 ident: CR9 article-title: Lipid-poor renal angiomyolipoma: Differentiation from clear cell renal cell carcinoma using wash-in and washout characteristics on contrast-enhanced computed tomography publication-title: Oncol Lett doi: 10.3892/ol.2016.4214 – volume: 112 start-page: E6265 year: 2015 end-page: E6273 ident: CR20 article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1505935112 – volume: 12 start-page: e0178944 year: 2017 ident: CR39 article-title: Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation publication-title: Plos One doi: 10.1371/journal.pone.0178944 – volume: 39 start-page: 76 year: 2015 end-page: 84 ident: CR30 article-title: Characterization of renal cell carcinoma, oncocytoma, and lipid-poor angiomyolipoma by unenhanced, nephrographic, and delayed phase contrast-enhanced computed tomography publication-title: Clin Imaging doi: 10.1016/j.clinimag.2014.09.008 – volume: 82 start-page: 342 year: 2013 end-page: 348 ident: CR40 article-title: Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2012.10.023 – volume: 230 start-page: 677 year: 2004 end-page: 684 ident: CR5 article-title: Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT publication-title: Radiology doi: 10.1148/radiol.2303030003 – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: CR19 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 194 start-page: W307 year: 2010 end-page: W315 ident: CR36 article-title: How not to miss or mischaracterize a renal cell carcinoma: protocols, pearls, and pitfalls publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.09.3033 – volume: 201 start-page: 1017 year: 2013 end-page: 1028 ident: CR8 article-title: Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.12.10204 – volume: 26 start-page: 592 year: 2016 end-page: 600 ident: CR7 article-title: Angiomyolipoma (AML) without visible fat: Ultrasound, CT and MR imaging features with pathological correlation publication-title: Eur Radiol doi: 10.1007/s00330-015-3851-8 – volume: 30 start-page: 1234 year: 2012 end-page: 1248 ident: CR13 article-title: Radiomics: the process and the challenges publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.06.010 – volume: 205 start-page: 1194 year: 2015 end-page: 1202 ident: CR37 article-title: Small (< 4 cm) Renal Masses: Differentiation of Angiomyolipoma Without Visible Fat From Renal Cell Carcinoma Using Unenhanced and Contrast-Enhanced CT publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.14183 – volume: 195 start-page: 834 year: 2016 end-page: 846 ident: CR3 article-title: Update on the Diagnosis and Management of Renal Angiomyolipoma publication-title: J Urol doi: 10.1016/j.juro.2015.07.126 – ident: CR25 – volume: 22 start-page: 1115 year: 2015 end-page: 1121 ident: CR12 article-title: Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images publication-title: Acad Radiol doi: 10.1016/j.acra.2015.04.004 – volume: 72 start-page: 598 year: 2008 end-page: 602 ident: CR2 article-title: Incidence of benign pathologic lesions at partial nephrectomy for presumed RCC renal masses: Japanese dual-center experience with 176 consecutive patients publication-title: Urology doi: 10.1016/j.urology.2008.04.054 – volume: 44 start-page: 3604 year: 2017 end-page: 3614 ident: CR26 article-title: Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification publication-title: Med Phys doi: 10.1002/mp.12258 – volume: 68 start-page: 365 year: 2013 end-page: 370 ident: CR6 article-title: Angiomyolipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT publication-title: Clin Radiol doi: 10.1016/j.crad.2012.08.028 – ident: CR21 – volume: 5 start-page: 4006 year: 2014 ident: CR18 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 7 start-page: 67302 year: 2016 end-page: 67313 ident: CR33 article-title: Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma publication-title: Oncotarget – volume: 27 start-page: 1131 year: 2007 end-page: 1143 ident: CR31 article-title: Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation publication-title: Radiographics doi: 10.1148/rg.274065147 – volume: 5 start-page: 13087 year: 2015 ident: CR14 article-title: Machine Learning methods for Quantitative Radiomic Biomarkers publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 7 start-page: 46349 year: 2017 ident: CR24 article-title: Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer publication-title: Sci Rep doi: 10.1038/srep46349 – volume: 20 start-page: 1105 year: 2013 end-page: 1111 ident: CR29 article-title: Epithelioid angiomyolipoma of the kidney: radiological imaging publication-title: Int J Urol doi: 10.1111/iju.12117 – volume: 8 start-page: 47816 year: 2017 end-page: 47830 ident: CR15 article-title: Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features publication-title: Oncotarget – ident: CR32 – volume: 27 start-page: 2348 year: 2017 end-page: 2358 ident: CR34 article-title: Textural analysis of multiparametric MRI detects transition zone prostate cancer publication-title: Eur Radiol doi: 10.1007/s00330-016-4579-9 – volume: 68 start-page: 737 year: 2006 end-page: 740 ident: CR1 article-title: Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging publication-title: Urology doi: 10.1016/j.urology.2006.04.011 – volume: 3 start-page: 573 year: 2012 end-page: 589 ident: CR10 article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 276 start-page: 787 year: 2015 end-page: 796 ident: CR11 article-title: Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? publication-title: Radiology doi: 10.1148/radiol.2015142215 – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: CR35 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 27 start-page: 3050 year: 2017 end-page: 3059 ident: CR16 article-title: T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results publication-title: Eur Radiol doi: 10.1007/s00330-016-4663-1 – volume: 109 start-page: 190 year: 2012 ident: 5118_CR4 publication-title: Bju Int doi: 10.1111/j.1464-410X.2011.10184.x – volume: 205 start-page: 497 year: 1997 ident: 5118_CR28 publication-title: Radiology doi: 10.1148/radiology.205.2.9356635 – ident: 5118_CR22 doi: 10.1002/jmri.25669 – volume: 11 start-page: 2327 year: 2016 ident: 5118_CR9 publication-title: Oncol Lett doi: 10.3892/ol.2016.4214 – volume: 22 start-page: 1115 year: 2015 ident: 5118_CR12 publication-title: Acad Radiol doi: 10.1016/j.acra.2015.04.004 – volume: 5 start-page: 13087 year: 2015 ident: 5118_CR14 publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 205 start-page: 1194 year: 2015 ident: 5118_CR37 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.14183 – ident: 5118_CR25 doi: 10.1007/s00261-017-1144-1 – volume: 7 start-page: 46349 year: 2017 ident: 5118_CR24 publication-title: Sci Rep doi: 10.1038/srep46349 – volume: 276 start-page: 787 year: 2015 ident: 5118_CR11 publication-title: Radiology doi: 10.1148/radiol.2015142215 – volume: 195 start-page: 834 year: 2016 ident: 5118_CR3 publication-title: J Urol doi: 10.1016/j.juro.2015.07.126 – volume: 201 start-page: 1017 year: 2013 ident: 5118_CR8 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.12.10204 – volume: 3 start-page: 573 year: 2012 ident: 5118_CR10 publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 27 start-page: 1131 year: 2007 ident: 5118_CR31 publication-title: Radiographics doi: 10.1148/rg.274065147 – ident: 5118_CR32 doi: 10.1002/jmri.25752 – volume: 194 start-page: W307 year: 2010 ident: 5118_CR36 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.09.3033 – volume: 26 start-page: 592 year: 2016 ident: 5118_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-015-3851-8 – volume: 8 start-page: 47816 year: 2017 ident: 5118_CR15 publication-title: Oncotarget doi: 10.18632/oncotarget.18001 – volume: 27 start-page: 3050 year: 2017 ident: 5118_CR16 publication-title: Eur Radiol doi: 10.1007/s00330-016-4663-1 – volume: 144 start-page: 646 year: 2011 ident: 5118_CR35 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 910 start-page: 149 year: 2012 ident: 5118_CR27 publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2012.05.020 – volume: 16 start-page: 321 year: 2011 ident: 5118_CR23 publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 44 start-page: 3604 year: 2017 ident: 5118_CR26 publication-title: Med Phys doi: 10.1002/mp.12258 – volume: 20 start-page: 1105 year: 2013 ident: 5118_CR29 publication-title: Int J Urol doi: 10.1111/iju.12117 – volume: 12 start-page: e0178944 year: 2017 ident: 5118_CR39 publication-title: Plos One doi: 10.1371/journal.pone.0178944 – volume: 30 start-page: 1234 year: 2012 ident: 5118_CR13 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.06.010 – volume: 42 start-page: 1896 year: 2017 ident: 5118_CR38 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1079-6 – volume: 27 start-page: 2348 year: 2017 ident: 5118_CR34 publication-title: Eur Radiol doi: 10.1007/s00330-016-4579-9 – volume: 112 start-page: E6265 year: 2015 ident: 5118_CR20 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1505935112 – volume: 68 start-page: 365 year: 2013 ident: 5118_CR6 publication-title: Clin Radiol doi: 10.1016/j.crad.2012.08.028 – volume: 7 start-page: 67302 year: 2016 ident: 5118_CR33 publication-title: Oncotarget doi: 10.18632/oncotarget.11693 – volume: 230 start-page: 677 year: 2004 ident: 5118_CR5 publication-title: Radiology doi: 10.1148/radiol.2303030003 – volume: 68 start-page: 737 year: 2006 ident: 5118_CR1 publication-title: Urology doi: 10.1016/j.urology.2006.04.011 – volume: 25 start-page: 2840 year: 2015 ident: 5118_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-015-3701-8 – volume: 72 start-page: 598 year: 2008 ident: 5118_CR2 publication-title: Urology doi: 10.1016/j.urology.2008.04.054 – volume: 5 start-page: 4006 year: 2014 ident: 5118_CR18 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 46 start-page: 389 year: 2002 ident: 5118_CR19 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – ident: 5118_CR21 doi: 10.1007/s00330-017-4800-5 – volume: 39 start-page: 76 year: 2015 ident: 5118_CR30 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2014.09.008 – volume: 82 start-page: 342 year: 2013 ident: 5118_CR40 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2012.10.023 |
SSID | ssj0009147 |
Score | 2.5963593 |
Snippet | Objective
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm)... To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma... ObjectiveTo evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm)... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1625 |
SubjectTerms | Angiomyolipoma Angiomyolipoma - diagnostic imaging Angiomyolipoma - pathology Artificial intelligence Carcinoma, Renal Cell - diagnostic imaging Carcinoma, Renal Cell - pathology Classifiers Computed tomography Diagnosis, Differential Diagnostic Radiology Diagnostic systems Differentiation Feature extraction Female Humans Image processing Image segmentation Imaging Internal Medicine Interventional Radiology Kidney cancer Kidney Neoplasms - diagnostic imaging Kidney Neoplasms - pathology Learning algorithms Machine learning Male Medicine Medicine & Public Health Middle Aged Neuroradiology Oversampling Radiology Renal cell carcinoma Reproducibility of Results Retrospective Studies Sensitivity and Specificity Support Vector Machine Support vector machines Surgery Texture Tomography, X-Ray Computed - methods Ultrasound Urogenital |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-6gngRv62uEsGTEnhN0yb1tqwui_A87YO9lTQfy4N-rO-1B_cv2j9zZ9K0KquCx9JJUjqTmUlm5jeEvFdeCSPrmsHpSjHBLey5WmmWam9LEGorA_D8-ltxuhFfz_PzWMe9n7Pd55Bk0NRLsRu2HcMkKsnQK2ZXd8m9HI7umMe14Uc_kXbT0FUMTuqKybIUcyjzT1P8boxueZi3oqPB6Jw8Ig-jt0iPJvY-Jndc94TcX8d4-FNyvQ65kI7G5g8XDK2Spd9H3YXqMdBlFHM7xp2jOuKP0N7T4zO6bUGVhId9q5uG7hwu1WqMAn-in2PjlGFiHZLp7mLbtz_6ZnvZt5riDW4_DhSr0-vGUa8HisUqcSKMCFCDnYo6oH5GNidfzo5PWey9wIzI1MCKuvCZT02deqGzXFoH1q4w-cqmpUGfSqhU81XuwYUUgbS0iqcwWNqce5k9Jwdd37mXhGKk1jouOdhFIQujCsVdYQSMraUVZUJWMxMqE4HJsT9GUy2QyoFvFfCtQr5VVwn5sAy5nFA5_kV8OHO2iht0X6HiAestVzwh75bXsLXw7-jO9WOgEYj-k8mEvJgkYlmNY8ZCJlRCPs4i8svkf_uUV_9F_Zo8APdMTXlCh-Rg2I3uDbhAQ_02iPwN6Tn-zQ priority: 102 providerName: Springer Nature |
Title | Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma |
URI | https://link.springer.com/article/10.1007/s00330-017-5118-z https://www.ncbi.nlm.nih.gov/pubmed/29134348 https://www.proquest.com/docview/1963303702 https://www.proquest.com/docview/1964273437 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAviO8FxmQknkAWTeLEDi-oHe0mUCuEVqk8RU7sTJXy0bXJA_uL-DO5c5wONLGXRJHPjpU73118598R8k4Wkuciyxj8XUnGAw1rLpOK-arQCQi1FhZ4fr6Iz5f86ypauQ23nUurHHSiVdS6yXGP_CNKCqhbMQo-b64YVo3C6KoroXGfHCJ0GUq1WIkb0F3fFhiDn3bJRJLwIao5siCiMBxDHY0-Nrv-1y7dcjZvBUqt_Zk9Jo-c40jHPaefkHumfkoezF1o_Bn5PbdpkYa6OhCXDA2Upledqu1BMlBrFNM8uq2hykGR0Kagpxd0XYFWsQ-7SpUl3Rp8VaUwIPyJfnE1VNqei0im6st1U_1qyvWmqRTFzdymaykeVM9KQwvVUjy34gbC4ADNsWhRDdTPyXI2vTg9Z64MA8t5KFsWZ3ERFn6e-QVXYSS0AcMX59FI-0mO7hWXvgpGUQHeJLekiZaBD52FjoJChC_IQd3U5ohQDNpqE4gATCQXcS5jGZg459A3E5onHhkNTEhzh1GOpTLKdI-ubPmWAt9S5Ft67ZH3-y6bHqDjLuLjgbOpW6u79EayPPJ23wyrDL-Oqk3TWRqOQECh8MjLXiL2bwsweSHk0iMfBhH5a_D_TeXV3VN5TR6Cayb7HKFjctBuO_MG3J82O7EyDlc5Ozshh-PZZLLA-9nPb1O4T6aL7z-gdRmM_wB-JwhM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYBLxZuUAkaCC8gicZzYQUIItSxb2u1pK_UWnNipVtok291EqP1FnPiNzDjJFlTRW49Rxg9lPs9MPC9C3qhCiVxmGYO_K8UEN3DmMqVZoAuTAKiNdIXnJ0fx-Fh8P4lONsjvIRcGwyoHmegEtalzvCP_gEgBcSt9_nlxxrBrFHpXhxYaHSwO7PlP-GVbfdrfA_6-5Xz0dbo7Zn1XAZaLUDUszuIiLII8Cwqhw0gaC3I8ziPfBEmO1oJQgeZ-VIBxJBxpYhQPYLA0ES9kCPPeIrdFCJocM9NH3y6L_AauoZmfgBCRSSIGL6rvipbC9hnqBLTp2cW_evCKcXvFMev03eg-2eoNVfqlQ9YDsmGrh-TOpHfFPyK_Ji4M09K-78QpQ4Vo6FmrK5e4BmKUYlhJu7RU96VPaF3Q3SmdlSDF3MOq1PM5XVpcqtTogP5I9_qeLU2HGiTT1emsLs_r-WxRl5ri5XHdNhQT47O5pYVuKObJ9BOhM4Lm2CSpAurH5PhGGPSEbFZ1ZZ8Rik5iY7nkoJKFjHMVK27jXMDYTBqReMQfmJDmfU10bM0xT9fVnB3fUuBbinxLLzzybj1k0RUEuY54Z-Bs2suGVXqJZI-8Xr-GU41fR1e2bh2NwMJDofTI0w4R69U4BkuEQnnk_QCRvyb_31a2r9_KK3J3PJ0cpof7RwfPyT0wC1UXn7RDNptla1-A6dVkLx3eKflx0wfsD-bnPPU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ028oPG_MMBI8AKKljhO7CAhBOuqjdFqQpu0t8yJnalSm3Rtomn7RHwGPh13jtOBJva2xyhnO_H9fHf2ne8IeScLyXORZR7srqTHmYY1l0nlBarQCYBaC5t4fjSO947595PoZI387u7CYFhlJxOtoNZVjmfk24gUELfCZ9uFC4s4HAy_zM89rCCFntaunEYLkQNzeQHbt-Xn_QHw-j1jw92jnT3PVRjwch7K2ouzuAiLIM-CgqswEtqATI_zyNdBkqPlwGWgmB8VYChxS5poyQJoLHTEChFCv_fIusBdUY-sf9sdH_68Tvkb2PJmfgIiRSQJ73yqvk1hCj_joYZAC9-7-lcr3jB1b7hprfYbbpIHzmylX1ucPSRrpnxENkbOMf-Y_BrZoExDXRWKMw_Vo6bnjSrtNTYQqhRns1kYqlwiFFoVdOeITmYg0-zDcqamU7owONRMoTv6Ex24Ci51iyEkU-XZpJpdVtPJvJopikfJVVNTvCafTQ0tVE3x1ozrCF0TNMeSSSVQPyHHd8Kip6RXVqV5Tii6jLVhgoGC5iLOZSyZiXMObTOhedInfseENHcZ0rFQxzRd5Xa2fEuBbynyLb3qkw-rJvM2PchtxFsdZ1MnKZbpNa775O3qNaxxnB1VmqqxNBzTEIWiT561iFiNxjB0IuSyTz52EPmr8_99yovbP-UN2YDFlf7YHx-8JPfBRpRtsNIW6dWLxrwCO6zOXjvAU3J612vsDyEUQoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+quantitative+texture+analysis+of+CT+images+of+small+renal+masses%3A+Differentiation+of+angiomyolipoma+without+visible+fat+from+renal+cell+carcinoma&rft.jtitle=European+radiology&rft.au=Feng%2C+Zhichao&rft.au=Rong%2C+Pengfei&rft.au=Cao%2C+Peng&rft.au=Zhou%2C+Qingyu&rft.date=2018-04-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=28&rft.issue=4&rft.spage=1625&rft.epage=1633&rft_id=info:doi/10.1007%2Fs00330-017-5118-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_017_5118_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |