Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid
•Biochar loaded with nanoparticles was prepared for Cr(VI) adsorption.•EDTA intercalated LDH significantly improved sorption capacity of Cr(VI).•Adsorption process obeys chemisorption and monolayer adsorption. In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) inter...
Saved in:
Published in | Bioresource technology Vol. 276; pp. 127 - 132 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2018.12.114 |
Cover
Abstract | •Biochar loaded with nanoparticles was prepared for Cr(VI) adsorption.•EDTA intercalated LDH significantly improved sorption capacity of Cr(VI).•Adsorption process obeys chemisorption and monolayer adsorption.
In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72− and OH– increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater. |
---|---|
AbstractList | In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr
O
and OH
increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater. •Biochar loaded with nanoparticles was prepared for Cr(VI) adsorption.•EDTA intercalated LDH significantly improved sorption capacity of Cr(VI).•Adsorption process obeys chemisorption and monolayer adsorption. In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72− and OH– increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater. In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72− and OH– increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater. In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72- and OH- increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater.In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72- and OH- increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater. |
Author | Huang, Danlian Zeng, Guangming Guo, Xueying Luo, Hao Zhang, Chen Deng, Rui Wang, Rongzhong Liu, Caihong Xue, Wenjing Zhang, Qing |
Author_xml | – sequence: 1 givenname: Danlian surname: Huang fullname: Huang, Danlian email: huangdanlian@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 2 givenname: Caihong surname: Liu fullname: Liu, Caihong organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 3 givenname: Chen orcidid: 0000-0002-3579-6980 surname: Zhang fullname: Zhang, Chen organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 4 givenname: Rui surname: Deng fullname: Deng, Rui organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 5 givenname: Rongzhong surname: Wang fullname: Wang, Rongzhong organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 6 givenname: Wenjing surname: Xue fullname: Xue, Wenjing organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 7 givenname: Hao surname: Luo fullname: Luo, Hao organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 8 givenname: Guangming surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 9 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 10 givenname: Xueying surname: Guo fullname: Guo, Xueying organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30616211$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFV6i8LIukvo6TSSQWVCN-KhWxAbaWY980HjlxsZ3CPAZvjEfTYcFmVpbs813rfueCnM1-RkKugJXAoLnZlr31IaEeS86gLYGXAOIFWUG7rgrerZszsmJdw4q25uKcXMS4ZYxVsOavyHnFGmg4wIr82YTrH3dvacDJPylHh-Anqn4u6JdIo3dLsn6mS7TzA80_6lEFOnljB4uG_rJppF8ebm5d4dQOQ74yfukd0nFngv9tDVI7JwxaOZWOAUzjzuGMxqrJzpgwBaU0Jqup0ta8Ji8H5SK-eT4vyfePH75tPhf3Xz_dbW7vCy2qNhV1r7SqYGigrqFqh25Ahh2vuRIV44Z3uQdTDxyFrgDzO6wVV53oUdS9YKK6JNeHuY_B531jkpONGp1T8355yTlnbd2yip9GoamZYI1gGb16Rpd-QiMfg51U2Mlj4xloDoAOPsaAwz8EmNyrlVt5VCv3aiVwmdXm4Lv_gtomtdeT-7PudPz9IY650yeLQUZtcdZZQ0CdpPH21Ii_XpjGAA |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_115520 crossref_primary_10_1016_j_jclepro_2020_124755 crossref_primary_10_1002_app_53361 crossref_primary_10_1016_j_heliyon_2024_e39450 crossref_primary_10_1016_j_seppur_2021_120140 crossref_primary_10_1016_j_diamond_2025_112085 crossref_primary_10_1007_s11270_020_04875_6 crossref_primary_10_1016_j_biortech_2022_127630 crossref_primary_10_1016_j_seppur_2022_122282 crossref_primary_10_1016_j_jwpe_2020_101561 crossref_primary_10_1007_s44169_022_00018_6 crossref_primary_10_1016_j_jece_2021_106053 crossref_primary_10_56958_jesi_2021_6_3_8 crossref_primary_10_1016_j_biteb_2025_102034 crossref_primary_10_1007_s00289_023_05013_y crossref_primary_10_1016_j_scitotenv_2020_139718 crossref_primary_10_1007_s11270_024_07210_5 crossref_primary_10_1016_j_molliq_2021_118399 crossref_primary_10_1016_j_desal_2024_118353 crossref_primary_10_1016_j_jaap_2022_105662 crossref_primary_10_1007_s13762_021_03581_y crossref_primary_10_1016_j_jece_2024_114742 crossref_primary_10_1016_j_compositesb_2019_107209 crossref_primary_10_1007_s10570_020_03660_2 crossref_primary_10_1016_j_chemosphere_2021_131721 crossref_primary_10_1039_D3EW00392B crossref_primary_10_1007_s42773_024_00341_2 crossref_primary_10_1016_j_jece_2024_112687 crossref_primary_10_1016_j_jcis_2022_12_100 crossref_primary_10_1016_j_chemosphere_2020_129365 crossref_primary_10_1016_j_colsurfa_2024_134474 crossref_primary_10_1016_j_jece_2022_107776 crossref_primary_10_9767_bcrec_15_2_7828_525_537 crossref_primary_10_1016_j_jes_2021_02_006 crossref_primary_10_1016_j_ccr_2021_213809 crossref_primary_10_1016_j_eti_2021_101614 crossref_primary_10_1007_s10570_022_04720_5 crossref_primary_10_1016_j_chemosphere_2022_134825 crossref_primary_10_1016_j_jenvman_2022_115356 crossref_primary_10_1016_j_clay_2019_04_013 crossref_primary_10_1016_j_jece_2023_111069 crossref_primary_10_1007_s11270_023_06541_z crossref_primary_10_1016_j_scitotenv_2020_144764 crossref_primary_10_1016_j_jwpe_2021_102148 crossref_primary_10_1007_s11814_021_0784_6 crossref_primary_10_5004_dwt_2022_28578 crossref_primary_10_1016_j_fuproc_2022_107389 crossref_primary_10_1016_j_chemosphere_2021_130974 crossref_primary_10_1016_j_matchemphys_2024_129189 crossref_primary_10_1016_j_jece_2024_113559 crossref_primary_10_1016_j_chemosphere_2022_134714 crossref_primary_10_1016_j_biortech_2019_121545 crossref_primary_10_1016_j_molliq_2024_124478 crossref_primary_10_1016_j_jwpe_2023_104640 crossref_primary_10_1016_j_surfin_2022_101729 crossref_primary_10_1016_j_jece_2022_108605 crossref_primary_10_1007_s10924_022_02375_8 crossref_primary_10_1016_j_jece_2023_111191 crossref_primary_10_1007_s11356_024_33820_x crossref_primary_10_1080_10643389_2023_2239131 crossref_primary_10_1016_j_cej_2021_129933 crossref_primary_10_1016_j_indcrop_2023_116403 crossref_primary_10_1016_j_scitotenv_2020_138701 crossref_primary_10_1007_s40097_020_00360_y crossref_primary_10_1016_j_indcrop_2024_119873 crossref_primary_10_1016_j_molliq_2019_111201 crossref_primary_10_3390_molecules27082392 crossref_primary_10_1016_j_ccr_2020_213554 crossref_primary_10_1016_j_jhazmat_2020_122128 crossref_primary_10_1080_00986445_2021_1895773 crossref_primary_10_1016_j_molliq_2022_118505 crossref_primary_10_1016_j_cis_2020_102216 crossref_primary_10_1016_j_jhazmat_2019_121199 crossref_primary_10_1016_j_seppur_2021_119296 crossref_primary_10_1016_j_apcatb_2020_118651 crossref_primary_10_1016_j_molliq_2024_125753 crossref_primary_10_1016_j_cemconcomp_2024_105667 crossref_primary_10_1016_j_jcis_2022_09_088 crossref_primary_10_1016_j_jallcom_2020_157974 crossref_primary_10_1007_s11356_024_35151_3 crossref_primary_10_1016_j_jcat_2019_11_003 crossref_primary_10_3390_polym13213691 crossref_primary_10_1515_chem_2021_0058 crossref_primary_10_2166_wst_2022_332 crossref_primary_10_1016_j_jclepro_2021_130296 crossref_primary_10_1016_j_scitotenv_2022_156835 crossref_primary_10_1049_iet_nbt_2019_0313 crossref_primary_10_1080_09593330_2022_2080001 crossref_primary_10_1016_j_chemosphere_2021_131503 crossref_primary_10_1016_j_cej_2025_159983 crossref_primary_10_1007_s40201_021_00696_9 crossref_primary_10_1016_j_jece_2024_114969 crossref_primary_10_1016_j_apsusc_2025_162407 crossref_primary_10_1016_j_matchemphys_2022_126758 crossref_primary_10_1016_j_jwpe_2021_102221 crossref_primary_10_1016_j_jece_2023_110735 crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_1016_j_seppur_2023_126199 crossref_primary_10_1016_j_jiec_2020_05_017 crossref_primary_10_1016_j_envres_2024_120360 crossref_primary_10_1016_j_seppur_2022_122415 crossref_primary_10_1016_j_jtice_2023_105259 crossref_primary_10_1016_j_jclepro_2023_136186 crossref_primary_10_1007_s10924_022_02431_3 crossref_primary_10_1016_j_jhazmat_2021_125829 crossref_primary_10_1039_D3RE00339F crossref_primary_10_1016_j_psep_2022_02_061 crossref_primary_10_1016_j_clay_2021_106297 crossref_primary_10_1016_j_clay_2024_107425 crossref_primary_10_2139_ssrn_4186852 crossref_primary_10_1016_j_colsurfa_2019_124255 crossref_primary_10_3390_su16020918 crossref_primary_10_1016_j_envpol_2024_123451 crossref_primary_10_5004_dwt_2023_29363 crossref_primary_10_1016_j_cej_2019_122937 crossref_primary_10_1155_2022_7218759 crossref_primary_10_1016_j_molliq_2022_120810 crossref_primary_10_3390_su14010021 crossref_primary_10_1016_j_jece_2023_109293 crossref_primary_10_1016_j_jece_2023_110844 crossref_primary_10_1016_j_colsurfa_2024_134993 crossref_primary_10_3390_agriculture12101737 crossref_primary_10_1016_j_cej_2021_132227 crossref_primary_10_5004_dwt_2022_28764 crossref_primary_10_1016_j_biortech_2019_122102 crossref_primary_10_1016_j_biortech_2019_122466 crossref_primary_10_3390_pr11051489 crossref_primary_10_1007_s44246_022_00005_5 crossref_primary_10_1016_j_ijbiomac_2024_139385 crossref_primary_10_1016_j_chemosphere_2020_128422 crossref_primary_10_1016_j_chemosphere_2020_127694 crossref_primary_10_3390_su16208838 crossref_primary_10_1016_j_clay_2021_106195 crossref_primary_10_1007_s42729_019_00167_z crossref_primary_10_1007_s11356_022_20987_4 crossref_primary_10_1007_s42114_021_00260_x crossref_primary_10_1016_j_microc_2020_105839 crossref_primary_10_1016_j_rsurfi_2024_100386 crossref_primary_10_1016_j_envpol_2022_119044 crossref_primary_10_1088_1757_899X_902_1_012048 crossref_primary_10_1016_j_clay_2022_106552 crossref_primary_10_1016_j_jenvman_2020_111749 crossref_primary_10_1016_j_seppur_2021_120099 crossref_primary_10_1016_j_jclepro_2024_143645 crossref_primary_10_1016_j_jhazmat_2021_126569 crossref_primary_10_1016_j_colcom_2023_100700 crossref_primary_10_1016_j_jwpe_2024_106164 crossref_primary_10_1016_j_cej_2024_150164 crossref_primary_10_1016_j_jece_2021_105273 crossref_primary_10_1016_j_jssc_2024_125067 crossref_primary_10_3390_ma13040947 crossref_primary_10_1016_j_scenv_2024_100169 crossref_primary_10_1016_j_cej_2020_127281 crossref_primary_10_1248_cpb_c19_00784 crossref_primary_10_1016_j_jclepro_2019_119523 crossref_primary_10_3390_su151411173 crossref_primary_10_1007_s13399_023_04292_9 crossref_primary_10_1016_j_molliq_2019_111532 crossref_primary_10_1016_j_jhazmat_2020_124376 crossref_primary_10_1016_j_colsurfa_2022_128426 crossref_primary_10_1007_s13762_022_03928_z crossref_primary_10_1016_j_cclet_2023_109130 crossref_primary_10_1016_j_envres_2023_116534 crossref_primary_10_1016_j_jallcom_2023_170528 crossref_primary_10_1016_j_seppur_2024_130943 crossref_primary_10_1039_C9TA13522G crossref_primary_10_1016_j_scitotenv_2020_143452 crossref_primary_10_3390_inorganics11090369 crossref_primary_10_1515_ntrev_2021_0012 crossref_primary_10_1016_j_seppur_2023_124942 crossref_primary_10_1038_s41598_024_55803_1 crossref_primary_10_1080_25740881_2023_2289179 crossref_primary_10_1016_j_biortech_2019_03_086 crossref_primary_10_3390_coatings13071265 crossref_primary_10_1080_10934529_2019_1704134 crossref_primary_10_3390_nano12081384 crossref_primary_10_1016_j_colsurfa_2023_132352 crossref_primary_10_3390_polym14010039 crossref_primary_10_9767_bcrec_17_3_14288_520_532 crossref_primary_10_1007_s10854_024_12139_w crossref_primary_10_1016_j_jcis_2021_10_014 crossref_primary_10_1016_j_jece_2023_110129 crossref_primary_10_1007_s44246_023_00041_9 crossref_primary_10_1016_j_jcis_2019_12_028 crossref_primary_10_1016_j_jhazmat_2019_121470 crossref_primary_10_1007_s11270_023_06297_6 crossref_primary_10_1016_j_cej_2022_135716 crossref_primary_10_1016_j_jaap_2022_105856 crossref_primary_10_1016_j_matchemphys_2024_129770 crossref_primary_10_1016_j_clay_2021_106025 crossref_primary_10_1016_j_jpcs_2024_112404 crossref_primary_10_1016_j_mtsust_2022_100260 crossref_primary_10_1016_j_cej_2019_122789 crossref_primary_10_1016_j_biortech_2023_129119 crossref_primary_10_1016_j_jcis_2022_12_050 crossref_primary_10_1016_j_jece_2021_105184 crossref_primary_10_1016_j_jece_2022_107325 crossref_primary_10_1080_15226514_2024_2427388 crossref_primary_10_1016_j_jallcom_2023_173107 crossref_primary_10_1016_j_jece_2024_113918 crossref_primary_10_1007_s11270_020_04732_6 crossref_primary_10_1016_j_apsusc_2022_155635 crossref_primary_10_1051_e3sconf_202126702016 crossref_primary_10_1007_s13399_021_02024_5 crossref_primary_10_1016_j_colsurfa_2024_135907 crossref_primary_10_1016_j_cej_2021_131405 crossref_primary_10_1515_ntrev_2020_0065 crossref_primary_10_2139_ssrn_4089461 crossref_primary_10_1016_j_colsurfa_2020_124507 crossref_primary_10_1016_j_biortech_2020_124128 crossref_primary_10_1016_j_seppur_2024_128277 crossref_primary_10_1016_j_rechem_2022_100657 crossref_primary_10_1016_j_apsusc_2021_150794 crossref_primary_10_1007_s11356_020_08455_3 crossref_primary_10_1002_tcr_201900046 crossref_primary_10_1016_j_chemosphere_2021_131598 crossref_primary_10_1016_j_cej_2020_127084 crossref_primary_10_1016_j_envpol_2020_115018 crossref_primary_10_1016_j_cej_2023_146364 crossref_primary_10_1016_j_cattod_2024_115101 crossref_primary_10_1016_j_jhazmat_2020_124162 crossref_primary_10_1016_j_seppur_2023_125823 |
Cites_doi | 10.1016/j.biortech.2018.01.018 10.1016/j.scitotenv.2016.08.199 10.1016/j.watres.2007.02.037 10.1016/j.jenvman.2016.08.070 10.1016/j.chemosphere.2017.07.154 10.1016/j.jtice.2016.03.021 10.1016/S0043-1354(99)00295-X 10.1016/j.biortech.2017.12.058 10.1039/C5RA17490B 10.1080/00206810009465107 10.1016/j.watres.2016.03.014 10.1016/S0009-2509(02)00185-9 10.1021/tx00010a002 10.1016/j.chemosphere.2014.12.058 10.1039/a903231b 10.1016/j.biortech.2017.10.044 10.1021/acs.est.7b03164 10.1016/j.jhazmat.2008.04.089 10.1039/C6RA11850J 10.1016/j.jhazmat.2018.01.024 10.1007/s11356-014-3599-8 10.1016/j.biortech.2018.04.032 10.1016/j.chemosphere.2013.02.050 10.1346/CCMN.1980.0280202 10.1016/j.jhazmat.2017.06.028 10.1016/j.watres.2016.09.050 10.1007/s11356-017-9168-1 10.1007/s13762-017-1507-8 10.1016/j.watres.2007.10.043 10.1038/srep39691 10.1016/j.materresbull.2014.12.062 10.1016/j.seppur.2005.06.001 10.1016/j.colsurfa.2017.11.034 10.1061/(ASCE)0733-9372(2000)126:4(300) 10.1346/CCMN.1983.0310409 10.1016/j.chemosphere.2017.01.130 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2018.12.114 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 132 |
ExternalDocumentID | 30616211 10_1016_j_biortech_2018_12_114 S0960852418317851 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-5baca31f6155138f9fe0e9252a4302d29873d5f2e4c31e8f917a2a94be45b4043 |
IEDL.DBID | AIKHN |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Sep 05 04:46:46 EDT 2025 Fri Sep 05 10:41:47 EDT 2025 Mon Jul 21 05:58:53 EDT 2025 Tue Jul 01 02:07:04 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 23 02:19:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cr(VI) Adsorption Biochar Layered double hydroxides |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-5baca31f6155138f9fe0e9252a4302d29873d5f2e4c31e8f917a2a94be45b4043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3579-6980 |
PMID | 30616211 |
PQID | 2165040640 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2220858032 proquest_miscellaneous_2165040640 pubmed_primary_30616211 crossref_primary_10_1016_j_biortech_2018_12_114 crossref_citationtrail_10_1016_j_biortech_2018_12_114 elsevier_sciencedirect_doi_10_1016_j_biortech_2018_12_114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fendorf, Wielinga, Hansel (b0035) 2000; 42 He, Xiang, Chen, Chen, Huang, Wen, Yang (b0055) 2018; 15 Huang, Wang, Zhang, Zeng, Lai, Wan, Qin, Zeng (b0080) 2016; 6 Zhang, Gao, Yao, Inyang (b0190) 2013; 92 Huang, Deng, Wan, Zeng, Xue, Wen, Zhou, Hu, Liu, Xu, Guo, Ren (b0060) 2018; 348 Gong, Huang, Liu, Zeng, Wang, Wei, Huang, Xu, Wan, Zhang (b0050) 2018; 253 Huang, Xue, Zeng, Wan, Chen, Huang, Zhang, Cheng, Xu (b0085) 2016; 106 Brindley (b0005) 1980; 28 Wu, He, Inthapanya, Yang, Lu, Zeng, Han (b0160) 2017; 24 Wang, Li, Wang, Wang (b0150) 2018; 538 Wang, Chirwa, Shen (b0155) 2000; 126 Miyata (b0110) 1983; 31 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (b0130) 2015; 125 Huang, Wang, Zhang, Zeng, Peng, Zhou, Cheng, Wang, Hu, Qin (b0075) 2017; 186 Huang, Wang, Liu, Zeng, Lai, Xu, Lu, Xu, Wang, Huang (b0090) 2015; 22 Goh, Lim, Dong (b0040) 2008; 42 Huang, Liu, Zeng, Xu, Huang, Deng, Wang, Wan (b0070) 2017; 174 Tan, Liu, Gu, Liu, Zeng, Cai, Hu, Wang, Liu, Jiang (b0135) 2016; 184 Chagas, De Carvalho, Do Carmo, San Gil, Chiaro, Leitão, Diniz, De Sena, Achete (b0015) 2015; 64 Ding, Liu, Liu, Li, Tan, Huang, Zeng, Zhou, Zheng (b0020) 2016; 36 Xue, Gao, Wan, Fang, Wang, Li, Muñoz-Carpena, Yang (b0170) 2016; 63 Huang, Hu, Zeng, Cheng, Xu, Gong, Wang, Xue (b0065) 2017; 574 Seida, Nakano (b0120) 2000; 34 Farrell, Judd, Lay, Dixon, Baker, Bonin (b0030) 1989; 2 Rocha, Arco, Rives, Ulibarri (b0115) 1999; 9 Zhang, Lai, Zeng, Huang, Yang, Wang, Zhou, Cheng (b0185) 2016; 95 Cavani, Trifirò, Vaccari (b0010) 1991; 23 Xu, Zhao (b0165) 2007; 41 Wang, Gao, Li, Zimmerman, Cao (b0145) 2016; 6 Zhou, Lin, Li, Yang, Han, Zeng, Lu, He (b0195) 2018; 249 Tan, Liu, Liu, Gu, Zeng, Cai, Yan, Yang, Hu, Chen (b0125) 2016; 6 Gong, Huang, Liu, Zeng, Wang, Wan, Zhang, Cheng, Qin, Xue (b0045) 2017; 51 Knott (b0100) 1996; 149 Li, Yang, He, Wu, Zhou, Yang, Zeng, Luo, Lou (b0105) 2018; 251 Kameda, Saito, Umetsu (b0095) 2005; 47 El Gaini, Lakraimi, Sebbar, Meghea, Bakasse (b0025) 2009; 161 Wang, Huang, Liu, Zhang, Lai, Zeng, Cheng, Gong, Wan, Luo (b0140) 2018; 261 Xue, Huang, Zeng, Wan, Zhang, Xu, Cheng, Deng (b0175) 2017; 341 Yang, Kim, Liu, Sahimi, Tsotsis (b0180) 2002; 57 Seida (10.1016/j.biortech.2018.12.114_b0120) 2000; 34 Xue (10.1016/j.biortech.2018.12.114_b0175) 2017; 341 Knott (10.1016/j.biortech.2018.12.114_b0100) 1996; 149 Wang (10.1016/j.biortech.2018.12.114_b0150) 2018; 538 Huang (10.1016/j.biortech.2018.12.114_b0070) 2017; 174 El Gaini (10.1016/j.biortech.2018.12.114_b0025) 2009; 161 Farrell (10.1016/j.biortech.2018.12.114_b0030) 1989; 2 Gong (10.1016/j.biortech.2018.12.114_b0050) 2018; 253 Tan (10.1016/j.biortech.2018.12.114_b0125) 2016; 6 Wang (10.1016/j.biortech.2018.12.114_b0145) 2016; 6 Rocha (10.1016/j.biortech.2018.12.114_b0115) 1999; 9 Xu (10.1016/j.biortech.2018.12.114_b0165) 2007; 41 He (10.1016/j.biortech.2018.12.114_b0055) 2018; 15 Huang (10.1016/j.biortech.2018.12.114_b0075) 2017; 186 Li (10.1016/j.biortech.2018.12.114_b0105) 2018; 251 Zhang (10.1016/j.biortech.2018.12.114_b0190) 2013; 92 Huang (10.1016/j.biortech.2018.12.114_b0085) 2016; 106 Wang (10.1016/j.biortech.2018.12.114_b0140) 2018; 261 Zhou (10.1016/j.biortech.2018.12.114_b0195) 2018; 249 Ding (10.1016/j.biortech.2018.12.114_b0020) 2016; 36 Xue (10.1016/j.biortech.2018.12.114_b0170) 2016; 63 Huang (10.1016/j.biortech.2018.12.114_b0080) 2016; 6 Fendorf (10.1016/j.biortech.2018.12.114_b0035) 2000; 42 Tan (10.1016/j.biortech.2018.12.114_b0130) 2015; 125 Huang (10.1016/j.biortech.2018.12.114_b0060) 2018; 348 Cavani (10.1016/j.biortech.2018.12.114_b0010) 1991; 23 Miyata (10.1016/j.biortech.2018.12.114_b0110) 1983; 31 Goh (10.1016/j.biortech.2018.12.114_b0040) 2008; 42 Tan (10.1016/j.biortech.2018.12.114_b0135) 2016; 184 Brindley (10.1016/j.biortech.2018.12.114_b0005) 1980; 28 Yang (10.1016/j.biortech.2018.12.114_b0180) 2002; 57 Gong (10.1016/j.biortech.2018.12.114_b0045) 2017; 51 Huang (10.1016/j.biortech.2018.12.114_b0065) 2017; 574 Kameda (10.1016/j.biortech.2018.12.114_b0095) 2005; 47 Wang (10.1016/j.biortech.2018.12.114_b0155) 2000; 126 Wu (10.1016/j.biortech.2018.12.114_b0160) 2017; 24 Huang (10.1016/j.biortech.2018.12.114_b0090) 2015; 22 Chagas (10.1016/j.biortech.2018.12.114_b0015) 2015; 64 Zhang (10.1016/j.biortech.2018.12.114_b0185) 2016; 95 |
References_xml | – volume: 42 start-page: 691 year: 2000 end-page: 701 ident: b0035 article-title: Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction publication-title: Int. Geol. Rev. – volume: 261 start-page: 265 year: 2018 end-page: 271 ident: b0140 article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock publication-title: Bioresour. Technol. – volume: 341 start-page: 381 year: 2017 end-page: 389 ident: b0175 article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments publication-title: J. Hazard. Mater. – volume: 63 start-page: 312 year: 2016 end-page: 317 ident: b0170 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: J. Taiwan Instit. Chem. Eng. – volume: 249 start-page: 457 year: 2018 end-page: 463 ident: b0195 article-title: Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater publication-title: Bioresour. Technol. – volume: 24 start-page: 16560 year: 2017 end-page: 16577 ident: b0160 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils-a review publication-title: Environ. Sci. Pollut. Res. Int. – volume: 253 start-page: 64 year: 2018 end-page: 71 ident: b0050 article-title: Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption publication-title: Bioresour. Technol. – volume: 6 start-page: 17792 year: 2016 end-page: 17799 ident: b0145 article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites publication-title: Rsc Adv. – volume: 64 start-page: 207 year: 2015 end-page: 215 ident: b0015 article-title: MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: structural characterization and thermal decomposition publication-title: Mater. Res. Bull. – volume: 92 start-page: 1042 year: 2013 end-page: 1047 ident: b0190 article-title: Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition publication-title: Chemosphere – volume: 34 start-page: 1487 year: 2000 end-page: 1494 ident: b0120 article-title: Removal of humic substances by layered double hydroxide containing iron publication-title: Water Res. – volume: 538 start-page: 443 year: 2018 end-page: 450 ident: b0150 article-title: Biochar/MnAl-LDH composites for Cu (II) removal from aqueous solution publication-title: Coll. Surf. A: Physicochem. Eng. Asp. – volume: 184 start-page: 85 year: 2016 end-page: 93 ident: b0135 article-title: Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal publication-title: J. Environ. Manage. – volume: 36 start-page: 1 year: 2016 end-page: 18 ident: b0020 article-title: Biochar to improve soil fertility. a review publication-title: Agronomy Sust. Dev. – volume: 2 start-page: 227 year: 1989 end-page: 229 ident: b0030 article-title: Chromium(V)-induced cleavage of DNA: are chromium(V) complexes the active carcinogens in chromium(VI)-induced cancers? publication-title: Chem. Res. Toxicol. – volume: 174 start-page: 545 year: 2017 end-page: 553 ident: b0070 article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment publication-title: Chemosphere – volume: 95 start-page: 103 year: 2016 end-page: 112 ident: b0185 article-title: Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution publication-title: Water Res. – volume: 22 start-page: 963 year: 2015 end-page: 977 ident: b0090 article-title: Application of molecularly imprinted polymers in wastewater treatment: a review publication-title: Environ. Sci. Pollut. Res. – volume: 9 start-page: 2499 year: 1999 end-page: 2503 ident: b0115 article-title: Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27A1 MAS NMR study publication-title: J. Mater. Chem. – volume: 6 start-page: 73186 year: 2016 end-page: 73196 ident: b0080 article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation publication-title: Rsc Adv. – volume: 126 start-page: 300 year: 2000 end-page: 306 ident: b0155 article-title: Cr(VI) Reduction in continuous-flow coculture bioreactor publication-title: J. Environ. Eng. – volume: 51 start-page: 11308 year: 2017 end-page: 11316 ident: b0045 article-title: Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments publication-title: Environ. Sci. Technol. – volume: 574 start-page: 1599 year: 2017 end-page: 1610 ident: b0065 article-title: Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation publication-title: Sci. Total Environ. – volume: 149 start-page: 22 year: 1996 ident: b0100 article-title: Toxic tannery sludge made as safe as houses publication-title: New Scient. – volume: 251 start-page: 274 year: 2018 end-page: 279 ident: b0105 article-title: Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater publication-title: Bioresour. Technol. – volume: 6 start-page: 39691 year: 2016 ident: b0125 article-title: One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste publication-title: Sci. Rep. – volume: 57 start-page: 2945 year: 2002 end-page: 2953 ident: b0180 article-title: A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO 3 layered double hydroxide publication-title: Chem. Eng. Sci. – volume: 106 start-page: 15 year: 2016 end-page: 25 ident: b0085 article-title: Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity publication-title: Water Res. – volume: 47 start-page: 20 year: 2005 end-page: 26 ident: b0095 article-title: Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: Synthesis and application to the uptake of heavy metal ions from an aqueous solution publication-title: Separat. Purificat. Technol. – volume: 161 start-page: 627 year: 2009 end-page: 632 ident: b0025 article-title: Removal of indigo carmine dye from water to Mg-Al-CO(3)-calcined layered double hydroxides publication-title: J. Hazard Mater. – volume: 348 start-page: 109 year: 2018 end-page: 116 ident: b0060 article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters publication-title: J. Hazard. Mater. – volume: 41 start-page: 2101 year: 2007 end-page: 2108 ident: b0165 article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles publication-title: Water Res. – volume: 15 start-page: 1491 year: 2018 end-page: 1500 ident: b0055 article-title: Biosorption of Cd(II) from synthetic wastewater using dry biofilms from biotrickling filters publication-title: Int. J. Environ. Sci. Technol. – volume: 186 start-page: 414 year: 2017 end-page: 421 ident: b0075 article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism publication-title: Chemosphere – volume: 31 start-page: 305 year: 1983 end-page: 311 ident: b0110 article-title: Anion-exchange properties of hydrotalcite-like compounds publication-title: Clays Clay Miner. – volume: 28 start-page: 87 year: 1980 end-page: 91 ident: b0005 article-title: Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite publication-title: Clays Clay Miner. – volume: 23 start-page: 173 year: 1991 end-page: 298 ident: b0010 article-title: Hydrotalcite-type anionic clays: preparation, properties and applications publication-title: ChemInform – volume: 42 start-page: 1343 year: 2008 end-page: 1368 ident: b0040 article-title: Application of layered double hydroxides for removal of oxyanions: a review publication-title: Water Res. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: b0130 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 253 start-page: 64 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0050 article-title: Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.018 – volume: 574 start-page: 1599 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0065 article-title: Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.199 – volume: 41 start-page: 2101 issue: 10 year: 2007 ident: 10.1016/j.biortech.2018.12.114_b0165 article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2007.02.037 – volume: 184 start-page: 85 issue: Pt 1 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0135 article-title: Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.08.070 – volume: 186 start-page: 414 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0075 article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.154 – volume: 63 start-page: 312 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0170 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: J. Taiwan Instit. Chem. Eng. doi: 10.1016/j.jtice.2016.03.021 – volume: 34 start-page: 1487 issue: 5 year: 2000 ident: 10.1016/j.biortech.2018.12.114_b0120 article-title: Removal of humic substances by layered double hydroxide containing iron publication-title: Water Res. doi: 10.1016/S0043-1354(99)00295-X – volume: 251 start-page: 274 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0105 article-title: Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.058 – volume: 6 start-page: 17792 issue: 22 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0145 article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites publication-title: Rsc Adv. doi: 10.1039/C5RA17490B – volume: 42 start-page: 691 issue: 8 year: 2000 ident: 10.1016/j.biortech.2018.12.114_b0035 article-title: Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction publication-title: Int. Geol. Rev. doi: 10.1080/00206810009465107 – volume: 95 start-page: 103 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0185 article-title: Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution publication-title: Water Res. doi: 10.1016/j.watres.2016.03.014 – volume: 57 start-page: 2945 issue: 15 year: 2002 ident: 10.1016/j.biortech.2018.12.114_b0180 article-title: A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO 3 layered double hydroxide publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00185-9 – volume: 2 start-page: 227 issue: 4 year: 1989 ident: 10.1016/j.biortech.2018.12.114_b0030 article-title: Chromium(V)-induced cleavage of DNA: are chromium(V) complexes the active carcinogens in chromium(VI)-induced cancers? publication-title: Chem. Res. Toxicol. doi: 10.1021/tx00010a002 – volume: 23 start-page: 173 issue: 12 year: 1991 ident: 10.1016/j.biortech.2018.12.114_b0010 article-title: Hydrotalcite-type anionic clays: preparation, properties and applications publication-title: ChemInform – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.biortech.2018.12.114_b0130 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 9 start-page: 2499 issue: 10 year: 1999 ident: 10.1016/j.biortech.2018.12.114_b0115 article-title: Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27A1 MAS NMR study publication-title: J. Mater. Chem. doi: 10.1039/a903231b – volume: 149 start-page: 22 issue: 2017 year: 1996 ident: 10.1016/j.biortech.2018.12.114_b0100 article-title: Toxic tannery sludge made as safe as houses publication-title: New Scient. – volume: 249 start-page: 457 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0195 article-title: Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.10.044 – volume: 51 start-page: 11308 issue: 19 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0045 article-title: Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03164 – volume: 161 start-page: 627 issue: 2–3 year: 2009 ident: 10.1016/j.biortech.2018.12.114_b0025 article-title: Removal of indigo carmine dye from water to Mg-Al-CO(3)-calcined layered double hydroxides publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.04.089 – volume: 6 start-page: 73186 issue: 77 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0080 article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation publication-title: Rsc Adv. doi: 10.1039/C6RA11850J – volume: 348 start-page: 109 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0060 article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.01.024 – volume: 22 start-page: 963 issue: 2 year: 2015 ident: 10.1016/j.biortech.2018.12.114_b0090 article-title: Application of molecularly imprinted polymers in wastewater treatment: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3599-8 – volume: 261 start-page: 265 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0140 article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.032 – volume: 92 start-page: 1042 issue: 8 year: 2013 ident: 10.1016/j.biortech.2018.12.114_b0190 article-title: Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.02.050 – volume: 28 start-page: 87 issue: 2 year: 1980 ident: 10.1016/j.biortech.2018.12.114_b0005 article-title: Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1980.0280202 – volume: 341 start-page: 381 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0175 article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.06.028 – volume: 106 start-page: 15 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0085 article-title: Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity publication-title: Water Res. doi: 10.1016/j.watres.2016.09.050 – volume: 24 start-page: 16560 issue: 20 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0160 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils-a review publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-017-9168-1 – volume: 15 start-page: 1491 issue: 7 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0055 article-title: Biosorption of Cd(II) from synthetic wastewater using dry biofilms from biotrickling filters publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-017-1507-8 – volume: 42 start-page: 1343 issue: 6–7 year: 2008 ident: 10.1016/j.biortech.2018.12.114_b0040 article-title: Application of layered double hydroxides for removal of oxyanions: a review publication-title: Water Res. doi: 10.1016/j.watres.2007.10.043 – volume: 36 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0020 article-title: Biochar to improve soil fertility. a review publication-title: Agronomy Sust. Dev. – volume: 6 start-page: 39691 year: 2016 ident: 10.1016/j.biortech.2018.12.114_b0125 article-title: One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste publication-title: Sci. Rep. doi: 10.1038/srep39691 – volume: 64 start-page: 207 year: 2015 ident: 10.1016/j.biortech.2018.12.114_b0015 article-title: MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: structural characterization and thermal decomposition publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.12.062 – volume: 47 start-page: 20 issue: 1 year: 2005 ident: 10.1016/j.biortech.2018.12.114_b0095 article-title: Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: Synthesis and application to the uptake of heavy metal ions from an aqueous solution publication-title: Separat. Purificat. Technol. doi: 10.1016/j.seppur.2005.06.001 – volume: 538 start-page: 443 year: 2018 ident: 10.1016/j.biortech.2018.12.114_b0150 article-title: Biochar/MnAl-LDH composites for Cu (II) removal from aqueous solution publication-title: Coll. Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.11.034 – volume: 126 start-page: 300 issue: 4 year: 2000 ident: 10.1016/j.biortech.2018.12.114_b0155 article-title: Cr(VI) Reduction in continuous-flow coculture bioreactor publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2000)126:4(300) – volume: 31 start-page: 305 issue: 4 year: 1983 ident: 10.1016/j.biortech.2018.12.114_b0110 article-title: Anion-exchange properties of hydrotalcite-like compounds publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1983.0310409 – volume: 174 start-page: 545 year: 2017 ident: 10.1016/j.biortech.2018.12.114_b0070 article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.130 |
SSID | ssj0003172 |
Score | 2.6547217 |
Snippet | •Biochar loaded with nanoparticles was prepared for Cr(VI) adsorption.•EDTA intercalated LDH significantly improved sorption capacity of Cr(VI).•Adsorption... In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127 |
SubjectTerms | Adsorption aqueous solutions bamboos Biochar biomass chromium Cr(VI) EDTA (chelating agent) electrostatic interactions Fourier transform infrared spectroscopy heavy metals hydroxides Layered double hydroxides wastewater X-ray diffraction |
Title | Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid |
URI | https://dx.doi.org/10.1016/j.biortech.2018.12.114 https://www.ncbi.nlm.nih.gov/pubmed/30616211 https://www.proquest.com/docview/2165040640 https://www.proquest.com/docview/2220858032 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wNwQFBey6MyEgc4pIkdO-scVyuqLai9QFFvke04S6rdTZVmpfbCf-AfM5PHqhxKDxxje-RRZuL54nkBfJARFSE3KhDOqUBqpQOd-CJIUusjn0eFs5SNfHKazM_kl3N1vgOzIReGwir7s78709vTuh8J-7cZXpZl-I3At1ZogXTctpjfhT0R48Yj2Jsef52fbg9knG6dCbg-IIJbicIXh7akoNbWL8E13QxyLu-yUXdh0NYWHT2Bxz2IZNOOz6ew49f78Gi6qPtCGn4fHsyGTm44c6vo4DP4Pas__jj-xGq_qlDNGCWYMIMbVpsrNmgio3j4BUO2KS2Lraq8LBCsMrq2ZSeLcLoMluaG-nyyvNrYpWc_b_K6ui5zz6gCRY2iRxTbE3jUBrRulKSyQkYa39TGOEqfZMaV-XM4O_r8fTYP-sYMgZOxbgJljTMxL5K2PYwu0gLlmgoljIwjkYtUT-JcFcJLF3OP83xihEml9VJZKufzAkbrau1fASu0TrSyOY4jdoxtahDyFJ6riXTKajMGNYgic33VcmqescyG8LSLbBBhRiLMuKBM6zGEW7rLrm7HvRTpIOnsLw3M0LjcS_t-UI0MZUs-F7MmsWWCIwSW5C79xxpBjVJ1FIsxvOz0assz_tHxBH_SX_8Hd2_gIT6lXeTcWxg19ca_QyjV2APYPfzFD_oP5g-tGiB3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ0g7FG36cp8s0KEdVIkUKVOjYTSwm9hLkyIbQVKUq8C2AkUGkp_Rf9w7PYx0SDN01fGgg-7E-8h7EfJJRNiE3MiAOycDoaQKVOLzIEmtj3wW5c5iNfJ8kUzPxPdzeb5HJn0tDKZVdnt_u6c3u3X3JOy-ZnhZFOEPBN9KggdScTNi_gHZFxJOewOyP54dTxe7DRnITTAB1gfIcKtQ-OKrLTCptYlLMIU3g4yJu3zUXRi08UVHT8jjDkTScSvnU7LnN4fk0XhZdY00_CE5mPST3IByq-ngM_J7Un3-OftCK78uwcwoFphQAy8st1e0t0SK-fBLCmJjWRZdl1mRA1ileG1L58twvApW5gbnfNKs3NqVp79usqq8LjJPsQNFBaoHFNsxeLAG8G5YpLIGQWpfV8Y4LJ-kxhXZc3J29O10Mg26wQyBE7GqA2mNMzHLk2Y8jMrTHPSacsmNiCOe8VSN4kzm3AsXMw90NjLcpMJ6IS2283lBBpty418RmiuVKGkzeA7YMbapAciTeyZHwkmrzJDIXhXadV3LcXjGSvfpaRe6V6FGFWrGsdJ6SMId32Xbt-NejrTXtP7LAjU4l3t5P_amoUG3GHMxG1Sb5gwgsMBw6T_WcByUqqKYD8nL1q52MsOJjiVwSH_9H9J9IAfT0_mJPpktjt-Qh0BJ2yy6t2RQV1v_DmBVbd93v80fkooiZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cr%28VI%29+removal+from+aqueous+solution+using+biochar+modified+with+Mg%2FAl-layered+double+hydroxide+intercalated+with+ethylenediaminetetraacetic+acid&rft.jtitle=Bioresource+technology&rft.au=Huang%2C+Danlian&rft.au=Liu%2C+Caihong&rft.au=Zhang%2C+Chen&rft.au=Deng%2C+Rui&rft.date=2019-03-01&rft.eissn=1873-2976&rft.volume=276&rft.spage=127&rft_id=info:doi/10.1016%2Fj.biortech.2018.12.114&rft_id=info%3Apmid%2F30616211&rft.externalDocID=30616211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |