Time Circular Birefringence in Time-Dependent Magnetoelectric Media
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media alw...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 13673 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.09.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/srep13673 |
Cover
Loading…
Abstract | Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector
and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. |
---|---|
AbstractList | Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector "Equation missing" and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. |
ArticleNumber | 13673 |
Author | Wen, Weijia Lin, Shi-Rong Ge, Mo-Lin Zhang, Ruo-Yang Zhao, Qing Zhai, Yan-Wang |
Author_xml | – sequence: 1 givenname: Ruo-Yang surname: Zhang fullname: Zhang, Ruo-Yang organization: Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay – sequence: 2 givenname: Yan-Wang surname: Zhai fullname: Zhai, Yan-Wang organization: School of Physics, Beijing Institute of Technology – sequence: 3 givenname: Shi-Rong surname: Lin fullname: Lin, Shi-Rong organization: School of Physics, Beijing Institute of Technology – sequence: 4 givenname: Qing surname: Zhao fullname: Zhao, Qing organization: School of Physics, Beijing Institute of Technology – sequence: 5 givenname: Weijia surname: Wen fullname: Wen, Weijia organization: Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay – sequence: 6 givenname: Mo-Lin surname: Ge fullname: Ge, Mo-Lin organization: Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, School of Physics, Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26329928$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtLxDAQhYMo3h_8A1LwRYVqbk2bF0HXKyi-6HPIptM10k1q0gr-e7OuynoJAwnMN4eTORto2XkHCO0QfEQwq45jgI4wUbIltE4xL3LKKF1eeK-h7RifcToFlZzIVbRGBaNS0modjR7sFLKRDWZodcjObIAmWDcBZyCzLpu183PowNXg-uxOTxz0HlowfbAmu4Pa6i200ug2wvbnvYkeLy8eRtf57f3Vzej0NjecVX3OgYpGlHpsuACiiZB0rIEJaqApa8B8bDDlvOS6xqQBwjHgqjaiqcq6lrxkm-hkrtsN4ynUJhkKulVdsFMd3pTXVv3sOPukJv5V8aIQUhRJYP9TIPiXAWKvpjYaaFvtwA9RkRLLVLioErr3C332Q3Dpe4pUUpaMS8kStbvo6NvK134TcDwHTPAxJdUoY3vdWz8zaFtFsJqFqL5DTBMHvya-RP9jD-ds7D4yCwsm_8Dv5UmrOw |
CitedBy_id | crossref_primary_10_1088_2040_8986_ab146f crossref_primary_10_1016_j_jqsrt_2015_12_007 crossref_primary_10_1016_j_physleta_2016_05_050 crossref_primary_10_1088_2040_8978_18_8_085603 crossref_primary_10_1103_PhysRevA_106_042205 crossref_primary_10_1016_j_cjph_2021_07_017 crossref_primary_10_1103_PhysRevResearch_5_023162 crossref_primary_10_1088_1367_2630_aaaa44 crossref_primary_10_1103_PhysRevB_98_075203 crossref_primary_10_1103_PhysRevD_95_036002 crossref_primary_10_1016_j_physleta_2016_09_014 crossref_primary_10_1103_PhysRevB_104_235126 |
Cites_doi | 10.1103/PhysRevB.84.205327 10.1103/PhysRevLett.102.146805 10.1139/P10-097 10.1098/rspa.1983.0123 10.1103/PhysRevD.70.025012 10.1088/1367-2630/16/7/075003 10.1103/PhysRevLett.99.197404 10.1238/Physica.Regular.065a00160 10.1088/2040-8978/13/2/024007 10.1088/2040-8978/13/2/024003 10.1038/nature05023 10.1063/1.3054298 10.1088/1464-4258/3/6/102 10.1063/1.3356731 10.1016/j.physleta.2004.11.038 10.1038/nature12224 10.1126/science.1167747 10.1103/PhysRevB.82.161104 10.1007/s10714-007-0599-8 10.1038/nphys2161 10.1103/PhysRevB.78.195424 10.1364/OL.39.000574 10.1088/0022-3727/38/8/R01 10.1103/PhysRevLett.38.1440 10.1103/PhysRevLett.85.4478 10.1038/nphys1534 10.1364/OL.39.004611 10.1103/PhysRevLett.58.1799 10.1103/PhysRevLett.93.203902 10.1103/PhysRevD.41.1231 10.1103/PhysRevLett.88.073901 10.1103/PhysRevLett.113.033601 10.1126/science.1153625 10.1103/PhysRevLett.93.037403 10.1103/PhysRevLett.96.167202 10.1103/PhysRevLett.106.193003 10.1038/35018520 10.1063/1.1622927 10.1103/PhysRevLett.105.057401 10.1364/OE.18.005350 10.1103/PhysRevLett.106.166802 10.1103/PhysRevA.82.031803 10.1103/PhysRevLett.6.607 10.1016/j.physleta.2005.05.006 10.3367/UFNe.0182.201206b.0593 10.1016/B978-0-08-030275-1.50007-2 10.1038/nature10695 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Sep 2015 Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Sep 2015 – notice: Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep13673 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
ExternalDocumentID | PMC4556965 26329928 10_1038_srep13673 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c438t-4e26f67abc46e1a1692bae362cef7de04bc024474ad01fe140e08dc6f87dd9473 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:09:39 EDT 2025 Fri Jul 11 00:32:05 EDT 2025 Sat Aug 23 13:33:45 EDT 2025 Thu Apr 03 07:06:09 EDT 2025 Tue Jul 01 03:15:02 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 21 02:39:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-4e26f67abc46e1a1692bae362cef7de04bc024474ad01fe140e08dc6f87dd9473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep13673 |
PMID | 26329928 |
PQID | 1899734993 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556965 proquest_miscellaneous_1709709058 proquest_journals_1899734993 pubmed_primary_26329928 crossref_citationtrail_10_1038_srep13673 crossref_primary_10_1038_srep13673 springer_journals_10_1038_srep13673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-02 |
PublicationDateYYYYMMDD | 2015-09-02 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tse, MacDonald (CR21) 2010; 82 Itin (CR27) 2004; 70 Kamenetskii, Sigalov, Shavit (CR19) 2009; 105 Philbin (CR35) 2008; 319 Graham, Raab (CR37) 1983; 390 Qi, Li, Zang, Zhang (CR9) 2009; 323 CR39 Kida (CR16) 2006; 96 Essin, Moore, Vanderbilt (CR10) 2009; 102 Jung (CR15) 2004; 93 Chremmos (CR34) 2014; 39 Eerenstein, Mathur, Scott (CR5) 2006; 442 Mendonca, Shukla (CR41) 2002; 65 Nomura, Nagaosa (CR11) 2011; 106 Peccei, Quinn (CR25) 1977; 38 Wilczek (CR24) 1987; 58 Fridman, Farsi, Okawachi, Gaeta (CR32) 2012; 481 Westerberg, Cacciatori, Belgiorno, Piazza, Faccio (CR36) 2014; 16 Carroll, Field, Jackiw (CR26) 1990; 41 CR3 Lukens, Leaird, Weiner (CR33) 2013; 498 Folen, Rado, Stalder (CR2) 1961; 6 Li, Wang, Qi, Zhang (CR8) 2010; 6 Itin (CR28) 2008; 40 Xiao, Maywar, Agrawal (CR42) 2014; 39 Fiebig (CR4) 2005; 38 Robilliard, Bailly (CR47) 2010; 89 Kida (CR17) 2007; 99 Tse, MacDonald (CR20) 2010; 105 Tse, MacDonald (CR22) 2011; 84 Brunner, Scarani, Wegmüller, Legré, Gisin (CR45) 2004; 93 Cummer, Thompson (CR30) 2011; 13 Bailly, Thon, Robilliard (CR46) 2010; 81 Ginis, Tassin, Craps, Veretennicoff (CR29) 2010; 18 Wang, Kuzmich, Dogariu (CR43) 2000; 406 Pyatakov, Zvezdin (CR6) 2012; 55 Rizzo, Coriani (CR40) 2003; 119 Qi, Hughes, Zhang (CR7) 2008; 78 Alexeev, Kim, Milchberg (CR44) 2002; 88 Obukhov, Hehl (CR14) 2005; 341 Roth, Rikken (CR38) 2000; 85 Hehl, Obukhov (CR13) 2005; 334 Dzyaloshinskii (CR1) 1960; 10 de Lange, Raab (CR12) 2001; 3 McCall, Favaro, Kinsler, Boardman (CR31) 2011; 13 Takahashi, Shimano, Kaneko, Murakawa, Tokura (CR18) 2012; 8 Bliokh, Kivshar, Nori (CR23) 2014; 113 Durand, Morville, Romanini (CR49) 2010; 82 Pelle, Bitard, Bailly, Robilliard (CR48) 2011; 106 EB Graham (BFsrep13673_CR37) 1983; 390 Y Itin (BFsrep13673_CR27) 2004; 70 OL de Lange (BFsrep13673_CR12) 2001; 3 I Chremmos (BFsrep13673_CR34) 2014; 39 F Wilczek (BFsrep13673_CR24) 1987; 58 JH Jung (BFsrep13673_CR15) 2004; 93 YN Obukhov (BFsrep13673_CR14) 2005; 341 VJ Folen (BFsrep13673_CR2) 1961; 6 W-K Tse (BFsrep13673_CR20) 2010; 105 BFsrep13673_CR39 B Pelle (BFsrep13673_CR48) 2011; 106 K Nomura (BFsrep13673_CR11) 2011; 106 LJ Wang (BFsrep13673_CR43) 2000; 406 I Dzyaloshinskii (BFsrep13673_CR1) 1960; 10 BFsrep13673_CR3 Y Xiao (BFsrep13673_CR42) 2014; 39 AP Pyatakov (BFsrep13673_CR6) 2012; 55 X-L Qi (BFsrep13673_CR9) 2009; 323 A Rizzo (BFsrep13673_CR40) 2003; 119 R Li (BFsrep13673_CR8) 2010; 6 W-K Tse (BFsrep13673_CR21) 2010; 82 SM Carroll (BFsrep13673_CR26) 1990; 41 SA Cummer (BFsrep13673_CR30) 2011; 13 TG Philbin (BFsrep13673_CR35) 2008; 319 N Kida (BFsrep13673_CR16) 2006; 96 JM Lukens (BFsrep13673_CR33) 2013; 498 N Westerberg (BFsrep13673_CR36) 2014; 16 X-L Qi (BFsrep13673_CR7) 2008; 78 M Fiebig (BFsrep13673_CR4) 2005; 38 M Fridman (BFsrep13673_CR32) 2012; 481 G Bailly (BFsrep13673_CR46) 2010; 81 FW Hehl (BFsrep13673_CR13) 2005; 334 E Kamenetskii (BFsrep13673_CR19) 2009; 105 AM Essin (BFsrep13673_CR10) 2009; 102 C Robilliard (BFsrep13673_CR47) 2010; 89 N Brunner (BFsrep13673_CR45) 2004; 93 KY Bliokh (BFsrep13673_CR23) 2014; 113 J Mendonca (BFsrep13673_CR41) 2002; 65 RD Peccei (BFsrep13673_CR25) 1977; 38 V Ginis (BFsrep13673_CR29) 2010; 18 W-K Tse (BFsrep13673_CR22) 2011; 84 N Kida (BFsrep13673_CR17) 2007; 99 Y Itin (BFsrep13673_CR28) 2008; 40 Y Takahashi (BFsrep13673_CR18) 2012; 8 M Durand (BFsrep13673_CR49) 2010; 82 I Alexeev (BFsrep13673_CR44) 2002; 88 W Eerenstein (BFsrep13673_CR5) 2006; 442 MW McCall (BFsrep13673_CR31) 2011; 13 T Roth (BFsrep13673_CR38) 2000; 85 18233113 - Phys Rev Lett. 2007 Nov 9;99(19):197404 11082575 - Phys Rev Lett. 2000 Nov 20;85(21):4478-81 15600925 - Phys Rev Lett. 2004 Nov 12;93(20):203902 16915279 - Nature. 2006 Aug 17;442(7104):759-65 23739327 - Nature. 2013 Jun 13;498(7453):205-8 25083644 - Phys Rev Lett. 2014 Jul 18;113(3):033601 20867952 - Phys Rev Lett. 2010 Jul 30;105(5):057401 21599395 - Phys Rev Lett. 2011 Apr 22;106(16):166802 10917523 - Nature. 2000 Jul 20;406(6793):277-9 24487869 - Opt Lett. 2014 Feb 1;39(3):574-7 20389549 - Opt Express. 2010 Mar 1;18(5):5350-5 10034541 - Phys Rev Lett. 1987 May 4;58(18):1799-1802 15323868 - Phys Rev Lett. 2004 Jul 16;93(3):037403 21668149 - Phys Rev Lett. 2011 May 13;106(19):193003 22222748 - Nature. 2012 Jan 04;481(7379):62-5 16712266 - Phys Rev Lett. 2006 Apr 28;96(16):167202 10012457 - Phys Rev D Part Fields. 1990 Feb 15;41(4):1231-1240 19179491 - Science. 2009 Feb 27;323(5918):1184-7 19392469 - Phys Rev Lett. 2009 Apr 10;102(14):146805 18323448 - Science. 2008 Mar 7;319(5868):1367-70 20370159 - Rev Sci Instrum. 2010 Mar;81(3):033105 25078241 - Opt Lett. 2014 Aug 1;39(15):4611-4 11863896 - Phys Rev Lett. 2002 Feb 18;88(7):073901 |
References_xml | – volume: 406 start-page: 277 year: 2000 end-page: 279 ident: CR43 article-title: Gain-assisted superluminal light propagation publication-title: Nature – volume: 13 start-page: 024007 year: 2011 ident: CR30 article-title: Frequency conversion by exploiting time in transformation optics publication-title: J. Opt. – volume: 16 start-page: 075003 year: 2014 ident: CR36 article-title: Experimental quantum cosmology in time-dependent optical media publication-title: New J. Phys. – volume: 82 start-page: 031803 year: 2010 ident: CR49 article-title: Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity publication-title: Phys. Rev. A – volume: 81 start-page: 033105 year: 2010 ident: CR46 article-title: Highly sensitive frequency metrology for optical anisotropy measurements publication-title: Rev. Sci. Instrum. – volume: 41 start-page: 1231 year: 1990 ident: CR26 article-title: Limits on a lorentz-and parity-violating modification of electrodynamics publication-title: Phys. Rev. D – ident: CR39 – volume: 3 start-page: L23 year: 2001 ident: CR12 article-title: Post’s constraint for electromagnetic constitutive relations publication-title: J. Opt. A: Pure Appl. Opt. – volume: 442 start-page: 759 year: 2006 end-page: 765 ident: CR5 article-title: Multiferroic and magnetoelectric materials publication-title: Nature – volume: 39 start-page: 574 year: 2014 end-page: 577 ident: CR42 article-title: Reflection and transmission of electromagnetic waves at a temporal boundary publication-title: Opt. Lett. – volume: 8 start-page: 121 year: 2012 end-page: 125 ident: CR18 article-title: Magnetoelectric resonance with electromagnons in a perovskite helimagnet publication-title: Nat. Phys. – volume: 58 start-page: 1799 year: 1987 ident: CR24 article-title: Two applications of axion electrodynamics publication-title: Phys. Rev. Lett. – volume: 481 start-page: 62 year: 2012 end-page: 65 ident: CR32 article-title: Demonstration of temporal cloaking publication-title: Nature – volume: 102 start-page: 146805 year: 2009 ident: CR10 article-title: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators publication-title: Phys. Rev. Lett. – volume: 323 start-page: 1184 year: 2009 end-page: 1187 ident: CR9 article-title: Inducing a magnetic monopole with topological surface states publication-title: Science – volume: 10 start-page: 628 year: 1960 end-page: 629 ident: CR1 article-title: On the magneto-electrical effect in antiferromagnets publication-title: Sov. Phys. JETP – volume: 18 start-page: 5350 year: 2010 end-page: 5355 ident: CR29 article-title: Frequency converter implementing an optical analogue of the cosmological redshift publication-title: Opt. Express – volume: 334 start-page: 249 year: 2005 end-page: 259 ident: CR13 article-title: Linear media in classical electrodynamics and the post constraint publication-title: Phys. Lett. A – volume: 96 start-page: 167202 year: 2006 ident: CR16 article-title: Enhanced optical magnetoelectric effect in a patterned polar ferrimagnet publication-title: Phys. Rev. Lett. – volume: 113 start-page: 033601 year: 2014 ident: CR23 article-title: Magnetoelectric effects in local light-matter interactions publication-title: Phys. Rev. Lett. – volume: 319 start-page: 1367 year: 2008 end-page: 1370 ident: CR35 article-title: Fiber-optical analog of the event horizon publication-title: Science – volume: 65 start-page: 160 year: 2002 ident: CR41 article-title: Time refraction and time reflection: two basic concepts publication-title: Phys. Scripta – volume: 88 start-page: 073901 year: 2002 ident: CR44 article-title: Measurement of the superluminal group velocity of an ultrashort bessel beam pulse publication-title: Phys. Rev. Lett. – volume: 84 start-page: 205327 year: 2011 ident: CR22 article-title: Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized hall systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.205327 – volume: 99 start-page: 197404 year: 2007 ident: CR17 article-title: Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces publication-title: Phys. Rev. Lett. – volume: 341 start-page: 357 year: 2005 end-page: 365 ident: CR14 article-title: Measuring a piecewise constant axion field in classical electrodynamics publication-title: Phys. Lett. A – volume: 38 start-page: 1440 year: 1977 ident: CR25 article-title: CP conservation in the presence of pseudoparticles publication-title: Phys. Rev. Lett. – volume: 93 start-page: 203902 year: 2004 ident: CR45 article-title: Direct measurement of superluminal group velocity and signal velocity in an optical fiber publication-title: Phys. Rev. Lett. – volume: 105 start-page: 057401 year: 2010 ident: CR20 article-title: Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators publication-title: Phys. Rev. Lett. – volume: 82 start-page: 161104 year: 2010 ident: CR21 article-title: Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields publication-title: Phys. Rev. B – volume: 93 start-page: 037403 year: 2004 ident: CR15 article-title: Optical magnetoelectric effect in the polar GaFeO ferrimagnet publication-title: Phys. Rev. Lett. – volume: 119 start-page: 11064 year: 2003 end-page: 11079 ident: CR40 article-title: Jones birefringence in gases: ab initio electron correlated results for atoms and linear molecules publication-title: J. Chem. Phys – volume: 106 start-page: 193003 year: 2011 ident: CR48 article-title: Magnetoelectric directional nonreciprocity in gas-phase molecular Nitrogen publication-title: Phys. Rev. Lett. – volume: 89 start-page: 159 year: 2010 end-page: 164 ident: CR47 article-title: Towards a first observation of magneto-electric directional anisotropy and linear birefringence in gases publication-title: Can. J. Phys. – volume: 498 start-page: 205 year: 2013 end-page: 208 ident: CR33 article-title: A temporal cloak at telecommunication data rate publication-title: Nature – volume: 70 start-page: 025012 year: 2004 ident: CR27 article-title: Carroll-Field-Jackiw electrodynamics in the premetric framework publication-title: Phys. Rev. D – volume: 6 start-page: 607 year: 1961 ident: CR2 article-title: Anisotropy of the magnetoelectric effect in Cr O publication-title: Phys. Rev. Lett. – volume: 105 start-page: 013537 year: 2009 ident: CR19 article-title: Tellegen particles and magnetoelectric metamaterials publication-title: J. Appl. Phys. – ident: CR3 – volume: 390 start-page: 73 year: 1983 end-page: 90 ident: CR37 article-title: On the Jones birefringence publication-title: Proc. R. Soc. Lond. A – volume: 55 start-page: 557 year: 2012 end-page: 581 ident: CR6 article-title: Magnetoelectric and multiferroic media publication-title: Phys. Usp. – volume: 13 start-page: 024003 year: 2011 ident: CR31 article-title: A spacetime cloak, or a history editor publication-title: J. Opt. – volume: 106 start-page: 166802 year: 2011 ident: CR11 article-title: Surface-quantized anomalous hall current and the magnetoelectric effect in magnetically disordered topological insulators publication-title: Phys. Rev. Lett. – volume: 40 start-page: 1219 year: 2008 end-page: 1238 ident: CR28 article-title: Wave propagation in axion electrodynamics publication-title: Gen. Relativ. Gravit. – volume: 39 start-page: 4611 year: 2014 end-page: 4614 ident: CR34 article-title: Temporal cloaking with accelerating wave packets publication-title: Opt. Lett. – volume: 85 start-page: 4478 year: 2000 ident: CR38 article-title: Observation of magnetoelectric Jones birefringence publication-title: Phys. Rev. Lett. – volume: 6 start-page: 284 year: 2010 end-page: 288 ident: CR8 article-title: Dynamical axion field in topological magnetic insulators publication-title: Nat. Phys. – volume: 38 start-page: R123 year: 2005 ident: CR4 article-title: Revival of the magnetoelectric effect publication-title: J. Phys. D: Appl. Phys. – volume: 78 start-page: 195424 year: 2008 ident: CR7 article-title: Topological field theory of time-reversal invariant insulators publication-title: Phys. Rev. B – volume: 102 start-page: 146805 year: 2009 ident: BFsrep13673_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.146805 – volume: 89 start-page: 159 year: 2010 ident: BFsrep13673_CR47 publication-title: Can. J. Phys. doi: 10.1139/P10-097 – volume: 390 start-page: 73 year: 1983 ident: BFsrep13673_CR37 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1983.0123 – volume: 70 start-page: 025012 year: 2004 ident: BFsrep13673_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.70.025012 – volume: 84 start-page: 205327 year: 2011 ident: BFsrep13673_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.205327 – volume: 16 start-page: 075003 year: 2014 ident: BFsrep13673_CR36 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/7/075003 – volume: 99 start-page: 197404 year: 2007 ident: BFsrep13673_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.197404 – volume: 65 start-page: 160 year: 2002 ident: BFsrep13673_CR41 publication-title: Phys. Scripta doi: 10.1238/Physica.Regular.065a00160 – volume: 10 start-page: 628 year: 1960 ident: BFsrep13673_CR1 publication-title: Sov. Phys. JETP – volume: 13 start-page: 024007 year: 2011 ident: BFsrep13673_CR30 publication-title: J. Opt. doi: 10.1088/2040-8978/13/2/024007 – volume: 13 start-page: 024003 year: 2011 ident: BFsrep13673_CR31 publication-title: J. Opt. doi: 10.1088/2040-8978/13/2/024003 – volume: 442 start-page: 759 year: 2006 ident: BFsrep13673_CR5 publication-title: Nature doi: 10.1038/nature05023 – volume: 105 start-page: 013537 year: 2009 ident: BFsrep13673_CR19 publication-title: J. Appl. Phys. doi: 10.1063/1.3054298 – volume: 3 start-page: L23 year: 2001 ident: BFsrep13673_CR12 publication-title: J. Opt. A: Pure Appl. Opt. doi: 10.1088/1464-4258/3/6/102 – volume: 81 start-page: 033105 year: 2010 ident: BFsrep13673_CR46 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3356731 – volume: 334 start-page: 249 year: 2005 ident: BFsrep13673_CR13 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.11.038 – volume: 498 start-page: 205 year: 2013 ident: BFsrep13673_CR33 publication-title: Nature doi: 10.1038/nature12224 – volume: 323 start-page: 1184 year: 2009 ident: BFsrep13673_CR9 publication-title: Science doi: 10.1126/science.1167747 – volume: 82 start-page: 161104 year: 2010 ident: BFsrep13673_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.161104 – ident: BFsrep13673_CR39 – volume: 40 start-page: 1219 year: 2008 ident: BFsrep13673_CR28 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-007-0599-8 – volume: 8 start-page: 121 year: 2012 ident: BFsrep13673_CR18 publication-title: Nat. Phys. doi: 10.1038/nphys2161 – volume: 78 start-page: 195424 year: 2008 ident: BFsrep13673_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.195424 – volume: 39 start-page: 574 year: 2014 ident: BFsrep13673_CR42 publication-title: Opt. Lett. doi: 10.1364/OL.39.000574 – volume: 38 start-page: R123 year: 2005 ident: BFsrep13673_CR4 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/8/R01 – volume: 38 start-page: 1440 year: 1977 ident: BFsrep13673_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.1440 – volume: 85 start-page: 4478 year: 2000 ident: BFsrep13673_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4478 – volume: 6 start-page: 284 year: 2010 ident: BFsrep13673_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys1534 – volume: 39 start-page: 4611 year: 2014 ident: BFsrep13673_CR34 publication-title: Opt. Lett. doi: 10.1364/OL.39.004611 – volume: 58 start-page: 1799 year: 1987 ident: BFsrep13673_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1799 – volume: 93 start-page: 203902 year: 2004 ident: BFsrep13673_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.203902 – volume: 41 start-page: 1231 year: 1990 ident: BFsrep13673_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.41.1231 – volume: 88 start-page: 073901 year: 2002 ident: BFsrep13673_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.073901 – volume: 113 start-page: 033601 year: 2014 ident: BFsrep13673_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.033601 – volume: 319 start-page: 1367 year: 2008 ident: BFsrep13673_CR35 publication-title: Science doi: 10.1126/science.1153625 – volume: 93 start-page: 037403 year: 2004 ident: BFsrep13673_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.037403 – volume: 96 start-page: 167202 year: 2006 ident: BFsrep13673_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.167202 – volume: 106 start-page: 193003 year: 2011 ident: BFsrep13673_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.193003 – volume: 406 start-page: 277 year: 2000 ident: BFsrep13673_CR43 publication-title: Nature doi: 10.1038/35018520 – volume: 119 start-page: 11064 year: 2003 ident: BFsrep13673_CR40 publication-title: J. Chem. Phys doi: 10.1063/1.1622927 – volume: 105 start-page: 057401 year: 2010 ident: BFsrep13673_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.057401 – volume: 18 start-page: 5350 year: 2010 ident: BFsrep13673_CR29 publication-title: Opt. Express doi: 10.1364/OE.18.005350 – volume: 106 start-page: 166802 year: 2011 ident: BFsrep13673_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.166802 – volume: 82 start-page: 031803 year: 2010 ident: BFsrep13673_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.031803 – volume: 6 start-page: 607 year: 1961 ident: BFsrep13673_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.6.607 – volume: 341 start-page: 357 year: 2005 ident: BFsrep13673_CR14 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.05.006 – volume: 55 start-page: 557 year: 2012 ident: BFsrep13673_CR6 publication-title: Phys. Usp. doi: 10.3367/UFNe.0182.201206b.0593 – ident: BFsrep13673_CR3 doi: 10.1016/B978-0-08-030275-1.50007-2 – volume: 481 start-page: 62 year: 2012 ident: BFsrep13673_CR32 publication-title: Nature doi: 10.1038/nature10695 – reference: 10012457 - Phys Rev D Part Fields. 1990 Feb 15;41(4):1231-1240 – reference: 23739327 - Nature. 2013 Jun 13;498(7453):205-8 – reference: 16712266 - Phys Rev Lett. 2006 Apr 28;96(16):167202 – reference: 25078241 - Opt Lett. 2014 Aug 1;39(15):4611-4 – reference: 16915279 - Nature. 2006 Aug 17;442(7104):759-65 – reference: 24487869 - Opt Lett. 2014 Feb 1;39(3):574-7 – reference: 11082575 - Phys Rev Lett. 2000 Nov 20;85(21):4478-81 – reference: 15323868 - Phys Rev Lett. 2004 Jul 16;93(3):037403 – reference: 18233113 - Phys Rev Lett. 2007 Nov 9;99(19):197404 – reference: 18323448 - Science. 2008 Mar 7;319(5868):1367-70 – reference: 10034541 - Phys Rev Lett. 1987 May 4;58(18):1799-1802 – reference: 22222748 - Nature. 2012 Jan 04;481(7379):62-5 – reference: 25083644 - Phys Rev Lett. 2014 Jul 18;113(3):033601 – reference: 20370159 - Rev Sci Instrum. 2010 Mar;81(3):033105 – reference: 21668149 - Phys Rev Lett. 2011 May 13;106(19):193003 – reference: 21599395 - Phys Rev Lett. 2011 Apr 22;106(16):166802 – reference: 20389549 - Opt Express. 2010 Mar 1;18(5):5350-5 – reference: 11863896 - Phys Rev Lett. 2002 Feb 18;88(7):073901 – reference: 15600925 - Phys Rev Lett. 2004 Nov 12;93(20):203902 – reference: 19179491 - Science. 2009 Feb 27;323(5918):1184-7 – reference: 10917523 - Nature. 2000 Jul 20;406(6793):277-9 – reference: 19392469 - Phys Rev Lett. 2009 Apr 10;102(14):146805 – reference: 20867952 - Phys Rev Lett. 2010 Jul 30;105(5):057401 |
SSID | ssj0000529419 |
Score | 2.2244966 |
Snippet | Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate... Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13673 |
SubjectTerms | 639/301/119/997 639/624/400/1101 Birefringence Humanities and Social Sciences Interfaces Light Magnetic fields Media multidisciplinary Optics Physics Polarization Refraction Science Symmetry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RKqReqtLySLugUHrgEpHEr-RUtQsIIcGJlfYWOX60kVCy7GYP_fcdO492ASHlEGlGieWx5-EZfwPwDV0CSYQSkcoUj6gQZSQ5xjyptTRDpcli7e4O397x6xm9mbN5f-C26ssqB53oFbVulDsjP08wMBAE_XPyffEYua5RLrvat9B4A28ddJkr6RJzMZ6xuCwWTfIBUIhk52h2Fg6kjGyaoWe-5fMSySd5Um9-rj7A-95vDH90gt6FLVN_hJ2uk-QffPOVnGr1CabuUkc4rZa-wDT8iSrN-k-idMOqDh05uuhb37bhrfxVm7bpuuFUKnSJG7kHs6vL--l11HdKiBQlWRtRk3LLhSwV5SaRCc_TUhq0TcpYoU1MS4W2mAoqdZxYg0GViTOtuM2E1jkVZB-266Y2hxAqy7RSlrIcDTcGOyWVaYkK3RIrjKU6gLNh4grVw4i7bhYPhU9nk6wY5ziAryProsPOeIlpMsx-0W-fVfFP2AGcjGRc-C6bIWvTrJFHxDk-McsCOOiENf7FgdDneYoUsSHGkcGBam9S6uq3B9emjPGcswBOB4H_N6yng__8-uC_wDv0r5gvSUsnsN0u1-YIfZi2PPYL9S9HCfQa priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IngR30arrI-Dl2Ae-8pRo6UI9WSht7DZ7GpB0tKmB_-9s3lpWw9CbjNJlpnNPDKz3yB0CyGBDLnirhKKuYTz1JUMcp7AGCLAaFIvs2eHB6-sPyQvIzqqwaLndVtlBWlZmummO-we_MXUoouFm2jLIrbbzRyzuP2dYgtWxI8a7KBQ_Nyx7HHWwsj1bsiVkmjpaXp7aLcOEfFDtah9tKHzA7RdDY38OkSxPbWB4_Gs7CDFj2CzTPkgUB8e59iS3ad6tm2BB_I918WkGnczVthWZuQRGvae3-K-W49CcBUJReESHTDDuEwVYdqXPouCVGpwPkobnmmPpAqcLeFEZp5vNGRN2hOZYkbwLIsID49RJ5_k-hRhZWimlCE0As8M2UxKZJCCxTah4dqQzEF3jbgSVeOE23EVn0lZrw5F0krWQdct67QCx_iLqdvIPKm_j3niQ5rHQ8i2gHzVkmFn23KFzPVkATzci-DyqHDQSaWi9i0WZT6KAqDwJeW1DBY1e5mSjz9K9GxCKYsYddBNo-Zfy1pd_Nm_uM7RDsRRtGw9C7qoU8wW-gJilSK9LHfpN-XY6_U priority: 102 providerName: Springer Nature |
Title | Time Circular Birefringence in Time-Dependent Magnetoelectric Media |
URI | https://link.springer.com/article/10.1038/srep13673 https://www.ncbi.nlm.nih.gov/pubmed/26329928 https://www.proquest.com/docview/1899734993 https://www.proquest.com/docview/1709709058 https://pubmed.ncbi.nlm.nih.gov/PMC4556965 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB-qItyLnJ7eVWuJ5z34krs02Y_k4ThqrEihIndX6FvYbHa9QklrTUH_-5vdfNCqD0IgkNkky0x2Zyaz-_sBfMOQQARccleGkrmE89QVDHMeX2sS4qRJvczsHR7dspsxGU7opAU1x2alwMc3UzvDJzVezr4_PTz_wgH_s9wyHv5AX7IwyGPBFuygQ-JmfI6qKL-E-PYjYik-DPa6izGEX2MMrd-96ZlehZuvV02-KJ1aj3T9EfaqUNLpl7bfh5bKD2C3JJd8_gSx2d3hxNOlXWnqXOLcpu2D0MzONHeM2L2qOHALZyTuc1XMS1qcqXRMBUccwvh68De-cSvKBFeSICxconymGRepJEz1RI9FfioUOimpNM-UR1KJTplwIjKvpxVmV8oLM8l0yLMsIjw4gu18nqsv4EhNMyk1oRF6cMx6UiL8FGd2HWiuNMnacFGrK5EVnrihtZgltq4dhEmj2TZ8bZouShCNtxp1ap0n9WeQ9DAd5AFmZSg-a8Q4AkxZQ-RqvsI23Ivw8GjYhs-liZq3GDT6KPJRwjeM1zQw6Nqbknz6z6JsE0pZxGgbzmszr3XrZeeP39G7E_iA0Ra1C9T8DmwXy5U6xYimSLuwxSe8Czv9_vDPEM-Xg9u733g1ZnHX_iXo2i_6P5St_MQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZatxATKQbSvtS0ttt0k4v6IuJ7bnshxCaTcKmyS6lJJA3dzxHslC826xDyU_1G6vx1W5S-hbwg0HCHiSNjpFGAniPLoGiUstQp1qETMoiVAJjnsQ5lqLS5JHxd4fHEzE6YZ9P-ekK_Oruwviyyk4n1orazLQ_I9-MMTCQFP1zuj3_EfqpUT672o3QaMTi0F79xJBtsXWwi_z9kCT7e8fDUdhOFQg1o2kVMpsIJ6QqNBM2VrHIkkJZ1OPaOmlsxAqNdotJpkwUO4sBiI1So4VLpTEZkxS_ewdWGcVQZgCrO3uTL1_7Ux2fN2Nx1rUwoukmGrq5b4tGlw3fDW_2ZlHmtcxsbfD21-BB66mST41oPYQVWz6Cu83syit8q2tH9eIxDP01EjKcXtQlrWQHlairP4nyRKYl8eBwtx22W5GxOittNWvm70w18aki9QROboWKT2FQzkr7HIh23GjtGM_QVcDwqmAqKdCEOOqkdcwE8LEjXK7bxuV-fsb3vE6g0zTvaRzA2x513nTr-BfSekf9vN2wi_yPeAXwpgfjVvP5E1Xa2SXiyCjDJ-JpAM8aZvV_8W3vsyxBiFxiY4_g23gvQ8rped3Om3EuMsEDeNcx_K9lXV_8i_8v_jXcGx2Pj_Kjg8nhS7iP3h2vC-KSdRhUF5d2Az2oqnjVii2Bb7e9U34DnuIzRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKQFxQedZQYHlJXKzY3pd9qBAkRC2lFQcq5WbW-yiRkBMaV6i_xtcxu35AWsStkg-WdmSv5j07szMAr9AlUFRqGetci5hJWcVKYMyTOcdyVJo8Mf7u8OGR2DtmH2d8tgG_-rswvqyy14lBUZuF9mfkoxQDA0nRP6cj15VFfJ5M3y5_xH6ClM-09uM0WhY5sOc_MXxb7e5PkNavs2z64ct4L-4mDMSa0byJmc2EE1JVmgmbqlQUWaUs6nRtnTQ2YZVGG8YkUyZJncVgxCa50cLl0piCSYrfvQbXJeWplzE5k8P5js-gsbTomxnRfIQmb-kbpNF1E3jJr71cnnkhRxtM33QLbnc-K3nXMtkd2LD1XbjRTrE8x7dQRapX92DsL5SQ8fw0FLeS96hOXfgkchaZ18Qvx5Nu7G5DDtVJbZtFO4lnrolPGqn7cHwlOHwAm_WitttAtONGa8d4gU4DBloVU1mFxsRRJ61jJoI3PeJK3bUw95M0vpchlU7zcsBxBC8G0GXbt-NfQDs99stOdFflH0aL4PmwjELnMymqtoszhJFJgU_C8wgetsQa_uIb4BdFhityjYwDgG_ovb5Sz7-Fxt6Mc1EIHsHLnuB_bevi5h_9f_PP4CbKR_lp_-jgMdxCN4-HyrhsBzab0zP7BF2ppnoaeJbA16sWkt9RGTYU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Circular+Birefringence+in+Time-Dependent+Magnetoelectric+Media&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ruo-Yang&rft.au=Zhai%2C+Yan-Wang&rft.au=Lin%2C+Shi-Rong&rft.au=Zhao%2C+Qing&rft.date=2015-09-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=5&rft.spage=13673&rft_id=info:doi/10.1038%2Fsrep13673&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |