Time Circular Birefringence in Time-Dependent Magnetoelectric Media

Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media alw...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 13673
Main Authors Zhang, Ruo-Yang, Zhai, Yan-Wang, Lin, Shi-Rong, Zhao, Qing, Wen, Weijia, Ge, Mo-Lin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.09.2015
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/srep13673

Cover

Loading…
Abstract Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
AbstractList Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector "Equation missing" and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice.
ArticleNumber 13673
Author Wen, Weijia
Lin, Shi-Rong
Ge, Mo-Lin
Zhang, Ruo-Yang
Zhao, Qing
Zhai, Yan-Wang
Author_xml – sequence: 1
  givenname: Ruo-Yang
  surname: Zhang
  fullname: Zhang, Ruo-Yang
  organization: Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay
– sequence: 2
  givenname: Yan-Wang
  surname: Zhai
  fullname: Zhai, Yan-Wang
  organization: School of Physics, Beijing Institute of Technology
– sequence: 3
  givenname: Shi-Rong
  surname: Lin
  fullname: Lin, Shi-Rong
  organization: School of Physics, Beijing Institute of Technology
– sequence: 4
  givenname: Qing
  surname: Zhao
  fullname: Zhao, Qing
  organization: School of Physics, Beijing Institute of Technology
– sequence: 5
  givenname: Weijia
  surname: Wen
  fullname: Wen, Weijia
  organization: Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay
– sequence: 6
  givenname: Mo-Lin
  surname: Ge
  fullname: Ge, Mo-Lin
  organization: Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, School of Physics, Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26329928$$D View this record in MEDLINE/PubMed
BookMark eNptkVtLxDAQhYMo3h_8A1LwRYVqbk2bF0HXKyi-6HPIptM10k1q0gr-e7OuynoJAwnMN4eTORto2XkHCO0QfEQwq45jgI4wUbIltE4xL3LKKF1eeK-h7RifcToFlZzIVbRGBaNS0modjR7sFLKRDWZodcjObIAmWDcBZyCzLpu183PowNXg-uxOTxz0HlowfbAmu4Pa6i200ug2wvbnvYkeLy8eRtf57f3Vzej0NjecVX3OgYpGlHpsuACiiZB0rIEJaqApa8B8bDDlvOS6xqQBwjHgqjaiqcq6lrxkm-hkrtsN4ynUJhkKulVdsFMd3pTXVv3sOPukJv5V8aIQUhRJYP9TIPiXAWKvpjYaaFvtwA9RkRLLVLioErr3C332Q3Dpe4pUUpaMS8kStbvo6NvK134TcDwHTPAxJdUoY3vdWz8zaFtFsJqFqL5DTBMHvya-RP9jD-ds7D4yCwsm_8Dv5UmrOw
CitedBy_id crossref_primary_10_1088_2040_8986_ab146f
crossref_primary_10_1016_j_jqsrt_2015_12_007
crossref_primary_10_1016_j_physleta_2016_05_050
crossref_primary_10_1088_2040_8978_18_8_085603
crossref_primary_10_1103_PhysRevA_106_042205
crossref_primary_10_1016_j_cjph_2021_07_017
crossref_primary_10_1103_PhysRevResearch_5_023162
crossref_primary_10_1088_1367_2630_aaaa44
crossref_primary_10_1103_PhysRevB_98_075203
crossref_primary_10_1103_PhysRevD_95_036002
crossref_primary_10_1016_j_physleta_2016_09_014
crossref_primary_10_1103_PhysRevB_104_235126
Cites_doi 10.1103/PhysRevB.84.205327
10.1103/PhysRevLett.102.146805
10.1139/P10-097
10.1098/rspa.1983.0123
10.1103/PhysRevD.70.025012
10.1088/1367-2630/16/7/075003
10.1103/PhysRevLett.99.197404
10.1238/Physica.Regular.065a00160
10.1088/2040-8978/13/2/024007
10.1088/2040-8978/13/2/024003
10.1038/nature05023
10.1063/1.3054298
10.1088/1464-4258/3/6/102
10.1063/1.3356731
10.1016/j.physleta.2004.11.038
10.1038/nature12224
10.1126/science.1167747
10.1103/PhysRevB.82.161104
10.1007/s10714-007-0599-8
10.1038/nphys2161
10.1103/PhysRevB.78.195424
10.1364/OL.39.000574
10.1088/0022-3727/38/8/R01
10.1103/PhysRevLett.38.1440
10.1103/PhysRevLett.85.4478
10.1038/nphys1534
10.1364/OL.39.004611
10.1103/PhysRevLett.58.1799
10.1103/PhysRevLett.93.203902
10.1103/PhysRevD.41.1231
10.1103/PhysRevLett.88.073901
10.1103/PhysRevLett.113.033601
10.1126/science.1153625
10.1103/PhysRevLett.93.037403
10.1103/PhysRevLett.96.167202
10.1103/PhysRevLett.106.193003
10.1038/35018520
10.1063/1.1622927
10.1103/PhysRevLett.105.057401
10.1364/OE.18.005350
10.1103/PhysRevLett.106.166802
10.1103/PhysRevA.82.031803
10.1103/PhysRevLett.6.607
10.1016/j.physleta.2005.05.006
10.3367/UFNe.0182.201206b.0593
10.1016/B978-0-08-030275-1.50007-2
10.1038/nature10695
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Sep 2015
Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Sep 2015
– notice: Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep13673
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
ExternalDocumentID PMC4556965
26329928
10_1038_srep13673
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c438t-4e26f67abc46e1a1692bae362cef7de04bc024474ad01fe140e08dc6f87dd9473
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:09:39 EDT 2025
Fri Jul 11 00:32:05 EDT 2025
Sat Aug 23 13:33:45 EDT 2025
Thu Apr 03 07:06:09 EDT 2025
Tue Jul 01 03:15:02 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:39:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-4e26f67abc46e1a1692bae362cef7de04bc024474ad01fe140e08dc6f87dd9473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep13673
PMID 26329928
PQID 1899734993
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556965
proquest_miscellaneous_1709709058
proquest_journals_1899734993
pubmed_primary_26329928
crossref_citationtrail_10_1038_srep13673
crossref_primary_10_1038_srep13673
springer_journals_10_1038_srep13673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-02
PublicationDateYYYYMMDD 2015-09-02
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tse, MacDonald (CR21) 2010; 82
Itin (CR27) 2004; 70
Kamenetskii, Sigalov, Shavit (CR19) 2009; 105
Philbin (CR35) 2008; 319
Graham, Raab (CR37) 1983; 390
Qi, Li, Zang, Zhang (CR9) 2009; 323
CR39
Kida (CR16) 2006; 96
Essin, Moore, Vanderbilt (CR10) 2009; 102
Jung (CR15) 2004; 93
Chremmos (CR34) 2014; 39
Eerenstein, Mathur, Scott (CR5) 2006; 442
Mendonca, Shukla (CR41) 2002; 65
Nomura, Nagaosa (CR11) 2011; 106
Peccei, Quinn (CR25) 1977; 38
Wilczek (CR24) 1987; 58
Fridman, Farsi, Okawachi, Gaeta (CR32) 2012; 481
Westerberg, Cacciatori, Belgiorno, Piazza, Faccio (CR36) 2014; 16
Carroll, Field, Jackiw (CR26) 1990; 41
CR3
Lukens, Leaird, Weiner (CR33) 2013; 498
Folen, Rado, Stalder (CR2) 1961; 6
Li, Wang, Qi, Zhang (CR8) 2010; 6
Itin (CR28) 2008; 40
Xiao, Maywar, Agrawal (CR42) 2014; 39
Fiebig (CR4) 2005; 38
Robilliard, Bailly (CR47) 2010; 89
Kida (CR17) 2007; 99
Tse, MacDonald (CR20) 2010; 105
Tse, MacDonald (CR22) 2011; 84
Brunner, Scarani, Wegmüller, Legré, Gisin (CR45) 2004; 93
Cummer, Thompson (CR30) 2011; 13
Bailly, Thon, Robilliard (CR46) 2010; 81
Ginis, Tassin, Craps, Veretennicoff (CR29) 2010; 18
Wang, Kuzmich, Dogariu (CR43) 2000; 406
Pyatakov, Zvezdin (CR6) 2012; 55
Rizzo, Coriani (CR40) 2003; 119
Qi, Hughes, Zhang (CR7) 2008; 78
Alexeev, Kim, Milchberg (CR44) 2002; 88
Obukhov, Hehl (CR14) 2005; 341
Roth, Rikken (CR38) 2000; 85
Hehl, Obukhov (CR13) 2005; 334
Dzyaloshinskii (CR1) 1960; 10
de Lange, Raab (CR12) 2001; 3
McCall, Favaro, Kinsler, Boardman (CR31) 2011; 13
Takahashi, Shimano, Kaneko, Murakawa, Tokura (CR18) 2012; 8
Bliokh, Kivshar, Nori (CR23) 2014; 113
Durand, Morville, Romanini (CR49) 2010; 82
Pelle, Bitard, Bailly, Robilliard (CR48) 2011; 106
EB Graham (BFsrep13673_CR37) 1983; 390
Y Itin (BFsrep13673_CR27) 2004; 70
OL de Lange (BFsrep13673_CR12) 2001; 3
I Chremmos (BFsrep13673_CR34) 2014; 39
F Wilczek (BFsrep13673_CR24) 1987; 58
JH Jung (BFsrep13673_CR15) 2004; 93
YN Obukhov (BFsrep13673_CR14) 2005; 341
VJ Folen (BFsrep13673_CR2) 1961; 6
W-K Tse (BFsrep13673_CR20) 2010; 105
BFsrep13673_CR39
B Pelle (BFsrep13673_CR48) 2011; 106
K Nomura (BFsrep13673_CR11) 2011; 106
LJ Wang (BFsrep13673_CR43) 2000; 406
I Dzyaloshinskii (BFsrep13673_CR1) 1960; 10
BFsrep13673_CR3
Y Xiao (BFsrep13673_CR42) 2014; 39
AP Pyatakov (BFsrep13673_CR6) 2012; 55
X-L Qi (BFsrep13673_CR9) 2009; 323
A Rizzo (BFsrep13673_CR40) 2003; 119
R Li (BFsrep13673_CR8) 2010; 6
W-K Tse (BFsrep13673_CR21) 2010; 82
SM Carroll (BFsrep13673_CR26) 1990; 41
SA Cummer (BFsrep13673_CR30) 2011; 13
TG Philbin (BFsrep13673_CR35) 2008; 319
N Kida (BFsrep13673_CR16) 2006; 96
JM Lukens (BFsrep13673_CR33) 2013; 498
N Westerberg (BFsrep13673_CR36) 2014; 16
X-L Qi (BFsrep13673_CR7) 2008; 78
M Fiebig (BFsrep13673_CR4) 2005; 38
M Fridman (BFsrep13673_CR32) 2012; 481
G Bailly (BFsrep13673_CR46) 2010; 81
FW Hehl (BFsrep13673_CR13) 2005; 334
E Kamenetskii (BFsrep13673_CR19) 2009; 105
AM Essin (BFsrep13673_CR10) 2009; 102
C Robilliard (BFsrep13673_CR47) 2010; 89
N Brunner (BFsrep13673_CR45) 2004; 93
KY Bliokh (BFsrep13673_CR23) 2014; 113
J Mendonca (BFsrep13673_CR41) 2002; 65
RD Peccei (BFsrep13673_CR25) 1977; 38
V Ginis (BFsrep13673_CR29) 2010; 18
W-K Tse (BFsrep13673_CR22) 2011; 84
N Kida (BFsrep13673_CR17) 2007; 99
Y Itin (BFsrep13673_CR28) 2008; 40
Y Takahashi (BFsrep13673_CR18) 2012; 8
M Durand (BFsrep13673_CR49) 2010; 82
I Alexeev (BFsrep13673_CR44) 2002; 88
W Eerenstein (BFsrep13673_CR5) 2006; 442
MW McCall (BFsrep13673_CR31) 2011; 13
T Roth (BFsrep13673_CR38) 2000; 85
18233113 - Phys Rev Lett. 2007 Nov 9;99(19):197404
11082575 - Phys Rev Lett. 2000 Nov 20;85(21):4478-81
15600925 - Phys Rev Lett. 2004 Nov 12;93(20):203902
16915279 - Nature. 2006 Aug 17;442(7104):759-65
23739327 - Nature. 2013 Jun 13;498(7453):205-8
25083644 - Phys Rev Lett. 2014 Jul 18;113(3):033601
20867952 - Phys Rev Lett. 2010 Jul 30;105(5):057401
21599395 - Phys Rev Lett. 2011 Apr 22;106(16):166802
10917523 - Nature. 2000 Jul 20;406(6793):277-9
24487869 - Opt Lett. 2014 Feb 1;39(3):574-7
20389549 - Opt Express. 2010 Mar 1;18(5):5350-5
10034541 - Phys Rev Lett. 1987 May 4;58(18):1799-1802
15323868 - Phys Rev Lett. 2004 Jul 16;93(3):037403
21668149 - Phys Rev Lett. 2011 May 13;106(19):193003
22222748 - Nature. 2012 Jan 04;481(7379):62-5
16712266 - Phys Rev Lett. 2006 Apr 28;96(16):167202
10012457 - Phys Rev D Part Fields. 1990 Feb 15;41(4):1231-1240
19179491 - Science. 2009 Feb 27;323(5918):1184-7
19392469 - Phys Rev Lett. 2009 Apr 10;102(14):146805
18323448 - Science. 2008 Mar 7;319(5868):1367-70
20370159 - Rev Sci Instrum. 2010 Mar;81(3):033105
25078241 - Opt Lett. 2014 Aug 1;39(15):4611-4
11863896 - Phys Rev Lett. 2002 Feb 18;88(7):073901
References_xml – volume: 406
  start-page: 277
  year: 2000
  end-page: 279
  ident: CR43
  article-title: Gain-assisted superluminal light propagation
  publication-title: Nature
– volume: 13
  start-page: 024007
  year: 2011
  ident: CR30
  article-title: Frequency conversion by exploiting time in transformation optics
  publication-title: J. Opt.
– volume: 16
  start-page: 075003
  year: 2014
  ident: CR36
  article-title: Experimental quantum cosmology in time-dependent optical media
  publication-title: New J. Phys.
– volume: 82
  start-page: 031803
  year: 2010
  ident: CR49
  article-title: Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity
  publication-title: Phys. Rev. A
– volume: 81
  start-page: 033105
  year: 2010
  ident: CR46
  article-title: Highly sensitive frequency metrology for optical anisotropy measurements
  publication-title: Rev. Sci. Instrum.
– volume: 41
  start-page: 1231
  year: 1990
  ident: CR26
  article-title: Limits on a lorentz-and parity-violating modification of electrodynamics
  publication-title: Phys. Rev. D
– ident: CR39
– volume: 3
  start-page: L23
  year: 2001
  ident: CR12
  article-title: Post’s constraint for electromagnetic constitutive relations
  publication-title: J. Opt. A: Pure Appl. Opt.
– volume: 442
  start-page: 759
  year: 2006
  end-page: 765
  ident: CR5
  article-title: Multiferroic and magnetoelectric materials
  publication-title: Nature
– volume: 39
  start-page: 574
  year: 2014
  end-page: 577
  ident: CR42
  article-title: Reflection and transmission of electromagnetic waves at a temporal boundary
  publication-title: Opt. Lett.
– volume: 8
  start-page: 121
  year: 2012
  end-page: 125
  ident: CR18
  article-title: Magnetoelectric resonance with electromagnons in a perovskite helimagnet
  publication-title: Nat. Phys.
– volume: 58
  start-page: 1799
  year: 1987
  ident: CR24
  article-title: Two applications of axion electrodynamics
  publication-title: Phys. Rev. Lett.
– volume: 481
  start-page: 62
  year: 2012
  end-page: 65
  ident: CR32
  article-title: Demonstration of temporal cloaking
  publication-title: Nature
– volume: 102
  start-page: 146805
  year: 2009
  ident: CR10
  article-title: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators
  publication-title: Phys. Rev. Lett.
– volume: 323
  start-page: 1184
  year: 2009
  end-page: 1187
  ident: CR9
  article-title: Inducing a magnetic monopole with topological surface states
  publication-title: Science
– volume: 10
  start-page: 628
  year: 1960
  end-page: 629
  ident: CR1
  article-title: On the magneto-electrical effect in antiferromagnets
  publication-title: Sov. Phys. JETP
– volume: 18
  start-page: 5350
  year: 2010
  end-page: 5355
  ident: CR29
  article-title: Frequency converter implementing an optical analogue of the cosmological redshift
  publication-title: Opt. Express
– volume: 334
  start-page: 249
  year: 2005
  end-page: 259
  ident: CR13
  article-title: Linear media in classical electrodynamics and the post constraint
  publication-title: Phys. Lett. A
– volume: 96
  start-page: 167202
  year: 2006
  ident: CR16
  article-title: Enhanced optical magnetoelectric effect in a patterned polar ferrimagnet
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 033601
  year: 2014
  ident: CR23
  article-title: Magnetoelectric effects in local light-matter interactions
  publication-title: Phys. Rev. Lett.
– volume: 319
  start-page: 1367
  year: 2008
  end-page: 1370
  ident: CR35
  article-title: Fiber-optical analog of the event horizon
  publication-title: Science
– volume: 65
  start-page: 160
  year: 2002
  ident: CR41
  article-title: Time refraction and time reflection: two basic concepts
  publication-title: Phys. Scripta
– volume: 88
  start-page: 073901
  year: 2002
  ident: CR44
  article-title: Measurement of the superluminal group velocity of an ultrashort bessel beam pulse
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 205327
  year: 2011
  ident: CR22
  article-title: Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized hall systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.205327
– volume: 99
  start-page: 197404
  year: 2007
  ident: CR17
  article-title: Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces
  publication-title: Phys. Rev. Lett.
– volume: 341
  start-page: 357
  year: 2005
  end-page: 365
  ident: CR14
  article-title: Measuring a piecewise constant axion field in classical electrodynamics
  publication-title: Phys. Lett. A
– volume: 38
  start-page: 1440
  year: 1977
  ident: CR25
  article-title: CP conservation in the presence of pseudoparticles
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 203902
  year: 2004
  ident: CR45
  article-title: Direct measurement of superluminal group velocity and signal velocity in an optical fiber
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 057401
  year: 2010
  ident: CR20
  article-title: Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 161104
  year: 2010
  ident: CR21
  article-title: Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields
  publication-title: Phys. Rev. B
– volume: 93
  start-page: 037403
  year: 2004
  ident: CR15
  article-title: Optical magnetoelectric effect in the polar GaFeO ferrimagnet
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 11064
  year: 2003
  end-page: 11079
  ident: CR40
  article-title: Jones birefringence in gases: ab initio electron correlated results for atoms and linear molecules
  publication-title: J. Chem. Phys
– volume: 106
  start-page: 193003
  year: 2011
  ident: CR48
  article-title: Magnetoelectric directional nonreciprocity in gas-phase molecular Nitrogen
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 159
  year: 2010
  end-page: 164
  ident: CR47
  article-title: Towards a first observation of magneto-electric directional anisotropy and linear birefringence in gases
  publication-title: Can. J. Phys.
– volume: 498
  start-page: 205
  year: 2013
  end-page: 208
  ident: CR33
  article-title: A temporal cloak at telecommunication data rate
  publication-title: Nature
– volume: 70
  start-page: 025012
  year: 2004
  ident: CR27
  article-title: Carroll-Field-Jackiw electrodynamics in the premetric framework
  publication-title: Phys. Rev. D
– volume: 6
  start-page: 607
  year: 1961
  ident: CR2
  article-title: Anisotropy of the magnetoelectric effect in Cr O
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 013537
  year: 2009
  ident: CR19
  article-title: Tellegen particles and magnetoelectric metamaterials
  publication-title: J. Appl. Phys.
– ident: CR3
– volume: 390
  start-page: 73
  year: 1983
  end-page: 90
  ident: CR37
  article-title: On the Jones birefringence
  publication-title: Proc. R. Soc. Lond. A
– volume: 55
  start-page: 557
  year: 2012
  end-page: 581
  ident: CR6
  article-title: Magnetoelectric and multiferroic media
  publication-title: Phys. Usp.
– volume: 13
  start-page: 024003
  year: 2011
  ident: CR31
  article-title: A spacetime cloak, or a history editor
  publication-title: J. Opt.
– volume: 106
  start-page: 166802
  year: 2011
  ident: CR11
  article-title: Surface-quantized anomalous hall current and the magnetoelectric effect in magnetically disordered topological insulators
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: 1219
  year: 2008
  end-page: 1238
  ident: CR28
  article-title: Wave propagation in axion electrodynamics
  publication-title: Gen. Relativ. Gravit.
– volume: 39
  start-page: 4611
  year: 2014
  end-page: 4614
  ident: CR34
  article-title: Temporal cloaking with accelerating wave packets
  publication-title: Opt. Lett.
– volume: 85
  start-page: 4478
  year: 2000
  ident: CR38
  article-title: Observation of magnetoelectric Jones birefringence
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 284
  year: 2010
  end-page: 288
  ident: CR8
  article-title: Dynamical axion field in topological magnetic insulators
  publication-title: Nat. Phys.
– volume: 38
  start-page: R123
  year: 2005
  ident: CR4
  article-title: Revival of the magnetoelectric effect
  publication-title: J. Phys. D: Appl. Phys.
– volume: 78
  start-page: 195424
  year: 2008
  ident: CR7
  article-title: Topological field theory of time-reversal invariant insulators
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 146805
  year: 2009
  ident: BFsrep13673_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.146805
– volume: 89
  start-page: 159
  year: 2010
  ident: BFsrep13673_CR47
  publication-title: Can. J. Phys.
  doi: 10.1139/P10-097
– volume: 390
  start-page: 73
  year: 1983
  ident: BFsrep13673_CR37
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1983.0123
– volume: 70
  start-page: 025012
  year: 2004
  ident: BFsrep13673_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.025012
– volume: 84
  start-page: 205327
  year: 2011
  ident: BFsrep13673_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.205327
– volume: 16
  start-page: 075003
  year: 2014
  ident: BFsrep13673_CR36
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/7/075003
– volume: 99
  start-page: 197404
  year: 2007
  ident: BFsrep13673_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.197404
– volume: 65
  start-page: 160
  year: 2002
  ident: BFsrep13673_CR41
  publication-title: Phys. Scripta
  doi: 10.1238/Physica.Regular.065a00160
– volume: 10
  start-page: 628
  year: 1960
  ident: BFsrep13673_CR1
  publication-title: Sov. Phys. JETP
– volume: 13
  start-page: 024007
  year: 2011
  ident: BFsrep13673_CR30
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/13/2/024007
– volume: 13
  start-page: 024003
  year: 2011
  ident: BFsrep13673_CR31
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/13/2/024003
– volume: 442
  start-page: 759
  year: 2006
  ident: BFsrep13673_CR5
  publication-title: Nature
  doi: 10.1038/nature05023
– volume: 105
  start-page: 013537
  year: 2009
  ident: BFsrep13673_CR19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3054298
– volume: 3
  start-page: L23
  year: 2001
  ident: BFsrep13673_CR12
  publication-title: J. Opt. A: Pure Appl. Opt.
  doi: 10.1088/1464-4258/3/6/102
– volume: 81
  start-page: 033105
  year: 2010
  ident: BFsrep13673_CR46
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3356731
– volume: 334
  start-page: 249
  year: 2005
  ident: BFsrep13673_CR13
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.11.038
– volume: 498
  start-page: 205
  year: 2013
  ident: BFsrep13673_CR33
  publication-title: Nature
  doi: 10.1038/nature12224
– volume: 323
  start-page: 1184
  year: 2009
  ident: BFsrep13673_CR9
  publication-title: Science
  doi: 10.1126/science.1167747
– volume: 82
  start-page: 161104
  year: 2010
  ident: BFsrep13673_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.161104
– ident: BFsrep13673_CR39
– volume: 40
  start-page: 1219
  year: 2008
  ident: BFsrep13673_CR28
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-007-0599-8
– volume: 8
  start-page: 121
  year: 2012
  ident: BFsrep13673_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2161
– volume: 78
  start-page: 195424
  year: 2008
  ident: BFsrep13673_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.195424
– volume: 39
  start-page: 574
  year: 2014
  ident: BFsrep13673_CR42
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.000574
– volume: 38
  start-page: R123
  year: 2005
  ident: BFsrep13673_CR4
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/8/R01
– volume: 38
  start-page: 1440
  year: 1977
  ident: BFsrep13673_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.1440
– volume: 85
  start-page: 4478
  year: 2000
  ident: BFsrep13673_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4478
– volume: 6
  start-page: 284
  year: 2010
  ident: BFsrep13673_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1534
– volume: 39
  start-page: 4611
  year: 2014
  ident: BFsrep13673_CR34
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004611
– volume: 58
  start-page: 1799
  year: 1987
  ident: BFsrep13673_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1799
– volume: 93
  start-page: 203902
  year: 2004
  ident: BFsrep13673_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.203902
– volume: 41
  start-page: 1231
  year: 1990
  ident: BFsrep13673_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.41.1231
– volume: 88
  start-page: 073901
  year: 2002
  ident: BFsrep13673_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.073901
– volume: 113
  start-page: 033601
  year: 2014
  ident: BFsrep13673_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.033601
– volume: 319
  start-page: 1367
  year: 2008
  ident: BFsrep13673_CR35
  publication-title: Science
  doi: 10.1126/science.1153625
– volume: 93
  start-page: 037403
  year: 2004
  ident: BFsrep13673_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.037403
– volume: 96
  start-page: 167202
  year: 2006
  ident: BFsrep13673_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.167202
– volume: 106
  start-page: 193003
  year: 2011
  ident: BFsrep13673_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.193003
– volume: 406
  start-page: 277
  year: 2000
  ident: BFsrep13673_CR43
  publication-title: Nature
  doi: 10.1038/35018520
– volume: 119
  start-page: 11064
  year: 2003
  ident: BFsrep13673_CR40
  publication-title: J. Chem. Phys
  doi: 10.1063/1.1622927
– volume: 105
  start-page: 057401
  year: 2010
  ident: BFsrep13673_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.057401
– volume: 18
  start-page: 5350
  year: 2010
  ident: BFsrep13673_CR29
  publication-title: Opt. Express
  doi: 10.1364/OE.18.005350
– volume: 106
  start-page: 166802
  year: 2011
  ident: BFsrep13673_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.166802
– volume: 82
  start-page: 031803
  year: 2010
  ident: BFsrep13673_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.031803
– volume: 6
  start-page: 607
  year: 1961
  ident: BFsrep13673_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.6.607
– volume: 341
  start-page: 357
  year: 2005
  ident: BFsrep13673_CR14
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.05.006
– volume: 55
  start-page: 557
  year: 2012
  ident: BFsrep13673_CR6
  publication-title: Phys. Usp.
  doi: 10.3367/UFNe.0182.201206b.0593
– ident: BFsrep13673_CR3
  doi: 10.1016/B978-0-08-030275-1.50007-2
– volume: 481
  start-page: 62
  year: 2012
  ident: BFsrep13673_CR32
  publication-title: Nature
  doi: 10.1038/nature10695
– reference: 10012457 - Phys Rev D Part Fields. 1990 Feb 15;41(4):1231-1240
– reference: 23739327 - Nature. 2013 Jun 13;498(7453):205-8
– reference: 16712266 - Phys Rev Lett. 2006 Apr 28;96(16):167202
– reference: 25078241 - Opt Lett. 2014 Aug 1;39(15):4611-4
– reference: 16915279 - Nature. 2006 Aug 17;442(7104):759-65
– reference: 24487869 - Opt Lett. 2014 Feb 1;39(3):574-7
– reference: 11082575 - Phys Rev Lett. 2000 Nov 20;85(21):4478-81
– reference: 15323868 - Phys Rev Lett. 2004 Jul 16;93(3):037403
– reference: 18233113 - Phys Rev Lett. 2007 Nov 9;99(19):197404
– reference: 18323448 - Science. 2008 Mar 7;319(5868):1367-70
– reference: 10034541 - Phys Rev Lett. 1987 May 4;58(18):1799-1802
– reference: 22222748 - Nature. 2012 Jan 04;481(7379):62-5
– reference: 25083644 - Phys Rev Lett. 2014 Jul 18;113(3):033601
– reference: 20370159 - Rev Sci Instrum. 2010 Mar;81(3):033105
– reference: 21668149 - Phys Rev Lett. 2011 May 13;106(19):193003
– reference: 21599395 - Phys Rev Lett. 2011 Apr 22;106(16):166802
– reference: 20389549 - Opt Express. 2010 Mar 1;18(5):5350-5
– reference: 11863896 - Phys Rev Lett. 2002 Feb 18;88(7):073901
– reference: 15600925 - Phys Rev Lett. 2004 Nov 12;93(20):203902
– reference: 19179491 - Science. 2009 Feb 27;323(5918):1184-7
– reference: 10917523 - Nature. 2000 Jul 20;406(6793):277-9
– reference: 19392469 - Phys Rev Lett. 2009 Apr 10;102(14):146805
– reference: 20867952 - Phys Rev Lett. 2010 Jul 30;105(5):057401
SSID ssj0000529419
Score 2.2244966
Snippet Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking and simulate...
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13673
SubjectTerms 639/301/119/997
639/624/400/1101
Birefringence
Humanities and Social Sciences
Interfaces
Light
Magnetic fields
Media
multidisciplinary
Optics
Physics
Polarization
Refraction
Science
Symmetry
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RKqReqtLySLugUHrgEpHEr-RUtQsIIcGJlfYWOX60kVCy7GYP_fcdO492ASHlEGlGieWx5-EZfwPwDV0CSYQSkcoUj6gQZSQ5xjyptTRDpcli7e4O397x6xm9mbN5f-C26ssqB53oFbVulDsjP08wMBAE_XPyffEYua5RLrvat9B4A28ddJkr6RJzMZ6xuCwWTfIBUIhk52h2Fg6kjGyaoWe-5fMSySd5Um9-rj7A-95vDH90gt6FLVN_hJ2uk-QffPOVnGr1CabuUkc4rZa-wDT8iSrN-k-idMOqDh05uuhb37bhrfxVm7bpuuFUKnSJG7kHs6vL--l11HdKiBQlWRtRk3LLhSwV5SaRCc_TUhq0TcpYoU1MS4W2mAoqdZxYg0GViTOtuM2E1jkVZB-266Y2hxAqy7RSlrIcDTcGOyWVaYkK3RIrjKU6gLNh4grVw4i7bhYPhU9nk6wY5ziAryProsPOeIlpMsx-0W-fVfFP2AGcjGRc-C6bIWvTrJFHxDk-McsCOOiENf7FgdDneYoUsSHGkcGBam9S6uq3B9emjPGcswBOB4H_N6yng__8-uC_wDv0r5gvSUsnsN0u1-YIfZi2PPYL9S9HCfQa
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IngR30arrI-Dl2Ae-8pRo6UI9WSht7DZ7GpB0tKmB_-9s3lpWw9CbjNJlpnNPDKz3yB0CyGBDLnirhKKuYTz1JUMcp7AGCLAaFIvs2eHB6-sPyQvIzqqwaLndVtlBWlZmummO-we_MXUoouFm2jLIrbbzRyzuP2dYgtWxI8a7KBQ_Nyx7HHWwsj1bsiVkmjpaXp7aLcOEfFDtah9tKHzA7RdDY38OkSxPbWB4_Gs7CDFj2CzTPkgUB8e59iS3ad6tm2BB_I918WkGnczVthWZuQRGvae3-K-W49CcBUJReESHTDDuEwVYdqXPouCVGpwPkobnmmPpAqcLeFEZp5vNGRN2hOZYkbwLIsID49RJ5_k-hRhZWimlCE0As8M2UxKZJCCxTah4dqQzEF3jbgSVeOE23EVn0lZrw5F0krWQdct67QCx_iLqdvIPKm_j3niQ5rHQ8i2gHzVkmFn23KFzPVkATzci-DyqHDQSaWi9i0WZT6KAqDwJeW1DBY1e5mSjz9K9GxCKYsYddBNo-Zfy1pd_Nm_uM7RDsRRtGw9C7qoU8wW-gJilSK9LHfpN-XY6_U
  priority: 102
  providerName: Springer Nature
Title Time Circular Birefringence in Time-Dependent Magnetoelectric Media
URI https://link.springer.com/article/10.1038/srep13673
https://www.ncbi.nlm.nih.gov/pubmed/26329928
https://www.proquest.com/docview/1899734993
https://www.proquest.com/docview/1709709058
https://pubmed.ncbi.nlm.nih.gov/PMC4556965
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB-qItyLnJ7eVWuJ5z34krs02Y_k4ThqrEihIndX6FvYbHa9QklrTUH_-5vdfNCqD0IgkNkky0x2Zyaz-_sBfMOQQARccleGkrmE89QVDHMeX2sS4qRJvczsHR7dspsxGU7opAU1x2alwMc3UzvDJzVezr4_PTz_wgH_s9wyHv5AX7IwyGPBFuygQ-JmfI6qKL-E-PYjYik-DPa6izGEX2MMrd-96ZlehZuvV02-KJ1aj3T9EfaqUNLpl7bfh5bKD2C3JJd8_gSx2d3hxNOlXWnqXOLcpu2D0MzONHeM2L2qOHALZyTuc1XMS1qcqXRMBUccwvh68De-cSvKBFeSICxconymGRepJEz1RI9FfioUOimpNM-UR1KJTplwIjKvpxVmV8oLM8l0yLMsIjw4gu18nqsv4EhNMyk1oRF6cMx6UiL8FGd2HWiuNMnacFGrK5EVnrihtZgltq4dhEmj2TZ8bZouShCNtxp1ap0n9WeQ9DAd5AFmZSg-a8Q4AkxZQ-RqvsI23Ivw8GjYhs-liZq3GDT6KPJRwjeM1zQw6Nqbknz6z6JsE0pZxGgbzmszr3XrZeeP39G7E_iA0Ra1C9T8DmwXy5U6xYimSLuwxSe8Czv9_vDPEM-Xg9u733g1ZnHX_iXo2i_6P5St_MQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZatxATKQbSvtS0ttt0k4v6IuJ7bnshxCaTcKmyS6lJJA3dzxHslC826xDyU_1G6vx1W5S-hbwg0HCHiSNjpFGAniPLoGiUstQp1qETMoiVAJjnsQ5lqLS5JHxd4fHEzE6YZ9P-ekK_Oruwviyyk4n1orazLQ_I9-MMTCQFP1zuj3_EfqpUT672o3QaMTi0F79xJBtsXWwi_z9kCT7e8fDUdhOFQg1o2kVMpsIJ6QqNBM2VrHIkkJZ1OPaOmlsxAqNdotJpkwUO4sBiI1So4VLpTEZkxS_ewdWGcVQZgCrO3uTL1_7Ux2fN2Nx1rUwoukmGrq5b4tGlw3fDW_2ZlHmtcxsbfD21-BB66mST41oPYQVWz6Cu83syit8q2tH9eIxDP01EjKcXtQlrWQHlairP4nyRKYl8eBwtx22W5GxOittNWvm70w18aki9QROboWKT2FQzkr7HIh23GjtGM_QVcDwqmAqKdCEOOqkdcwE8LEjXK7bxuV-fsb3vE6g0zTvaRzA2x513nTr-BfSekf9vN2wi_yPeAXwpgfjVvP5E1Xa2SXiyCjDJ-JpAM8aZvV_8W3vsyxBiFxiY4_g23gvQ8rped3Om3EuMsEDeNcx_K9lXV_8i_8v_jXcGx2Pj_Kjg8nhS7iP3h2vC-KSdRhUF5d2Az2oqnjVii2Bb7e9U34DnuIzRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKQFxQedZQYHlJXKzY3pd9qBAkRC2lFQcq5WbW-yiRkBMaV6i_xtcxu35AWsStkg-WdmSv5j07szMAr9AlUFRqGetci5hJWcVKYMyTOcdyVJo8Mf7u8OGR2DtmH2d8tgG_-rswvqyy14lBUZuF9mfkoxQDA0nRP6cj15VFfJ5M3y5_xH6ClM-09uM0WhY5sOc_MXxb7e5PkNavs2z64ct4L-4mDMSa0byJmc2EE1JVmgmbqlQUWaUs6nRtnTQ2YZVGG8YkUyZJncVgxCa50cLl0piCSYrfvQbXJeWplzE5k8P5js-gsbTomxnRfIQmb-kbpNF1E3jJr71cnnkhRxtM33QLbnc-K3nXMtkd2LD1XbjRTrE8x7dQRapX92DsL5SQ8fw0FLeS96hOXfgkchaZ18Qvx5Nu7G5DDtVJbZtFO4lnrolPGqn7cHwlOHwAm_WitttAtONGa8d4gU4DBloVU1mFxsRRJ61jJoI3PeJK3bUw95M0vpchlU7zcsBxBC8G0GXbt-NfQDs99stOdFflH0aL4PmwjELnMymqtoszhJFJgU_C8wgetsQa_uIb4BdFhityjYwDgG_ovb5Sz7-Fxt6Mc1EIHsHLnuB_bevi5h_9f_PP4CbKR_lp_-jgMdxCN4-HyrhsBzab0zP7BF2ppnoaeJbA16sWkt9RGTYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Circular+Birefringence+in+Time-Dependent+Magnetoelectric+Media&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ruo-Yang&rft.au=Zhai%2C+Yan-Wang&rft.au=Lin%2C+Shi-Rong&rft.au=Zhao%2C+Qing&rft.date=2015-09-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=5&rft.spage=13673&rft_id=info:doi/10.1038%2Fsrep13673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon