Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys

Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 74; pp. 200 - 214
Main Authors An, X.H., Wu, S.D., Wang, Z.G., Zhang, Z.F.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the total strain amplitude (Δεt/2) and stress amplitude (Δσ/2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu–Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu–Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu–Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu–Al alloy with low SFE.
AbstractList Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the total strain amplitude (Δεt/2) and stress amplitude (Δσ/2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu–Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu–Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu–Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu–Al alloy with low SFE.
Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu-Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (N f) on the total strain amplitude ( Delta epsilon t/2) and stress amplitude ( Delta sigma /2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu-Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu-Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu-Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu-Al alloy with low SFE.
Author Wu, S.D.
Wang, Z.G.
Zhang, Z.F.
An, X.H.
Author_xml – sequence: 1
  givenname: X.H.
  surname: An
  fullname: An, X.H.
  email: anxianghai@gmail.com
– sequence: 2
  givenname: S.D.
  surname: Wu
  fullname: Wu, S.D.
– sequence: 3
  givenname: Z.G.
  surname: Wang
  fullname: Wang, Z.G.
– sequence: 4
  givenname: Z.F.
  surname: Zhang
  fullname: Zhang, Z.F.
  email: zhfzhang@imr.ac.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512739$$DView record in Pascal Francis
BookMark eNqFkc1qWzEQhUVJoPnpIxTuptDNdfR7fU0XJZi0DQS6SdfqeDRqZWTJla4L3vUd-oZ9ksi1u-kmaGBGwzlH8OmSnaWciLHXgs8EF8PNegY4wQammeRCz3gro16wCzHOVS-1UWdtVmbRD9rol-yy1jXnQs41v2Bf79J3SEiuwz3GgJ0jn0vLCjl1heo2p0q1y77bxamAD4n6bwVac91y10FyXYKUsezrBDG2fVv_-fX7Nnbtmvf1mp17iJVenfoV-_Lh7nH5qX_4_PF-efvQo1bj1GsYvfCouZMeuPZCOINCoZGOBGm9Gge_0LRCgw5wRXx0cj4YoRXwdgZ1xd4ec7cl_9hRnewmVKQYIVHeVSsGLaXmc2ma9M1JChUh-tIAhGq3JWyg7K0cTYOjFk337qjDkmst5C2G6S-ZRiJEK7g98Ldre-JvD_wtb2VUc5v_3P8eeM73_uijRutnoGIrBjp8USiEk3U5PJPwBNvap0w
CitedBy_id crossref_primary_10_1016_j_jallcom_2018_07_358
crossref_primary_10_1557_jmr_2016_288
crossref_primary_10_1016_j_actamat_2014_10_002
crossref_primary_10_1016_j_scriptamat_2021_114313
crossref_primary_10_1016_j_ijfatigue_2023_107556
crossref_primary_10_1016_j_jmrt_2023_04_264
crossref_primary_10_1007_s40544_018_0220_z
crossref_primary_10_1016_j_actamat_2020_06_047
crossref_primary_10_1557_jmr_2015_112
crossref_primary_10_1016_j_actamat_2018_12_018
crossref_primary_10_1051_matecconf_201712902032
crossref_primary_10_1016_j_mtla_2019_100403
crossref_primary_10_1016_j_jmrt_2024_01_212
crossref_primary_10_1557_jmr_2016_451
crossref_primary_10_1016_j_matlet_2020_128289
crossref_primary_10_1016_j_msea_2016_11_053
crossref_primary_10_1016_j_msea_2024_147294
crossref_primary_10_1016_j_mtla_2020_100756
crossref_primary_10_1016_j_pmatsci_2022_101011
crossref_primary_10_1016_j_ijfatigue_2024_108515
crossref_primary_10_1016_j_matchar_2022_112059
crossref_primary_10_1016_j_msea_2018_07_016
crossref_primary_10_1016_j_matdes_2022_111479
crossref_primary_10_1016_j_matchar_2019_109940
crossref_primary_10_1016_j_jmst_2020_03_011
crossref_primary_10_1016_j_msea_2023_145759
crossref_primary_10_1016_j_jmst_2020_08_037
crossref_primary_10_1016_j_jmst_2020_08_038
crossref_primary_10_1016_j_scriptamat_2023_115746
crossref_primary_10_1088_1361_651X_aaf75d
crossref_primary_10_1016_j_matchar_2019_110011
crossref_primary_10_1016_j_ijfatigue_2023_107534
crossref_primary_10_1016_j_msea_2021_141504
crossref_primary_10_1002_srin_202200179
crossref_primary_10_1016_j_scriptamat_2017_04_011
crossref_primary_10_3390_ma17092148
crossref_primary_10_3390_ma16072723
crossref_primary_10_1007_s13632_021_00740_y
crossref_primary_10_1080_21663831_2015_1029645
crossref_primary_10_1016_j_matdes_2023_111873
crossref_primary_10_1016_j_scriptamat_2019_02_040
crossref_primary_10_1016_j_msea_2017_07_026
crossref_primary_10_1002_adem_201500561
crossref_primary_10_1590_1980_5373_mr_2018_0424
crossref_primary_10_1089_3dp_2020_0321
crossref_primary_10_1016_j_matchar_2015_12_018
crossref_primary_10_1016_j_actamat_2020_08_049
crossref_primary_10_1016_j_jallcom_2017_03_188
crossref_primary_10_1016_j_ijplas_2025_104287
crossref_primary_10_1016_j_actamat_2017_10_057
crossref_primary_10_1016_j_actamat_2020_116559
crossref_primary_10_1557_jmr_2017_358
crossref_primary_10_1016_j_ijfatigue_2024_108772
crossref_primary_10_1016_j_actamat_2016_06_032
crossref_primary_10_1016_j_ijfatigue_2024_108253
crossref_primary_10_1016_j_msea_2016_10_043
crossref_primary_10_1016_j_msea_2019_03_113
crossref_primary_10_1016_j_mtla_2019_100263
crossref_primary_10_1016_j_pmatsci_2018_11_001
crossref_primary_10_1016_j_msea_2022_144088
crossref_primary_10_1007_s11661_015_3010_5
crossref_primary_10_1016_j_msea_2025_148026
crossref_primary_10_1016_j_scriptamat_2023_115563
crossref_primary_10_3390_ma13225171
crossref_primary_10_3762_bjnano_7_176
crossref_primary_10_1016_j_matchar_2017_02_003
crossref_primary_10_1016_j_actamat_2017_11_019
crossref_primary_10_1016_j_msea_2016_04_076
crossref_primary_10_1088_1757_899X_382_2_022094
crossref_primary_10_1016_j_actamat_2016_02_045
crossref_primary_10_1007_s40843_016_5068_6
crossref_primary_10_1016_j_ijfatigue_2021_106266
crossref_primary_10_1016_j_msea_2020_139569
crossref_primary_10_1016_j_matdes_2018_08_057
crossref_primary_10_1016_j_msea_2018_08_085
crossref_primary_10_1088_1757_899X_194_1_012035
crossref_primary_10_1088_2631_7990_ad9367
crossref_primary_10_1038_srep27433
crossref_primary_10_1016_j_msea_2023_145605
crossref_primary_10_1016_j_actamat_2024_120390
crossref_primary_10_1016_j_msea_2020_139441
crossref_primary_10_1016_j_msea_2018_08_012
crossref_primary_10_1016_j_compositesb_2024_111371
crossref_primary_10_1016_j_msea_2021_141818
crossref_primary_10_1016_j_msea_2017_09_107
crossref_primary_10_1016_j_ijfatigue_2018_12_004
crossref_primary_10_1016_j_msea_2024_146680
crossref_primary_10_1016_j_mtnano_2018_12_002
crossref_primary_10_1016_j_ijplas_2022_103471
crossref_primary_10_1007_s10853_016_0437_z
crossref_primary_10_1016_j_scriptamat_2017_08_047
crossref_primary_10_1016_j_rinp_2019_102236
crossref_primary_10_1016_j_tafmec_2018_09_017
crossref_primary_10_1016_j_jmatprotec_2023_118173
crossref_primary_10_1007_s43452_021_00272_w
crossref_primary_10_1016_j_ijfatigue_2021_106682
crossref_primary_10_1016_j_ijfatigue_2020_105994
crossref_primary_10_1016_j_ijfatigue_2024_108185
crossref_primary_10_1007_s11661_017_4360_y
crossref_primary_10_1016_j_matchar_2015_03_021
crossref_primary_10_1016_j_msea_2017_03_089
crossref_primary_10_1016_j_jmst_2021_03_004
crossref_primary_10_1016_j_triboint_2019_03_055
crossref_primary_10_1007_s11665_022_07765_6
crossref_primary_10_2139_ssrn_3919744
crossref_primary_10_1016_j_jallcom_2020_155688
crossref_primary_10_1016_j_jmst_2023_02_006
crossref_primary_10_1016_j_msea_2018_01_025
crossref_primary_10_1016_j_mtcomm_2023_106888
crossref_primary_10_1016_j_matchar_2017_01_002
crossref_primary_10_1016_j_actamat_2015_11_015
crossref_primary_10_1016_j_matchar_2017_06_016
crossref_primary_10_1016_j_actamat_2015_03_028
crossref_primary_10_1016_j_actamat_2016_09_020
crossref_primary_10_1016_j_msea_2018_10_046
crossref_primary_10_1016_j_actamat_2021_117460
crossref_primary_10_1016_j_micron_2019_102783
Cites_doi 10.1016/j.msea.2010.03.101
10.1016/S1359-6462(03)00141-6
10.1016/j.scriptamat.2011.11.031
10.1103/PhysRevLett.104.255501
10.1126/science.1114411
10.1002/adem.200310078
10.1016/j.pmatsci.2005.08.003
10.1016/j.actamat.2006.09.002
10.1016/j.ijfatigue.2009.10.007
10.1016/j.actamat.2012.02.016
10.1016/j.actamat.2012.10.038
10.1016/S1359-6462(03)00393-2
10.1016/j.actamat.2008.12.002
10.1080/09500839.2011.619507
10.1016/j.scriptamat.2004.05.012
10.1063/1.2356310
10.1016/j.actamat.2009.10.013
10.1103/PhysRevLett.94.165502
10.1016/j.actamat.2012.10.029
10.1016/j.scriptamat.2012.07.038
10.1016/j.actamat.2010.07.051
10.4028/www.scientific.net/MSF.667-669.379
10.1080/09500830210157117
10.1016/S0921-5093(97)00689-8
10.1016/j.actamat.2008.11.011
10.1016/j.actamat.2011.04.002
10.1007/s11664-999-0181-0
10.1016/j.actamat.2011.06.013
10.1063/1.2936306
10.1126/science.1178226
10.1016/j.actamat.2007.10.053
10.1016/j.actamat.2011.07.061
10.3139/146.031079
10.1016/S1359-6454(01)00437-2
10.1016/j.actamat.2003.08.032
10.1103/PhysRevLett.96.215506
10.1016/j.actamat.2004.02.048
10.1016/j.actamat.2011.05.013
10.1080/01418610208239601
10.1016/j.ijplas.2009.11.003
10.1016/j.msea.2006.08.119
10.1016/j.ijplas.2010.09.011
10.1016/j.pmatsci.2006.02.003
10.1016/j.actamat.2012.11.015
10.1080/01418610208235689
10.1016/S0921-5093(02)00813-4
10.1016/j.ijfatigue.2005.08.014
10.1126/science.1159610
10.1016/j.msea.2006.02.029
10.1016/j.scriptamat.2010.10.012
10.1016/j.scriptamat.2012.10.036
10.1080/14786435.2011.577757
10.1016/j.scriptamat.2011.10.043
10.1016/S1359-6454(01)00069-6
10.1016/S0079-6425(99)00007-9
10.1016/S0921-5093(00)01682-8
10.1016/j.ijfatigue.2005.06.035
10.1016/j.ijplas.2010.03.001
10.1016/j.actamat.2007.03.024
10.1038/srep00493
10.1017/CBO9780511806575
10.1016/j.pmatsci.2010.12.001
10.1016/j.actamat.2005.01.046
10.1016/0001-6160(67)90137-X
10.1016/j.scriptamat.2013.02.053
10.1007/s11661-007-9108-7
10.1016/j.actamat.2006.07.022
10.1016/j.actamat.2011.07.058
10.1016/j.actamat.2013.01.030
ContentType Journal Article
Copyright 2014 Acta Materialia Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Acta Materialia Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QF
7SR
8BQ
8FD
H8G
JG9
DOI 10.1016/j.actamat.2014.04.053
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Copper Technical Reference Library
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2453
EndPage 214
ExternalDocumentID 28512739
10_1016_j_actamat_2014_04_053
S1359645414003048
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
R2-
SEW
SSH
T9H
ZY4
ABTAH
IQODW
7QF
7SR
8BQ
8FD
EFKBS
H8G
JG9
ID FETCH-LOGICAL-c438t-4a8f1fc40d2fa04f11d5c13c52de1e44b86f94ebc5cdacbe08d2765143a0a0a63
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Tue Aug 19 13:17:17 EDT 2025
Wed Apr 02 07:21:51 EDT 2025
Tue Jul 01 01:20:28 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Fri Feb 23 02:29:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacking fault energy
Cyclic softening
Ultrafine-grained Cu
Fatigue damage mechanism
Nanocrystalline Cu–Al alloys
Aluminium base alloys
Deformation
Strain softening
Nanocrystalline Cu-Al alloys
Mechanical properties
Stacking fault
Fatigue
Mechanism
Cyclic load
Fine grain structure
Nanocrystal
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-4a8f1fc40d2fa04f11d5c13c52de1e44b86f94ebc5cdacbe08d2765143a0a0a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642240725
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1642240725
pascalfrancis_primary_28512739
crossref_citationtrail_10_1016_j_actamat_2014_04_053
crossref_primary_10_1016_j_actamat_2014_04_053
elsevier_sciencedirect_doi_10_1016_j_actamat_2014_04_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Acta materialia
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wong, Kao, Lui, Chang, Kao (b0075) 2007; 55
An, Lin, Wu, Zhang (b0190) 2010; A527
An, Lin, Wu, Zhang, Figueiredo, Gao (b0180) 2011; 64
Han, Zhao, Jiang, Lian (b0300) 2012; 2
Meyers, Chawla (b0120) 1999
Detor, Schuh (b0270) 2007; 55
Cheng, Zhao, Wang, Li, Wang, Liao (b0310) 2010; 104
An, Lin, Wu, Zhang (b0255) 2013; 68
Mughrabi (b0170) 2013; 61
Anderoglu, Misra, Wang, Hoagland, Hirth, Zhang (b0280) 2010; 26
Tucker, McDowell (b0250) 2011; 27
Wu, Wang, Jiang, Li (b0335) 2002; 82
Cheng, Xie, Stoica, Wang, Horton, Brown (b0220) 2009; 57
Wu, Wang, Jiang, Li, Alexandrov, Valiev (b0205) 2003; 48
Vinogradov, Washikita, Kitagawa, Kopylov (b0355) 2003; 349
Goto, Han, Euh, Kang, Kim, Kawagoishi (b0105) 2010; 58
Yang, Tao, Lu, Lu (b0360) 2013; 68
Höppel, Kautz, Xu, Murashkin, Langdon, Valiev (b0070) 2006; 28
Agnew, Weertman (b0100) 1998; A244
Kunz, Lukàš, Svoboda (b0115) 2006; A424
Meyers, Mishra, Benson (b0010) 2006; 51
Zhang, Tao, Lu (b0135) 2011; 59
An, Wu, Zhang (b0195) 2010; 667
Haouaoui, Karaman, Maier (b0215) 2006; 54
Cahn, Taylor (b0240) 2004; 52
Yang, Ivanisenko, Caron, Chuvilin, Kurmanaeva, Scherer (b0155) 2010; 58
An XH et al., unpublished work.
An, Lin, Wu, Zhang, Figueiredo, Gao (b0160) 2012; 66
Malekjani, Hodgson, Cizek, Hilditch (b0080) 2011; 59
Ueno, Kakihata, Kaneko, Hashimoto, Vinogradov (b0050) 2011; 59
Chowdhury, Huseyin Sehitoglu, Rateick, Maier (b0330) 2013; 61
Valiev, Langdon (b0175) 2006; 51
Qu, An, Yang, Huang, Yang, Zang (b0130) 2009; 57
Li, Li, Wang, Zhang (b0165) 2011; 56
Pan, Lu, Lu (b0295) 2013; 61
Zhao, Zhu, Liao, Horita, Langdon (b0185) 2007; A463
Lu, Lu, Suresh (b0025) 2009; 324
Vinogradov, Ishida, Kitagawa, Kopylov (b0345) 2005; 53
Höppel, Zhou, Mughrabi, Valiev (b0090) 2002; A82
Huang, Zhu, Jiang, Lowe (b0245) 2001; 49
Höppel, Xu, Kautz, Barta-Schreiber, Langdon, Mughrabi (b0210) 2004
Zhang, An, Zhang, Yang, Yang, Wu (b0275) 2013; 68
Farkas, Willemann, Hyde (b0315) 2005; 94
Patlan, Vinogradov, Higashi, Kitagawa (b0350) 2001; A300
Rupert, Gianola, Gan, Hemker (b0235) 2009; 326
Mughrabi, Höppel (b0045) 2010; 32
Feltner, Laird (b0200) 1967; 15
Lukàš, Kunz, Svoboda (b0110) 2007; A38
Schäfer, Albe (b0265) 2012; 66
Rupert, Schuh (b0225) 2012; 92
An, Lin, Wu, Zhang, Figueiredo, Gao (b0140) 2011; 91
Zhang, Zhang, Li, Zhang (b0290) 2012; 60
Szlufarska, Nakano, Vashishta (b0305) 2005; 309
Agnew, Vinogradov, Hashimoto, Weertman (b0095) 1999; 28
Vinogradov, Patlan, Suzuki, Kitagawa, Kopylov (b0340) 2002; 50
Hanlon, Kwon, Suresh (b0060) 2003; 49
Estrin, Vinogradov (b0020) 2013; 61
Bobylev, Mukherjee, Ovid’ko, Sheinerman (b0320) 2010; 26
Sangid, Pataky, Sehitoglu, Rateick, Niendorf, Maier (b0325) 2011; 59
An, Han, Huang, Zhang, Yang, Wu (b0150) 2008; 92
Mughrabi, Höppel, Kautz (b0035) 2004; 51
Mughrabi, Höppel, Kautz, Valiev (b0065) 2003; 94
Zhao, Zhu, Liao, Horita, Langdon (b0145) 2006; 89
Vinogradov, Patlan, Hashimoto, Kitagawa (b0085) 2002; A82
Shute, Myers, Xie, Li, Barb, Hodge (b0285) 2011; 59
Vinogradov, Hashimoto (b0030) 2003; 5
Hanlon, Tabachnikova, Suresh (b0040) 2005; 27
Suresh S. Fatigue of Materials. 2nd. Cambrige: Cambrige University Press; 1998.
Balogh, Ungár, Zhao, Zhu, Horita, Xu (b0125) 2008; 56
Li (b0260) 2006; 96
Kumar, Van Swygenhoven, Suresh (b0005) 2003; 51
Valiev, Islamgaliev, Alexandrov (b0015) 2000; 45
Huang (10.1016/j.actamat.2014.04.053_b0245) 2001; 49
Feltner (10.1016/j.actamat.2014.04.053_b0200) 1967; 15
Balogh (10.1016/j.actamat.2014.04.053_b0125) 2008; 56
Bobylev (10.1016/j.actamat.2014.04.053_b0320) 2010; 26
Anderoglu (10.1016/j.actamat.2014.04.053_b0280) 2010; 26
Farkas (10.1016/j.actamat.2014.04.053_b0315) 2005; 94
Cheng (10.1016/j.actamat.2014.04.053_b0220) 2009; 57
10.1016/j.actamat.2014.04.053_b0055
Kunz (10.1016/j.actamat.2014.04.053_b0115) 2006; A424
Valiev (10.1016/j.actamat.2014.04.053_b0015) 2000; 45
Schäfer (10.1016/j.actamat.2014.04.053_b0265) 2012; 66
An (10.1016/j.actamat.2014.04.053_b0255) 2013; 68
Zhao (10.1016/j.actamat.2014.04.053_b0145) 2006; 89
Szlufarska (10.1016/j.actamat.2014.04.053_b0305) 2005; 309
Agnew (10.1016/j.actamat.2014.04.053_b0095) 1999; 28
Shute (10.1016/j.actamat.2014.04.053_b0285) 2011; 59
Zhang (10.1016/j.actamat.2014.04.053_b0290) 2012; 60
Lukàš (10.1016/j.actamat.2014.04.053_b0110) 2007; A38
Vinogradov (10.1016/j.actamat.2014.04.053_b0340) 2002; 50
Meyers (10.1016/j.actamat.2014.04.053_b0010) 2006; 51
Yang (10.1016/j.actamat.2014.04.053_b0360) 2013; 68
Vinogradov (10.1016/j.actamat.2014.04.053_b0030) 2003; 5
Rupert (10.1016/j.actamat.2014.04.053_b0225) 2012; 92
Agnew (10.1016/j.actamat.2014.04.053_b0100) 1998; A244
Mughrabi (10.1016/j.actamat.2014.04.053_b0045) 2010; 32
Höppel (10.1016/j.actamat.2014.04.053_b0070) 2006; 28
Mughrabi (10.1016/j.actamat.2014.04.053_b0170) 2013; 61
Kumar (10.1016/j.actamat.2014.04.053_b0005) 2003; 51
Wu (10.1016/j.actamat.2014.04.053_b0205) 2003; 48
Haouaoui (10.1016/j.actamat.2014.04.053_b0215) 2006; 54
Mughrabi (10.1016/j.actamat.2014.04.053_b0035) 2004; 51
Tucker (10.1016/j.actamat.2014.04.053_b0250) 2011; 27
Li (10.1016/j.actamat.2014.04.053_b0260) 2006; 96
Vinogradov (10.1016/j.actamat.2014.04.053_b0355) 2003; 349
Vinogradov (10.1016/j.actamat.2014.04.053_b0345) 2005; 53
Chowdhury (10.1016/j.actamat.2014.04.053_b0330) 2013; 61
Valiev (10.1016/j.actamat.2014.04.053_b0175) 2006; 51
Han (10.1016/j.actamat.2014.04.053_b0300) 2012; 2
Goto (10.1016/j.actamat.2014.04.053_b0105) 2010; 58
Hanlon (10.1016/j.actamat.2014.04.053_b0040) 2005; 27
Höppel (10.1016/j.actamat.2014.04.053_b0090) 2002; A82
Cheng (10.1016/j.actamat.2014.04.053_b0310) 2010; 104
An (10.1016/j.actamat.2014.04.053_b0180) 2011; 64
Patlan (10.1016/j.actamat.2014.04.053_b0350) 2001; A300
An (10.1016/j.actamat.2014.04.053_b0150) 2008; 92
An (10.1016/j.actamat.2014.04.053_b0190) 2010; A527
Li (10.1016/j.actamat.2014.04.053_b0165) 2011; 56
Estrin (10.1016/j.actamat.2014.04.053_b0020) 2013; 61
Zhao (10.1016/j.actamat.2014.04.053_b0185) 2007; A463
Meyers (10.1016/j.actamat.2014.04.053_b0120) 1999
Sangid (10.1016/j.actamat.2014.04.053_b0325) 2011; 59
10.1016/j.actamat.2014.04.053_b0230
Mughrabi (10.1016/j.actamat.2014.04.053_b0065) 2003; 94
Höppel (10.1016/j.actamat.2014.04.053_b0210) 2004
Wu (10.1016/j.actamat.2014.04.053_b0335) 2002; 82
An (10.1016/j.actamat.2014.04.053_b0160) 2012; 66
Malekjani (10.1016/j.actamat.2014.04.053_b0080) 2011; 59
Pan (10.1016/j.actamat.2014.04.053_b0295) 2013; 61
An (10.1016/j.actamat.2014.04.053_b0140) 2011; 91
Wong (10.1016/j.actamat.2014.04.053_b0075) 2007; 55
An (10.1016/j.actamat.2014.04.053_b0195) 2010; 667
Rupert (10.1016/j.actamat.2014.04.053_b0235) 2009; 326
Ueno (10.1016/j.actamat.2014.04.053_b0050) 2011; 59
Detor (10.1016/j.actamat.2014.04.053_b0270) 2007; 55
Lu (10.1016/j.actamat.2014.04.053_b0025) 2009; 324
Qu (10.1016/j.actamat.2014.04.053_b0130) 2009; 57
Yang (10.1016/j.actamat.2014.04.053_b0155) 2010; 58
Hanlon (10.1016/j.actamat.2014.04.053_b0060) 2003; 49
Zhang (10.1016/j.actamat.2014.04.053_b0135) 2011; 59
Cahn (10.1016/j.actamat.2014.04.053_b0240) 2004; 52
Zhang (10.1016/j.actamat.2014.04.053_b0275) 2013; 68
Vinogradov (10.1016/j.actamat.2014.04.053_b0085) 2002; A82
References_xml – volume: 54
  start-page: 5477
  year: 2006
  ident: b0215
  publication-title: Acta Mater
– volume: 92
  start-page: 20
  year: 2012
  ident: b0225
  publication-title: Philos Mag Lett
– volume: 28
  start-page: 1038
  year: 1999
  ident: b0095
  publication-title: J Electron Mater
– volume: 59
  start-page: 4569
  year: 2011
  ident: b0285
  publication-title: Acta Mater
– volume: 68
  start-page: 01
  year: 2013
  ident: b0360
  publication-title: Scr Mater
– volume: 309
  start-page: 911
  year: 2005
  ident: b0305
  publication-title: Science
– volume: 66
  start-page: 227
  year: 2012
  ident: b0160
  publication-title: Scr Mater
– volume: 49
  start-page: 1497
  year: 2001
  ident: b0245
  publication-title: Acta Mater
– volume: 61
  start-page: 782
  year: 2013
  ident: b0020
  publication-title: Acta Mater
– volume: A82
  start-page: 317
  year: 2002
  ident: b0085
  publication-title: Philos Mag
– volume: 667
  start-page: 379
  year: 2010
  ident: b0195
  publication-title: Mater Sci Forum
– volume: 49
  start-page: 675
  year: 2003
  ident: b0060
  publication-title: Scr Mater
– volume: 50
  start-page: 1639
  year: 2002
  ident: b0340
  publication-title: Acta Mater
– volume: 51
  start-page: 807
  year: 2004
  ident: b0035
  publication-title: Scr Mater
– volume: 92
  start-page: 201915
  year: 2008
  ident: b0150
  publication-title: Appl Phys Lett
– volume: 349
  start-page: 318
  year: 2003
  ident: b0355
  publication-title: Mater Sci Eng A
– volume: 94
  start-page: 1079
  year: 2003
  ident: b0065
  publication-title: Z Metallkd
– volume: A82
  start-page: 1781
  year: 2002
  ident: b0090
  publication-title: Philos Mag
– year: 1999
  ident: b0120
  article-title: Mechanical behavior of materials
– volume: 51
  start-page: 427
  year: 2006
  ident: b0010
  publication-title: Prog Mater Sci
– volume: A463
  start-page: 22
  year: 2007
  ident: b0185
  publication-title: Mater Sci Eng
– volume: 55
  start-page: 715
  year: 2007
  ident: b0075
  publication-title: Acta Mater
– volume: 52
  start-page: 4887
  year: 2004
  ident: b0240
  publication-title: Acta Mater
– volume: 59
  start-page: 7340
  year: 2011
  ident: b0325
  publication-title: Acta Mater
– reference: Suresh S. Fatigue of Materials. 2nd. Cambrige: Cambrige University Press; 1998.
– volume: 324
  start-page: 349
  year: 2009
  ident: b0025
  publication-title: Science
– volume: 61
  start-page: 1197
  year: 2013
  ident: b0170
  publication-title: Acta Mater
– volume: A424
  start-page: 97
  year: 2006
  ident: b0115
  publication-title: Mater Sci Eng
– volume: 326
  start-page: 1686
  year: 2009
  ident: b0235
  publication-title: Science
– volume: 2
  start-page: 493
  year: 2012
  ident: b0300
  publication-title: Sci Rep
– volume: 59
  start-page: 6048
  year: 2011
  ident: b0135
  publication-title: Acta Mater
– volume: 26
  start-page: 875
  year: 2010
  ident: b0280
  publication-title: Int J Plast
– volume: 104
  start-page: 255501
  year: 2010
  ident: b0310
  publication-title: Phys Rev Lett
– volume: 64
  start-page: 249
  year: 2011
  ident: b0180
  publication-title: Scr Mater
– volume: 66
  start-page: 315
  year: 2012
  ident: b0265
  publication-title: Scr Mater
– volume: 96
  start-page: 215506
  year: 2006
  ident: b0260
  publication-title: Phys Rev Lett
– volume: 15
  start-page: 1621
  year: 1967
  ident: b0200
  publication-title: Acta Metall
– volume: 27
  start-page: 841
  year: 2011
  ident: b0250
  publication-title: Int J Plast
– reference: An XH et al., unpublished work.
– volume: 59
  start-page: 7060
  year: 2011
  ident: b0050
  publication-title: Acta Mater
– volume: 59
  start-page: 5358
  year: 2011
  ident: b0080
  publication-title: Acta Mater
– volume: 5
  start-page: 351
  year: 2003
  ident: b0030
  publication-title: Adv Eng Mater
– volume: 51
  start-page: 5743
  year: 2003
  ident: b0005
  publication-title: Acta Mater
– volume: 57
  start-page: 1272
  year: 2009
  ident: b0220
  publication-title: Acta Mater
– volume: 82
  start-page: 559
  year: 2002
  ident: b0335
  publication-title: Philos Mag Lett
– volume: 27
  start-page: 1147
  year: 2005
  ident: b0040
  publication-title: Int J Fatigue
– volume: A38
  start-page: 1910
  year: 2007
  ident: b0110
  publication-title: Matel Mater Trans
– volume: 68
  start-page: 389
  year: 2013
  ident: b0275
  publication-title: Scr Mater
– volume: 91
  start-page: 3307
  year: 2011
  ident: b0140
  publication-title: Philos Mag
– volume: 61
  start-page: 1383
  year: 2013
  ident: b0295
  publication-title: Acta Mater
– volume: 56
  start-page: 328
  year: 2011
  ident: b0165
  publication-title: Prog Mater Sci
– volume: 55
  start-page: 4221
  year: 2007
  ident: b0270
  publication-title: Acta Mater
– volume: 32
  start-page: 1413
  year: 2010
  ident: b0045
  publication-title: Int J Fatigue
– volume: A244
  start-page: 145
  year: 1998
  ident: b0100
  publication-title: Mater Sci Eng
– volume: 58
  start-page: 6294
  year: 2010
  ident: b0105
  publication-title: Acta Mater
– year: 2004
  ident: b0210
  publication-title: 2nd International conference on nanomaterials by severe plastic deformation (NanoSPD2)
– volume: 28
  start-page: 1001
  year: 2006
  ident: b0070
  publication-title: Int J Fatigue
– volume: 58
  start-page: 967
  year: 2010
  ident: b0155
  publication-title: Acta Mater
– volume: 26
  start-page: 1629
  year: 2010
  ident: b0320
  publication-title: Int J Plast
– volume: 61
  start-page: 2531
  year: 2013
  ident: b0330
  publication-title: Acta Mater
– volume: A300
  start-page: 171
  year: 2001
  ident: b0350
  publication-title: Mater Sci Eng
– volume: 45
  start-page: 103
  year: 2000
  ident: b0015
  publication-title: Prog Mater Sci
– volume: A527
  start-page: 4510
  year: 2010
  ident: b0190
  publication-title: Mater Sci Eng
– volume: 68
  start-page: 988
  year: 2013
  ident: b0255
  publication-title: Scr Mater
– volume: 60
  start-page: 3113
  year: 2012
  ident: b0290
  publication-title: Acta Mater
– volume: 56
  start-page: 809
  year: 2008
  ident: b0125
  publication-title: Acta Mater
– volume: 48
  start-page: 1605
  year: 2003
  ident: b0205
  publication-title: Scr Mater
– volume: 51
  start-page: 881
  year: 2006
  ident: b0175
  publication-title: Prog Mater Sci
– volume: 53
  start-page: 2192
  year: 2005
  ident: b0345
  publication-title: Acta Mater
– volume: 57
  start-page: 1586
  year: 2009
  ident: b0130
  publication-title: Acta Mater
– volume: 89
  start-page: 121906
  year: 2006
  ident: b0145
  publication-title: Appl Phys Lett
– volume: 94
  start-page: 165502
  year: 2005
  ident: b0315
  publication-title: Phys Rev Lett
– volume: A527
  start-page: 4510
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0190
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2010.03.101
– volume: 48
  start-page: 1605
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0205
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00141-6
– volume: 66
  start-page: 315
  year: 2012
  ident: 10.1016/j.actamat.2014.04.053_b0265
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2011.11.031
– volume: 104
  start-page: 255501
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0310
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.104.255501
– volume: 309
  start-page: 911
  year: 2005
  ident: 10.1016/j.actamat.2014.04.053_b0305
  publication-title: Science
  doi: 10.1126/science.1114411
– volume: 5
  start-page: 351
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0030
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200310078
– volume: 51
  start-page: 427
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0010
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2005.08.003
– volume: 55
  start-page: 715
  year: 2007
  ident: 10.1016/j.actamat.2014.04.053_b0075
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.09.002
– volume: 32
  start-page: 1413
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0045
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2009.10.007
– volume: 60
  start-page: 3113
  year: 2012
  ident: 10.1016/j.actamat.2014.04.053_b0290
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.02.016
– volume: 61
  start-page: 782
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0020
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.10.038
– volume: 49
  start-page: 675
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0060
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00393-2
– volume: 57
  start-page: 1586
  year: 2009
  ident: 10.1016/j.actamat.2014.04.053_b0130
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.12.002
– volume: 92
  start-page: 20
  year: 2012
  ident: 10.1016/j.actamat.2014.04.053_b0225
  publication-title: Philos Mag Lett
  doi: 10.1080/09500839.2011.619507
– volume: 51
  start-page: 807
  year: 2004
  ident: 10.1016/j.actamat.2014.04.053_b0035
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2004.05.012
– volume: 89
  start-page: 121906
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0145
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2356310
– volume: 58
  start-page: 967
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0155
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.10.013
– volume: 94
  start-page: 165502
  year: 2005
  ident: 10.1016/j.actamat.2014.04.053_b0315
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.165502
– volume: 61
  start-page: 1197
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0170
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.10.029
– volume: 68
  start-page: 01
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0360
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2012.07.038
– volume: 58
  start-page: 6294
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0105
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.07.051
– volume: 667
  start-page: 379
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0195
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.667-669.379
– volume: 82
  start-page: 559
  year: 2002
  ident: 10.1016/j.actamat.2014.04.053_b0335
  publication-title: Philos Mag Lett
  doi: 10.1080/09500830210157117
– volume: A244
  start-page: 145
  year: 1998
  ident: 10.1016/j.actamat.2014.04.053_b0100
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(97)00689-8
– volume: 57
  start-page: 1272
  year: 2009
  ident: 10.1016/j.actamat.2014.04.053_b0220
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.11.011
– volume: 59
  start-page: 4569
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0285
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.04.002
– volume: 28
  start-page: 1038
  year: 1999
  ident: 10.1016/j.actamat.2014.04.053_b0095
  publication-title: J Electron Mater
  doi: 10.1007/s11664-999-0181-0
– volume: 59
  start-page: 6048
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0135
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.06.013
– volume: 92
  start-page: 201915
  year: 2008
  ident: 10.1016/j.actamat.2014.04.053_b0150
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2936306
– volume: 326
  start-page: 1686
  year: 2009
  ident: 10.1016/j.actamat.2014.04.053_b0235
  publication-title: Science
  doi: 10.1126/science.1178226
– volume: 56
  start-page: 809
  year: 2008
  ident: 10.1016/j.actamat.2014.04.053_b0125
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.10.053
– volume: 59
  start-page: 7060
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0050
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.07.061
– volume: 94
  start-page: 1079
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0065
  publication-title: Z Metallkd
  doi: 10.3139/146.031079
– volume: 50
  start-page: 1639
  year: 2002
  ident: 10.1016/j.actamat.2014.04.053_b0340
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00437-2
– volume: 51
  start-page: 5743
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0005
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2003.08.032
– year: 1999
  ident: 10.1016/j.actamat.2014.04.053_b0120
– volume: 96
  start-page: 215506
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0260
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.96.215506
– volume: 52
  start-page: 4887
  year: 2004
  ident: 10.1016/j.actamat.2014.04.053_b0240
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.02.048
– volume: 59
  start-page: 5358
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0080
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.05.013
– volume: A82
  start-page: 317
  year: 2002
  ident: 10.1016/j.actamat.2014.04.053_b0085
  publication-title: Philos Mag
  doi: 10.1080/01418610208239601
– year: 2004
  ident: 10.1016/j.actamat.2014.04.053_b0210
– volume: 26
  start-page: 875
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0280
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2009.11.003
– volume: A463
  start-page: 22
  year: 2007
  ident: 10.1016/j.actamat.2014.04.053_b0185
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2006.08.119
– volume: 27
  start-page: 841
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0250
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2010.09.011
– volume: 51
  start-page: 881
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0175
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2006.02.003
– volume: 61
  start-page: 1383
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0295
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.11.015
– volume: A82
  start-page: 1781
  year: 2002
  ident: 10.1016/j.actamat.2014.04.053_b0090
  publication-title: Philos Mag
  doi: 10.1080/01418610208235689
– volume: 349
  start-page: 318
  year: 2003
  ident: 10.1016/j.actamat.2014.04.053_b0355
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(02)00813-4
– volume: 28
  start-page: 1001
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0070
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.08.014
– volume: 324
  start-page: 349
  year: 2009
  ident: 10.1016/j.actamat.2014.04.053_b0025
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: A424
  start-page: 97
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0115
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2006.02.029
– volume: 64
  start-page: 249
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0180
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2010.10.012
– volume: 68
  start-page: 389
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0275
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2012.10.036
– volume: 91
  start-page: 3307
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0140
  publication-title: Philos Mag
  doi: 10.1080/14786435.2011.577757
– ident: 10.1016/j.actamat.2014.04.053_b0230
– volume: 66
  start-page: 227
  year: 2012
  ident: 10.1016/j.actamat.2014.04.053_b0160
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2011.10.043
– volume: 49
  start-page: 1497
  year: 2001
  ident: 10.1016/j.actamat.2014.04.053_b0245
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00069-6
– volume: 45
  start-page: 103
  year: 2000
  ident: 10.1016/j.actamat.2014.04.053_b0015
  publication-title: Prog Mater Sci
  doi: 10.1016/S0079-6425(99)00007-9
– volume: A300
  start-page: 171
  year: 2001
  ident: 10.1016/j.actamat.2014.04.053_b0350
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(00)01682-8
– volume: 27
  start-page: 1147
  year: 2005
  ident: 10.1016/j.actamat.2014.04.053_b0040
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.06.035
– volume: 26
  start-page: 1629
  year: 2010
  ident: 10.1016/j.actamat.2014.04.053_b0320
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2010.03.001
– volume: 55
  start-page: 4221
  year: 2007
  ident: 10.1016/j.actamat.2014.04.053_b0270
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.03.024
– volume: 2
  start-page: 493
  year: 2012
  ident: 10.1016/j.actamat.2014.04.053_b0300
  publication-title: Sci Rep
  doi: 10.1038/srep00493
– ident: 10.1016/j.actamat.2014.04.053_b0055
  doi: 10.1017/CBO9780511806575
– volume: 56
  start-page: 328
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0165
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2010.12.001
– volume: 53
  start-page: 2192
  year: 2005
  ident: 10.1016/j.actamat.2014.04.053_b0345
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.01.046
– volume: 15
  start-page: 1621
  year: 1967
  ident: 10.1016/j.actamat.2014.04.053_b0200
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(67)90137-X
– volume: 68
  start-page: 988
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0255
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2013.02.053
– volume: A38
  start-page: 1910
  year: 2007
  ident: 10.1016/j.actamat.2014.04.053_b0110
  publication-title: Matel Mater Trans
  doi: 10.1007/s11661-007-9108-7
– volume: 54
  start-page: 5477
  year: 2006
  ident: 10.1016/j.actamat.2014.04.053_b0215
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.07.022
– volume: 59
  start-page: 7340
  year: 2011
  ident: 10.1016/j.actamat.2014.04.053_b0325
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.07.058
– volume: 61
  start-page: 2531
  year: 2013
  ident: 10.1016/j.actamat.2014.04.053_b0330
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.01.030
SSID ssj0012740
Score 2.4860444
Snippet Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated...
Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu-Al alloys produced by equal channel angular pressing were investigated...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Alloys
Amplitudes
Applied sciences
Copper
COPPER ALLOYS (40 TO 99.3 CU)
COPPER ALUMINUM ALLOYS
Copper base alloys
CRYSTAL STRUCTURE
Cyclic softening
DEFORMATION
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue damage mechanism
FATIGUE PROPERTIES
GRAIN SIZE AND SHAPE
High cycle fatigue
Intermetallic compounds
Low cycle fatigue
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Nanocrystalline Cu–Al alloys
SOFTENING
Stacking fault energy
Ultrafine-grained Cu
Title Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys
URI https://dx.doi.org/10.1016/j.actamat.2014.04.053
https://www.proquest.com/docview/1642240725
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swELcQvAxNiG1MKxuVkfYamj92Ej9WFahsghdA4s049nkrqtKqTR_6gvYd9g33SXaXPwWEJqQpeYmVi62zc77z3f2Osa_KAxoaKQQ2BQhEDFmgnKNjjkjZzDgVe8pGvrhMxzfi26283WKjLheGwipb2d_I9Fpaty2DlpuD-WQyuIoSqQiPCk0E8u9Rwq8QGa3yk4dNmEeEVleTKSxVQG8_ZvEM7nHIlUHFkCK8RI14KpN_7U9v52aJXPNNuYsXkrvejs722V6rR_JhM9R3bAvK92z3CbrgB3Z3Wv6s_fvcru10YrmDTaoiXzSxsbDkM89X02phPFIGP6hiBFKMVtyUjpemnNnFGjVIgu4GbP7z6_dwyslbv14esJuz0-vROGgLKgRWJHkVCJP7yFsRutibUPgoctJGiZWxgwiEKPLUKwGFldYZW0CYuzhLSaUyIV5p8pFtl7MSPjGe5VbhpxJjilQUcWZMRlj2psiEiyHNe0x0bNS2RRunohdT3YWV3euW-5q4r0O8ZdJjJxuyeQO38RpB3s2RfrZuNG4Jr5H2n83ppsMYtVDU6lSPHXeTrPGnI0-KKWG2Wmq0MRtoOXn4__1_Zm_oqYkm_MK2q8UKjlDDqYp-vYT7bGd4_n18-Rfewv7U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LANw9A9imWPVgN29eKHZFvHIGiRvnJZC_SmyRLVpgicIHEOufU_9B_ul4yK7XTFUBQo7JMMWgIpU6RJfgT4IR2So5FiYFLEgMeYBdJa_5sjkibTVsbOVyOfjdLhBT--FJdbMGhrYXxaZaP7a52-1tbNSK_hZm82Hvd-RYmQHo-KXAQf38tfwLZHpxId2O4fnQxHm2ACOV51sbCQgSe4L-Tp3dCqK022oU_y4mvQU5E8dkS9mekFMc7VHS_-U97rE-lwB942piTr16t9B1tYvofX_wAMfoDfB-X1OsTPzMpMxoZZ3FQrsnmdHosLNnVsOanm2hFlcOWbRhDFYMl0aVmpy6mZr8iI9OjdSMN_bu_6E-YD9qvFR7g4PDgfDIOmp0JgeJJXAde5i5zhoY2dDrmLIitMlBgRW4yQ8yJPneRYGGGsNgWGuY2z1FtVOqQrTXahU05L_AQsy42kVyVaFykv4kzrzMPZ6yLjNsY07wJv2ahMAzju-15MVJtZdqMa7ivPfRXSLZIu_NyQzWrEjacI8lZG6sHWUXQqPEW690CmmwljMkTJsJNd-N4KWdF354MpusTpcqHIzazR5cTn58-_Dy-H52en6vRodPIFXvkndXLhV-hU8yV-I4OnKvaaDf0XjZIBlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cyclic+deformation+responses+of+ultrafine-grained+Cu+and+nanocrystalline+Cu-Al+alloys&rft.jtitle=Acta+materialia&rft.au=An%2C+X+H&rft.au=Wu%2C+S+D&rft.au=Wang%2C+Z+G&rft.au=Zhang%2C+Z+F&rft.date=2014-08-01&rft.issn=1359-6454&rft.volume=74&rft.spage=200&rft.epage=214&rft_id=info:doi/10.1016%2Fj.actamat.2014.04.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon