Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys
Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the...
Saved in:
Published in | Acta materialia Vol. 74; pp. 200 - 214 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the total strain amplitude (Δεt/2) and stress amplitude (Δσ/2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu–Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu–Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu–Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu–Al alloy with low SFE. |
---|---|
AbstractList | Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (Nf) on the total strain amplitude (Δεt/2) and stress amplitude (Δσ/2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu–Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu–Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu–Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu–Al alloy with low SFE. Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu-Al alloys produced by equal channel angular pressing were investigated systematically by applying low-cycle fatigue (LCF) and high-cycle fatigue (HCF) tests. Based on the dependence of the fatigue life (N f) on the total strain amplitude ( Delta epsilon t/2) and stress amplitude ( Delta sigma /2) in comparison with that of UFG Cu, the LCF life and HCF strength, especially fatigue endurance limits, of NC Cu-Al alloys, were enhanced strikingly at the same time as their stacking fault energies (SFE) decreased. These upgraded fatigue performances with lowering of the SFE in NC Cu-Al alloys can be attributed not only to the simultaneous increase in their monotonic strength and ductility on the macroscale, but also to the crucially decreased cyclic softening behavior on the microscale. It was found that substantial grain growth and large-scale shear bands, both of which are essential ingredients, resulting in significant cyclic softening and then deterioration in the LCF life of UFG and NC materials, were reduced advantageously on decreasing the SFE in NC Cu-Al alloys. Moreover, the dominant fatigue damage micromechanism was also transformed inherently from extensive grain boundary (GB) migration in UFG Cu to other local GB activities such as atom shuffling or GB sliding/rotation in NC Cu-Al alloy with low SFE. |
Author | Wu, S.D. Wang, Z.G. Zhang, Z.F. An, X.H. |
Author_xml | – sequence: 1 givenname: X.H. surname: An fullname: An, X.H. email: anxianghai@gmail.com – sequence: 2 givenname: S.D. surname: Wu fullname: Wu, S.D. – sequence: 3 givenname: Z.G. surname: Wang fullname: Wang, Z.G. – sequence: 4 givenname: Z.F. surname: Zhang fullname: Zhang, Z.F. email: zhfzhang@imr.ac.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512739$$DView record in Pascal Francis |
BookMark | eNqFkc1qWzEQhUVJoPnpIxTuptDNdfR7fU0XJZi0DQS6SdfqeDRqZWTJla4L3vUd-oZ9ksi1u-kmaGBGwzlH8OmSnaWciLHXgs8EF8PNegY4wQammeRCz3gro16wCzHOVS-1UWdtVmbRD9rol-yy1jXnQs41v2Bf79J3SEiuwz3GgJ0jn0vLCjl1heo2p0q1y77bxamAD4n6bwVac91y10FyXYKUsezrBDG2fVv_-fX7Nnbtmvf1mp17iJVenfoV-_Lh7nH5qX_4_PF-efvQo1bj1GsYvfCouZMeuPZCOINCoZGOBGm9Gge_0LRCgw5wRXx0cj4YoRXwdgZ1xd4ec7cl_9hRnewmVKQYIVHeVSsGLaXmc2ma9M1JChUh-tIAhGq3JWyg7K0cTYOjFk337qjDkmst5C2G6S-ZRiJEK7g98Ldre-JvD_wtb2VUc5v_3P8eeM73_uijRutnoGIrBjp8USiEk3U5PJPwBNvap0w |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2018_07_358 crossref_primary_10_1557_jmr_2016_288 crossref_primary_10_1016_j_actamat_2014_10_002 crossref_primary_10_1016_j_scriptamat_2021_114313 crossref_primary_10_1016_j_ijfatigue_2023_107556 crossref_primary_10_1016_j_jmrt_2023_04_264 crossref_primary_10_1007_s40544_018_0220_z crossref_primary_10_1016_j_actamat_2020_06_047 crossref_primary_10_1557_jmr_2015_112 crossref_primary_10_1016_j_actamat_2018_12_018 crossref_primary_10_1051_matecconf_201712902032 crossref_primary_10_1016_j_mtla_2019_100403 crossref_primary_10_1016_j_jmrt_2024_01_212 crossref_primary_10_1557_jmr_2016_451 crossref_primary_10_1016_j_matlet_2020_128289 crossref_primary_10_1016_j_msea_2016_11_053 crossref_primary_10_1016_j_msea_2024_147294 crossref_primary_10_1016_j_mtla_2020_100756 crossref_primary_10_1016_j_pmatsci_2022_101011 crossref_primary_10_1016_j_ijfatigue_2024_108515 crossref_primary_10_1016_j_matchar_2022_112059 crossref_primary_10_1016_j_msea_2018_07_016 crossref_primary_10_1016_j_matdes_2022_111479 crossref_primary_10_1016_j_matchar_2019_109940 crossref_primary_10_1016_j_jmst_2020_03_011 crossref_primary_10_1016_j_msea_2023_145759 crossref_primary_10_1016_j_jmst_2020_08_037 crossref_primary_10_1016_j_jmst_2020_08_038 crossref_primary_10_1016_j_scriptamat_2023_115746 crossref_primary_10_1088_1361_651X_aaf75d crossref_primary_10_1016_j_matchar_2019_110011 crossref_primary_10_1016_j_ijfatigue_2023_107534 crossref_primary_10_1016_j_msea_2021_141504 crossref_primary_10_1002_srin_202200179 crossref_primary_10_1016_j_scriptamat_2017_04_011 crossref_primary_10_3390_ma17092148 crossref_primary_10_3390_ma16072723 crossref_primary_10_1007_s13632_021_00740_y crossref_primary_10_1080_21663831_2015_1029645 crossref_primary_10_1016_j_matdes_2023_111873 crossref_primary_10_1016_j_scriptamat_2019_02_040 crossref_primary_10_1016_j_msea_2017_07_026 crossref_primary_10_1002_adem_201500561 crossref_primary_10_1590_1980_5373_mr_2018_0424 crossref_primary_10_1089_3dp_2020_0321 crossref_primary_10_1016_j_matchar_2015_12_018 crossref_primary_10_1016_j_actamat_2020_08_049 crossref_primary_10_1016_j_jallcom_2017_03_188 crossref_primary_10_1016_j_ijplas_2025_104287 crossref_primary_10_1016_j_actamat_2017_10_057 crossref_primary_10_1016_j_actamat_2020_116559 crossref_primary_10_1557_jmr_2017_358 crossref_primary_10_1016_j_ijfatigue_2024_108772 crossref_primary_10_1016_j_actamat_2016_06_032 crossref_primary_10_1016_j_ijfatigue_2024_108253 crossref_primary_10_1016_j_msea_2016_10_043 crossref_primary_10_1016_j_msea_2019_03_113 crossref_primary_10_1016_j_mtla_2019_100263 crossref_primary_10_1016_j_pmatsci_2018_11_001 crossref_primary_10_1016_j_msea_2022_144088 crossref_primary_10_1007_s11661_015_3010_5 crossref_primary_10_1016_j_msea_2025_148026 crossref_primary_10_1016_j_scriptamat_2023_115563 crossref_primary_10_3390_ma13225171 crossref_primary_10_3762_bjnano_7_176 crossref_primary_10_1016_j_matchar_2017_02_003 crossref_primary_10_1016_j_actamat_2017_11_019 crossref_primary_10_1016_j_msea_2016_04_076 crossref_primary_10_1088_1757_899X_382_2_022094 crossref_primary_10_1016_j_actamat_2016_02_045 crossref_primary_10_1007_s40843_016_5068_6 crossref_primary_10_1016_j_ijfatigue_2021_106266 crossref_primary_10_1016_j_msea_2020_139569 crossref_primary_10_1016_j_matdes_2018_08_057 crossref_primary_10_1016_j_msea_2018_08_085 crossref_primary_10_1088_1757_899X_194_1_012035 crossref_primary_10_1088_2631_7990_ad9367 crossref_primary_10_1038_srep27433 crossref_primary_10_1016_j_msea_2023_145605 crossref_primary_10_1016_j_actamat_2024_120390 crossref_primary_10_1016_j_msea_2020_139441 crossref_primary_10_1016_j_msea_2018_08_012 crossref_primary_10_1016_j_compositesb_2024_111371 crossref_primary_10_1016_j_msea_2021_141818 crossref_primary_10_1016_j_msea_2017_09_107 crossref_primary_10_1016_j_ijfatigue_2018_12_004 crossref_primary_10_1016_j_msea_2024_146680 crossref_primary_10_1016_j_mtnano_2018_12_002 crossref_primary_10_1016_j_ijplas_2022_103471 crossref_primary_10_1007_s10853_016_0437_z crossref_primary_10_1016_j_scriptamat_2017_08_047 crossref_primary_10_1016_j_rinp_2019_102236 crossref_primary_10_1016_j_tafmec_2018_09_017 crossref_primary_10_1016_j_jmatprotec_2023_118173 crossref_primary_10_1007_s43452_021_00272_w crossref_primary_10_1016_j_ijfatigue_2021_106682 crossref_primary_10_1016_j_ijfatigue_2020_105994 crossref_primary_10_1016_j_ijfatigue_2024_108185 crossref_primary_10_1007_s11661_017_4360_y crossref_primary_10_1016_j_matchar_2015_03_021 crossref_primary_10_1016_j_msea_2017_03_089 crossref_primary_10_1016_j_jmst_2021_03_004 crossref_primary_10_1016_j_triboint_2019_03_055 crossref_primary_10_1007_s11665_022_07765_6 crossref_primary_10_2139_ssrn_3919744 crossref_primary_10_1016_j_jallcom_2020_155688 crossref_primary_10_1016_j_jmst_2023_02_006 crossref_primary_10_1016_j_msea_2018_01_025 crossref_primary_10_1016_j_mtcomm_2023_106888 crossref_primary_10_1016_j_matchar_2017_01_002 crossref_primary_10_1016_j_actamat_2015_11_015 crossref_primary_10_1016_j_matchar_2017_06_016 crossref_primary_10_1016_j_actamat_2015_03_028 crossref_primary_10_1016_j_actamat_2016_09_020 crossref_primary_10_1016_j_msea_2018_10_046 crossref_primary_10_1016_j_actamat_2021_117460 crossref_primary_10_1016_j_micron_2019_102783 |
Cites_doi | 10.1016/j.msea.2010.03.101 10.1016/S1359-6462(03)00141-6 10.1016/j.scriptamat.2011.11.031 10.1103/PhysRevLett.104.255501 10.1126/science.1114411 10.1002/adem.200310078 10.1016/j.pmatsci.2005.08.003 10.1016/j.actamat.2006.09.002 10.1016/j.ijfatigue.2009.10.007 10.1016/j.actamat.2012.02.016 10.1016/j.actamat.2012.10.038 10.1016/S1359-6462(03)00393-2 10.1016/j.actamat.2008.12.002 10.1080/09500839.2011.619507 10.1016/j.scriptamat.2004.05.012 10.1063/1.2356310 10.1016/j.actamat.2009.10.013 10.1103/PhysRevLett.94.165502 10.1016/j.actamat.2012.10.029 10.1016/j.scriptamat.2012.07.038 10.1016/j.actamat.2010.07.051 10.4028/www.scientific.net/MSF.667-669.379 10.1080/09500830210157117 10.1016/S0921-5093(97)00689-8 10.1016/j.actamat.2008.11.011 10.1016/j.actamat.2011.04.002 10.1007/s11664-999-0181-0 10.1016/j.actamat.2011.06.013 10.1063/1.2936306 10.1126/science.1178226 10.1016/j.actamat.2007.10.053 10.1016/j.actamat.2011.07.061 10.3139/146.031079 10.1016/S1359-6454(01)00437-2 10.1016/j.actamat.2003.08.032 10.1103/PhysRevLett.96.215506 10.1016/j.actamat.2004.02.048 10.1016/j.actamat.2011.05.013 10.1080/01418610208239601 10.1016/j.ijplas.2009.11.003 10.1016/j.msea.2006.08.119 10.1016/j.ijplas.2010.09.011 10.1016/j.pmatsci.2006.02.003 10.1016/j.actamat.2012.11.015 10.1080/01418610208235689 10.1016/S0921-5093(02)00813-4 10.1016/j.ijfatigue.2005.08.014 10.1126/science.1159610 10.1016/j.msea.2006.02.029 10.1016/j.scriptamat.2010.10.012 10.1016/j.scriptamat.2012.10.036 10.1080/14786435.2011.577757 10.1016/j.scriptamat.2011.10.043 10.1016/S1359-6454(01)00069-6 10.1016/S0079-6425(99)00007-9 10.1016/S0921-5093(00)01682-8 10.1016/j.ijfatigue.2005.06.035 10.1016/j.ijplas.2010.03.001 10.1016/j.actamat.2007.03.024 10.1038/srep00493 10.1017/CBO9780511806575 10.1016/j.pmatsci.2010.12.001 10.1016/j.actamat.2005.01.046 10.1016/0001-6160(67)90137-X 10.1016/j.scriptamat.2013.02.053 10.1007/s11661-007-9108-7 10.1016/j.actamat.2006.07.022 10.1016/j.actamat.2011.07.058 10.1016/j.actamat.2013.01.030 |
ContentType | Journal Article |
Copyright | 2014 Acta Materialia Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Acta Materialia Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 7SR 8BQ 8FD H8G JG9 |
DOI | 10.1016/j.actamat.2014.04.053 |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Copper Technical Reference Library Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Copper Technical Reference Library Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2453 |
EndPage | 214 |
ExternalDocumentID | 28512739 10_1016_j_actamat_2014_04_053 S1359645414003048 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB R2- SEW SSH T9H ZY4 ABTAH IQODW 7QF 7SR 8BQ 8FD EFKBS H8G JG9 |
ID | FETCH-LOGICAL-c438t-4a8f1fc40d2fa04f11d5c13c52de1e44b86f94ebc5cdacbe08d2765143a0a0a63 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Tue Aug 19 13:17:17 EDT 2025 Wed Apr 02 07:21:51 EDT 2025 Tue Jul 01 01:20:28 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Fri Feb 23 02:29:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stacking fault energy Cyclic softening Ultrafine-grained Cu Fatigue damage mechanism Nanocrystalline Cu–Al alloys Aluminium base alloys Deformation Strain softening Nanocrystalline Cu-Al alloys Mechanical properties Stacking fault Fatigue Mechanism Cyclic load Fine grain structure Nanocrystal |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-4a8f1fc40d2fa04f11d5c13c52de1e44b86f94ebc5cdacbe08d2765143a0a0a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642240725 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1642240725 pascalfrancis_primary_28512739 crossref_citationtrail_10_1016_j_actamat_2014_04_053 crossref_primary_10_1016_j_actamat_2014_04_053 elsevier_sciencedirect_doi_10_1016_j_actamat_2014_04_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Acta materialia |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wong, Kao, Lui, Chang, Kao (b0075) 2007; 55 An, Lin, Wu, Zhang (b0190) 2010; A527 An, Lin, Wu, Zhang, Figueiredo, Gao (b0180) 2011; 64 Han, Zhao, Jiang, Lian (b0300) 2012; 2 Meyers, Chawla (b0120) 1999 Detor, Schuh (b0270) 2007; 55 Cheng, Zhao, Wang, Li, Wang, Liao (b0310) 2010; 104 An, Lin, Wu, Zhang (b0255) 2013; 68 Mughrabi (b0170) 2013; 61 Anderoglu, Misra, Wang, Hoagland, Hirth, Zhang (b0280) 2010; 26 Tucker, McDowell (b0250) 2011; 27 Wu, Wang, Jiang, Li (b0335) 2002; 82 Cheng, Xie, Stoica, Wang, Horton, Brown (b0220) 2009; 57 Wu, Wang, Jiang, Li, Alexandrov, Valiev (b0205) 2003; 48 Vinogradov, Washikita, Kitagawa, Kopylov (b0355) 2003; 349 Goto, Han, Euh, Kang, Kim, Kawagoishi (b0105) 2010; 58 Yang, Tao, Lu, Lu (b0360) 2013; 68 Höppel, Kautz, Xu, Murashkin, Langdon, Valiev (b0070) 2006; 28 Agnew, Weertman (b0100) 1998; A244 Kunz, Lukàš, Svoboda (b0115) 2006; A424 Meyers, Mishra, Benson (b0010) 2006; 51 Zhang, Tao, Lu (b0135) 2011; 59 An, Wu, Zhang (b0195) 2010; 667 Haouaoui, Karaman, Maier (b0215) 2006; 54 Cahn, Taylor (b0240) 2004; 52 Yang, Ivanisenko, Caron, Chuvilin, Kurmanaeva, Scherer (b0155) 2010; 58 An XH et al., unpublished work. An, Lin, Wu, Zhang, Figueiredo, Gao (b0160) 2012; 66 Malekjani, Hodgson, Cizek, Hilditch (b0080) 2011; 59 Ueno, Kakihata, Kaneko, Hashimoto, Vinogradov (b0050) 2011; 59 Chowdhury, Huseyin Sehitoglu, Rateick, Maier (b0330) 2013; 61 Valiev, Langdon (b0175) 2006; 51 Qu, An, Yang, Huang, Yang, Zang (b0130) 2009; 57 Li, Li, Wang, Zhang (b0165) 2011; 56 Pan, Lu, Lu (b0295) 2013; 61 Zhao, Zhu, Liao, Horita, Langdon (b0185) 2007; A463 Lu, Lu, Suresh (b0025) 2009; 324 Vinogradov, Ishida, Kitagawa, Kopylov (b0345) 2005; 53 Höppel, Zhou, Mughrabi, Valiev (b0090) 2002; A82 Huang, Zhu, Jiang, Lowe (b0245) 2001; 49 Höppel, Xu, Kautz, Barta-Schreiber, Langdon, Mughrabi (b0210) 2004 Zhang, An, Zhang, Yang, Yang, Wu (b0275) 2013; 68 Farkas, Willemann, Hyde (b0315) 2005; 94 Patlan, Vinogradov, Higashi, Kitagawa (b0350) 2001; A300 Rupert, Gianola, Gan, Hemker (b0235) 2009; 326 Mughrabi, Höppel (b0045) 2010; 32 Feltner, Laird (b0200) 1967; 15 Lukàš, Kunz, Svoboda (b0110) 2007; A38 Schäfer, Albe (b0265) 2012; 66 Rupert, Schuh (b0225) 2012; 92 An, Lin, Wu, Zhang, Figueiredo, Gao (b0140) 2011; 91 Zhang, Zhang, Li, Zhang (b0290) 2012; 60 Szlufarska, Nakano, Vashishta (b0305) 2005; 309 Agnew, Vinogradov, Hashimoto, Weertman (b0095) 1999; 28 Vinogradov, Patlan, Suzuki, Kitagawa, Kopylov (b0340) 2002; 50 Hanlon, Kwon, Suresh (b0060) 2003; 49 Estrin, Vinogradov (b0020) 2013; 61 Bobylev, Mukherjee, Ovid’ko, Sheinerman (b0320) 2010; 26 Sangid, Pataky, Sehitoglu, Rateick, Niendorf, Maier (b0325) 2011; 59 An, Han, Huang, Zhang, Yang, Wu (b0150) 2008; 92 Mughrabi, Höppel, Kautz (b0035) 2004; 51 Mughrabi, Höppel, Kautz, Valiev (b0065) 2003; 94 Zhao, Zhu, Liao, Horita, Langdon (b0145) 2006; 89 Vinogradov, Patlan, Hashimoto, Kitagawa (b0085) 2002; A82 Shute, Myers, Xie, Li, Barb, Hodge (b0285) 2011; 59 Vinogradov, Hashimoto (b0030) 2003; 5 Hanlon, Tabachnikova, Suresh (b0040) 2005; 27 Suresh S. Fatigue of Materials. 2nd. Cambrige: Cambrige University Press; 1998. Balogh, Ungár, Zhao, Zhu, Horita, Xu (b0125) 2008; 56 Li (b0260) 2006; 96 Kumar, Van Swygenhoven, Suresh (b0005) 2003; 51 Valiev, Islamgaliev, Alexandrov (b0015) 2000; 45 Huang (10.1016/j.actamat.2014.04.053_b0245) 2001; 49 Feltner (10.1016/j.actamat.2014.04.053_b0200) 1967; 15 Balogh (10.1016/j.actamat.2014.04.053_b0125) 2008; 56 Bobylev (10.1016/j.actamat.2014.04.053_b0320) 2010; 26 Anderoglu (10.1016/j.actamat.2014.04.053_b0280) 2010; 26 Farkas (10.1016/j.actamat.2014.04.053_b0315) 2005; 94 Cheng (10.1016/j.actamat.2014.04.053_b0220) 2009; 57 10.1016/j.actamat.2014.04.053_b0055 Kunz (10.1016/j.actamat.2014.04.053_b0115) 2006; A424 Valiev (10.1016/j.actamat.2014.04.053_b0015) 2000; 45 Schäfer (10.1016/j.actamat.2014.04.053_b0265) 2012; 66 An (10.1016/j.actamat.2014.04.053_b0255) 2013; 68 Zhao (10.1016/j.actamat.2014.04.053_b0145) 2006; 89 Szlufarska (10.1016/j.actamat.2014.04.053_b0305) 2005; 309 Agnew (10.1016/j.actamat.2014.04.053_b0095) 1999; 28 Shute (10.1016/j.actamat.2014.04.053_b0285) 2011; 59 Zhang (10.1016/j.actamat.2014.04.053_b0290) 2012; 60 Lukàš (10.1016/j.actamat.2014.04.053_b0110) 2007; A38 Vinogradov (10.1016/j.actamat.2014.04.053_b0340) 2002; 50 Meyers (10.1016/j.actamat.2014.04.053_b0010) 2006; 51 Yang (10.1016/j.actamat.2014.04.053_b0360) 2013; 68 Vinogradov (10.1016/j.actamat.2014.04.053_b0030) 2003; 5 Rupert (10.1016/j.actamat.2014.04.053_b0225) 2012; 92 Agnew (10.1016/j.actamat.2014.04.053_b0100) 1998; A244 Mughrabi (10.1016/j.actamat.2014.04.053_b0045) 2010; 32 Höppel (10.1016/j.actamat.2014.04.053_b0070) 2006; 28 Mughrabi (10.1016/j.actamat.2014.04.053_b0170) 2013; 61 Kumar (10.1016/j.actamat.2014.04.053_b0005) 2003; 51 Wu (10.1016/j.actamat.2014.04.053_b0205) 2003; 48 Haouaoui (10.1016/j.actamat.2014.04.053_b0215) 2006; 54 Mughrabi (10.1016/j.actamat.2014.04.053_b0035) 2004; 51 Tucker (10.1016/j.actamat.2014.04.053_b0250) 2011; 27 Li (10.1016/j.actamat.2014.04.053_b0260) 2006; 96 Vinogradov (10.1016/j.actamat.2014.04.053_b0355) 2003; 349 Vinogradov (10.1016/j.actamat.2014.04.053_b0345) 2005; 53 Chowdhury (10.1016/j.actamat.2014.04.053_b0330) 2013; 61 Valiev (10.1016/j.actamat.2014.04.053_b0175) 2006; 51 Han (10.1016/j.actamat.2014.04.053_b0300) 2012; 2 Goto (10.1016/j.actamat.2014.04.053_b0105) 2010; 58 Hanlon (10.1016/j.actamat.2014.04.053_b0040) 2005; 27 Höppel (10.1016/j.actamat.2014.04.053_b0090) 2002; A82 Cheng (10.1016/j.actamat.2014.04.053_b0310) 2010; 104 An (10.1016/j.actamat.2014.04.053_b0180) 2011; 64 Patlan (10.1016/j.actamat.2014.04.053_b0350) 2001; A300 An (10.1016/j.actamat.2014.04.053_b0150) 2008; 92 An (10.1016/j.actamat.2014.04.053_b0190) 2010; A527 Li (10.1016/j.actamat.2014.04.053_b0165) 2011; 56 Estrin (10.1016/j.actamat.2014.04.053_b0020) 2013; 61 Zhao (10.1016/j.actamat.2014.04.053_b0185) 2007; A463 Meyers (10.1016/j.actamat.2014.04.053_b0120) 1999 Sangid (10.1016/j.actamat.2014.04.053_b0325) 2011; 59 10.1016/j.actamat.2014.04.053_b0230 Mughrabi (10.1016/j.actamat.2014.04.053_b0065) 2003; 94 Höppel (10.1016/j.actamat.2014.04.053_b0210) 2004 Wu (10.1016/j.actamat.2014.04.053_b0335) 2002; 82 An (10.1016/j.actamat.2014.04.053_b0160) 2012; 66 Malekjani (10.1016/j.actamat.2014.04.053_b0080) 2011; 59 Pan (10.1016/j.actamat.2014.04.053_b0295) 2013; 61 An (10.1016/j.actamat.2014.04.053_b0140) 2011; 91 Wong (10.1016/j.actamat.2014.04.053_b0075) 2007; 55 An (10.1016/j.actamat.2014.04.053_b0195) 2010; 667 Rupert (10.1016/j.actamat.2014.04.053_b0235) 2009; 326 Ueno (10.1016/j.actamat.2014.04.053_b0050) 2011; 59 Detor (10.1016/j.actamat.2014.04.053_b0270) 2007; 55 Lu (10.1016/j.actamat.2014.04.053_b0025) 2009; 324 Qu (10.1016/j.actamat.2014.04.053_b0130) 2009; 57 Yang (10.1016/j.actamat.2014.04.053_b0155) 2010; 58 Hanlon (10.1016/j.actamat.2014.04.053_b0060) 2003; 49 Zhang (10.1016/j.actamat.2014.04.053_b0135) 2011; 59 Cahn (10.1016/j.actamat.2014.04.053_b0240) 2004; 52 Zhang (10.1016/j.actamat.2014.04.053_b0275) 2013; 68 Vinogradov (10.1016/j.actamat.2014.04.053_b0085) 2002; A82 |
References_xml | – volume: 54 start-page: 5477 year: 2006 ident: b0215 publication-title: Acta Mater – volume: 92 start-page: 20 year: 2012 ident: b0225 publication-title: Philos Mag Lett – volume: 28 start-page: 1038 year: 1999 ident: b0095 publication-title: J Electron Mater – volume: 59 start-page: 4569 year: 2011 ident: b0285 publication-title: Acta Mater – volume: 68 start-page: 01 year: 2013 ident: b0360 publication-title: Scr Mater – volume: 309 start-page: 911 year: 2005 ident: b0305 publication-title: Science – volume: 66 start-page: 227 year: 2012 ident: b0160 publication-title: Scr Mater – volume: 49 start-page: 1497 year: 2001 ident: b0245 publication-title: Acta Mater – volume: 61 start-page: 782 year: 2013 ident: b0020 publication-title: Acta Mater – volume: A82 start-page: 317 year: 2002 ident: b0085 publication-title: Philos Mag – volume: 667 start-page: 379 year: 2010 ident: b0195 publication-title: Mater Sci Forum – volume: 49 start-page: 675 year: 2003 ident: b0060 publication-title: Scr Mater – volume: 50 start-page: 1639 year: 2002 ident: b0340 publication-title: Acta Mater – volume: 51 start-page: 807 year: 2004 ident: b0035 publication-title: Scr Mater – volume: 92 start-page: 201915 year: 2008 ident: b0150 publication-title: Appl Phys Lett – volume: 349 start-page: 318 year: 2003 ident: b0355 publication-title: Mater Sci Eng A – volume: 94 start-page: 1079 year: 2003 ident: b0065 publication-title: Z Metallkd – volume: A82 start-page: 1781 year: 2002 ident: b0090 publication-title: Philos Mag – year: 1999 ident: b0120 article-title: Mechanical behavior of materials – volume: 51 start-page: 427 year: 2006 ident: b0010 publication-title: Prog Mater Sci – volume: A463 start-page: 22 year: 2007 ident: b0185 publication-title: Mater Sci Eng – volume: 55 start-page: 715 year: 2007 ident: b0075 publication-title: Acta Mater – volume: 52 start-page: 4887 year: 2004 ident: b0240 publication-title: Acta Mater – volume: 59 start-page: 7340 year: 2011 ident: b0325 publication-title: Acta Mater – reference: Suresh S. Fatigue of Materials. 2nd. Cambrige: Cambrige University Press; 1998. – volume: 324 start-page: 349 year: 2009 ident: b0025 publication-title: Science – volume: 61 start-page: 1197 year: 2013 ident: b0170 publication-title: Acta Mater – volume: A424 start-page: 97 year: 2006 ident: b0115 publication-title: Mater Sci Eng – volume: 326 start-page: 1686 year: 2009 ident: b0235 publication-title: Science – volume: 2 start-page: 493 year: 2012 ident: b0300 publication-title: Sci Rep – volume: 59 start-page: 6048 year: 2011 ident: b0135 publication-title: Acta Mater – volume: 26 start-page: 875 year: 2010 ident: b0280 publication-title: Int J Plast – volume: 104 start-page: 255501 year: 2010 ident: b0310 publication-title: Phys Rev Lett – volume: 64 start-page: 249 year: 2011 ident: b0180 publication-title: Scr Mater – volume: 66 start-page: 315 year: 2012 ident: b0265 publication-title: Scr Mater – volume: 96 start-page: 215506 year: 2006 ident: b0260 publication-title: Phys Rev Lett – volume: 15 start-page: 1621 year: 1967 ident: b0200 publication-title: Acta Metall – volume: 27 start-page: 841 year: 2011 ident: b0250 publication-title: Int J Plast – reference: An XH et al., unpublished work. – volume: 59 start-page: 7060 year: 2011 ident: b0050 publication-title: Acta Mater – volume: 59 start-page: 5358 year: 2011 ident: b0080 publication-title: Acta Mater – volume: 5 start-page: 351 year: 2003 ident: b0030 publication-title: Adv Eng Mater – volume: 51 start-page: 5743 year: 2003 ident: b0005 publication-title: Acta Mater – volume: 57 start-page: 1272 year: 2009 ident: b0220 publication-title: Acta Mater – volume: 82 start-page: 559 year: 2002 ident: b0335 publication-title: Philos Mag Lett – volume: 27 start-page: 1147 year: 2005 ident: b0040 publication-title: Int J Fatigue – volume: A38 start-page: 1910 year: 2007 ident: b0110 publication-title: Matel Mater Trans – volume: 68 start-page: 389 year: 2013 ident: b0275 publication-title: Scr Mater – volume: 91 start-page: 3307 year: 2011 ident: b0140 publication-title: Philos Mag – volume: 61 start-page: 1383 year: 2013 ident: b0295 publication-title: Acta Mater – volume: 56 start-page: 328 year: 2011 ident: b0165 publication-title: Prog Mater Sci – volume: 55 start-page: 4221 year: 2007 ident: b0270 publication-title: Acta Mater – volume: 32 start-page: 1413 year: 2010 ident: b0045 publication-title: Int J Fatigue – volume: A244 start-page: 145 year: 1998 ident: b0100 publication-title: Mater Sci Eng – volume: 58 start-page: 6294 year: 2010 ident: b0105 publication-title: Acta Mater – year: 2004 ident: b0210 publication-title: 2nd International conference on nanomaterials by severe plastic deformation (NanoSPD2) – volume: 28 start-page: 1001 year: 2006 ident: b0070 publication-title: Int J Fatigue – volume: 58 start-page: 967 year: 2010 ident: b0155 publication-title: Acta Mater – volume: 26 start-page: 1629 year: 2010 ident: b0320 publication-title: Int J Plast – volume: 61 start-page: 2531 year: 2013 ident: b0330 publication-title: Acta Mater – volume: A300 start-page: 171 year: 2001 ident: b0350 publication-title: Mater Sci Eng – volume: 45 start-page: 103 year: 2000 ident: b0015 publication-title: Prog Mater Sci – volume: A527 start-page: 4510 year: 2010 ident: b0190 publication-title: Mater Sci Eng – volume: 68 start-page: 988 year: 2013 ident: b0255 publication-title: Scr Mater – volume: 60 start-page: 3113 year: 2012 ident: b0290 publication-title: Acta Mater – volume: 56 start-page: 809 year: 2008 ident: b0125 publication-title: Acta Mater – volume: 48 start-page: 1605 year: 2003 ident: b0205 publication-title: Scr Mater – volume: 51 start-page: 881 year: 2006 ident: b0175 publication-title: Prog Mater Sci – volume: 53 start-page: 2192 year: 2005 ident: b0345 publication-title: Acta Mater – volume: 57 start-page: 1586 year: 2009 ident: b0130 publication-title: Acta Mater – volume: 89 start-page: 121906 year: 2006 ident: b0145 publication-title: Appl Phys Lett – volume: 94 start-page: 165502 year: 2005 ident: b0315 publication-title: Phys Rev Lett – volume: A527 start-page: 4510 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0190 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2010.03.101 – volume: 48 start-page: 1605 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0205 publication-title: Scr Mater doi: 10.1016/S1359-6462(03)00141-6 – volume: 66 start-page: 315 year: 2012 ident: 10.1016/j.actamat.2014.04.053_b0265 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2011.11.031 – volume: 104 start-page: 255501 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0310 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.255501 – volume: 309 start-page: 911 year: 2005 ident: 10.1016/j.actamat.2014.04.053_b0305 publication-title: Science doi: 10.1126/science.1114411 – volume: 5 start-page: 351 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0030 publication-title: Adv Eng Mater doi: 10.1002/adem.200310078 – volume: 51 start-page: 427 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0010 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2005.08.003 – volume: 55 start-page: 715 year: 2007 ident: 10.1016/j.actamat.2014.04.053_b0075 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.09.002 – volume: 32 start-page: 1413 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0045 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2009.10.007 – volume: 60 start-page: 3113 year: 2012 ident: 10.1016/j.actamat.2014.04.053_b0290 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.02.016 – volume: 61 start-page: 782 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0020 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.10.038 – volume: 49 start-page: 675 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0060 publication-title: Scr Mater doi: 10.1016/S1359-6462(03)00393-2 – volume: 57 start-page: 1586 year: 2009 ident: 10.1016/j.actamat.2014.04.053_b0130 publication-title: Acta Mater doi: 10.1016/j.actamat.2008.12.002 – volume: 92 start-page: 20 year: 2012 ident: 10.1016/j.actamat.2014.04.053_b0225 publication-title: Philos Mag Lett doi: 10.1080/09500839.2011.619507 – volume: 51 start-page: 807 year: 2004 ident: 10.1016/j.actamat.2014.04.053_b0035 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2004.05.012 – volume: 89 start-page: 121906 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0145 publication-title: Appl Phys Lett doi: 10.1063/1.2356310 – volume: 58 start-page: 967 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0155 publication-title: Acta Mater doi: 10.1016/j.actamat.2009.10.013 – volume: 94 start-page: 165502 year: 2005 ident: 10.1016/j.actamat.2014.04.053_b0315 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.165502 – volume: 61 start-page: 1197 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0170 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.10.029 – volume: 68 start-page: 01 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0360 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2012.07.038 – volume: 58 start-page: 6294 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0105 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.07.051 – volume: 667 start-page: 379 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0195 publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.667-669.379 – volume: 82 start-page: 559 year: 2002 ident: 10.1016/j.actamat.2014.04.053_b0335 publication-title: Philos Mag Lett doi: 10.1080/09500830210157117 – volume: A244 start-page: 145 year: 1998 ident: 10.1016/j.actamat.2014.04.053_b0100 publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(97)00689-8 – volume: 57 start-page: 1272 year: 2009 ident: 10.1016/j.actamat.2014.04.053_b0220 publication-title: Acta Mater doi: 10.1016/j.actamat.2008.11.011 – volume: 59 start-page: 4569 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0285 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.04.002 – volume: 28 start-page: 1038 year: 1999 ident: 10.1016/j.actamat.2014.04.053_b0095 publication-title: J Electron Mater doi: 10.1007/s11664-999-0181-0 – volume: 59 start-page: 6048 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0135 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.06.013 – volume: 92 start-page: 201915 year: 2008 ident: 10.1016/j.actamat.2014.04.053_b0150 publication-title: Appl Phys Lett doi: 10.1063/1.2936306 – volume: 326 start-page: 1686 year: 2009 ident: 10.1016/j.actamat.2014.04.053_b0235 publication-title: Science doi: 10.1126/science.1178226 – volume: 56 start-page: 809 year: 2008 ident: 10.1016/j.actamat.2014.04.053_b0125 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.10.053 – volume: 59 start-page: 7060 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0050 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.061 – volume: 94 start-page: 1079 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0065 publication-title: Z Metallkd doi: 10.3139/146.031079 – volume: 50 start-page: 1639 year: 2002 ident: 10.1016/j.actamat.2014.04.053_b0340 publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00437-2 – volume: 51 start-page: 5743 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0005 publication-title: Acta Mater doi: 10.1016/j.actamat.2003.08.032 – year: 1999 ident: 10.1016/j.actamat.2014.04.053_b0120 – volume: 96 start-page: 215506 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0260 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.215506 – volume: 52 start-page: 4887 year: 2004 ident: 10.1016/j.actamat.2014.04.053_b0240 publication-title: Acta Mater doi: 10.1016/j.actamat.2004.02.048 – volume: 59 start-page: 5358 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0080 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.05.013 – volume: A82 start-page: 317 year: 2002 ident: 10.1016/j.actamat.2014.04.053_b0085 publication-title: Philos Mag doi: 10.1080/01418610208239601 – year: 2004 ident: 10.1016/j.actamat.2014.04.053_b0210 – volume: 26 start-page: 875 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0280 publication-title: Int J Plast doi: 10.1016/j.ijplas.2009.11.003 – volume: A463 start-page: 22 year: 2007 ident: 10.1016/j.actamat.2014.04.053_b0185 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2006.08.119 – volume: 27 start-page: 841 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0250 publication-title: Int J Plast doi: 10.1016/j.ijplas.2010.09.011 – volume: 51 start-page: 881 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0175 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2006.02.003 – volume: 61 start-page: 1383 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0295 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.11.015 – volume: A82 start-page: 1781 year: 2002 ident: 10.1016/j.actamat.2014.04.053_b0090 publication-title: Philos Mag doi: 10.1080/01418610208235689 – volume: 349 start-page: 318 year: 2003 ident: 10.1016/j.actamat.2014.04.053_b0355 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(02)00813-4 – volume: 28 start-page: 1001 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0070 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.08.014 – volume: 324 start-page: 349 year: 2009 ident: 10.1016/j.actamat.2014.04.053_b0025 publication-title: Science doi: 10.1126/science.1159610 – volume: A424 start-page: 97 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0115 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2006.02.029 – volume: 64 start-page: 249 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0180 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2010.10.012 – volume: 68 start-page: 389 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0275 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2012.10.036 – volume: 91 start-page: 3307 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0140 publication-title: Philos Mag doi: 10.1080/14786435.2011.577757 – ident: 10.1016/j.actamat.2014.04.053_b0230 – volume: 66 start-page: 227 year: 2012 ident: 10.1016/j.actamat.2014.04.053_b0160 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2011.10.043 – volume: 49 start-page: 1497 year: 2001 ident: 10.1016/j.actamat.2014.04.053_b0245 publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00069-6 – volume: 45 start-page: 103 year: 2000 ident: 10.1016/j.actamat.2014.04.053_b0015 publication-title: Prog Mater Sci doi: 10.1016/S0079-6425(99)00007-9 – volume: A300 start-page: 171 year: 2001 ident: 10.1016/j.actamat.2014.04.053_b0350 publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(00)01682-8 – volume: 27 start-page: 1147 year: 2005 ident: 10.1016/j.actamat.2014.04.053_b0040 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.06.035 – volume: 26 start-page: 1629 year: 2010 ident: 10.1016/j.actamat.2014.04.053_b0320 publication-title: Int J Plast doi: 10.1016/j.ijplas.2010.03.001 – volume: 55 start-page: 4221 year: 2007 ident: 10.1016/j.actamat.2014.04.053_b0270 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.03.024 – volume: 2 start-page: 493 year: 2012 ident: 10.1016/j.actamat.2014.04.053_b0300 publication-title: Sci Rep doi: 10.1038/srep00493 – ident: 10.1016/j.actamat.2014.04.053_b0055 doi: 10.1017/CBO9780511806575 – volume: 56 start-page: 328 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0165 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2010.12.001 – volume: 53 start-page: 2192 year: 2005 ident: 10.1016/j.actamat.2014.04.053_b0345 publication-title: Acta Mater doi: 10.1016/j.actamat.2005.01.046 – volume: 15 start-page: 1621 year: 1967 ident: 10.1016/j.actamat.2014.04.053_b0200 publication-title: Acta Metall doi: 10.1016/0001-6160(67)90137-X – volume: 68 start-page: 988 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0255 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2013.02.053 – volume: A38 start-page: 1910 year: 2007 ident: 10.1016/j.actamat.2014.04.053_b0110 publication-title: Matel Mater Trans doi: 10.1007/s11661-007-9108-7 – volume: 54 start-page: 5477 year: 2006 ident: 10.1016/j.actamat.2014.04.053_b0215 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.07.022 – volume: 59 start-page: 7340 year: 2011 ident: 10.1016/j.actamat.2014.04.053_b0325 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.058 – volume: 61 start-page: 2531 year: 2013 ident: 10.1016/j.actamat.2014.04.053_b0330 publication-title: Acta Mater doi: 10.1016/j.actamat.2013.01.030 |
SSID | ssj0012740 |
Score | 2.4860444 |
Snippet | Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu–Al alloys produced by equal channel angular pressing were investigated... Cyclic deformation responses of ultrafine-grained (UFG) Cu and nanocrystalline (NC) Cu-Al alloys produced by equal channel angular pressing were investigated... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 200 |
SubjectTerms | Alloys Amplitudes Applied sciences Copper COPPER ALLOYS (40 TO 99.3 CU) COPPER ALUMINUM ALLOYS Copper base alloys CRYSTAL STRUCTURE Cyclic softening DEFORMATION Exact sciences and technology Fatigue Fatigue (materials) Fatigue damage mechanism FATIGUE PROPERTIES GRAIN SIZE AND SHAPE High cycle fatigue Intermetallic compounds Low cycle fatigue Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Nanocrystalline Cu–Al alloys SOFTENING Stacking fault energy Ultrafine-grained Cu |
Title | Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys |
URI | https://dx.doi.org/10.1016/j.actamat.2014.04.053 https://www.proquest.com/docview/1642240725 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swELcQvAxNiG1MKxuVkfYamj92Ej9WFahsghdA4s049nkrqtKqTR_6gvYd9g33SXaXPwWEJqQpeYmVi62zc77z3f2Osa_KAxoaKQQ2BQhEDFmgnKNjjkjZzDgVe8pGvrhMxzfi26283WKjLheGwipb2d_I9Fpaty2DlpuD-WQyuIoSqQiPCk0E8u9Rwq8QGa3yk4dNmEeEVleTKSxVQG8_ZvEM7nHIlUHFkCK8RI14KpN_7U9v52aJXPNNuYsXkrvejs722V6rR_JhM9R3bAvK92z3CbrgB3Z3Wv6s_fvcru10YrmDTaoiXzSxsbDkM89X02phPFIGP6hiBFKMVtyUjpemnNnFGjVIgu4GbP7z6_dwyslbv14esJuz0-vROGgLKgRWJHkVCJP7yFsRutibUPgoctJGiZWxgwiEKPLUKwGFldYZW0CYuzhLSaUyIV5p8pFtl7MSPjGe5VbhpxJjilQUcWZMRlj2psiEiyHNe0x0bNS2RRunohdT3YWV3euW-5q4r0O8ZdJjJxuyeQO38RpB3s2RfrZuNG4Jr5H2n83ppsMYtVDU6lSPHXeTrPGnI0-KKWG2Wmq0MRtoOXn4__1_Zm_oqYkm_MK2q8UKjlDDqYp-vYT7bGd4_n18-Rfewv7U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LANw9A9imWPVgN29eKHZFvHIGiRvnJZC_SmyRLVpgicIHEOufU_9B_ul4yK7XTFUBQo7JMMWgIpU6RJfgT4IR2So5FiYFLEgMeYBdJa_5sjkibTVsbOVyOfjdLhBT--FJdbMGhrYXxaZaP7a52-1tbNSK_hZm82Hvd-RYmQHo-KXAQf38tfwLZHpxId2O4fnQxHm2ACOV51sbCQgSe4L-Tp3dCqK022oU_y4mvQU5E8dkS9mekFMc7VHS_-U97rE-lwB942piTr16t9B1tYvofX_wAMfoDfB-X1OsTPzMpMxoZZ3FQrsnmdHosLNnVsOanm2hFlcOWbRhDFYMl0aVmpy6mZr8iI9OjdSMN_bu_6E-YD9qvFR7g4PDgfDIOmp0JgeJJXAde5i5zhoY2dDrmLIitMlBgRW4yQ8yJPneRYGGGsNgWGuY2z1FtVOqQrTXahU05L_AQsy42kVyVaFykv4kzrzMPZ6yLjNsY07wJv2ahMAzju-15MVJtZdqMa7ivPfRXSLZIu_NyQzWrEjacI8lZG6sHWUXQqPEW690CmmwljMkTJsJNd-N4KWdF354MpusTpcqHIzazR5cTn58-_Dy-H52en6vRodPIFXvkndXLhV-hU8yV-I4OnKvaaDf0XjZIBlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cyclic+deformation+responses+of+ultrafine-grained+Cu+and+nanocrystalline+Cu-Al+alloys&rft.jtitle=Acta+materialia&rft.au=An%2C+X+H&rft.au=Wu%2C+S+D&rft.au=Wang%2C+Z+G&rft.au=Zhang%2C+Z+F&rft.date=2014-08-01&rft.issn=1359-6454&rft.volume=74&rft.spage=200&rft.epage=214&rft_id=info:doi/10.1016%2Fj.actamat.2014.04.053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |