Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 3674 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H
2
and O
2
evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P
2
W
17
V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P
2
W
15
V
3
}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O
2
evolution using BiVO
4
photocatalyst and stable H
2
production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion. |
---|---|
AbstractList | It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H
2
and O
2
evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P
2
W
17
V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P
2
W
15
V
3
}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O
2
evolution using BiVO
4
photocatalyst and stable H
2
production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion. It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H and O evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P W V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P W V }) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O evolution using BiVO photocatalyst and stable H production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion. Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. |
ArticleNumber | 3674 |
Author | Li, Ren-Gui Zhao, Yue Ge, Xin-Yue Yang, Le Cui, Li-Ping Feng, Liu-Bin Li, Ke Chen, Jia-Jia Zhang, Shu |
Author_xml | – sequence: 1 givenname: Li-Ping surname: Cui fullname: Cui, Li-Ping organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: Shu surname: Zhang fullname: Zhang, Shu organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 4 givenname: Xin-Yue surname: Ge fullname: Ge, Xin-Yue organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 5 givenname: Le surname: Yang fullname: Yang, Le organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 6 givenname: Ke surname: Li fullname: Li, Ke organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 7 givenname: Liu-Bin surname: Feng fullname: Feng, Liu-Bin organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 8 givenname: Ren-Gui orcidid: 0000-0002-8099-0934 surname: Li fullname: Li, Ren-Gui email: rgli@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 9 givenname: Jia-Jia orcidid: 0000-0003-1044-7079 surname: Chen fullname: Chen, Jia-Jia email: JiaJia.Chen@xmu.edu.cn organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40246818$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vFSEUxSemxtbaL-DCkLhxM8oFZt6wNI1_mjRxU7cSBi7PeWHgCYzt-_bSN7UaF7KB3PzOuZyc581JiAGb5iXQt0D58C4LEP2mpaxru6FnrB2eNGeMCmhhw_jJX-_T5iLnHa2HSxiEeNacCspEP8Bw1ny7WYIePZJ58WVq0aMpKQaS0MY7so_-EO_ijEV7XTATFxOxaOKy92jJbZ0lkvd-KmUKW2LT9BMDGQ8kL8FP2-_lRfPUaZ_x4uE-b75-_HBz-bm9_vLp6vL9dWsEH0orOikpt-B6x1Cw3jLDqAZunLOSA7VSCstGZwVQN8quZuk2oKng0KPQgp83V6uvjXqn9mmadTqoqCd1HMS0VTqVyXhUYEFbNxhddQJBaqiBzAj9KCyAdtXrzeq1T_HHgrmoecoGvdcB45IVBwlcbljHKvr6H3QXlxRq0iPFespgqNSrB2oZZ7SP3_vdQgXYCpgUc07oHhGg6r5ttbatatvq2La6F_FVlCsctpj-7P6P6hceeqxS |
Cites_doi | 10.1021/ja00271a025 10.1039/c2cs35190k 10.1016/0263-7855(96)00018-5 10.1016/j.ccr.2011.01.026 10.1016/j.apcatb.2019.118075 10.1038/s41929-018-0037-1 10.1007/s10311-018-0814-8 10.1002/cctc.201901865 10.1039/B802262N 10.1039/D1EE03014K 10.1063/1.464304 10.1038/s41563-023-01767-y 10.1002/adma.202008264 10.1021/ic00270a014 10.1002/qua.24699 10.1002/aenm.202203455 10.1016/j.joule.2022.06.017 10.1002/adma.202007129 10.1126/science.1257443 10.12677/JAPC.2015.44013 10.1002/aenm.202203762 10.1016/j.ccr.2024.215998 10.1039/C7CP01203A 10.1039/D4SE00331D 10.1016/j.apcatb.2019.118271 10.1021/acsenergylett.9b02206 10.1038/s41560-023-01370-0 10.1038/s41570-018-0112 10.1038/s41557-018-0109-5 10.1063/1.4865107 10.1002/chem.201903142 10.1016/j.inoche.2003.10.011 10.1126/science.aau5701 10.1021/jacs.6b03187 10.1038/s41557-021-00850-8 10.1039/D3EE02087H 10.1039/D1EE01226F 10.1038/s41560-022-01011-y 10.1002/adma.202107425 10.1002/anie.202001438 10.1039/C9CP06824D 10.1039/D0EE03892J 10.1126/science.275.5302.996 10.1021/ic00008a006 10.1002/anie.202302575 10.1002/adfm.202408968 10.1039/C8EE00422F 10.1039/b508541a 10.1016/j.apcatb.2021.120998 10.1126/science.abd5491 10.1038/s43586-023-00226-x 10.1039/c2ee23081j 10.1103/PhysRevB.54.11169 10.1016/j.apcatb.2016.03.026 10.1038/s41570-022-00394-6 10.1021/ic500087t 10.1038/nchem.1621 10.1038/ncomms4585 10.1016/j.ccr.2024.216113 10.1021/ar9002812 10.1021/acs.chemrev.7b00444 10.1039/C8CS00559A 10.1038/natrevmats.2017.50 10.1016/j.joule.2018.06.011 10.1021/jacs.1c10584 10.1021/ic702295y 10.1002/jcc.22885 10.1002/9780470132586.ch18 10.1016/j.apcatb.2024.124527 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-58622-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1d1adf8ca4a44e19a1deccb16b4d11af 40246818 10_1038_s41467_025_58622_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION PHGZM NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c438t-459903d1f6f2e426d2c20a13cffd9310d994d2bfd410fb95000571a04316e4a43 |
IEDL.DBID | AAJSJ |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Fri Jul 11 18:35:45 EDT 2025 Sat Aug 23 12:42:46 EDT 2025 Mon Apr 21 02:01:08 EDT 2025 Tue Jul 01 05:10:05 EDT 2025 Fri Apr 18 01:16:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-459903d1f6f2e426d2c20a13cffd9310d994d2bfd410fb95000571a04316e4a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8099-0934 0000-0003-1044-7079 |
OpenAccessLink | https://www.nature.com/articles/s41467-025-58622-8 |
PMID | 40246818 |
PQID | 3191260218 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d1adf8ca4a44e19a1deccb16b4d11af proquest_miscellaneous_3191397252 proquest_journals_3191260218 pubmed_primary_40246818 crossref_primary_10_1038_s41467_025_58622_8 springer_journals_10_1038_s41467_025_58622_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-17 |
PublicationDateYYYYMMDD | 2025-04-17 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HN Miras (58622_CR43) 2012; 41 M Xiao (58622_CR51) 2015; 4 M Martin-Sabi (58622_CR44) 2018; 1 J-J Chen (58622_CR48) 2022; 144 J Zhu (58622_CR3) 2021; 372 D Huang (58622_CR30) 2021; 14 ZP Ifkovits (58622_CR12) 2021; 14 C Costentin (58622_CR70) 2010; 43 L Zhang (58622_CR22) 2022; 6 J Dong (58622_CR45) 2024; 517 WC Jiang (58622_CR28) 2023; 62 M Hu (58622_CR20) 2023; 13 F Ai (58622_CR21) 2022; 7 R Casasnovas (58622_CR52) 2014; 114 J Lei (58622_CR53) 2019; 25 XQ Yan (58622_CR27) 2025; 360 XJ Wu (58622_CR39) 2021; 33 C Kumar (58622_CR38) 2019; 17 Y Zhao (58622_CR10) 2020; 59 L Chen (58622_CR34) 2019; 48 LG Bloor (58622_CR5) 2016; 138 RG Finke (58622_CR59) 1986; 108 R Li (58622_CR41) 2019; 259 Y Ma (58622_CR4) 2023; 13 S Amthor (58622_CR11) 2022; 14 P Bai (58622_CR23) 2014; 5 58622_CR47 S-J Yang (58622_CR69) 2017; 19 I Slobodkin (58622_CR13) 2024; 23 IA Weinstock (58622_CR32) 2018; 118 B Rausch (58622_CR54) 2014; 345 J-J Chen (58622_CR49) 2018; 10 W Humphrey (58622_CR67) 1996; 14 S Nishioka (58622_CR7) 2023; 3 J Friedl (58622_CR33) 2018; 11 M Wang (58622_CR17) 2012; 5 L-P Cui (58622_CR36) 2024; 34 S-T Gao (58622_CR68) 2020; 22 MD Symes (58622_CR8) 2013; 5 NI Gumerova (58622_CR35) 2018; 2 AG Wallace (58622_CR14) 2018; 2 B Jin (58622_CR31) 2022; 15 XQ Wang (58622_CR9) 2024; 8 K Mathew (58622_CR62) 2014; 140 F Weigend (58622_CR65) 2005; 7 G Kresse (58622_CR61) 1996; 54 L Yang (58622_CR24) 2022; 34 M Abbessi (58622_CR57) 1991; 30 J Yan (58622_CR15) 2016; 191 Y Zhao (58622_CR60) 2020; 12 I Mbomekalle (58622_CR55) 2004; 7 Y Kang (58622_CR16) 2022; 6 F Puntoriero (58622_CR25) 2011; 255 Y Zhang (58622_CR29) 2021; 33 SS Chen (58622_CR37) 2017; 2 L Wang (58622_CR18) 2019; 363 RG Finke (58622_CR58) 1987; 26 YJ Dong (58622_CR42) 2022; 304 J Barber (58622_CR1) 2009; 38 J Chen (58622_CR26) 2020; 262 BC Zhang (58622_CR40) 2024; 518 R Contant (58622_CR56) 1990; 27 58622_CR63 L Parent (58622_CR50) 2014; 53 J Lei (58622_CR19) 2023; 8 AD Becke (58622_CR64) 1993; 98 JM Olson (58622_CR2) 1997; 275 T Lu (58622_CR66) 2012; 33 W Ma (58622_CR6) 2020; 5 S Daemi (58622_CR46) 2023; 16 |
References_xml | – volume: 108 start-page: 2947 year: 1986 ident: 58622_CR59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00271a025 – volume: 41 start-page: 7403 year: 2012 ident: 58622_CR43 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35190k – volume: 14 start-page: 33 year: 1996 ident: 58622_CR67 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 255 start-page: 2594 year: 2011 ident: 58622_CR25 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.01.026 – volume: 259 start-page: 118075 year: 2019 ident: 58622_CR41 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118075 – volume: 1 start-page: 208 year: 2018 ident: 58622_CR44 publication-title: Nature Catalysis doi: 10.1038/s41929-018-0037-1 – volume: 17 start-page: 655 year: 2019 ident: 58622_CR38 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0814-8 – volume: 12 start-page: 1585 year: 2020 ident: 58622_CR60 publication-title: ChemCatChem doi: 10.1002/cctc.201901865 – volume: 38 start-page: 185 year: 2009 ident: 58622_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – volume: 15 start-page: 672 year: 2022 ident: 58622_CR31 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03014K – volume: 98 start-page: 1372 year: 1993 ident: 58622_CR64 publication-title: J. Chem. Phys doi: 10.1063/1.464304 – volume: 23 start-page: 398 year: 2024 ident: 58622_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01767-y – volume: 33 start-page: 2008264 year: 2021 ident: 58622_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.202008264 – volume: 26 start-page: 3886 year: 1987 ident: 58622_CR58 publication-title: Inorg. Chem. doi: 10.1021/ic00270a014 – volume: 114 start-page: 1350 year: 2014 ident: 58622_CR52 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24699 – ident: 58622_CR63 – volume: 13 start-page: 2203455 year: 2023 ident: 58622_CR4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203455 – volume: 6 start-page: 1876 year: 2022 ident: 58622_CR16 publication-title: Joule doi: 10.1016/j.joule.2022.06.017 – volume: 33 start-page: 2007129 year: 2021 ident: 58622_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.202007129 – volume: 345 start-page: 1326 year: 2014 ident: 58622_CR54 publication-title: Science doi: 10.1126/science.1257443 – volume: 4 start-page: 111 year: 2015 ident: 58622_CR51 publication-title: J. Adv. Phys. Chem. doi: 10.12677/JAPC.2015.44013 – volume: 13 start-page: 2203762 year: 2023 ident: 58622_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203762 – volume: 517 start-page: 215998 year: 2024 ident: 58622_CR45 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215998 – volume: 19 start-page: 12480 year: 2017 ident: 58622_CR69 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01203A – volume: 8 start-page: 2446 year: 2024 ident: 58622_CR9 publication-title: Sustain. Energ. Fuels. doi: 10.1039/D4SE00331D – volume: 262 start-page: 118271 year: 2020 ident: 58622_CR26 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118271 – volume: 5 start-page: 597 year: 2020 ident: 58622_CR6 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b02206 – volume: 8 start-page: 1355 year: 2023 ident: 58622_CR19 publication-title: Nat. Energy doi: 10.1038/s41560-023-01370-0 – volume: 2 start-page: 0112 year: 2018 ident: 58622_CR35 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0112 – volume: 10 start-page: 1042 year: 2018 ident: 58622_CR49 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0109-5 – volume: 140 start-page: 084106 year: 2014 ident: 58622_CR62 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 25 start-page: 11432 year: 2019 ident: 58622_CR53 publication-title: Chem. Eur. J. doi: 10.1002/chem.201903142 – volume: 7 start-page: 86 year: 2004 ident: 58622_CR55 publication-title: O. Inorg Chem Commun. doi: 10.1016/j.inoche.2003.10.011 – volume: 363 start-page: 265 year: 2019 ident: 58622_CR18 publication-title: Science doi: 10.1126/science.aau5701 – volume: 138 start-page: 6707 year: 2016 ident: 58622_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03187 – volume: 14 start-page: 321 year: 2022 ident: 58622_CR11 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00850-8 – volume: 16 start-page: 4530 year: 2023 ident: 58622_CR46 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02087H – volume: 14 start-page: 4740 year: 2021 ident: 58622_CR12 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01226F – volume: 7 start-page: 417 year: 2022 ident: 58622_CR21 publication-title: Nat. Energy doi: 10.1038/s41560-022-01011-y – volume: 34 start-page: 2107425 year: 2022 ident: 58622_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.202107425 – volume: 59 start-page: 9653 year: 2020 ident: 58622_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001438 – volume: 22 start-page: 9607 year: 2020 ident: 58622_CR68 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06824D – volume: 14 start-page: 1480 year: 2021 ident: 58622_CR30 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03892J – volume: 275 start-page: 996 year: 1997 ident: 58622_CR2 publication-title: Science doi: 10.1126/science.275.5302.996 – volume: 30 start-page: 1695 year: 1991 ident: 58622_CR57 publication-title: Inorg. Chem. doi: 10.1021/ic00008a006 – volume: 62 year: 2023 ident: 58622_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202302575 – volume: 34 start-page: 2408968 year: 2024 ident: 58622_CR36 publication-title: Adv. Funct. Mater doi: 10.1002/adfm.202408968 – volume: 11 start-page: 3010 year: 2018 ident: 58622_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00422F – volume: 7 start-page: 3297 year: 2005 ident: 58622_CR65 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 304 start-page: 120998 year: 2022 ident: 58622_CR42 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120998 – volume: 372 start-page: 968 year: 2021 ident: 58622_CR3 publication-title: Science doi: 10.1126/science.abd5491 – volume: 3 start-page: 42 year: 2023 ident: 58622_CR7 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-023-00226-x – volume: 5 start-page: 9394 year: 2012 ident: 58622_CR17 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23081j – volume: 54 start-page: 11169 year: 1996 ident: 58622_CR61 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 191 start-page: 130 year: 2016 ident: 58622_CR15 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.03.026 – volume: 6 start-page: 524 year: 2022 ident: 58622_CR22 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00394-6 – volume: 53 start-page: 5941 year: 2014 ident: 58622_CR50 publication-title: Inorg. Chem. doi: 10.1021/ic500087t – volume: 5 start-page: 403 year: 2013 ident: 58622_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.1621 – volume: 5 year: 2014 ident: 58622_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms4585 – volume: 518 start-page: 216113 year: 2024 ident: 58622_CR40 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.216113 – volume: 43 start-page: 1019 year: 2010 ident: 58622_CR70 publication-title: Acc. Chem. Res. doi: 10.1021/ar9002812 – volume: 118 start-page: 2680 year: 2018 ident: 58622_CR32 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00444 – volume: 48 start-page: 260 year: 2019 ident: 58622_CR34 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00559A – volume: 2 start-page: 17050 year: 2017 ident: 58622_CR37 publication-title: Nat. Rev. Mater doi: 10.1038/natrevmats.2017.50 – volume: 2 start-page: 1390 year: 2018 ident: 58622_CR14 publication-title: Joule doi: 10.1016/j.joule.2018.06.011 – volume: 144 start-page: 8951 year: 2022 ident: 58622_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10584 – ident: 58622_CR47 doi: 10.1021/ic702295y – volume: 33 start-page: 580 year: 2012 ident: 58622_CR66 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 27 start-page: 104 year: 1990 ident: 58622_CR56 publication-title: Inorg Synth doi: 10.1002/9780470132586.ch18 – volume: 360 start-page: 124527 year: 2025 ident: 58622_CR27 publication-title: Appl. Catal. B-Environ. Energy. doi: 10.1016/j.apcatb.2024.124527 |
SSID | ssj0000391844 |
Score | 2.4843583 |
Snippet | It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural... Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 3674 |
SubjectTerms | 119/118 140/131 639/301/299/890 639/4077/909/4101/4102 639/638/224/909/4086/4087 639/638/439/890 Buffers Defects Electrode potentials Electrolysis Electron transfer Energy storage Fuels Humanities and Social Sciences Hydrogen production Molecular clusters multidisciplinary pH effects Photocatalysis Polyoxometallates Protons Redox potential Redox properties Relay systems Science Science (multidisciplinary) Solar energy Splitting Subsystems Tungsten Vanadium Water splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb1erRPCmS5vHvo4qliLoqYWeDEmTnOpu6Xax_fdOsttaUfHiNZvdTWaSmW-YZD6ErqkhhqZdHSaUxyG3ioXg5bJQApgHeJwx4zOmzy9xf8ifRtFog-rLnQmrywPXgusQTaS26VhyybkhmSQa_qpIrLgmRFpnfcHnbQRT3gazDEIX3tyS6bK0U3JvExx7awQoHszAF0_kC_b_hDK_ZUi94-ntod0GMeK7eqT7aMvkB2i75pBcHqLXQeWvP2F_NDBc0dpgVwh0gafFZFksijcDGNuhSgwYFcPUimo6MRq_Q9sMlwBE_fFnrGfO-GG1xGWVT1zcfoSGvcfBQz9sSBPCMWfpPOQR-BemiY0tNeB-NR3TriRsbK3OAMvpLOOaKqs56VqVOT6EKCHS1diJDciYHaNWXuTmFOEE_GeiqHEMmlyRJFUJqAF6W89FyAN0sxKgmNa1MYTPabNU1OIWIG7hxS3SAN07Ga97urrWvgG0LRpti7-0HaD2SkOi2WylACtCICwDsBKgq_Vj2CYu9yFzU1R1H4BeNKIBOqk1ux4JhNA8Tt3btytVf3789wmd_ceEztEOdWvSVY9M2qg1n1XmAmDOXF36Ff0BmWH5EQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojwDLTISN7C6diaJc0JQtaqQ4NRKe8KyY5vLkmw3G9H998w4yVaIxzVxEmdmPPPZY8_H2FsVZFB64UWloBQQXS4wytXCIphHeFznIWVMv3wtL67g87JYTgtu_bStcvaJyVH7rqE18hM0FYnYGyPSh_W1INYoyq5OFBp32T0qXUZWXS2r_RoLVT_XANNZmUWuT3pInoE4XAvE8ugMfotHqWz_37DmH3nSFH7OH7GHE27kH0dFH7I7oX3M7o9Mkrsn7NvlkA5B8bRBUMzkNpzKgd7wdbfadTfdj4BIm7AlR6TKPU48h_UqeP4Tr214j3A0bYLmfkMukLsd74d2RbP3p-zq_Ozy9EJM1AmigVxvBRQYZXIvYxlVwCDsVaMWVuZNjL5GROfrGrxy0YNcRFcTK0JRSUuVdsoAFvJn7KDt2vCC8QqjaOVUIB5NcLLSrmosYOuYGAkhY-9mAZr1WCHDpMx2rs0oboPiNkncRmfsE8l435KqW6cL3ea7mQaLkV5aHzV-xgIEWVuJImmcLB14KW3M2NGsITMNud7cGkjG3uxv42ChDIhtQzeMbRCAqUJl7Pmo2X1PcCINpaan38-qvn35v3_o5f_78oo9UGRtVB2yOmIH280QjhHGbN3rZKu_APX67mM priority: 102 providerName: ProQuest |
Title | Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight |
URI | https://link.springer.com/article/10.1038/s41467-025-58622-8 https://www.ncbi.nlm.nih.gov/pubmed/40246818 https://www.proquest.com/docview/3191260218 https://www.proquest.com/docview/3191397252 https://doaj.org/article/1d1adf8ca4a44e19a1deccb16b4d11af |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG8CS2UkbhBRO5PEOXarLatKrBDsSj1h2bXNpSRV24jtv2fsJEWI5cAlkZxx4szYns-vbwDeCsedkGOblgKLFL3JUvJyVaoJzBM8rjIXV0w_XRWXNzhf5IsjEMNZmLhpP1Jaxm562B32YYuxSYfgqzmBcGrFx3AaqNqpbp9OJvOv88PMSuA8l4j9CZlxJu_I_IcXimT9dyHMv1ZHo9OZPYQHPVpkk658j-DI1Y_hXhc_cv8Evl238egTi9sC0yGkDQskoLds3az2zW3zwxG-DoiSET5lloab7XrlLPtJaRu2JRAatz4zuwkdHzN7tm3rVRizP4Wb2cX19DLtAyakS8zkLsWcfEtmuS-8cOR6rViKsebZ0ntbEY6zVYVWGG-Rj72pQiyEvOQ68OsUDjVmz-Ckbmr3AlhJvrM0woXomWh4KU251EjSPsYhxATeDQpU644XQ8X17EyqTt2K1K2iupVM4Dzo-CAZOK1jQrP5rnobK265tl7SZzSi45XmpJKl4YVBy7n2CZwNFlJ9Q9sq6kE4DckIqCTw5vCYmkhY99C1a9pOhmCXyEUCzzvLHkpCw2csZMj9fjD175f_-4de_p_4K7gvQu0LHJHlGZzsNq17TWBmZ0ZwXC5KusrZx1Ffk-l-fnH1-QulTovpKE4T_ALfPvLh |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFHXzuR1QIjXsqWP01bqCdeObS5Lsmw2avdP8RuZcTZbIR63Xh3Hccbjmc8eez7GXkgnnCxGNs4lZDF4k8To5cpYI5hHeFwmLkRMD4-yyTF8OUlPttjP4S4MHascbGIw1LapaI98F1VFIPZGj_R2_iMm1iiKrg4UGr1a7LvVGS7Z2jd7H3F8X0o5_jT9MInXrAJxBUmxjCFFA5xY4TMvHfonKys50iKpvLclgh1blmCl8RbEyJuSCAPSXGhKQpM50JBgu1fYVUjQk9PN9PHnzZ4OZVsvANZ3c0ZJsdtCsETEGZvi2gGNz2_-L9AE_A3b_hGXDe5ufIvdXONU_q5XrNtsy9V32LWeuXJ1l32dduHSFQ8HEuOBTIdT-tFzPm9mq-a8-e4Q2ROW5YiMucWFbjefOcvPsGzBW4S_4dA1twsyudyseNvVM9otuMeOL0Wo99l23dTuIeM5eu3cSEe8nWBEXpi80oC1fWBAhIi9GgSo5n1GDhUi6UmhenErFLcK4lZFxN6TjDc1KZt2KGgW39R6ciphhba-wM9oACdKLVAklRGZASuE9hHbGUZIrad4qy4UMmLPN49xclLERdeu6fo6qCYylRF70I_spie4cIesoLdfD0N90fi_f-jR__vyjF2fTA8P1MHe0f5jdkOS5lFmynyHbS8XnXuCEGppnga95ez0sifKL8FgKcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4h27TivA0KUdtVSWFWolXrCdWKby3az3WzU7l_j1zHjJFshHrdeE2-SHc_jG489H8BrYbkV2ciEqZBJKF0RhRjl8lAjmEd4nEfWV0y_TpK9Y_n5JD7ZgJ_9WRjaVtn7RO-oTVXSGvkQVYUj9saINHTdtojDnfGH-XlIDFJUae3pNFoVObCrC0zf6vf7OzjXb4QY7x592gs7hoGwlFG2DGWMzjgy3CVOWIxVRpRipHlUOmdyBD4mz6URhTOSj1yRE3lAnHJNDWkSK7WM8Lk3YDOlrGgAm9u7k8Nv6xUe6r2eSdmd1BlF2bCW3i8Rg2yMmQS6ot-ioScN-BvS_aNK64Pf-C7c6VAr-9iq2T3YsLP7cLPlsVw9gO9HjT-Cxfz2xLCn1mHUjPSSzavpqrqszizifEK2DHEyM5j2NvOpNewCry1YjWDYb8FmZkEOmBUrVjezKa0dPITjaxHrIxjMqpl9AizFGJ4WwhKLpyx4mhVpqSWOdp4PUQbwthegmrf9OZSvq0eZasWtUNzKi1tlAWyTjNcjqbe2v1AtfqjOVBU3XBuX4Wu0lJbnmqNIyoInhTScaxfAVj9DqjP4Wl2pZwCv1rfRVKn-ome2atoxCP9ELAJ43M7s-kswjZdJRr9-10_11cP__Yee_v9bXsItNBL1ZX9y8AxuC1I8alOZbsFguWjsc8RTy-JFp7gMTq_bVn4BuAsvWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+multi-electron+redox+polyoxometalates+for+decoupled+water+splitting+driven+by+sunlight&rft.jtitle=Nature+communications&rft.au=Cui%2C+Li-Ping&rft.au=Zhang%2C+Shu&rft.au=Zhao%2C+Yue&rft.au=Ge%2C+Xin-Yue&rft.date=2025-04-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-58622-8&rft.externalDocID=10_1038_s41467_025_58622_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |