Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight

It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3674 - 12
Main Authors Cui, Li-Ping, Zhang, Shu, Zhao, Yue, Ge, Xin-Yue, Yang, Le, Li, Ke, Feng, Liu-Bin, Li, Ren-Gui, Chen, Jia-Jia
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H 2 and O 2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P 2 W 17 V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P 2 W 15 V 3 }) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O 2 evolution using BiVO 4 photocatalyst and stable H 2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion.
AbstractList It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H 2 and O 2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P 2 W 17 V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P 2 W 15 V 3 }) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O 2 evolution using BiVO 4 photocatalyst and stable H 2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion.
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H and O evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P W V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P W V }) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O evolution using BiVO photocatalyst and stable H production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.Designing efficient redox mediators for solar-to-fuel conversion is a challenge, requiring multi-electron transfer, suitable redox potential, and stable pH buffering. Here, the authors report polyoxometalate-based mediators with defect engineering, enabling reliable solar-to-fuel conversion.
Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
ArticleNumber 3674
Author Li, Ren-Gui
Zhao, Yue
Ge, Xin-Yue
Yang, Le
Cui, Li-Ping
Feng, Liu-Bin
Li, Ke
Chen, Jia-Jia
Zhang, Shu
Author_xml – sequence: 1
  givenname: Li-Ping
  surname: Cui
  fullname: Cui, Li-Ping
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 2
  givenname: Shu
  surname: Zhang
  fullname: Zhang, Shu
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 3
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 4
  givenname: Xin-Yue
  surname: Ge
  fullname: Ge, Xin-Yue
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 5
  givenname: Le
  surname: Yang
  fullname: Yang, Le
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 6
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 7
  givenname: Liu-Bin
  surname: Feng
  fullname: Feng, Liu-Bin
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 8
  givenname: Ren-Gui
  orcidid: 0000-0002-8099-0934
  surname: Li
  fullname: Li, Ren-Gui
  email: rgli@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Jia-Jia
  orcidid: 0000-0003-1044-7079
  surname: Chen
  fullname: Chen, Jia-Jia
  email: JiaJia.Chen@xmu.edu.cn
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40246818$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFSEUxSemxtbaL-DCkLhxM8oFZt6wNI1_mjRxU7cSBi7PeWHgCYzt-_bSN7UaF7KB3PzOuZyc581JiAGb5iXQt0D58C4LEP2mpaxru6FnrB2eNGeMCmhhw_jJX-_T5iLnHa2HSxiEeNacCspEP8Bw1ny7WYIePZJ58WVq0aMpKQaS0MY7so_-EO_ijEV7XTATFxOxaOKy92jJbZ0lkvd-KmUKW2LT9BMDGQ8kL8FP2-_lRfPUaZ_x4uE-b75-_HBz-bm9_vLp6vL9dWsEH0orOikpt-B6x1Cw3jLDqAZunLOSA7VSCstGZwVQN8quZuk2oKng0KPQgp83V6uvjXqn9mmadTqoqCd1HMS0VTqVyXhUYEFbNxhddQJBaqiBzAj9KCyAdtXrzeq1T_HHgrmoecoGvdcB45IVBwlcbljHKvr6H3QXlxRq0iPFespgqNSrB2oZZ7SP3_vdQgXYCpgUc07oHhGg6r5ttbatatvq2La6F_FVlCsctpj-7P6P6hceeqxS
Cites_doi 10.1021/ja00271a025
10.1039/c2cs35190k
10.1016/0263-7855(96)00018-5
10.1016/j.ccr.2011.01.026
10.1016/j.apcatb.2019.118075
10.1038/s41929-018-0037-1
10.1007/s10311-018-0814-8
10.1002/cctc.201901865
10.1039/B802262N
10.1039/D1EE03014K
10.1063/1.464304
10.1038/s41563-023-01767-y
10.1002/adma.202008264
10.1021/ic00270a014
10.1002/qua.24699
10.1002/aenm.202203455
10.1016/j.joule.2022.06.017
10.1002/adma.202007129
10.1126/science.1257443
10.12677/JAPC.2015.44013
10.1002/aenm.202203762
10.1016/j.ccr.2024.215998
10.1039/C7CP01203A
10.1039/D4SE00331D
10.1016/j.apcatb.2019.118271
10.1021/acsenergylett.9b02206
10.1038/s41560-023-01370-0
10.1038/s41570-018-0112
10.1038/s41557-018-0109-5
10.1063/1.4865107
10.1002/chem.201903142
10.1016/j.inoche.2003.10.011
10.1126/science.aau5701
10.1021/jacs.6b03187
10.1038/s41557-021-00850-8
10.1039/D3EE02087H
10.1039/D1EE01226F
10.1038/s41560-022-01011-y
10.1002/adma.202107425
10.1002/anie.202001438
10.1039/C9CP06824D
10.1039/D0EE03892J
10.1126/science.275.5302.996
10.1021/ic00008a006
10.1002/anie.202302575
10.1002/adfm.202408968
10.1039/C8EE00422F
10.1039/b508541a
10.1016/j.apcatb.2021.120998
10.1126/science.abd5491
10.1038/s43586-023-00226-x
10.1039/c2ee23081j
10.1103/PhysRevB.54.11169
10.1016/j.apcatb.2016.03.026
10.1038/s41570-022-00394-6
10.1021/ic500087t
10.1038/nchem.1621
10.1038/ncomms4585
10.1016/j.ccr.2024.216113
10.1021/ar9002812
10.1021/acs.chemrev.7b00444
10.1039/C8CS00559A
10.1038/natrevmats.2017.50
10.1016/j.joule.2018.06.011
10.1021/jacs.1c10584
10.1021/ic702295y
10.1002/jcc.22885
10.1002/9780470132586.ch18
10.1016/j.apcatb.2024.124527
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-58622-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_1d1adf8ca4a44e19a1deccb16b4d11af
40246818
10_1038_s41467_025_58622_8
Genre Journal Article
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
PHGZM
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c438t-459903d1f6f2e426d2c20a13cffd9310d994d2bfd410fb95000571a04316e4a43
IEDL.DBID AAJSJ
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:23 EDT 2025
Fri Jul 11 18:35:45 EDT 2025
Sat Aug 23 12:42:46 EDT 2025
Mon Apr 21 02:01:08 EDT 2025
Tue Jul 01 05:10:05 EDT 2025
Fri Apr 18 01:16:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-459903d1f6f2e426d2c20a13cffd9310d994d2bfd410fb95000571a04316e4a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8099-0934
0000-0003-1044-7079
OpenAccessLink https://www.nature.com/articles/s41467-025-58622-8
PMID 40246818
PQID 3191260218
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1d1adf8ca4a44e19a1deccb16b4d11af
proquest_miscellaneous_3191397252
proquest_journals_3191260218
pubmed_primary_40246818
crossref_primary_10_1038_s41467_025_58622_8
springer_journals_10_1038_s41467_025_58622_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-17
PublicationDateYYYYMMDD 2025-04-17
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HN Miras (58622_CR43) 2012; 41
M Xiao (58622_CR51) 2015; 4
M Martin-Sabi (58622_CR44) 2018; 1
J-J Chen (58622_CR48) 2022; 144
J Zhu (58622_CR3) 2021; 372
D Huang (58622_CR30) 2021; 14
ZP Ifkovits (58622_CR12) 2021; 14
C Costentin (58622_CR70) 2010; 43
L Zhang (58622_CR22) 2022; 6
J Dong (58622_CR45) 2024; 517
WC Jiang (58622_CR28) 2023; 62
M Hu (58622_CR20) 2023; 13
F Ai (58622_CR21) 2022; 7
R Casasnovas (58622_CR52) 2014; 114
J Lei (58622_CR53) 2019; 25
XQ Yan (58622_CR27) 2025; 360
XJ Wu (58622_CR39) 2021; 33
C Kumar (58622_CR38) 2019; 17
Y Zhao (58622_CR10) 2020; 59
L Chen (58622_CR34) 2019; 48
LG Bloor (58622_CR5) 2016; 138
RG Finke (58622_CR59) 1986; 108
R Li (58622_CR41) 2019; 259
Y Ma (58622_CR4) 2023; 13
S Amthor (58622_CR11) 2022; 14
P Bai (58622_CR23) 2014; 5
58622_CR47
S-J Yang (58622_CR69) 2017; 19
I Slobodkin (58622_CR13) 2024; 23
IA Weinstock (58622_CR32) 2018; 118
B Rausch (58622_CR54) 2014; 345
J-J Chen (58622_CR49) 2018; 10
W Humphrey (58622_CR67) 1996; 14
S Nishioka (58622_CR7) 2023; 3
J Friedl (58622_CR33) 2018; 11
M Wang (58622_CR17) 2012; 5
L-P Cui (58622_CR36) 2024; 34
S-T Gao (58622_CR68) 2020; 22
MD Symes (58622_CR8) 2013; 5
NI Gumerova (58622_CR35) 2018; 2
AG Wallace (58622_CR14) 2018; 2
B Jin (58622_CR31) 2022; 15
XQ Wang (58622_CR9) 2024; 8
K Mathew (58622_CR62) 2014; 140
F Weigend (58622_CR65) 2005; 7
G Kresse (58622_CR61) 1996; 54
L Yang (58622_CR24) 2022; 34
M Abbessi (58622_CR57) 1991; 30
J Yan (58622_CR15) 2016; 191
Y Zhao (58622_CR60) 2020; 12
I Mbomekalle (58622_CR55) 2004; 7
Y Kang (58622_CR16) 2022; 6
F Puntoriero (58622_CR25) 2011; 255
Y Zhang (58622_CR29) 2021; 33
SS Chen (58622_CR37) 2017; 2
L Wang (58622_CR18) 2019; 363
RG Finke (58622_CR58) 1987; 26
YJ Dong (58622_CR42) 2022; 304
J Barber (58622_CR1) 2009; 38
J Chen (58622_CR26) 2020; 262
BC Zhang (58622_CR40) 2024; 518
R Contant (58622_CR56) 1990; 27
58622_CR63
L Parent (58622_CR50) 2014; 53
J Lei (58622_CR19) 2023; 8
AD Becke (58622_CR64) 1993; 98
JM Olson (58622_CR2) 1997; 275
T Lu (58622_CR66) 2012; 33
W Ma (58622_CR6) 2020; 5
S Daemi (58622_CR46) 2023; 16
References_xml – volume: 108
  start-page: 2947
  year: 1986
  ident: 58622_CR59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00271a025
– volume: 41
  start-page: 7403
  year: 2012
  ident: 58622_CR43
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35190k
– volume: 14
  start-page: 33
  year: 1996
  ident: 58622_CR67
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 255
  start-page: 2594
  year: 2011
  ident: 58622_CR25
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.01.026
– volume: 259
  start-page: 118075
  year: 2019
  ident: 58622_CR41
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118075
– volume: 1
  start-page: 208
  year: 2018
  ident: 58622_CR44
  publication-title: Nature Catalysis
  doi: 10.1038/s41929-018-0037-1
– volume: 17
  start-page: 655
  year: 2019
  ident: 58622_CR38
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0814-8
– volume: 12
  start-page: 1585
  year: 2020
  ident: 58622_CR60
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901865
– volume: 38
  start-page: 185
  year: 2009
  ident: 58622_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B802262N
– volume: 15
  start-page: 672
  year: 2022
  ident: 58622_CR31
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03014K
– volume: 98
  start-page: 1372
  year: 1993
  ident: 58622_CR64
  publication-title: J. Chem. Phys
  doi: 10.1063/1.464304
– volume: 23
  start-page: 398
  year: 2024
  ident: 58622_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01767-y
– volume: 33
  start-page: 2008264
  year: 2021
  ident: 58622_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008264
– volume: 26
  start-page: 3886
  year: 1987
  ident: 58622_CR58
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00270a014
– volume: 114
  start-page: 1350
  year: 2014
  ident: 58622_CR52
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24699
– ident: 58622_CR63
– volume: 13
  start-page: 2203455
  year: 2023
  ident: 58622_CR4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203455
– volume: 6
  start-page: 1876
  year: 2022
  ident: 58622_CR16
  publication-title: Joule
  doi: 10.1016/j.joule.2022.06.017
– volume: 33
  start-page: 2007129
  year: 2021
  ident: 58622_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007129
– volume: 345
  start-page: 1326
  year: 2014
  ident: 58622_CR54
  publication-title: Science
  doi: 10.1126/science.1257443
– volume: 4
  start-page: 111
  year: 2015
  ident: 58622_CR51
  publication-title: J. Adv. Phys. Chem.
  doi: 10.12677/JAPC.2015.44013
– volume: 13
  start-page: 2203762
  year: 2023
  ident: 58622_CR20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203762
– volume: 517
  start-page: 215998
  year: 2024
  ident: 58622_CR45
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215998
– volume: 19
  start-page: 12480
  year: 2017
  ident: 58622_CR69
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01203A
– volume: 8
  start-page: 2446
  year: 2024
  ident: 58622_CR9
  publication-title: Sustain. Energ. Fuels.
  doi: 10.1039/D4SE00331D
– volume: 262
  start-page: 118271
  year: 2020
  ident: 58622_CR26
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118271
– volume: 5
  start-page: 597
  year: 2020
  ident: 58622_CR6
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b02206
– volume: 8
  start-page: 1355
  year: 2023
  ident: 58622_CR19
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01370-0
– volume: 2
  start-page: 0112
  year: 2018
  ident: 58622_CR35
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0112
– volume: 10
  start-page: 1042
  year: 2018
  ident: 58622_CR49
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0109-5
– volume: 140
  start-page: 084106
  year: 2014
  ident: 58622_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 25
  start-page: 11432
  year: 2019
  ident: 58622_CR53
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201903142
– volume: 7
  start-page: 86
  year: 2004
  ident: 58622_CR55
  publication-title: O. Inorg Chem Commun.
  doi: 10.1016/j.inoche.2003.10.011
– volume: 363
  start-page: 265
  year: 2019
  ident: 58622_CR18
  publication-title: Science
  doi: 10.1126/science.aau5701
– volume: 138
  start-page: 6707
  year: 2016
  ident: 58622_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03187
– volume: 14
  start-page: 321
  year: 2022
  ident: 58622_CR11
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00850-8
– volume: 16
  start-page: 4530
  year: 2023
  ident: 58622_CR46
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02087H
– volume: 14
  start-page: 4740
  year: 2021
  ident: 58622_CR12
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01226F
– volume: 7
  start-page: 417
  year: 2022
  ident: 58622_CR21
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01011-y
– volume: 34
  start-page: 2107425
  year: 2022
  ident: 58622_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107425
– volume: 59
  start-page: 9653
  year: 2020
  ident: 58622_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001438
– volume: 22
  start-page: 9607
  year: 2020
  ident: 58622_CR68
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06824D
– volume: 14
  start-page: 1480
  year: 2021
  ident: 58622_CR30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03892J
– volume: 275
  start-page: 996
  year: 1997
  ident: 58622_CR2
  publication-title: Science
  doi: 10.1126/science.275.5302.996
– volume: 30
  start-page: 1695
  year: 1991
  ident: 58622_CR57
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00008a006
– volume: 62
  year: 2023
  ident: 58622_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202302575
– volume: 34
  start-page: 2408968
  year: 2024
  ident: 58622_CR36
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.202408968
– volume: 11
  start-page: 3010
  year: 2018
  ident: 58622_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00422F
– volume: 7
  start-page: 3297
  year: 2005
  ident: 58622_CR65
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 304
  start-page: 120998
  year: 2022
  ident: 58622_CR42
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120998
– volume: 372
  start-page: 968
  year: 2021
  ident: 58622_CR3
  publication-title: Science
  doi: 10.1126/science.abd5491
– volume: 3
  start-page: 42
  year: 2023
  ident: 58622_CR7
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-023-00226-x
– volume: 5
  start-page: 9394
  year: 2012
  ident: 58622_CR17
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23081j
– volume: 54
  start-page: 11169
  year: 1996
  ident: 58622_CR61
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.54.11169
– volume: 191
  start-page: 130
  year: 2016
  ident: 58622_CR15
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.03.026
– volume: 6
  start-page: 524
  year: 2022
  ident: 58622_CR22
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00394-6
– volume: 53
  start-page: 5941
  year: 2014
  ident: 58622_CR50
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500087t
– volume: 5
  start-page: 403
  year: 2013
  ident: 58622_CR8
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1621
– volume: 5
  year: 2014
  ident: 58622_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4585
– volume: 518
  start-page: 216113
  year: 2024
  ident: 58622_CR40
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.216113
– volume: 43
  start-page: 1019
  year: 2010
  ident: 58622_CR70
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9002812
– volume: 118
  start-page: 2680
  year: 2018
  ident: 58622_CR32
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00444
– volume: 48
  start-page: 260
  year: 2019
  ident: 58622_CR34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00559A
– volume: 2
  start-page: 17050
  year: 2017
  ident: 58622_CR37
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2017.50
– volume: 2
  start-page: 1390
  year: 2018
  ident: 58622_CR14
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.011
– volume: 144
  start-page: 8951
  year: 2022
  ident: 58622_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10584
– ident: 58622_CR47
  doi: 10.1021/ic702295y
– volume: 33
  start-page: 580
  year: 2012
  ident: 58622_CR66
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 27
  start-page: 104
  year: 1990
  ident: 58622_CR56
  publication-title: Inorg Synth
  doi: 10.1002/9780470132586.ch18
– volume: 360
  start-page: 124527
  year: 2025
  ident: 58622_CR27
  publication-title: Appl. Catal. B-Environ. Energy.
  doi: 10.1016/j.apcatb.2024.124527
SSID ssj0000391844
Score 2.4843583
Snippet It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural...
Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 3674
SubjectTerms 119/118
140/131
639/301/299/890
639/4077/909/4101/4102
639/638/224/909/4086/4087
639/638/439/890
Buffers
Defects
Electrode potentials
Electrolysis
Electron transfer
Energy storage
Fuels
Humanities and Social Sciences
Hydrogen production
Molecular clusters
multidisciplinary
pH effects
Photocatalysis
Polyoxometallates
Protons
Redox potential
Redox properties
Relay systems
Science
Science (multidisciplinary)
Solar energy
Splitting
Subsystems
Tungsten
Vanadium
Water splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb1erRPCmS5vHvo4qliLoqYWeDEmTnOpu6Xax_fdOsttaUfHiNZvdTWaSmW-YZD6ErqkhhqZdHSaUxyG3ioXg5bJQApgHeJwx4zOmzy9xf8ifRtFog-rLnQmrywPXgusQTaS26VhyybkhmSQa_qpIrLgmRFpnfcHnbQRT3gazDEIX3tyS6bK0U3JvExx7awQoHszAF0_kC_b_hDK_ZUi94-ntod0GMeK7eqT7aMvkB2i75pBcHqLXQeWvP2F_NDBc0dpgVwh0gafFZFksijcDGNuhSgwYFcPUimo6MRq_Q9sMlwBE_fFnrGfO-GG1xGWVT1zcfoSGvcfBQz9sSBPCMWfpPOQR-BemiY0tNeB-NR3TriRsbK3OAMvpLOOaKqs56VqVOT6EKCHS1diJDciYHaNWXuTmFOEE_GeiqHEMmlyRJFUJqAF6W89FyAN0sxKgmNa1MYTPabNU1OIWIG7hxS3SAN07Ga97urrWvgG0LRpti7-0HaD2SkOi2WylACtCICwDsBKgq_Vj2CYu9yFzU1R1H4BeNKIBOqk1ux4JhNA8Tt3btytVf3789wmd_ceEztEOdWvSVY9M2qg1n1XmAmDOXF36Ff0BmWH5EQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojwDLTISN7C6diaJc0JQtaqQ4NRKe8KyY5vLkmw3G9H998w4yVaIxzVxEmdmPPPZY8_H2FsVZFB64UWloBQQXS4wytXCIphHeFznIWVMv3wtL67g87JYTgtu_bStcvaJyVH7rqE18hM0FYnYGyPSh_W1INYoyq5OFBp32T0qXUZWXS2r_RoLVT_XANNZmUWuT3pInoE4XAvE8ugMfotHqWz_37DmH3nSFH7OH7GHE27kH0dFH7I7oX3M7o9Mkrsn7NvlkA5B8bRBUMzkNpzKgd7wdbfadTfdj4BIm7AlR6TKPU48h_UqeP4Tr214j3A0bYLmfkMukLsd74d2RbP3p-zq_Ozy9EJM1AmigVxvBRQYZXIvYxlVwCDsVaMWVuZNjL5GROfrGrxy0YNcRFcTK0JRSUuVdsoAFvJn7KDt2vCC8QqjaOVUIB5NcLLSrmosYOuYGAkhY-9mAZr1WCHDpMx2rs0oboPiNkncRmfsE8l435KqW6cL3ea7mQaLkV5aHzV-xgIEWVuJImmcLB14KW3M2NGsITMNud7cGkjG3uxv42ChDIhtQzeMbRCAqUJl7Pmo2X1PcCINpaan38-qvn35v3_o5f_78oo9UGRtVB2yOmIH280QjhHGbN3rZKu_APX67mM
  priority: 102
  providerName: ProQuest
Title Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight
URI https://link.springer.com/article/10.1038/s41467-025-58622-8
https://www.ncbi.nlm.nih.gov/pubmed/40246818
https://www.proquest.com/docview/3191260218
https://www.proquest.com/docview/3191397252
https://doaj.org/article/1d1adf8ca4a44e19a1deccb16b4d11af
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG8CS2UkbhBRO5PEOXarLatKrBDsSj1h2bXNpSRV24jtv2fsJEWI5cAlkZxx4szYns-vbwDeCsedkGOblgKLFL3JUvJyVaoJzBM8rjIXV0w_XRWXNzhf5IsjEMNZmLhpP1Jaxm562B32YYuxSYfgqzmBcGrFx3AaqNqpbp9OJvOv88PMSuA8l4j9CZlxJu_I_IcXimT9dyHMv1ZHo9OZPYQHPVpkk658j-DI1Y_hXhc_cv8Evl238egTi9sC0yGkDQskoLds3az2zW3zwxG-DoiSET5lloab7XrlLPtJaRu2JRAatz4zuwkdHzN7tm3rVRizP4Wb2cX19DLtAyakS8zkLsWcfEtmuS-8cOR6rViKsebZ0ntbEY6zVYVWGG-Rj72pQiyEvOQ68OsUDjVmz-Ckbmr3AlhJvrM0woXomWh4KU251EjSPsYhxATeDQpU644XQ8X17EyqTt2K1K2iupVM4Dzo-CAZOK1jQrP5rnobK265tl7SZzSi45XmpJKl4YVBy7n2CZwNFlJ9Q9sq6kE4DckIqCTw5vCYmkhY99C1a9pOhmCXyEUCzzvLHkpCw2csZMj9fjD175f_-4de_p_4K7gvQu0LHJHlGZzsNq17TWBmZ0ZwXC5KusrZx1Ffk-l-fnH1-QulTovpKE4T_ALfPvLh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFHXzuR1QIjXsqWP01bqCdeObS5Lsmw2avdP8RuZcTZbIR63Xh3Hccbjmc8eez7GXkgnnCxGNs4lZDF4k8To5cpYI5hHeFwmLkRMD4-yyTF8OUlPttjP4S4MHascbGIw1LapaI98F1VFIPZGj_R2_iMm1iiKrg4UGr1a7LvVGS7Z2jd7H3F8X0o5_jT9MInXrAJxBUmxjCFFA5xY4TMvHfonKys50iKpvLclgh1blmCl8RbEyJuSCAPSXGhKQpM50JBgu1fYVUjQk9PN9PHnzZ4OZVsvANZ3c0ZJsdtCsETEGZvi2gGNz2_-L9AE_A3b_hGXDe5ufIvdXONU_q5XrNtsy9V32LWeuXJ1l32dduHSFQ8HEuOBTIdT-tFzPm9mq-a8-e4Q2ROW5YiMucWFbjefOcvPsGzBW4S_4dA1twsyudyseNvVM9otuMeOL0Wo99l23dTuIeM5eu3cSEe8nWBEXpi80oC1fWBAhIi9GgSo5n1GDhUi6UmhenErFLcK4lZFxN6TjDc1KZt2KGgW39R6ciphhba-wM9oACdKLVAklRGZASuE9hHbGUZIrad4qy4UMmLPN49xclLERdeu6fo6qCYylRF70I_spie4cIesoLdfD0N90fi_f-jR__vyjF2fTA8P1MHe0f5jdkOS5lFmynyHbS8XnXuCEGppnga95ez0sifKL8FgKcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4h27TivA0KUdtVSWFWolXrCdWKby3az3WzU7l_j1zHjJFshHrdeE2-SHc_jG489H8BrYbkV2ciEqZBJKF0RhRjl8lAjmEd4nEfWV0y_TpK9Y_n5JD7ZgJ_9WRjaVtn7RO-oTVXSGvkQVYUj9saINHTdtojDnfGH-XlIDFJUae3pNFoVObCrC0zf6vf7OzjXb4QY7x592gs7hoGwlFG2DGWMzjgy3CVOWIxVRpRipHlUOmdyBD4mz6URhTOSj1yRE3lAnHJNDWkSK7WM8Lk3YDOlrGgAm9u7k8Nv6xUe6r2eSdmd1BlF2bCW3i8Rg2yMmQS6ot-ioScN-BvS_aNK64Pf-C7c6VAr-9iq2T3YsLP7cLPlsVw9gO9HjT-Cxfz2xLCn1mHUjPSSzavpqrqszizifEK2DHEyM5j2NvOpNewCry1YjWDYb8FmZkEOmBUrVjezKa0dPITjaxHrIxjMqpl9AizFGJ4WwhKLpyx4mhVpqSWOdp4PUQbwthegmrf9OZSvq0eZasWtUNzKi1tlAWyTjNcjqbe2v1AtfqjOVBU3XBuX4Wu0lJbnmqNIyoInhTScaxfAVj9DqjP4Wl2pZwCv1rfRVKn-ome2atoxCP9ELAJ43M7s-kswjZdJRr9-10_11cP__Yee_v9bXsItNBL1ZX9y8AxuC1I8alOZbsFguWjsc8RTy-JFp7gMTq_bVn4BuAsvWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+multi-electron+redox+polyoxometalates+for+decoupled+water+splitting+driven+by+sunlight&rft.jtitle=Nature+communications&rft.au=Cui%2C+Li-Ping&rft.au=Zhang%2C+Shu&rft.au=Zhao%2C+Yue&rft.au=Ge%2C+Xin-Yue&rft.date=2025-04-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-58622-8&rft.externalDocID=10_1038_s41467_025_58622_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon