Huntington’s Disease Pathogenesis: Two Sequential Components
Historically, Huntington’s disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along...
Saved in:
Published in | Journal of Huntington's disease Vol. 10; no. 1; pp. 35 - 51 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2021
Sage Publications Ltd IOS Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Historically, Huntington’s disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the HD gene, later renamed HTT, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the HTT locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components. |
---|---|
AbstractList | Historically, Huntington’s disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the
HD
gene, later renamed
HTT
, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the
HTT
locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components. Historically, Huntington’s disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the HD gene, later renamed HTT, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the HTT locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components. |
Author | Jones, Lesley Holmans, Peter Monckton, Darren G. Gusella, James F. Orth, Michael MacDonald, Marcy E. Lee, Jong-Min Wheeler, Vanessa C. Kwak, Seung Hong, Eun Pyo Long, Jeffrey D. |
Author_xml | – sequence: 1 givenname: Eun Pyo surname: Hong fullname: Hong, Eun Pyo organization: Department of Genetics – sequence: 2 givenname: Marcy E. surname: MacDonald fullname: MacDonald, Marcy E. organization: Department of Genetics – sequence: 3 givenname: Vanessa C. surname: Wheeler fullname: Wheeler, Vanessa C. organization: Department of Genetics – sequence: 4 givenname: Lesley surname: Jones fullname: Jones, Lesley organization: Department of Genetics – sequence: 5 givenname: Peter surname: Holmans fullname: Holmans, Peter organization: Department of Genetics – sequence: 6 givenname: Michael surname: Orth fullname: Orth, Michael organization: Department of Genetics – sequence: 7 givenname: Darren G. surname: Monckton fullname: Monckton, Darren G. organization: Department of Genetics – sequence: 8 givenname: Jeffrey D. surname: Long fullname: Long, Jeffrey D. organization: Department of Genetics – sequence: 9 givenname: Seung surname: Kwak fullname: Kwak, Seung organization: Department of Genetics – sequence: 10 givenname: James F. surname: Gusella fullname: Gusella, James F. email: gusella@helix.mgh.harvard.edu organization: Department of Genetics – sequence: 11 givenname: Jong-Min surname: Lee fullname: Lee, Jong-Min organization: Department of Genetics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33579862$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1KAzEUhYMoVms3PoAMuBCE0fx1MnFRkFatIihY1yFN79RIm9TJVHHna_h6PokprbVKs7mBfPfck3t20abzDhDaJ_iEUcZOb7qdlGLMqdhAOyQXMs2YFJsr9xpqhPCM4xGEUYm3UY2xppB5RndQqzt1lXXDyruvj8-QdGwAHSC519WTH4KDYMNZ0nvzyQO8TCGyepS0_XgSXbgq7KGtQo8CNBa1jh4vL3rtbnp7d3XdPr9NDWd5lTIgJqOUaJoVhAAjBBPGQZpBX3Po0yLXRkAmTMGJlJgOBk2dEcBgpClymbE6as11J9P-GAYmzi71SE1KO9blu_Laqr8vzj6poX9VIspxxqLA4UKg9PEfoVLPflq66FlRngvOm1TySB2sjlnq_-wrAsdzwJQ-hBKKJUKwmuWhYh5qnkeE8T_Y2EpX1s8s2tH6lqN5S9BD-LW4hvwG9KCZwA |
CitedBy_id | crossref_primary_10_1002_hbm_26125 crossref_primary_10_1093_hmg_ddac165 crossref_primary_10_1016_j_ajhg_2022_03_004 crossref_primary_10_3233_JHD_231516 crossref_primary_10_3390_genes15060807 crossref_primary_10_3390_ijms26062655 crossref_primary_10_1093_braincomms_fcad214 crossref_primary_10_1016_j_ajhg_2024_04_015 crossref_primary_10_3390_cimb46060325 crossref_primary_10_1016_j_cell_2024_11_038 crossref_primary_10_3233_JHD_219001 crossref_primary_10_1038_s41467_024_47485_0 crossref_primary_10_1093_brain_awad043 crossref_primary_10_1038_s41588_024_02054_5 crossref_primary_10_3389_fragi_2022_1043300 crossref_primary_10_3233_JHD_200445 crossref_primary_10_1007_s12272_024_01499_w crossref_primary_10_3389_fgene_2024_1377237 crossref_primary_10_1093_hmg_ddab170 crossref_primary_10_1093_brain_awae007 crossref_primary_10_3233_JHD_200448 crossref_primary_10_3233_JHD_210485 crossref_primary_10_3389_fphys_2021_716471 crossref_primary_10_1016_j_parkreldis_2024_106049 crossref_primary_10_1038_s41591_024_03424_6 crossref_primary_10_1038_s41431_024_01546_6 crossref_primary_10_1093_procel_pwae042 crossref_primary_10_1007_s00439_024_02698_7 crossref_primary_10_3233_JHD_200433 crossref_primary_10_1038_s41582_023_00811_4 crossref_primary_10_1016_j_neuron_2023_12_009 crossref_primary_10_1093_nar_gkae1155 crossref_primary_10_1126_scitranslmed_adn4600 crossref_primary_10_5937_Galmed2412066L crossref_primary_10_7554_eLife_89782 crossref_primary_10_1073_pnas_2322924121 crossref_primary_10_1073_pnas_2426776122 crossref_primary_10_1016_j_dnarep_2025_103817 crossref_primary_10_1089_nat_2024_0030 crossref_primary_10_1038_s41588_024_01653_6 crossref_primary_10_1016_j_ajhg_2022_06_002 crossref_primary_10_1073_pnas_2413298121 crossref_primary_10_3389_fimmu_2023_1280186 crossref_primary_10_1186_s40478_022_01349_0 crossref_primary_10_1242_dmm_049453 crossref_primary_10_1371_journal_pgen_1009863 crossref_primary_10_3233_JHD_200423 crossref_primary_10_7554_eLife_89782_2 crossref_primary_10_1093_nar_gkae1204 crossref_primary_10_1016_j_arr_2022_101579 crossref_primary_10_3233_JHD_200421 crossref_primary_10_1093_braincomms_fcae016 crossref_primary_10_3233_JHD_200426 crossref_primary_10_1016_j_neuron_2025_01_008 crossref_primary_10_3233_JHD_200429 |
Cites_doi | 10.1002/ana.24656 10.1038/ng0893-398 10.1086/378133 10.1016/0092-8674(92)90154-5 10.1016/j.ajhg.2009.02.003 10.1016/j.ajhg.2012.01.005 10.1002/ajmg.a.20190 10.1016/j.neuron.2015.10.038 10.1093/hmg/ddaa139 10.1016/j.ajhg.2019.04.007 10.1038/ng0793-221 10.1038/ng0893-393 10.1038/ejhg.2017.125 10.1093/hmg/4.10.1911 10.1038/nrdp.2015.5 10.1093/brain/awz115 10.1016/j.cell.2019.06.036 10.1016/j.cell.2015.07.003 10.1371/journal.pgen.1003648 10.1371/journal.pgen.1003280 10.1136/jmedgenet-2015-103568 10.1002/mds.26838 10.1038/ng0893-387 10.1111/bpa.12427 10.1056/NEJM198803033180903 10.1093/hmg/ddp242 10.1371/journal.pcbi.0030235 10.1016/j.ajhg.2020.05.012 10.1093/hmg/ddg352 10.1038/35039051 10.1371/journal.pone.0029522 10.1002/ajmg.b.30992 10.1136/jmg.2007.050930 10.1007/BF02257483 10.1002/mdc3.12388 10.1038/s41586-020-2308-7 10.1186/1752-0509-4-29 10.1371/journal.pgen.1003930 10.1111/j.1399-0004.2006.00668.x 10.1016/S1474-4422(17)30161-8 10.1186/s12874-018-0592-9 10.1093/hmg/ddy375 10.1016/j.ebiom.2019.09.020 10.1136/jmg.32.5.399 10.1371/journal.pgen.1001058 10.1038/306234a0 10.1002/mds.26001 10.1093/hmg/ddh186 10.1093/hmg/6.5.775 10.1001/archneur.63.6.883 10.1016/0092-8674(93)90585-E 10.1016/j.jmb.2019.01.034 10.1073/pnas.1221891110 10.1212/WNL.0b013e318249f683 10.1038/352077a0 10.1093/hmg/ddx286 10.1086/301846 10.1073/pnas.0308679101 10.1097/WCO.0000000000000385 10.1016/j.cell.2018.08.068 10.1016/j.cell.2017.10.042 10.1038/ejhg.2016.74 10.1073/pnas.0800048105 10.1111/j.1399-0004.2004.00241.x 10.1038/ng0494-409 10.1126/science.1675488 10.1016/j.nbd.2008.09.014 |
ContentType | Journal Article |
Copyright | 2021 – The authors. Published by IOS Press Copyright IOS Press BV 2021 2021 – The authors. Published by IOS Press 2021 |
Copyright_xml | – notice: 2021 – The authors. Published by IOS Press – notice: Copyright IOS Press BV 2021 – notice: 2021 – The authors. Published by IOS Press 2021 |
DBID | AFRWT AAYXX CITATION NPM 7TK 5PM |
DOI | 10.3233/JHD-200427 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Neurosciences Abstracts |
DatabaseTitleList | CrossRef PubMed Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | E.P. Hong et al |
EISSN | 1879-6397 1879-6400 |
EndPage | 51 |
ExternalDocumentID | PMC7990433 33579862 10_3233_JHD_200427 10.3233_JHD-200427 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P50 NS016367 – fundername: Medical Research Council grantid: MR/L010305/1 – fundername: NINDS NIH HHS grantid: U01 NS082079 – fundername: NINDS NIH HHS grantid: R01 NS091161 – fundername: NINDS NIH HHS grantid: R01 NS049206 – fundername: NINDS NIH HHS grantid: R01 NS105709 |
GroupedDBID | 0R~ 53G AAGLT AAQXI ABDBF ABJZC ABUJY ACPQW ACPRK ACUHS ADZMO AFRHK AFRWT AHDMH AJNRN ALMA_UNASSIGNED_HOLDINGS ARTOV EBS HZ~ IOS J8X MET MIO MV1 NGNOM O9- SAUOL SCNPE SFC TUS AAYXX AJGYC CITATION ABJNI NPM 7TK AAPII H13 5PM |
ID | FETCH-LOGICAL-c438t-3e1c6221a26f11e3110134e9cdba4eb2f8ac7e67cf419902dd5a61e0ec9cf8963 |
IEDL.DBID | AFRWT |
ISSN | 1879-6397 |
IngestDate | Thu Aug 21 18:24:07 EDT 2025 Wed Aug 13 07:30:08 EDT 2025 Thu Jan 02 22:56:21 EST 2025 Thu Apr 24 23:06:15 EDT 2025 Tue Jul 01 05:23:45 EDT 2025 Tue Jun 17 22:27:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genetic association modifier gene genetics Huntington disease genotype-phenotype correlation trinucleotide repeat expansion |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-3e1c6221a26f11e3110134e9cdba4eb2f8ac7e67cf419902dd5a61e0ec9cf8963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Founding members of the Genetic Modifier of Huntington’s Disease (GeM-HD) Consortium. |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.3233/JHD-200427?utm_source=summon&utm_medium=discovery-provider |
PMID | 33579862 |
PQID | 2487445294 |
PQPubID | 2046374 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990433 proquest_journals_2487445294 pubmed_primary_33579862 crossref_primary_10_3233_JHD_200427 crossref_citationtrail_10_3233_JHD_200427 sage_journals_10_3233_JHD_200427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Netherlands – name: London – name: Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands |
PublicationTitle | Journal of Huntington's disease |
PublicationTitleAlternate | J Huntingtons Dis |
PublicationYear | 2021 |
Publisher | SAGE Publications Sage Publications Ltd IOS Press |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: IOS Press |
References | 1991; 352 2006; 70 2004; 65 2009; 84 2017; 4 2010; 153B 1995; 32 2008; 105 2000; 1 2014; 29 1997; 6 1993; 4 2016; 79 2013; 9 2003; 12 1994; 20 2018; 175 2006; 63 1993; 72 2017; 32 2015; 88 2019; 28 2013; 110 2007; 3 2010; 2 2010; 4 2019; 431 2010; 6 1983; 306 2009; 18 2004; 101 2015; 162 1991; 252 2015; 1 2003; 119A 2017; 26 2020; 581 2017; 25 2019; 104 2016; 53 2017; 171 2020; 107 1998; 62 2012; 78 2003; 73 1995; 4 1996; 59 2019; 142 2009; 33 2018; 18 2012; 90 2017; 16 2020 2019; 48 2004; 13 1994; 55 1992; 68 2016; 29 2012; 7 1988; 318 2007; 44 2016; 26 2019; 178 2016; 24 1994; 6 ref009 ref007 ref005 ref049 ref006 ref003 ref047 ref004 ref048 ref012 ref056 ref013 ref057 ref054 ref011 ref055 ref052 ref053 ref050 ref051 ref018 ref019 ref016 ref017 ref014 Orth M (ref027) 2010; 2 ref058 ref015 ref059 ref060 ref023 ACMG/ASHG statement (ref039) 1998; 62 ref067 ref024 ref068 ref021 ref065 Benjamin CM (ref008) 1994; 55 ref022 ref066 ref063 ref020 ref064 ref061 ref062 ref029 ref028 ref025 ref069 ref026 Rubinsztein DC (ref010) 1996; 59 ref070 ref071 ref035 ref032 ref033 ref030 ref031 ref038 Gellera C (ref034) 1996; 59 ref036 ref037 ref001 ref045 ref002 ref046 ref043 ref044 ref041 ref042 ref040 |
References_xml | – volume: 4 start-page: 221 issue: 3 year: 1993 end-page: 6 article-title: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1 publication-title: Nat Genet – volume: 4 start-page: 387 issue: 4 year: 1993 end-page: 92 article-title: Trinucleotide repeat length instability and age of onset in Huntington’s disease publication-title: Nat Genet – volume: 9 start-page: e1003280 issue: 2 year: 2013 article-title: MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington’s disease mice publication-title: PLoS Genet – volume: 59 start-page: 475 issue: 2 year: 1996 end-page: 7 article-title: Errors in Huntington disease diagnostic test caused by trinucleotide deletion in the IT15 gene publication-title: Am J Hum Genet – volume: 4 start-page: 212 issue: 2 year: 2017 end-page: 24 article-title: Data analytics from Enroll-HD, a global clinical research platform for Huntington’s disease publication-title: Mov Disord Clin Pract – volume: 153B start-page: 397 issue: 2 year: 2010 end-page: 408 article-title: CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches publication-title: Am J Med Genet B Neuropsychiatr Genet – volume: 16 start-page: 701 issue: 9 year: 2017 end-page: 11 article-title: Identification of genetic variants associated with Huntington’s disease progression: A genome-wide association study publication-title: Lancet Neurol – volume: 1 start-page: 109 issue: 2 year: 2000 end-page: 15 article-title: Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease publication-title: Nat Rev Neurosci – volume: 318 start-page: 535 issue: 9 year: 1988 end-page: 42 article-title: Predictive testing for Huntington’s disease with use of a linked DNA marker publication-title: N Engl J Med – volume: 44 start-page: 695 issue: 11 year: 2007 end-page: 701 article-title: Factors associated with HD CAG repeat instability in Huntington disease publication-title: J Med Genet – volume: 84 start-page: 351 issue: 3 year: 2009 end-page: 66 article-title: CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup publication-title: Am J Hum Genet – volume: 171 start-page: 994 issue: 5 year: 2017 end-page: 1000 article-title: Rethinking unconventional translation in neurodegeneration publication-title: Cell – volume: 119A start-page: 279 issue: 3 year: 2003 end-page: 82 article-title: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease publication-title: Am J Med Genet A – volume: 78 start-page: 690 issue: 10 year: 2012 end-page: 5 article-title: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion publication-title: Neurology – volume: 6 start-page: 775 issue: 5 year: 1997 end-page: 9 article-title: Reduced penetrance of the Huntington’s disease mutation publication-title: Hum Mol Genet – volume: 28 start-page: 650 issue: 4 year: 2019 end-page: 61 article-title: FAN1 modifies Huntington’s disease progression by stabilizing the expanded HTT CAG repeat publication-title: Hum Mol Genet – volume: 104 start-page: 1116 issue: 6 year: 2019 end-page: 26 article-title: Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease publication-title: Am J Hum Genet – volume: 32 start-page: 399 issue: 5 year: 1995 end-page: 400 article-title: Sequence analysis of the CCG polymorphic region adjacent to the CAG triplet repeat of the HD gene in normal and HD chromosomes publication-title: J Med Genet – volume: 62 start-page: 1243 issue: 5 year: 1998 end-page: 7 article-title: Laboratory guidelines for Huntington disease genetic testing. The American College of Medical Genetics/American Society of Human Genetics Huntington Disease Genetic Testing Working Group publication-title: Am J Hum Genet – volume: 48 start-page: 568 year: 2019 end-page: 80 article-title: A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes publication-title: EBioMedicine – volume: 13 start-page: 1815 issue: 16 year: 2004 end-page: 25 article-title: Pms2 is a genetic enhancer of trinucleotide CAG. CTG repeat somatic mosaicism: Implications for the mechanism of triplet repeat expansion publication-title: Hum Mol Genet – year: 2020 article-title: Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1 publication-title: Hum Mol Genet – volume: 29 start-page: 735 issue: 6 year: 2016 end-page: 42 article-title: Spinocerebellar ataxia type Clues to pathogenesis publication-title: Curr Opin Neurol – volume: 175 start-page: 38 issue: 1 year: 2018 end-page: 40 article-title: Chromatin domains go on repeat in disease publication-title: Cell – volume: 73 start-page: 682 issue: 3 year: 2003 end-page: 7 article-title: A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study publication-title: Am J Hum Genet – volume: 105 start-page: 3467 issue: 9 year: 2008 end-page: 72 article-title: DNA instability in postmitotic neurons publication-title: Proc Natl Acad Sci U S A – volume: 90 start-page: 434 issue: 3 year: 2012 end-page: 44 article-title: Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region publication-title: Am J Hum Genet – volume: 18 start-page: 3039 issue: 16 year: 2009 end-page: 47 article-title: Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset publication-title: Hum Mol Genet – volume: 63 start-page: 883 issue: 6 year: 2006 end-page: 90 article-title: Preparing for preventive clinical trials: The Predict-HD study publication-title: Arch Neurol – volume: 142 start-page: 1876 issue: 7 year: 2019 end-page: 86 article-title: MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1 publication-title: Brain – volume: 18 start-page: 138 issue: 1 year: 2018 article-title: Joint modeling of multivariate longitudinal data and survival data in several observational studies of Huntington’s disease publication-title: BMC Med Res Methodol – volume: 25 start-page: 1202 issue: 11 year: 2017 end-page: 9 article-title: Haplotype-based stratification of Huntington’s disease publication-title: Eur J Hum Genet – volume: 107 start-page: 96 issue: 1 year: 2020 end-page: 110 article-title: Genetic and functional analyses point to FAN1 as the source of multiple HD modifier effects publication-title: Am J Hum Genet – volume: 53 start-page: 190 issue: 3 year: 2016 end-page: 9 article-title: Identification of novel genetic causes of Rett syndrome-like phenotypes publication-title: J Med Genet – volume: 4 start-page: 398 issue: 4 year: 1993 end-page: 403 article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease publication-title: Nat Genet – volume: 32 start-page: 256 issue: 2 year: 2017 end-page: 63 article-title: Validation of a prognostic index for Huntington’s disease publication-title: Mov Disord – volume: 431 start-page: 1869 issue: 9 year: 2019 end-page: 77 article-title: Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington’s disease publication-title: J Mol Biol – volume: 252 start-page: 1711 issue: 5013 year: 1991 end-page: 4 article-title: Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n publication-title: Science – volume: 68 start-page: 799 issue: 4 year: 1992 end-page: 808 article-title: Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member publication-title: Cell – volume: 162 start-page: 516 issue: 3 year: 2015 end-page: 26 article-title: Identification of genetic factors that modify clinical onset of Huntington’s disease publication-title: Cell – volume: 2 start-page: RRN1184 year: 2010 article-title: Observing Huntington’s disease: The European Huntington’s Disease Network’s REGISTRY publication-title: PLoS Curr – volume: 110 start-page: 2366 issue: 6 year: 2013 end-page: 70 article-title: Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease publication-title: Proc Natl Acad Sci U S A – volume: 24 start-page: 1826 issue: 12 year: 2016 end-page: 7 article-title: A novel neurodevelopmental disorder associated with compound heterozygous variants in the huntingtin gene publication-title: Eur J Hum Genet – volume: 306 start-page: 234 issue: 5940 year: 1983 end-page: 8 article-title: A polymorphic DNA marker genetically linked to Huntington’s disease publication-title: Nature – volume: 59 start-page: 16 issue: 1 year: 1996 end-page: 22 article-title: Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats publication-title: Am J Hum Genet – volume: 101 start-page: 3498 issue: 10 year: 2004 end-page: 503 article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset publication-title: Proc Natl Acad Sci U S A – volume: 88 start-page: 667 issue: 4 year: 2015 end-page: 77 article-title: RAN translation in Huntington disease publication-title: Neuron – volume: 3 start-page: e235 issue: 11 year: 2007 article-title: A universal mechanism ties genotype to phenotype in trinucleotide diseases publication-title: PLoS Comput Biol – volume: 352 start-page: 77 issue: 6330 year: 1991 end-page: 9 article-title: Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy publication-title: Nature – volume: 70 start-page: 283 issue: 4 year: 2006 end-page: 94 article-title: Predictive testing for Huntington disease: Interpretation and significance of intermediate alleles publication-title: Clin Genet – volume: 9 start-page: e1003930 issue: 10 year: 2013 article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: Genome-wide and candidate approaches publication-title: PLoS Genet – volume: 72 start-page: 971 issue: 6 year: 1993 end-page: 83 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group publication-title: Cell – volume: 1 start-page: 15005 year: 2015 article-title: Huntington disease publication-title: Nat Rev Dis Primers – volume: 65 start-page: 267 issue: 4 year: 2004 end-page: 77 article-title: A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length publication-title: Clin Genet – volume: 20 start-page: 27 issue: 1 year: 1994 end-page: 38 article-title: Structure and expression of the Huntington’s disease gene: Evidence against simple inactivation due to an expanded CAG repeat publication-title: Somat Cell Mol Genet – volume: 26 start-page: 3859 issue: 19 year: 2017 end-page: 67 article-title: A modifier of Huntington’s disease onset at the MLH1 locus publication-title: Hum Mol Genet – volume: 9 start-page: e1003648 issue: 7 year: 2013 article-title: The role of interruptions in polyQ in the pathology of SCA1 publication-title: PLoS Genet – volume: 4 start-page: 29 year: 2010 article-title: A novel approach to investigate tissue-specific trinucleotide repeat instability publication-title: BMC Syst Biol – volume: 26 start-page: 779 issue: 6 year: 2016 end-page: 86 article-title: RNA toxicity induced by expanded CAG repeats in Huntington’s disease publication-title: Brain Pathol – volume: 6 start-page: e1001058 issue: 8 year: 2010 article-title: Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits publication-title: PLoS Genet – volume: 12 start-page: 3359 issue: 24 year: 2003 end-page: 67 article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis publication-title: Hum Mol Genet – volume: 7 start-page: e29522 issue: 2 year: 2012 article-title: Characterization of a large group of individuals with Huntington disease and their relatives enrolled in the COHORT study publication-title: PLoS One – volume: 581 start-page: 434 issue: 7809 year: 2020 end-page: 43 article-title: The mutational constraint spectrum quantified from variation in 141,456 humans publication-title: Nature – volume: 6 start-page: 409 issue: 4 year: 1994 end-page: 14 article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm publication-title: Nat Genet – volume: 55 start-page: 606 issue: 4 year: 1994 end-page: 17 article-title: Proceed with care: Direct predictive testing for Huntington disease publication-title: Am J Hum Genet – volume: 4 start-page: 1911 issue: 10 year: 1995 end-page: 8 article-title: Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population publication-title: Hum Mol Genet – volume: 178 start-page: 887 year: 2019 end-page: 900.e14 article-title: CAG repeat not polyglutamine length determines timing of Huntington’s disease onset publication-title: Cell – volume: 33 start-page: 37 issue: 1 year: 2009 end-page: 47 article-title: Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes publication-title: Neurobiol Dis – volume: 29 start-page: 1359 issue: 11 year: 2014 end-page: 65 article-title: Genetic modifiers of Huntington’s disease publication-title: Mov Disord – volume: 79 start-page: 983 issue: 6 year: 2016 end-page: 90 article-title: DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases publication-title: Ann Neurol – volume: 4 start-page: 393 issue: 4 year: 1993 end-page: 7 article-title: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease publication-title: Nat Genet – ident: ref065 doi: 10.1002/ana.24656 – ident: ref012 doi: 10.1038/ng0893-398 – ident: ref024 doi: 10.1086/378133 – ident: ref006 doi: 10.1016/0092-8674(92)90154-5 – ident: ref031 doi: 10.1016/j.ajhg.2009.02.003 – ident: ref030 doi: 10.1016/j.ajhg.2012.01.005 – ident: ref021 doi: 10.1002/ajmg.a.20190 – ident: ref064 doi: 10.1016/j.neuron.2015.10.038 – ident: ref069 doi: 10.1093/hmg/ddaa139 – ident: ref040 doi: 10.1016/j.ajhg.2019.04.007 – ident: ref007 doi: 10.1038/ng0793-221 – ident: ref014 doi: 10.1038/ng0893-393 – ident: ref032 doi: 10.1038/ejhg.2017.125 – ident: ref035 doi: 10.1093/hmg/4.10.1911 – ident: ref058 doi: 10.1038/nrdp.2015.5 – ident: ref043 doi: 10.1093/brain/awz115 – ident: ref037 doi: 10.1016/j.cell.2019.06.036 – ident: ref029 doi: 10.1016/j.cell.2015.07.003 – ident: ref066 doi: 10.1371/journal.pgen.1003648 – volume: 59 start-page: 16 issue: 1 year: 1996 ident: ref010 publication-title: Am J Hum Genet – ident: ref050 doi: 10.1371/journal.pgen.1003280 – ident: ref055 doi: 10.1136/jmedgenet-2015-103568 – ident: ref018 doi: 10.1002/mds.26838 – ident: ref013 doi: 10.1038/ng0893-387 – ident: ref059 doi: 10.1111/bpa.12427 – ident: ref002 doi: 10.1056/NEJM198803033180903 – ident: ref048 doi: 10.1093/hmg/ddp242 – ident: ref053 doi: 10.1371/journal.pcbi.0030235 – ident: ref041 doi: 10.1016/j.ajhg.2020.05.012 – volume: 59 start-page: 475 issue: 2 year: 1996 ident: ref034 publication-title: Am J Hum Genet – ident: ref046 doi: 10.1093/hmg/ddg352 – ident: ref067 doi: 10.1038/35039051 – ident: ref026 doi: 10.1371/journal.pone.0029522 – ident: ref016 doi: 10.1002/ajmg.b.30992 – volume: 55 start-page: 606 issue: 4 year: 1994 ident: ref008 publication-title: Am J Hum Genet – ident: ref019 doi: 10.1136/jmg.2007.050930 – ident: ref056 doi: 10.1007/BF02257483 – ident: ref028 doi: 10.1002/mdc3.12388 – ident: ref057 doi: 10.1038/s41586-020-2308-7 – ident: ref068 doi: 10.1186/1752-0509-4-29 – ident: ref051 doi: 10.1371/journal.pgen.1003930 – ident: ref011 doi: 10.1111/j.1399-0004.2006.00668.x – ident: ref042 doi: 10.1016/S1474-4422(17)30161-8 – ident: ref017 doi: 10.1186/s12874-018-0592-9 – ident: ref044 doi: 10.1093/hmg/ddy375 – ident: ref038 doi: 10.1016/j.ebiom.2019.09.020 – ident: ref036 doi: 10.1136/jmg.32.5.399 – ident: ref071 doi: 10.1371/journal.pgen.1001058 – ident: ref001 doi: 10.1038/306234a0 – ident: ref023 doi: 10.1002/mds.26001 – ident: ref052 doi: 10.1093/hmg/ddh186 – ident: ref009 doi: 10.1093/hmg/6.5.775 – ident: ref025 doi: 10.1001/archneur.63.6.883 – ident: ref003 doi: 10.1016/0092-8674(93)90585-E – volume: 2 start-page: RRN1184 year: 2010 ident: ref027 publication-title: PLoS Curr – ident: ref063 doi: 10.1016/j.jmb.2019.01.034 – ident: ref060 doi: 10.1073/pnas.1221891110 – ident: ref020 doi: 10.1212/WNL.0b013e318249f683 – ident: ref004 doi: 10.1038/352077a0 – ident: ref033 doi: 10.1093/hmg/ddx286 – volume: 62 start-page: 1243 issue: 5 year: 1998 ident: ref039 publication-title: Am J Hum Genet doi: 10.1086/301846 – ident: ref022 doi: 10.1073/pnas.0308679101 – ident: ref070 doi: 10.1097/WCO.0000000000000385 – ident: ref062 doi: 10.1016/j.cell.2018.08.068 – ident: ref061 doi: 10.1016/j.cell.2017.10.042 – ident: ref054 doi: 10.1038/ejhg.2016.74 – ident: ref047 doi: 10.1073/pnas.0800048105 – ident: ref015 doi: 10.1111/j.1399-0004.2004.00241.x – ident: ref045 doi: 10.1038/ng0494-409 – ident: ref005 doi: 10.1126/science.1675488 – ident: ref049 doi: 10.1016/j.nbd.2008.09.014 |
SSID | ssj0000713290 ssib053391652 |
Score | 2.4149857 |
SecondaryResourceType | review_article |
Snippet | Historically, Huntington’s disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades.... Historically, Huntington's disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades.... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Chromosome 4 Cognitive ability Disease Genetic analysis Genomes Human Genome Project Huntingtin Huntington's disease Huntingtons disease Linkage analysis Neurodegenerative diseases Pathogenesis Phenotypes Review |
Title | Huntington’s Disease Pathogenesis: Two Sequential Components |
URI | https://journals.sagepub.com/doi/full/10.3233/JHD-200427 https://www.ncbi.nlm.nih.gov/pubmed/33579862 https://www.proquest.com/docview/2487445294 https://pubmed.ncbi.nlm.nih.gov/PMC7990433 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB416YULasXLbYkswaUHQ_bhtc0BlBKsKFKrChqRm-XsrptIaVI1iRA3_kb_Hr-EGa_tNgSJqz3yrmdndh777QzA20JRY1VUQFFEJpAGNT22Ngm6xipWohYnJdriQg1GcjgOx3swre_CVBxcvSNYFc6o3KxJuykbTSouuBDvh4N-ubw8-rRZ32Quz12306AndDC9uaEzbU1IyJ9Bfa-tBfs8UiGq8H4v_fq9kX30etBRCnmTn6HozaVoqB93QOdfrrrpXxPYtmc7Tuou1vIRYKy0YekBPK2cT7_npOUQ9uziGXwcuG4R6AT-_nW_8vvuyMa_RN9weU1b4Wz1wb_6sfS_lbBr3BLmPm0jywWBMJ7DKP1y9XkQVF0VAi1FvA6EZVpxznKuCsasQPvPhLSJNpNcYpxdxLmOrIp0IRmaKm5MmCtmu1YnuohRX19Ae4EjvAI_V2j-TBJajVqNnl6i2ER1Ta6QMcaK0IPTmjeZrkqOU-eLeYahB_ExQz5mjo8evGlob12hjX9SndQszmpRybikGv4hT6QHLx23m08IEUYJRm0eRFvr0BBQee3tN4vZtCyzHeHfSyE88GnFHobbndXR_0mO4QknNEyZvDmB9vpuY1-jO7OedFASz_pnaaeSyA60Li7P_wDGrPPx |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTsMwDLZgO8AFgfgrDKgEFw6F5afpygFpYkxljAnBJnaruiSFSdOG2BBXXoPX40lw2q4whsS5VpLacfwl-WIDHMXCFFZFB2Sxpxyu0NMrWvtOWWlBEtZiL2FbtETQ4Y2u283ecZu3MJkGxyeGVoUjShbrzLsZZey0EdQSy1JvEYrchKsCFKv1u4d8GiOAQczj0vyoxWzE0tMWU1rbMVdZaaLSXw3OhqY5vDlPm_zB_UrCUX0VVjIcaVdTw6_Bgh6uw3mQFn5APPf5_jG2a-nti32LMG_0aFa1_vjMbr-N7PuEQY3ePbDNijAaGj7FBnTql-2LwMkKJDiSs8rEYZpIQSmJqIgJ0QxDOWFc-1L1Io5b5rgSSU8LT8acYNShSrmRILqspS_jCrreJhSG2MM22JHASKZ8V0t0UARtviA9UVaRQMUozVwLjqe6CWWWPdwUsRiEuIswegxRj2GqRwsOc9nnNGfGn1KlqYrDqdVDyk06fpf63IKtVNt5E4y5no8bMAu8GTvkAiZT9uyXYf8pyZjt4d9zxiywjcW-u5sf1c7_IgewFLRvmmHzqnW9C8vUkFySM5kSFCYvr3oPUcqkt5_Nyi_Iyd7c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB60BfEiiq_4DOjFQ7T7yKbxIBRrqQ-kaIu9hXR3o4K0Yite_Rv-PX-JM0karRU8Z8huvtnZ-WZ3MgOwnyhqrIoGKJLAeNKgpVetDb2KsYqlWYu9NNviWjU78qLrd_OjC_oXJkdweEhpVTijdLMm6342CVm44EIcXTTrqXZ5MAtlKdEplqBca9zcFUsZSQzyHp8Xxy0UjGUnLtRe26PrrKxY6a8XTrqnKc45nTr5I_8rdUmNRVjIuaRby5S_BDO2vwwnzaz5A3K6z_ePoVvPbmDcFlK9wT3tbI_DY7f9NnBv0yxqtPAnl3aFQZ9yKlag0zhrnza9vEmCp6WojjxhmVacs5irhDEr0J0zIW2oTS-WGDYn1VgHVgU6kQw9DzfGjxWzFatDnVTR_Fah1McR1sGNFXozE_pWo5EicQsV66mKiRUCY6zwHTgYYxPpvII4NbJ4ijCSIBwjxDHKcHRgr5B9zupm_Cm1NYY4Gms-4pJK8vs8lA6sZWgXrxDCD0IMwhwIJvRQCFC17Mkn_ceHtGp2gF8vhXDAJY19Dzc9q43_RXZhrlVvRFfn15ebMM8pzyU9ltmC0ujl1W4jURn1dvJF-QUnMt_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Huntington%E2%80%99s+Disease+Pathogenesis%3A+Two+Sequential+Components&rft.jtitle=Journal+of+Huntington%27s+disease&rft.au=Hong%2C+Eun+Pyo&rft.au=MacDonald%2C+Marcy+E.&rft.au=Wheeler%2C+Vanessa+C.&rft.au=Jones%2C+Lesley&rft.date=2021-01-01&rft.pub=IOS+Press&rft.issn=1879-6397&rft.eissn=1879-6397&rft.volume=10&rft.issue=1&rft.spage=35&rft.epage=51&rft_id=info:doi/10.3233%2FJHD-200427&rft_id=info%3Apmid%2F33579862&rft.externalDocID=PMC7990433 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-6397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-6397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-6397&client=summon |