Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction
The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to d...
Saved in:
Published in | INFORMS journal on computing Vol. 19; no. 2; pp. 280 - 290 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
22.03.2007
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 1091-9856 1526-5528 1091-9856 |
DOI | 10.1287/ijoc.1050.0172 |
Cover
Loading…
Abstract | The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems. |
---|---|
AbstractList | The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems. The quadratic knapsack problem calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems. |
Audience | Academic |
Author | Rasmussen, Anders Bo Sandvik, Rune Pisinger, W. David |
Author_xml | – sequence: 1 fullname: Pisinger, W. David – sequence: 2 fullname: Rasmussen, Anders Bo – sequence: 3 fullname: Sandvik, Rune |
BookMark | eNqFkctr3DAQxkVJII_2mrNpc_VWT8s-LiHpa6FJmpyFVh55tbWtrWS35L-PHIeGwpYgGInh981o5jtBB73vAaEzgheElvKj23qzIFjgBSaSvkHHRNAiF4KWB-mNK5JXpSiO0EmMW4wxZ7w6Rl9_-HYcnO8zb7OVDg1kN6Ougx6cyb71ehe1-ZldB79uoYvZ3Sb4sdlky6YJEKP7Ddkt1KOZKrxFh1a3Ed4936fo_ury7uJzvvr-6cvFcpUbzsohZ7xcWyawqGVRy5JSKkXNyNpIKCjjQtamsJZakLUFizWpKlhzbkQKvKKSnaL3c91d8L9GiIPa-jH0qaWiGAsmZVEl6MMMNboF5Xrrh6BN56JRS1JwIQhhJFH5HqqBHoJu03atS-l_-MUePp0aOmf2CvgsMMHHGMAq4wY9bSsJXasIVpN3avJOTd6pybuXPn9lu-A6HR7-L3geZPpT6OLr_PnMb1yz-ePCPMwkfOIqRRUtMXsEkXO3IA |
CitedBy_id | crossref_primary_10_1016_j_ejor_2024_12_032 crossref_primary_10_1016_j_cor_2010_10_027 crossref_primary_10_1057_jors_2014_76 crossref_primary_10_1007_s12532_021_00206_w crossref_primary_10_1016_j_knosys_2015_10_004 crossref_primary_10_1016_j_ejor_2024_12_019 crossref_primary_10_1016_j_ejor_2020_10_047 crossref_primary_10_1016_j_cor_2010_12_017 crossref_primary_10_1016_j_dam_2023_02_003 crossref_primary_10_1109_ACCESS_2024_3425711 crossref_primary_10_1016_j_cor_2012_11_023 crossref_primary_10_1016_j_cor_2024_106873 crossref_primary_10_1007_s11590_017_1227_5 crossref_primary_10_1007_s42484_024_00148_1 crossref_primary_10_1137_110820762 crossref_primary_10_1007_s10479_018_2970_4 crossref_primary_10_1016_j_ejor_2013_10_020 crossref_primary_10_1016_j_cor_2016_08_006 crossref_primary_10_1007_s12532_010_0010_8 crossref_primary_10_1109_TSP_2011_2170170 crossref_primary_10_1016_j_ejor_2016_06_013 crossref_primary_10_1287_ijoc_2020_1000 crossref_primary_10_1007_s10479_013_1383_7 crossref_primary_10_1016_j_swevo_2015_09_005 crossref_primary_10_1007_s10878_007_9105_1 crossref_primary_10_1287_ijoc_2015_0678 crossref_primary_10_1016_j_knosys_2016_01_014 crossref_primary_10_1016_j_cam_2013_09_052 crossref_primary_10_1111_itor_13512 crossref_primary_10_1016_j_ejor_2023_04_044 crossref_primary_10_1016_j_ejor_2024_06_034 crossref_primary_10_1016_j_endm_2010_05_035 crossref_primary_10_1016_j_trb_2007_07_005 crossref_primary_10_1007_s10589_022_00445_0 crossref_primary_10_1016_j_cor_2021_105693 crossref_primary_10_1016_j_ejor_2022_06_029 crossref_primary_10_1080_0305215X_2017_1316844 crossref_primary_10_4018_IJAEC_2019100101 crossref_primary_10_1007_s00186_020_00702_0 crossref_primary_10_1287_ijoc_2018_0840 crossref_primary_10_1287_ijoc_2013_0555 crossref_primary_10_1002_nav_20364 crossref_primary_10_1016_j_disopt_2020_100579 |
Cites_doi | 10.1007/BFb0120892 10.1007/3-540-45749-6_69 10.1016/S0377-2217(97)00414-1 10.1007/978-3-540-24777-7 10.1016/0377-2217(94)00286-X 10.1007/3-540-61310-2_14 10.1007/BF02592198 10.1287/opre.28.5.1130 10.1016/j.cor.2005.09.018 10.1016/0377-2217(94)00229-0 10.1007/BF02060482 10.1287/ijoc.11.2.125 10.1287/ijoc.15.3.233.16078 10.1016/0377-2217(90)90297-O 10.1016/0377-2217(95)00299-5 10.1016/j.cor.2004.09.033 10.1287/mnsc.17.3.200 10.1007/BFb0083467 10.1007/BF01585164 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Spring 2007 |
Copyright_xml | – notice: COPYRIGHT 2007 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Spring 2007 |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8AO 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1287/ijoc.1050.0172 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1526-5528 1091-9856 |
EndPage | 290 |
ExternalDocumentID | 1285943741 A164551131 10_1287_ijoc_1050_0172 ijoc.1050.0172 joc_19_2_280 |
Genre | Research Article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 1AW 29I 3V. 4.4 4S 5GY 7WY 8AL 8AO 8FE 8FG 8FL 8VB AAPBV ABDBF ABFLS ABPTK ABUWG ACNCT ADCOW AEILP AENEX AFKRA AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BEZIV BGLVJ BPHCQ CS3 DU5 DWQXO EAD EAP EBA EBE EBR EBS EBU ECS EDO EHE EJD EMI EMK EPL EST ESX F5P FRNLG GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HCIFZ I-F IAO ICD IEA IGS IL9 IOF ITC K6 K60 K6V K7- M0C M0N MV1 N95 NIEAY P2P P62 PQEST PQQKQ PQUKI PRINS PROAC QWB RPU TH9 TN5 TUS XI7 Y99 ZL0 ZY4 ACYGS XFK .4S .DC 18M AAYXX ABDNZ ACGFO AEGXH AEMOZ AHQJS AIAGR BAAKF CCPQU CITATION EBO K1G K6~ PHGZM PHGZT PQBIZ PQBZA XOL PMFND 7XB 8FK JQ2 L.- PKEHL PQGLB Q9U |
ID | FETCH-LOGICAL-c438t-348bf3505d76d7822275d31bc7e623457dc6ff2fe7dfef0a199eb44c5b4449273 |
IEDL.DBID | 8FG |
ISSN | 1091-9856 |
IngestDate | Fri Jul 25 23:50:36 EDT 2025 Tue Jun 17 22:27:35 EDT 2025 Fri Jun 13 00:10:30 EDT 2025 Tue Jun 10 21:28:19 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Tue Jul 01 02:20:18 EDT 2025 Wed Jan 06 02:47:42 EST 2021 Fri Jan 15 03:35:51 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-348bf3505d76d7822275d31bc7e623457dc6ff2fe7dfef0a199eb44c5b4449273 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 200537769 |
PQPubID | 46392 |
PageCount | 11 |
ParticipantIDs | gale_infotracmisc_A164551131 highwire_informs_joc_19_2_280 informs_primary_10_1287_ijoc_1050_0172 crossref_citationtrail_10_1287_ijoc_1050_0172 proquest_journals_200537769 gale_infotracgeneralonefile_A164551131 gale_infotracacademiconefile_A164551131 crossref_primary_10_1287_ijoc_1050_0172 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20070322 |
PublicationDateYYYYMMDD | 2007-03-22 |
PublicationDate_xml | – month: 03 year: 2007 text: 20070322 day: 22 |
PublicationDecade | 2000 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | INFORMS journal on computing |
PublicationYear | 2007 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B10 B21 B11 B22 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Hammer P. L. (B10) 1997; 35 |
References_xml | – ident: B8 – ident: B12 – ident: B9 – ident: B11 – ident: B13 – ident: B14 – ident: B10 – ident: B3 – ident: B2 – ident: B20 – ident: B1 – ident: B4 – ident: B7 – ident: B5 – ident: B6 – ident: B22 – ident: B21 – ident: B17 – ident: B18 – ident: B16 – ident: B15 – ident: B19 – ident: B9 doi: 10.1007/BFb0120892 – ident: B18 doi: 10.1007/3-540-45749-6_69 – ident: B3 doi: 10.1016/S0377-2217(97)00414-1 – ident: B13 doi: 10.1007/978-3-540-24777-7 – ident: B15 doi: 10.1016/0377-2217(94)00286-X – ident: B11 doi: 10.1007/3-540-61310-2_14 – ident: B8 doi: 10.1007/BF02592198 – volume: 35 start-page: 170 year: 1997 ident: B10 publication-title: INFOR – ident: B1 doi: 10.1287/opre.28.5.1130 – ident: B21 doi: 10.1016/j.cor.2005.09.018 – ident: B2 doi: 10.1016/0377-2217(94)00229-0 – ident: B14 doi: 10.1007/BF02060482 – ident: B4 doi: 10.1287/ijoc.11.2.125 – ident: B6 doi: 10.1287/ijoc.15.3.233.16078 – ident: B7 doi: 10.1016/0377-2217(90)90297-O – ident: B16 doi: 10.1016/0377-2217(95)00299-5 – ident: B17 doi: 10.1016/j.cor.2004.09.033 – ident: B20 doi: 10.1287/mnsc.17.3.200 – ident: B5 doi: 10.1007/BFb0083467 – ident: B12 doi: 10.1007/BF01585164 |
SSID | ssj0004349 |
Score | 1.9838585 |
Snippet | The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be... The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be... The quadratic knapsack problem calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be... |
SourceID | proquest gale crossref informs highwire |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 280 |
SubjectTerms | algorithms Analysis analysis of algorithms Branch & bound algorithms branch and bound Branch and bound algorithms Computational complexity Heuristic integer Integer programming Knapsack problem Mathematical analysis programming quadratic Quadratic programming relaxation Studies |
Title | Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction |
URI | http://joc.journal.informs.org/cgi/content/abstract/19/2/280 https://www.proquest.com/docview/200537769 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoXNoD5dGKLQ_5UJWTy8Z2HPtUbRELggpRBBI3K3Fs1IJ2t83y_zvj2NBVH1xySEaJNWOPv3Hs7yPkvfZaOaMDK2qhmOQNZ6apFWtErStpHIoe4W6Lc3VyLU9vypu0N6dL2ypzToyJup06XCM_4JF5pFLm0-wHQ9Eo_LmaFDRekJUCJhrs5np8_HQsUkT0i9SXzOhSJc5GqBEOvn2fOpS4HX7EGmhhTsqZOdMFx2NOCCC7P9J1nIPGa2Q1gUc66qO9Tpb8ZIO8zsIMNI3TDfLqN5bBTXKal77oNNAvuPObfn2oWwy9o2eTetbV7o5e9MoyHb3qlXvo6DaW4pAN6SXyu-Ib3pDr8dHV4QlLEgrMSaHnTEjdBAEop61UG8FAVbaiaFzlAffIsmqdCoEHX7XBh2FdGOMbKV0JF2kA2rwly5PpxG8R6rkLCkavE4C6nAaHNmUFxSRcPaAmPSAsO9G6xC-OMhf3FusMcLpFp1t0ukWnD8j-o_2sZ9b4tyXGxGIY4I2uTicHoF1IXmVHUPIB8CtEMSAfFixve-ruvxnuLBjCmHILj3dz-G0Kvo1NMpZbrofwnXz7uaZv5y5jU3Lo7GNXfvffp9vkZb-QLBjnO2R5_vPB7wICmjd7sZ_vkZXPR-cXl78ARFIC7Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE48Cggtg_wgcfJdGM7iXNAaIFW2-6yKtVW6s1NHLsCqt2l2ariR_EfmUniworXqZcc4pFjzYzn4Xi-AXimnU5spj2PcplwJQrBsyJPeCFznarMUtMjum0xTgZHav84Pl6B76EWhq5VBptYG-pyZumMfFvUyCNpkr2Zf-XUNIp-roYOGo1WDN23S8zYqtd771G8z4XY3Zm8G_C2qQC3SuoFl0oXXqLfL9OkrN1jGpcyKmzqMBJQcVraxHvhXVp653t5lGWuUMrG-FAZOnuc9wasKipo7cDq253xweHPQkxZx9sEtskzHSctSiRmJdufPs8sNdXtvaKsa8kLBl8QAIrrwioKWavfHETt9XbvwZ02XGX9Rr_uw4qbrsHd0AqCtZZhDW7_gmv4APbDYRubeTaiu-bs40VekrJZNpzm8yq3X9hB08umYpOmVxDrn9bJP9pfdkiIsjTDQzi6Fv4-gs50NnWPgTlhfYL2wkqM86xGhhZxiukrPh3GaboLPDDR2BbRnBprnBnKbJDphphuiOmGmN6Fl1f08wbL4--UJBNDYsAZbd7WKuC6CC7L9DHJxFAzklEXXixRnjZg4X8i3FwixF1sl4a3gvhNK3xTLykzwgjdw--E1_9b-kZQGdOao8pcbZ71f44-hZuDyYeRGe2NhxtwqznGllyITegszi_cFsZfi-JJq_UMTq57o_0AOTo_Pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48Cggti984HEyu7GT2D4gtKIsbbeqCmql3kzi2FUL2t2SrRA_jX_HTBK3rHideslhM_JaM-OZbxz7G4Bn2uvcGR14Usicp6IU3JRFzktZaJUaR02P6LTFfr59lO4eZ8dL8CPehaFjlTEmNoG6mjraI--LhnlE5aYfulMRB1ujN7NzTg2k6ENr7KbResjYf_-G1Vv9emcLTf1ciNG7w7fbvGswwF0q9ZzLVJdBIgaoVF41qVJllUxKpzyigjRTlctDEMGrKvgwKBJjfJmmLsNHajDx47g34KaSylDdp0fvr65kygZ5E-0mNzrLO75IrE_6p2dTR-11B6-o_lrIhzErRKri5ooVgdf6t1TR5L_RfbjbAVc2bD3tASz5yQrci00hWBcjVuDOLwyHD2E3bruxaWB7dOqcfbgoKnI7x8aTYlYX7jM7aLva1Oyw7RrEhifNNgBGYvaRuGVphEdwdC3afQzLk-nEPwHmhQs5Rg4nEfE5jQotM4WFLD49IjbdAx6VaF3HbU4tNr5YqnFQ6ZaUbknplpTeg5eX8rOW1ePvkmQTS2bAEV3R3VrAeRFxlh1iuYmgM5FJD14sSJ60tOF_ElxfEMT17BZeb0Tz2874tpmSscIKPcD_iT__b-pr0WVsF5hqe7mMVv_59incwuVl93b2x2twu93PllyIdVief73wGwjE5uVm4_IMPl33GvsJuztCDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+Large+Quadratic+Knapsack+Problems+Through+Aggressive+Reduction&rft.jtitle=INFORMS+journal+on+computing&rft.date=2007-03-22&rft.pub=INFORMS&rft.issn=1091-9856&rft.eissn=1526-5528&rft.volume=19&rft.issue=2&rft.spage=280&rft.epage=290&rft_id=info:doi/10.1287%2Fijoc.1050.0172&rft.externalDocID=ijoc.1050.0172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-9856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-9856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-9856&client=summon |