Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction

The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to d...

Full description

Saved in:
Bibliographic Details
Published inINFORMS journal on computing Vol. 19; no. 2; pp. 280 - 290
Main Authors Pisinger, W. David, Rasmussen, Anders Bo, Sandvik, Rune
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 22.03.2007
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN1091-9856
1526-5528
1091-9856
DOI10.1287/ijoc.1050.0172

Cover

Loading…
Abstract The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems.
AbstractList The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems.
The quadratic knapsack problem calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm.
The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the reduction, including an improved version of the Caprara-Pisinger-Toth bound based on upper planes and reformulation, and the Billionnet-Faye-Soutif bound based on Lagrangian decomposition. Generalized reduction techniques based on implicit enumeration are used to fix variables at their optimal values. In order to obtain lower bounds of high quality for the reduction, a core problem is solved, defined on a subset of variables. The core is chosen by merging numerous heuristic solutions found during the subgradient-optimization phase. The upper and lower bounding phases are repeated several times, each time improving the subgradient method used for finding the Lagrangian multipliers associated with the upper bounds. Having reduced the instance to a (hopefully) reasonable size, a branch and bound algorithm based on the Caprara-Pisinger-Toth framework is applied. Computational experiments are presented showing that several instances with up to 1,500 binary variables can be reduced to fewer than 100 variables. The remaining set of variables are easily handled through the exact branch and bound algorithm. In comparison to previous algorithms the framework does not only solve larger instances, but the algorithm also works well for instances with smaller densities of the profit matrix, which appear frequently when modeling various graph problems as quadratic knapsack problems.
Audience Academic
Author Rasmussen, Anders Bo
Sandvik, Rune
Pisinger, W. David
Author_xml – sequence: 1
  fullname: Pisinger, W. David
– sequence: 2
  fullname: Rasmussen, Anders Bo
– sequence: 3
  fullname: Sandvik, Rune
BookMark eNqFkctr3DAQxkVJII_2mrNpc_VWT8s-LiHpa6FJmpyFVh55tbWtrWS35L-PHIeGwpYgGInh981o5jtBB73vAaEzgheElvKj23qzIFjgBSaSvkHHRNAiF4KWB-mNK5JXpSiO0EmMW4wxZ7w6Rl9_-HYcnO8zb7OVDg1kN6Ougx6cyb71ehe1-ZldB79uoYvZ3Sb4sdlky6YJEKP7Ddkt1KOZKrxFh1a3Ed4936fo_ury7uJzvvr-6cvFcpUbzsohZ7xcWyawqGVRy5JSKkXNyNpIKCjjQtamsJZakLUFizWpKlhzbkQKvKKSnaL3c91d8L9GiIPa-jH0qaWiGAsmZVEl6MMMNboF5Xrrh6BN56JRS1JwIQhhJFH5HqqBHoJu03atS-l_-MUePp0aOmf2CvgsMMHHGMAq4wY9bSsJXasIVpN3avJOTd6pybuXPn9lu-A6HR7-L3geZPpT6OLr_PnMb1yz-ePCPMwkfOIqRRUtMXsEkXO3IA
CitedBy_id crossref_primary_10_1016_j_ejor_2024_12_032
crossref_primary_10_1016_j_cor_2010_10_027
crossref_primary_10_1057_jors_2014_76
crossref_primary_10_1007_s12532_021_00206_w
crossref_primary_10_1016_j_knosys_2015_10_004
crossref_primary_10_1016_j_ejor_2024_12_019
crossref_primary_10_1016_j_ejor_2020_10_047
crossref_primary_10_1016_j_cor_2010_12_017
crossref_primary_10_1016_j_dam_2023_02_003
crossref_primary_10_1109_ACCESS_2024_3425711
crossref_primary_10_1016_j_cor_2012_11_023
crossref_primary_10_1016_j_cor_2024_106873
crossref_primary_10_1007_s11590_017_1227_5
crossref_primary_10_1007_s42484_024_00148_1
crossref_primary_10_1137_110820762
crossref_primary_10_1007_s10479_018_2970_4
crossref_primary_10_1016_j_ejor_2013_10_020
crossref_primary_10_1016_j_cor_2016_08_006
crossref_primary_10_1007_s12532_010_0010_8
crossref_primary_10_1109_TSP_2011_2170170
crossref_primary_10_1016_j_ejor_2016_06_013
crossref_primary_10_1287_ijoc_2020_1000
crossref_primary_10_1007_s10479_013_1383_7
crossref_primary_10_1016_j_swevo_2015_09_005
crossref_primary_10_1007_s10878_007_9105_1
crossref_primary_10_1287_ijoc_2015_0678
crossref_primary_10_1016_j_knosys_2016_01_014
crossref_primary_10_1016_j_cam_2013_09_052
crossref_primary_10_1111_itor_13512
crossref_primary_10_1016_j_ejor_2023_04_044
crossref_primary_10_1016_j_ejor_2024_06_034
crossref_primary_10_1016_j_endm_2010_05_035
crossref_primary_10_1016_j_trb_2007_07_005
crossref_primary_10_1007_s10589_022_00445_0
crossref_primary_10_1016_j_cor_2021_105693
crossref_primary_10_1016_j_ejor_2022_06_029
crossref_primary_10_1080_0305215X_2017_1316844
crossref_primary_10_4018_IJAEC_2019100101
crossref_primary_10_1007_s00186_020_00702_0
crossref_primary_10_1287_ijoc_2018_0840
crossref_primary_10_1287_ijoc_2013_0555
crossref_primary_10_1002_nav_20364
crossref_primary_10_1016_j_disopt_2020_100579
Cites_doi 10.1007/BFb0120892
10.1007/3-540-45749-6_69
10.1016/S0377-2217(97)00414-1
10.1007/978-3-540-24777-7
10.1016/0377-2217(94)00286-X
10.1007/3-540-61310-2_14
10.1007/BF02592198
10.1287/opre.28.5.1130
10.1016/j.cor.2005.09.018
10.1016/0377-2217(94)00229-0
10.1007/BF02060482
10.1287/ijoc.11.2.125
10.1287/ijoc.15.3.233.16078
10.1016/0377-2217(90)90297-O
10.1016/0377-2217(95)00299-5
10.1016/j.cor.2004.09.033
10.1287/mnsc.17.3.200
10.1007/BFb0083467
10.1007/BF01585164
ContentType Journal Article
Copyright COPYRIGHT 2007 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Spring 2007
Copyright_xml – notice: COPYRIGHT 2007 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Spring 2007
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8AO
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1287/ijoc.1050.0172
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1526-5528
1091-9856
EndPage 290
ExternalDocumentID 1285943741
A164551131
10_1287_ijoc_1050_0172
ijoc.1050.0172
joc_19_2_280
Genre Research Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 1AW
29I
3V.
4.4
4S
5GY
7WY
8AL
8AO
8FE
8FG
8FL
8VB
AAPBV
ABDBF
ABFLS
ABPTK
ABUWG
ACNCT
ADCOW
AEILP
AENEX
AFKRA
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EAD
EAP
EBA
EBE
EBR
EBS
EBU
ECS
EDO
EHE
EJD
EMI
EMK
EPL
EST
ESX
F5P
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
I-F
IAO
ICD
IEA
IGS
IL9
IOF
ITC
K6
K60
K6V
K7-
M0C
M0N
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
RPU
TH9
TN5
TUS
XI7
Y99
ZL0
ZY4
ACYGS
XFK
.4S
.DC
18M
AAYXX
ABDNZ
ACGFO
AEGXH
AEMOZ
AHQJS
AIAGR
BAAKF
CCPQU
CITATION
EBO
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
XOL
PMFND
7XB
8FK
JQ2
L.-
PKEHL
PQGLB
Q9U
ID FETCH-LOGICAL-c438t-348bf3505d76d7822275d31bc7e623457dc6ff2fe7dfef0a199eb44c5b4449273
IEDL.DBID 8FG
ISSN 1091-9856
IngestDate Fri Jul 25 23:50:36 EDT 2025
Tue Jun 17 22:27:35 EDT 2025
Fri Jun 13 00:10:30 EDT 2025
Tue Jun 10 21:28:19 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Tue Jul 01 02:20:18 EDT 2025
Wed Jan 06 02:47:42 EST 2021
Fri Jan 15 03:35:51 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-348bf3505d76d7822275d31bc7e623457dc6ff2fe7dfef0a199eb44c5b4449273
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 200537769
PQPubID 46392
PageCount 11
ParticipantIDs gale_infotracmisc_A164551131
highwire_informs_joc_19_2_280
informs_primary_10_1287_ijoc_1050_0172
crossref_citationtrail_10_1287_ijoc_1050_0172
proquest_journals_200537769
gale_infotracgeneralonefile_A164551131
gale_infotracacademiconefile_A164551131
crossref_primary_10_1287_ijoc_1050_0172
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20070322
PublicationDateYYYYMMDD 2007-03-22
PublicationDate_xml – month: 03
  year: 2007
  text: 20070322
  day: 22
PublicationDecade 2000
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle INFORMS journal on computing
PublicationYear 2007
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B10
B21
B11
B22
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Hammer P. L. (B10) 1997; 35
References_xml – ident: B8
– ident: B12
– ident: B9
– ident: B11
– ident: B13
– ident: B14
– ident: B10
– ident: B3
– ident: B2
– ident: B20
– ident: B1
– ident: B4
– ident: B7
– ident: B5
– ident: B6
– ident: B22
– ident: B21
– ident: B17
– ident: B18
– ident: B16
– ident: B15
– ident: B19
– ident: B9
  doi: 10.1007/BFb0120892
– ident: B18
  doi: 10.1007/3-540-45749-6_69
– ident: B3
  doi: 10.1016/S0377-2217(97)00414-1
– ident: B13
  doi: 10.1007/978-3-540-24777-7
– ident: B15
  doi: 10.1016/0377-2217(94)00286-X
– ident: B11
  doi: 10.1007/3-540-61310-2_14
– ident: B8
  doi: 10.1007/BF02592198
– volume: 35
  start-page: 170
  year: 1997
  ident: B10
  publication-title: INFOR
– ident: B1
  doi: 10.1287/opre.28.5.1130
– ident: B21
  doi: 10.1016/j.cor.2005.09.018
– ident: B2
  doi: 10.1016/0377-2217(94)00229-0
– ident: B14
  doi: 10.1007/BF02060482
– ident: B4
  doi: 10.1287/ijoc.11.2.125
– ident: B6
  doi: 10.1287/ijoc.15.3.233.16078
– ident: B7
  doi: 10.1016/0377-2217(90)90297-O
– ident: B16
  doi: 10.1016/0377-2217(95)00299-5
– ident: B17
  doi: 10.1016/j.cor.2004.09.033
– ident: B20
  doi: 10.1287/mnsc.17.3.200
– ident: B5
  doi: 10.1007/BFb0083467
– ident: B12
  doi: 10.1007/BF01585164
SSID ssj0004349
Score 1.9838585
Snippet The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be...
The quadratic knapsack problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be...
The quadratic knapsack problem calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be...
SourceID proquest
gale
crossref
informs
highwire
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms algorithms
Analysis
analysis of algorithms
Branch & bound algorithms
branch and bound
Branch and bound algorithms
Computational complexity
Heuristic
integer
Integer programming
Knapsack problem
Mathematical analysis
programming
quadratic
Quadratic programming
relaxation
Studies
Title Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction
URI http://joc.journal.informs.org/cgi/content/abstract/19/2/280
https://www.proquest.com/docview/200537769
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoXNoD5dGKLQ_5UJWTy8Z2HPtUbRELggpRBBI3K3Fs1IJ2t83y_zvj2NBVH1xySEaJNWOPv3Hs7yPkvfZaOaMDK2qhmOQNZ6apFWtErStpHIoe4W6Lc3VyLU9vypu0N6dL2ypzToyJup06XCM_4JF5pFLm0-wHQ9Eo_LmaFDRekJUCJhrs5np8_HQsUkT0i9SXzOhSJc5GqBEOvn2fOpS4HX7EGmhhTsqZOdMFx2NOCCC7P9J1nIPGa2Q1gUc66qO9Tpb8ZIO8zsIMNI3TDfLqN5bBTXKal77oNNAvuPObfn2oWwy9o2eTetbV7o5e9MoyHb3qlXvo6DaW4pAN6SXyu-Ib3pDr8dHV4QlLEgrMSaHnTEjdBAEop61UG8FAVbaiaFzlAffIsmqdCoEHX7XBh2FdGOMbKV0JF2kA2rwly5PpxG8R6rkLCkavE4C6nAaHNmUFxSRcPaAmPSAsO9G6xC-OMhf3FusMcLpFp1t0ukWnD8j-o_2sZ9b4tyXGxGIY4I2uTicHoF1IXmVHUPIB8CtEMSAfFixve-ruvxnuLBjCmHILj3dz-G0Kvo1NMpZbrofwnXz7uaZv5y5jU3Lo7GNXfvffp9vkZb-QLBjnO2R5_vPB7wICmjd7sZ_vkZXPR-cXl78ARFIC7Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE48Cggtg_wgcfJdGM7iXNAaIFW2-6yKtVW6s1NHLsCqt2l2ariR_EfmUniworXqZcc4pFjzYzn4Xi-AXimnU5spj2PcplwJQrBsyJPeCFznarMUtMjum0xTgZHav84Pl6B76EWhq5VBptYG-pyZumMfFvUyCNpkr2Zf-XUNIp-roYOGo1WDN23S8zYqtd771G8z4XY3Zm8G_C2qQC3SuoFl0oXXqLfL9OkrN1jGpcyKmzqMBJQcVraxHvhXVp653t5lGWuUMrG-FAZOnuc9wasKipo7cDq253xweHPQkxZx9sEtskzHSctSiRmJdufPs8sNdXtvaKsa8kLBl8QAIrrwioKWavfHETt9XbvwZ02XGX9Rr_uw4qbrsHd0AqCtZZhDW7_gmv4APbDYRubeTaiu-bs40VekrJZNpzm8yq3X9hB08umYpOmVxDrn9bJP9pfdkiIsjTDQzi6Fv4-gs50NnWPgTlhfYL2wkqM86xGhhZxiukrPh3GaboLPDDR2BbRnBprnBnKbJDphphuiOmGmN6Fl1f08wbL4--UJBNDYsAZbd7WKuC6CC7L9DHJxFAzklEXXixRnjZg4X8i3FwixF1sl4a3gvhNK3xTLykzwgjdw--E1_9b-kZQGdOao8pcbZ71f44-hZuDyYeRGe2NhxtwqznGllyITegszi_cFsZfi-JJq_UMTq57o_0AOTo_Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48Cggti984HEyu7GT2D4gtKIsbbeqCmql3kzi2FUL2t2SrRA_jX_HTBK3rHideslhM_JaM-OZbxz7G4Bn2uvcGR14Usicp6IU3JRFzktZaJUaR02P6LTFfr59lO4eZ8dL8CPehaFjlTEmNoG6mjraI--LhnlE5aYfulMRB1ujN7NzTg2k6ENr7KbResjYf_-G1Vv9emcLTf1ciNG7w7fbvGswwF0q9ZzLVJdBIgaoVF41qVJllUxKpzyigjRTlctDEMGrKvgwKBJjfJmmLsNHajDx47g34KaSylDdp0fvr65kygZ5E-0mNzrLO75IrE_6p2dTR-11B6-o_lrIhzErRKri5ooVgdf6t1TR5L_RfbjbAVc2bD3tASz5yQrci00hWBcjVuDOLwyHD2E3bruxaWB7dOqcfbgoKnI7x8aTYlYX7jM7aLva1Oyw7RrEhifNNgBGYvaRuGVphEdwdC3afQzLk-nEPwHmhQs5Rg4nEfE5jQotM4WFLD49IjbdAx6VaF3HbU4tNr5YqnFQ6ZaUbknplpTeg5eX8rOW1ePvkmQTS2bAEV3R3VrAeRFxlh1iuYmgM5FJD14sSJ60tOF_ElxfEMT17BZeb0Tz2874tpmSscIKPcD_iT__b-pr0WVsF5hqe7mMVv_59incwuVl93b2x2twu93PllyIdVief73wGwjE5uVm4_IMPl33GvsJuztCDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+Large+Quadratic+Knapsack+Problems+Through+Aggressive+Reduction&rft.jtitle=INFORMS+journal+on+computing&rft.date=2007-03-22&rft.pub=INFORMS&rft.issn=1091-9856&rft.eissn=1526-5528&rft.volume=19&rft.issue=2&rft.spage=280&rft.epage=290&rft_id=info:doi/10.1287%2Fijoc.1050.0172&rft.externalDocID=ijoc.1050.0172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-9856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-9856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-9856&client=summon