Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs
Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's dis...
Saved in:
Published in | Environmental pollution (1987) Vol. 290; p. 117816 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.
The schematic representation of regulatory gene network of circRNAs driven by m6A modification in paraquat-induced oxidative stress. [Display omitted]
•PQ exposure disrupts the N6-methyladenosine profiling of circRNA in Neuro-2a cells.•CircRNA driven by m6A methylome is associated with PQ-induced oxidative stress response.•CircRNA driven by m6A methylome acts as a specific regulatory gene network.
Paraquat disrupts the N6-methyladenosine profiling of circRNAs via inducing oxidative stress. |
---|---|
AbstractList | Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.
The schematic representation of regulatory gene network of circRNAs driven by m6A modification in paraquat-induced oxidative stress. [Display omitted]
•PQ exposure disrupts the N6-methyladenosine profiling of circRNA in Neuro-2a cells.•CircRNA driven by m6A methylome is associated with PQ-induced oxidative stress response.•CircRNA driven by m6A methylome acts as a specific regulatory gene network.
Paraquat disrupts the N6-methyladenosine profiling of circRNAs via inducing oxidative stress. Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity. Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m⁶A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m⁶A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m⁶A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m⁶A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m⁶A-modified circRNAs, indicating that m⁶A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m⁶A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity. |
ArticleNumber | 117816 |
Author | Su, Qianqian Yu, Guangxia Shao, Wenya Tang, Jianping Wu, Siying Zheng, Fuli Li, Huangyuan Chou, Wei-Chun Chen, Nengzhou Guo, Zhenkun |
Author_xml | – sequence: 1 givenname: Nengzhou surname: Chen fullname: Chen, Nengzhou organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 2 givenname: Jianping surname: Tang fullname: Tang, Jianping organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 3 givenname: Qianqian surname: Su fullname: Su, Qianqian organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 4 givenname: Wei-Chun surname: Chou fullname: Chou, Wei-Chun organization: Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, United States – sequence: 5 givenname: Fuli surname: Zheng fullname: Zheng, Fuli organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 6 givenname: Zhenkun surname: Guo fullname: Guo, Zhenkun organization: The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 7 givenname: Guangxia surname: Yu fullname: Yu, Guangxia organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 8 givenname: Wenya surname: Shao fullname: Shao, Wenya organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 9 givenname: Huangyuan surname: Li fullname: Li, Huangyuan organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China – sequence: 10 givenname: Siying orcidid: 0000-0003-1799-1528 surname: Wu fullname: Wu, Siying email: sywu@fjmu.edu.cn organization: Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China |
BookMark | eNqFkT1PHDEURa2ISCwk_yCFS1LM4q-xZ1NEWiEgSAiiCGrLaz8nXs3Yi-1Zsf-eIUOVIlSvuedK950TdBRTBIS-ULKkhMrz7RLifpf6JSOMLilVHZUf0IJ2ijdSMHGEFoTJVaPEih6jk1K2hBDBOV-gzU-TzdNoahOiGy04nJ6DMzXsAZeaoRSc4ffYmwoF38lmgPrn0BsHMZUQAZ8Ncv0VD8kFH-yEpYiTxzZkOzEZ_7pbl0_oozd9gc9v9xQ9Xl0-XPxobu-vby7Wt40VvKsNF8zIlm8AVNs5Bd57IiWhjq2AGsJWneHSkQ5o25puo5RpBVfcW0u8IO2Gn6KzuXeX09MIpeohFAt9byKksWgmuWyJIKJ7P9pKQTmlTE3Rb3PU5lRKBq9tqH-H1mxCrynRrw70Vs8O9KsDPTuYYPEPvMthMPnwHvZ9xmB61z5A1sUGiJOdkMFW7VL4f8ELVKuk-A |
CitedBy_id | crossref_primary_10_1021_acs_est_5c00907 crossref_primary_10_1016_j_biopha_2023_114583 crossref_primary_10_1016_j_cossms_2023_101119 crossref_primary_10_1016_j_toxlet_2023_01_010 crossref_primary_10_1016_j_envpol_2024_124035 crossref_primary_10_1093_bfgp_elac055 crossref_primary_10_1016_j_ecoenv_2022_113503 crossref_primary_10_1016_j_ecoenv_2022_114215 crossref_primary_10_3389_fncel_2023_1328269 crossref_primary_10_1111_andr_13520 crossref_primary_10_1038_s41531_021_00265_9 crossref_primary_10_1016_j_tem_2022_12_006 crossref_primary_10_1186_s41021_023_00279_0 crossref_primary_10_3390_ijms23158122 crossref_primary_10_1016_j_ecoenv_2024_116169 crossref_primary_10_3390_cells12050753 crossref_primary_10_1016_j_ecoenv_2023_115356 crossref_primary_10_3389_fgene_2022_1055396 crossref_primary_10_1016_j_ecoenv_2023_114804 crossref_primary_10_1155_2022_8619275 crossref_primary_10_1016_j_neuroscience_2023_03_001 crossref_primary_10_1016_j_jhazmat_2024_134559 crossref_primary_10_1038_s41531_023_00615_9 crossref_primary_10_1111_jnc_15882 crossref_primary_10_3233_JPD_230457 crossref_primary_10_1016_j_aanat_2023_152180 crossref_primary_10_4103_NRR_NRR_D_23_01592 crossref_primary_10_1016_j_ecoenv_2024_117193 crossref_primary_10_1007_s41207_024_00537_9 crossref_primary_10_1016_j_cbi_2023_110376 crossref_primary_10_1186_s41021_021_00224_z crossref_primary_10_2139_ssrn_4165343 crossref_primary_10_1002_iid3_1345 crossref_primary_10_3389_fnagi_2022_975248 |
Cites_doi | 10.15252/embr.201744940 10.1016/j.neuron.2017.12.036 10.1038/nrm.2017.40 10.1038/ncomms12626 10.1016/j.bbrc.2016.01.183 10.1093/toxsci/kfz162 10.1038/nature11993 10.1038/nn.3975 10.1073/pnas.1115141108 10.1080/15476286.2015.1020271 10.1371/journal.pone.0118438 10.1007/s12035-016-0055-4 10.1186/s12943-020-01224-3 10.1038/nature12730 10.1038/cr.2014.151 10.1038/s41398-021-01443-2 10.1002/2211-5463.12485 10.1016/j.molcel.2019.07.016 10.1016/j.chemosphere.2016.09.068 10.1186/s13024-016-0143-y 10.1002/jat.1654 10.1038/cr.2017.31 10.1007/s00204-012-0935-y 10.1038/cdd.2009.217 10.1016/j.redox.2020.101475 10.1073/pnas.0906277106 10.1038/s41467-019-12651-2 10.1016/j.biopsych.2020.02.018 10.3390/genes7120116 10.1016/j.envpol.2020.115326 10.1111/j.1582-4934.2008.00543.x 10.1016/j.molcel.2017.10.002 10.1016/j.toxlet.2007.04.007 10.1002/brb3.921 10.1016/j.envpol.2020.116413 10.1016/j.toxlet.2018.04.002 10.1080/1028415021000033767 10.1016/j.tox.2017.02.005 10.1073/pnas.73.11.3852 10.1080/10409238.2016.1276882 10.3390/cells9030576 10.1016/j.cell.2017.05.045 10.1038/s41531-017-0033-1 10.1080/15548627.2019.1659617 10.1080/15548627.2017.1356975 10.1186/s12943-019-1036-9 10.1016/j.neuroscience.2006.03.069 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.117816 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 10_1016_j_envpol_2021_117816 S0269749121013981 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-342a653bee758d7efff06601d29e1a0298a36d08e155a8b77a54373fcc0f405b3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 04:18:52 EDT 2025 Thu Aug 07 15:18:49 EDT 2025 Tue Jul 01 03:15:13 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 23 02:45:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N6-methyladenosine (m6A) Oxidative stress Paraquat Neurotoxicity CircRNA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-342a653bee758d7efff06601d29e1a0298a36d08e155a8b77a54373fcc0f405b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1799-1528 |
PQID | 2564131127 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636504048 proquest_miscellaneous_2564131127 crossref_citationtrail_10_1016_j_envpol_2021_117816 crossref_primary_10_1016_j_envpol_2021_117816 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117816 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Environmental pollution (1987) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Yang (bib5) 2015; 12 Xie, Gu, Cai, Wu, Chen (bib44) 2018; 8 Mccormack, Atienza, Johnston, Andersen, Vu, DiMonte (bib30) 2010; 9 Berry, Vecchia, Nicotera (bib1) 2010; 17 McCormack, Atienza, Langston, DiMonte (bib29) 2006; 141 Chen, Guo, Luo, Zheng, Shao, Yu (bib6) 2021; 272 Guo, Zhao, Li, Li, Li (bib15) 2018; 41 Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard (bib18) 2013; 495 Du, Zhao, He, Zhang, Xi, Liu (bib12) 2016; 7 Huang, Zhang, Bai, Han, Ju, Chen (bib21) 2020; 88 Zhang, Hou, Chen, Guo, Yuan, Yin (bib48) 2020; 19 Chen, Chen, Xia, Zhang, Pan, Ma (bib7) 2019; 10 Yabe, Tsuji, Mochida, Ikehara, Usui, Ohama (bib45) 2018; 8 Chen, Wang, Xu, Xiang, Ding, Yang (bib8) 2020; 31 Li, Wu, Shi (bib23) 2007; 171 Wang, Yang, Wang, Zhang, Wang, Zhang (bib36) 2018; 291 Sanger, Klotz, Riesner, Gross, Kleinschmidt (bib34) 1976; 73 Yang, Fan, Mao, Song, Wu, Zhang (bib46) 2017; 27 He, Roundtree, Evans, Pan (bib19) 2017; 169 Li, Wu, Wang, Lin, Zhang, Huang (bib25) 2012; 86 Weng, Wang, An, Cassin, Vissers, Liu (bib43) 2018; 97 Warda, Kretschmer, Hackert, Lenz, Urlaub, Höbartner (bib42) 2017; 18 Ling, Chang, Liu, Lai, Hsu (bib28) 2017; 167 Rappold, Cui, Chesser, Tibbett, Grima, Duan (bib33) 2011; 108 Cai, Zheng, Ding, Zhan, Gong, Li (bib4) 2019; 171 Chen, Chen, Ahmad, Verma, Kasturi, Amaya (bib9) 2019; 76 Floris, Zhang, Follesa, Sun (bib14) 2017; 54 Junn, Lee, Jeong, Chan, Im, Mouradian (bib22) 2009; 106 Tang, Zheng, Zheng, Li, Wang, Guo (bib35) 2020; 266 Wang, Ren, Cai, Lin, Wang, Zhang (bib37) 2017; 3 Zhao, Yang, Sun, Shi, Yang, Xiao (bib49) 2014; 24 Rao, Balachandran (bib32) 2002; 5 Zheng, Gonalves, Abiko, Li, Kumagai, Aschner (bib51) 2020; 34 Berulava, Rahmann, Rademacher, Klein-Hitpass, Horsthemke (bib2) 2015; 10 Lin, Ye, Long, Fan, Mao, Chen (bib27) 2016; 471 Wang, Balaji, Kaniyappan, Krüger, Irsen, Tepper (bib39) 2017; 12 Wang, Lu, Gomez, Hon, Yue, Han (bib40) 2013; 505 You, Vlatkovic, Babic, Will, Epstein, Tushev (bib47) 2015; 18 Coots, Liu, Mao, Dong, Zhou, Wan (bib10) 2017; 68 Wang, Wu, Liu, Zhao, Bi, Yao (bib41) 2019; 16 Cortés-López, Miura (bib11) 2016; 89 Li, Wu, Shi, Lian, Lin (bib24) 2011; 31 Zhao, Alexandrov, Jaber, Lukiw (bib50) 2016; 7 Guo, Zhu, Zeng, Qi, Tang, Wang (bib16) 2021; 11 Fischer, Leung (bib13) 2017; 52 Wang, Zhan, Ren, Wang, Zhang, Wu (bib38) 2017; 5 Huang, Zhang, Han, Bai, Zhou, Gan (bib20) 2017; 13 Bett, Benn, Ryu, Kopito, Bates (bib3) 2009; 13 Poganik, Ota, Ulrih (bib31) 2020; 9 Zlotorynski (bib52) 2017; 18 Lin, Beal (bib26) 2006; 787 Han, Wang, Yang, Yu, Zhou, Lu (bib17) 2019; 18 Wang (10.1016/j.envpol.2021.117816_bib40) 2013; 505 Fischer (10.1016/j.envpol.2021.117816_bib13) 2017; 52 Zheng (10.1016/j.envpol.2021.117816_bib51) 2020; 34 Zlotorynski (10.1016/j.envpol.2021.117816_bib52) 2017; 18 Chen (10.1016/j.envpol.2021.117816_bib6) 2021; 272 Guo (10.1016/j.envpol.2021.117816_bib16) 2021; 11 Zhao (10.1016/j.envpol.2021.117816_bib50) 2016; 7 Yang (10.1016/j.envpol.2021.117816_bib46) 2017; 27 Huang (10.1016/j.envpol.2021.117816_bib20) 2017; 13 Rao (10.1016/j.envpol.2021.117816_bib32) 2002; 5 Wang (10.1016/j.envpol.2021.117816_bib39) 2017; 12 Huang (10.1016/j.envpol.2021.117816_bib21) 2020; 88 He (10.1016/j.envpol.2021.117816_bib19) 2017; 169 Wang (10.1016/j.envpol.2021.117816_bib41) 2019; 16 Zhao (10.1016/j.envpol.2021.117816_bib49) 2014; 24 Han (10.1016/j.envpol.2021.117816_bib17) 2019; 18 Berulava (10.1016/j.envpol.2021.117816_bib2) 2015; 10 Hansen (10.1016/j.envpol.2021.117816_bib18) 2013; 495 Floris (10.1016/j.envpol.2021.117816_bib14) 2017; 54 Wang (10.1016/j.envpol.2021.117816_bib36) 2018; 291 Guo (10.1016/j.envpol.2021.117816_bib15) 2018; 41 Zhang (10.1016/j.envpol.2021.117816_bib48) 2020; 19 Junn (10.1016/j.envpol.2021.117816_bib22) 2009; 106 Warda (10.1016/j.envpol.2021.117816_bib42) 2017; 18 Berry (10.1016/j.envpol.2021.117816_bib1) 2010; 17 Bett (10.1016/j.envpol.2021.117816_bib3) 2009; 13 Lin (10.1016/j.envpol.2021.117816_bib26) 2006; 787 Mccormack (10.1016/j.envpol.2021.117816_bib30) 2010; 9 McCormack (10.1016/j.envpol.2021.117816_bib29) 2006; 141 Sanger (10.1016/j.envpol.2021.117816_bib34) 1976; 73 Xie (10.1016/j.envpol.2021.117816_bib44) 2018; 8 Chen (10.1016/j.envpol.2021.117816_bib8) 2020; 31 Weng (10.1016/j.envpol.2021.117816_bib43) 2018; 97 Rappold (10.1016/j.envpol.2021.117816_bib33) 2011; 108 You (10.1016/j.envpol.2021.117816_bib47) 2015; 18 Yabe (10.1016/j.envpol.2021.117816_bib45) 2018; 8 Poganik (10.1016/j.envpol.2021.117816_bib31) 2020; 9 Li (10.1016/j.envpol.2021.117816_bib24) 2011; 31 Cai (10.1016/j.envpol.2021.117816_bib4) 2019; 171 Lin (10.1016/j.envpol.2021.117816_bib27) 2016; 471 Coots (10.1016/j.envpol.2021.117816_bib10) 2017; 68 Ling (10.1016/j.envpol.2021.117816_bib28) 2017; 167 Tang (10.1016/j.envpol.2021.117816_bib35) 2020; 266 Li (10.1016/j.envpol.2021.117816_bib25) 2012; 86 Li (10.1016/j.envpol.2021.117816_bib23) 2007; 171 Chen (10.1016/j.envpol.2021.117816_bib9) 2019; 76 Wang (10.1016/j.envpol.2021.117816_bib38) 2017; 5 Wang (10.1016/j.envpol.2021.117816_bib37) 2017; 3 Chen (10.1016/j.envpol.2021.117816_bib7) 2019; 10 Chen (10.1016/j.envpol.2021.117816_bib5) 2015; 12 Du (10.1016/j.envpol.2021.117816_bib12) 2016; 7 Cortés-López (10.1016/j.envpol.2021.117816_bib11) 2016; 89 |
References_xml | – volume: 52 start-page: 220 year: 2017 end-page: 233 ident: bib13 article-title: CircRNAs: a regulator of cellular stress publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 106 start-page: 13052 year: 2009 end-page: 13057 ident: bib22 article-title: Repression of α-synuclein expression and toxicity by microRNA-7 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 8 start-page: 1486 year: 2018 end-page: 1496 ident: bib45 article-title: A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation publication-title: FEBS Open Bio – volume: 108 start-page: 20766 year: 2011 end-page: 20771 ident: bib33 article-title: Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 787 start-page: 795 year: 2006 ident: bib26 article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases publication-title: Nature – volume: 76 start-page: 96 year: 2019 end-page: 109 ident: bib9 article-title: N6-Methyladenosine modification controls circular RNA immunity publication-title: Mol. Cell. – volume: 10 start-page: 4695 year: 2019 ident: bib7 article-title: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis publication-title: Nat. Commun. – volume: 471 start-page: 52 year: 2016 end-page: 56 ident: bib27 article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury publication-title: Biochem. Biophys. Res. Commun. – volume: 10 year: 2015 ident: bib2 article-title: N6-Adenosine methylation in MiRNAs publication-title: PloS One – volume: 13 start-page: 1 year: 2017 end-page: 20 ident: bib20 article-title: Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG publication-title: Autophagy – volume: 9 start-page: 576 year: 2020 ident: bib31 article-title: An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases publication-title: Cells – volume: 54 start-page: 5156 year: 2017 end-page: 5165 ident: bib14 article-title: Regulatory role of circular RNAs and neurological disorders publication-title: Mol. Neurobiol. – volume: 5 start-page: 291 year: 2002 end-page: 309 ident: bib32 article-title: Role of oxidative stress and antioxidants in neurodegenerative diseases publication-title: Nutr. Neurosci. – volume: 24 start-page: 1403 year: 2014 end-page: 1419 ident: bib49 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. – volume: 18 start-page: 110 year: 2019 ident: bib17 article-title: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner publication-title: Mol. Canc. – volume: 73 start-page: 3852 year: 1976 end-page: 3856 ident: bib34 article-title: Viroids are singlestranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 18 start-page: 2004 year: 2017 end-page: 2014 ident: bib42 article-title: Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs publication-title: EMBO Rep. – volume: 89 start-page: 527 year: 2016 end-page: 537 ident: bib11 article-title: Emerging functions of circular RNAs publication-title: Yale J. Biol. Med. – volume: 18 start-page: 603 year: 2015 end-page: 610 ident: bib47 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. – volume: 13 start-page: 2645 year: 2009 end-page: 2657 ident: bib3 article-title: The polyubiquitin Ubc gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease publication-title: J. Cell Mol. Med. – volume: 88 start-page: 392 year: 2020 end-page: 404 ident: bib21 article-title: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors publication-title: Biol. Psychiatr. – volume: 171 start-page: 87 year: 2007 end-page: 98 ident: bib23 article-title: Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS publication-title: Toxicol. Lett. – volume: 505 start-page: 117 year: 2013 end-page: 120 ident: bib40 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 169 start-page: 1187 year: 2017 end-page: 1200 ident: bib19 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell – volume: 7 start-page: 12626 year: 2016 ident: bib12 article-title: YTHDF2 destabilizes m (6) A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex publication-title: Nat. Commun. – volume: 11 start-page: 328 year: 2021 ident: bib16 article-title: A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota publication-title: . Psychiatry – volume: 9 start-page: 1030 year: 2010 end-page: 1037 ident: bib30 article-title: Role of oxidative stress in paraquat-induced dopaminergic cell degeneration publication-title: J. Neurochem. – volume: 12 start-page: 381 year: 2015 end-page: 388 ident: bib5 article-title: Regulation of circRNA biogenesis publication-title: RNA Biol. – volume: 31 start-page: 690 year: 2011 end-page: 697 ident: bib24 article-title: Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin–proteasome pathway, not MAPKs signaling publication-title: J. Appl. Toxicol. – volume: 19 start-page: 105 year: 2020 ident: bib48 article-title: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs publication-title: Mol. Canc. – volume: 68 start-page: 504 year: 2017 end-page: 517 ident: bib10 article-title: m(6)A facilitates eIF4F-independent mRNA translation publication-title: Mol. Cell. – volume: 5 start-page: 38 year: 2017 ident: bib38 article-title: Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration publication-title: J. Appl. Toxicol. – volume: 27 start-page: 626 year: 2017 end-page: 641 ident: bib46 article-title: Extensive translation of circular RNAs driven by N6-methyladenosine publication-title: Cell Res. – volume: 7 start-page: 116 year: 2016 ident: bib50 article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7) publication-title: Genes – volume: 31 start-page: 1 year: 2020 end-page: 19 ident: bib8 article-title: m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells publication-title: Autophagy – volume: 97 start-page: 313 year: 2018 end-page: 325 ident: bib43 article-title: Epitranscriptomic m (6) a regulation of axon regeneration in the adult mammalian nervous system publication-title: Neuron – volume: 266 start-page: 115326 year: 2020 ident: bib35 article-title: Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes publication-title: Environ. Pollut. – volume: 12 start-page: 5 year: 2017 ident: bib39 article-title: The release and trans-synaptic transmission of Tau via exosomes publication-title: Mol. Neurodegener. – volume: 34 start-page: 101475 year: 2020 ident: bib51 article-title: Redox toxicology of environmental chemicals causing oxidative stress publication-title: Redox Bio – volume: 18 start-page: 277 year: 2017 ident: bib52 article-title: DNA Damage Response: RNA m(6)A regulates DNA repair publication-title: Nat. Rev. Mol. Cell Biol. – volume: 167 start-page: 10 year: 2017 end-page: 18 ident: bib28 article-title: Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos publication-title: Chemosphere – volume: 17 start-page: 1115 year: 2010 end-page: 1125 ident: bib1 article-title: Paraquat and Parkinson's disease publication-title: Cell Death Differ. – volume: 171 start-page: 515 year: 2019 end-page: 529 ident: bib4 article-title: Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells publication-title: Toxicol. Sci. – volume: 272 start-page: 116413 year: 2021 ident: bib6 article-title: Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage publication-title: Environ. Pollut. – volume: 41 start-page: 1817 year: 2018 end-page: 1825 ident: bib15 article-title: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease publication-title: Int. Mol. Med. – volume: 141 start-page: 929 year: 2006 end-page: 937 ident: bib29 article-title: Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration publication-title: Neurosci – volume: 291 start-page: 11 year: 2018 end-page: 28 ident: bib36 article-title: Paraquat and MPTP induce alteration in the expression profile of long noncoding RNAs in the substantia nigra of mice: role of the transcription factor Nrf2 publication-title: Toxicol. Lett. (Shannon) – volume: 3 start-page: 31 year: 2017 ident: bib37 article-title: Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2 publication-title: NPJ. Parkinsons Dis. – volume: 86 start-page: 1729 year: 2012 end-page: 1740 ident: bib25 article-title: Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells publication-title: Arch. Toxicol. – volume: 8 year: 2018 ident: bib44 article-title: Curcumin protects neural cells against ischemic injury in Neuro-2a cells and mouse brain with ischemic stroke publication-title: Brain Behav – volume: 16 start-page: 1221 year: 2019 end-page: 1235 ident: bib41 article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7 publication-title: Autophagy – volume: 495 start-page: 384 year: 2013 end-page: 388 ident: bib18 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 41 start-page: 1817 year: 2018 ident: 10.1016/j.envpol.2021.117816_bib15 article-title: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease publication-title: Int. Mol. Med. – volume: 18 start-page: 2004 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib42 article-title: Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs publication-title: EMBO Rep. doi: 10.15252/embr.201744940 – volume: 97 start-page: 313 year: 2018 ident: 10.1016/j.envpol.2021.117816_bib43 article-title: Epitranscriptomic m (6) a regulation of axon regeneration in the adult mammalian nervous system publication-title: Neuron doi: 10.1016/j.neuron.2017.12.036 – volume: 18 start-page: 277 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib52 article-title: DNA Damage Response: RNA m(6)A regulates DNA repair publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.40 – volume: 7 start-page: 12626 year: 2016 ident: 10.1016/j.envpol.2021.117816_bib12 article-title: YTHDF2 destabilizes m (6) A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex publication-title: Nat. Commun. doi: 10.1038/ncomms12626 – volume: 471 start-page: 52 year: 2016 ident: 10.1016/j.envpol.2021.117816_bib27 article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.01.183 – volume: 171 start-page: 515 year: 2019 ident: 10.1016/j.envpol.2021.117816_bib4 article-title: Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfz162 – volume: 495 start-page: 384 year: 2013 ident: 10.1016/j.envpol.2021.117816_bib18 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 18 start-page: 603 year: 2015 ident: 10.1016/j.envpol.2021.117816_bib47 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. doi: 10.1038/nn.3975 – volume: 108 start-page: 20766 year: 2011 ident: 10.1016/j.envpol.2021.117816_bib33 article-title: Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1115141108 – volume: 12 start-page: 381 year: 2015 ident: 10.1016/j.envpol.2021.117816_bib5 article-title: Regulation of circRNA biogenesis publication-title: RNA Biol. doi: 10.1080/15476286.2015.1020271 – volume: 10 year: 2015 ident: 10.1016/j.envpol.2021.117816_bib2 article-title: N6-Adenosine methylation in MiRNAs publication-title: PloS One doi: 10.1371/journal.pone.0118438 – volume: 31 start-page: 1 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib8 article-title: m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells publication-title: Autophagy – volume: 54 start-page: 5156 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib14 article-title: Regulatory role of circular RNAs and neurological disorders publication-title: Mol. Neurobiol. doi: 10.1007/s12035-016-0055-4 – volume: 19 start-page: 105 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib48 article-title: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs publication-title: Mol. Canc. doi: 10.1186/s12943-020-01224-3 – volume: 505 start-page: 117 year: 2013 ident: 10.1016/j.envpol.2021.117816_bib40 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 24 start-page: 1403 year: 2014 ident: 10.1016/j.envpol.2021.117816_bib49 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. doi: 10.1038/cr.2014.151 – volume: 11 start-page: 328 year: 2021 ident: 10.1016/j.envpol.2021.117816_bib16 article-title: A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota publication-title: Transl. Psychiatry doi: 10.1038/s41398-021-01443-2 – volume: 8 start-page: 1486 issue: 9 year: 2018 ident: 10.1016/j.envpol.2021.117816_bib45 article-title: A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12485 – volume: 76 start-page: 96 year: 2019 ident: 10.1016/j.envpol.2021.117816_bib9 article-title: N6-Methyladenosine modification controls circular RNA immunity publication-title: Mol. Cell. doi: 10.1016/j.molcel.2019.07.016 – volume: 167 start-page: 10 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib28 article-title: Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.068 – volume: 12 start-page: 5 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib39 article-title: The release and trans-synaptic transmission of Tau via exosomes publication-title: Mol. Neurodegener. doi: 10.1186/s13024-016-0143-y – volume: 31 start-page: 690 year: 2011 ident: 10.1016/j.envpol.2021.117816_bib24 article-title: Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin–proteasome pathway, not MAPKs signaling publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1654 – volume: 787 start-page: 795 year: 2006 ident: 10.1016/j.envpol.2021.117816_bib26 article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases publication-title: Nature – volume: 27 start-page: 626 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib46 article-title: Extensive translation of circular RNAs driven by N6-methyladenosine publication-title: Cell Res. doi: 10.1038/cr.2017.31 – volume: 86 start-page: 1729 year: 2012 ident: 10.1016/j.envpol.2021.117816_bib25 article-title: Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0935-y – volume: 17 start-page: 1115 year: 2010 ident: 10.1016/j.envpol.2021.117816_bib1 article-title: Paraquat and Parkinson's disease publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.217 – volume: 34 start-page: 101475 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib51 article-title: Redox toxicology of environmental chemicals causing oxidative stress publication-title: Redox Bio doi: 10.1016/j.redox.2020.101475 – volume: 106 start-page: 13052 year: 2009 ident: 10.1016/j.envpol.2021.117816_bib22 article-title: Repression of α-synuclein expression and toxicity by microRNA-7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0906277106 – volume: 10 start-page: 4695 year: 2019 ident: 10.1016/j.envpol.2021.117816_bib7 article-title: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis publication-title: Nat. Commun. doi: 10.1038/s41467-019-12651-2 – volume: 88 start-page: 392 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib21 article-title: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2020.02.018 – volume: 7 start-page: 116 year: 2016 ident: 10.1016/j.envpol.2021.117816_bib50 article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7) publication-title: Genes doi: 10.3390/genes7120116 – volume: 9 start-page: 1030 year: 2010 ident: 10.1016/j.envpol.2021.117816_bib30 article-title: Role of oxidative stress in paraquat-induced dopaminergic cell degeneration publication-title: J. Neurochem. – volume: 266 start-page: 115326 issue: 2 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib35 article-title: Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115326 – volume: 13 start-page: 2645 issue: 8B year: 2009 ident: 10.1016/j.envpol.2021.117816_bib3 article-title: The polyubiquitin Ubc gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease publication-title: J. Cell Mol. Med. doi: 10.1111/j.1582-4934.2008.00543.x – volume: 68 start-page: 504 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib10 article-title: m(6)A facilitates eIF4F-independent mRNA translation publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.10.002 – volume: 171 start-page: 87 year: 2007 ident: 10.1016/j.envpol.2021.117816_bib23 article-title: Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2007.04.007 – volume: 8 year: 2018 ident: 10.1016/j.envpol.2021.117816_bib44 article-title: Curcumin protects neural cells against ischemic injury in Neuro-2a cells and mouse brain with ischemic stroke publication-title: Brain Behav doi: 10.1002/brb3.921 – volume: 272 start-page: 116413 year: 2021 ident: 10.1016/j.envpol.2021.117816_bib6 article-title: Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116413 – volume: 89 start-page: 527 year: 2016 ident: 10.1016/j.envpol.2021.117816_bib11 article-title: Emerging functions of circular RNAs publication-title: Yale J. Biol. Med. – volume: 291 start-page: 11 year: 2018 ident: 10.1016/j.envpol.2021.117816_bib36 article-title: Paraquat and MPTP induce alteration in the expression profile of long noncoding RNAs in the substantia nigra of mice: role of the transcription factor Nrf2 publication-title: Toxicol. Lett. (Shannon) doi: 10.1016/j.toxlet.2018.04.002 – volume: 5 start-page: 291 year: 2002 ident: 10.1016/j.envpol.2021.117816_bib32 article-title: Role of oxidative stress and antioxidants in neurodegenerative diseases publication-title: Nutr. Neurosci. doi: 10.1080/1028415021000033767 – volume: 5 start-page: 38 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib38 article-title: Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration publication-title: J. Appl. Toxicol. doi: 10.1016/j.tox.2017.02.005 – volume: 73 start-page: 3852 year: 1976 ident: 10.1016/j.envpol.2021.117816_bib34 article-title: Viroids are singlestranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.73.11.3852 – volume: 52 start-page: 220 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib13 article-title: CircRNAs: a regulator of cellular stress publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2016.1276882 – volume: 9 start-page: 576 year: 2020 ident: 10.1016/j.envpol.2021.117816_bib31 article-title: An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases publication-title: Cells doi: 10.3390/cells9030576 – volume: 169 start-page: 1187 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib19 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 3 start-page: 31 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib37 article-title: Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2 publication-title: NPJ. Parkinsons Dis. doi: 10.1038/s41531-017-0033-1 – volume: 16 start-page: 1221 year: 2019 ident: 10.1016/j.envpol.2021.117816_bib41 article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7 publication-title: Autophagy doi: 10.1080/15548627.2019.1659617 – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2021.117816_bib20 article-title: Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG publication-title: Autophagy doi: 10.1080/15548627.2017.1356975 – volume: 18 start-page: 110 year: 2019 ident: 10.1016/j.envpol.2021.117816_bib17 article-title: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner publication-title: Mol. Canc. doi: 10.1186/s12943-019-1036-9 – volume: 141 start-page: 929 year: 2006 ident: 10.1016/j.envpol.2021.117816_bib29 article-title: Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration publication-title: Neurosci doi: 10.1016/j.neuroscience.2006.03.069 |
SSID | ssj0004333 |
Score | 2.5134375 |
Snippet | Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117816 |
SubjectTerms | acetylcysteine axons CircRNA gene ontology methylation mice N6-methyladenosine (m6A) neurodevelopment Neurotoxicity Oxidative stress Paraquat Parkinson disease pollution precipitin tests |
Title | Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs |
URI | https://dx.doi.org/10.1016/j.envpol.2021.117816 https://www.proquest.com/docview/2564131127 https://www.proquest.com/docview/2636504048 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA6lvuiD1GuLtbVEEKkP8fY22WT3cSktp-Ih2kLfQnaTwJXe7nk_SvvSv92ZZNeqFAu-LOwyCSGTTL7ZzHxDyNvCe5maQrDKS8OEsRkzecqZhE2Z1Ap8olC94ctEjs_Fp4vsYoMc97kwGFbZ2f5o04O17r4Mu9kczqfT4XfwHgAMF8iABTAmpF8LoXCVf7i7D_MQPJaTB2GG0n36XIjxcs31vMULiHSEt5c5Vj1_-Hj6y1CH0-d0izzvYCMt48hekA3XDMh22YDLPLul72gI5Ax_yAfk2W8cgwOye3KfygY9dHt5uU2qr2ZhfqzNioFbDgq2tL2Z2sADTmMGCV3EQvVuSSeSYa3p2ytjkV0cuqdHM1m-p7PWYrBR0C9tPa2nixDZSr9NyuUOOT89OTses67iAqsFz1eMi9TIjFfOgRthlfPeAyRJRjYt3MggW7vh0ia5AxRi8kopkyE1kq_rxAPyq_gu2Wzaxr0ktOAewIlwzohKeHgkymZFZQExAAazao_wfqJ13dGRY1WMK93HnV3qqB6N6tFRPXuE_Wo1j3Qcj8irXof6j2Wl4cR4pOWbXuUadhxeo5jGteulBpAokKQoVf-QkRygrwDz-Oq_R7BPnuJbjJ05IJurxdq9BgS0qg7DEj8kT8qPn8eTnwVkBi0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOCLZUlE8jAYKD2WzsOMmhhxW02tJ2haCVenOd2EZB3WTZ7LbshT_VP8jYSSggRCWkXnJIbMvy2DPP8fMbgOeptSJUKaeZFYpypSOqkpBRgYsyyGPcE_nsDftjMTrk74-ioxU47-7COFpl6_sbn-69dfum345mf1oU_U-4e0AwnDoFLIQxyaBlVu6a5Rnu2-rNnXdo5BdhuL118HZE29QCNOcsmVPGQyUilhmDeFnHxlqLsTcY6DA1A-VkyRUTOkgMhluVZHGsIqcBZPM8sAhxMobtXoPrHN2FS5vw5vsFr4SzJn899o667nX39TypzJSn08qdeIQDd1yauDTrf4-Hf0QGH-6278DtFqeSYTMUd2HFlD1YG5a4R58syUvimaP-l3wPbv0iatiD9a2Lu3PYQus86jXIPqiZ-rpQc1qUGmeUJtW3QnvhcdJcWSEz89mlEzM1GQvqklsvT5R2cubYPHk1EcPXZFJpx27yE4pUluTFzFNpycfxsL4Hh1dih3VYLavS3AeSMotoiBujeMYtPoJYR2mmEaIg6NPxBrBuoGXe6p-7NBwnsiO6fZGNeaQzj2zMswH0Z61po_9xSfm4s6H8bR5LDFGX1HzWmVziEnfnNqo01aKWiEq5U0UK43-UEQyxNkd__OC_e_AUbowO9vfk3s549yHcdF8a4s4jWJ3PFuYxwq959sRPdwLHV72-fgA5CUE1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paraquat-induced+oxidative+stress+regulates+N6-methyladenosine+%28m6A%29+modification+of+circular+RNAs&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Chen%2C+Nengzhou&rft.au=Tang%2C+Jianping&rft.au=Su%2C+Qianqian&rft.au=Chou%2C+Wei-Chun&rft.date=2021-12-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=290&rft.spage=117816&rft_id=info:doi/10.1016%2Fj.envpol.2021.117816&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |