Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs

Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's dis...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 290; p. 117816
Main Authors Chen, Nengzhou, Tang, Jianping, Su, Qianqian, Chou, Wei-Chun, Zheng, Fuli, Guo, Zhenkun, Yu, Guangxia, Shao, Wenya, Li, Huangyuan, Wu, Siying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity. The schematic representation of regulatory gene network of circRNAs driven by m6A modification in paraquat-induced oxidative stress. [Display omitted] •PQ exposure disrupts the N6-methyladenosine profiling of circRNA in Neuro-2a cells.•CircRNA driven by m6A methylome is associated with PQ-induced oxidative stress response.•CircRNA driven by m6A methylome acts as a specific regulatory gene network. Paraquat disrupts the N6-methyladenosine profiling of circRNAs via inducing oxidative stress.
AbstractList Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity. The schematic representation of regulatory gene network of circRNAs driven by m6A modification in paraquat-induced oxidative stress. [Display omitted] •PQ exposure disrupts the N6-methyladenosine profiling of circRNA in Neuro-2a cells.•CircRNA driven by m6A methylome is associated with PQ-induced oxidative stress response.•CircRNA driven by m6A methylome acts as a specific regulatory gene network. Paraquat disrupts the N6-methyladenosine profiling of circRNAs via inducing oxidative stress.
Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m6A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m6A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m6A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m6A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m6A-modified circRNAs, indicating that m6A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m6A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.
Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying mechanism(s) remains unknown. Circular RNAs (circRNAs) have recently been reported to be associated with oxidative stress in Parkinson's disease. Herein, we performed methylated RNA immunoprecipitation and RNA sequencing assays for mouse neuroblastoma (Neuro-2a) cells and successfully established a positive link between the alteration of circRNAs driven by m⁶A modification and PQ-induced oxidative stress. We observed oxidative stress and antioxidative stress present distinct m⁶A modification pattern of circRNAs as well as biological effect. Gene ontology and pathway analysis predicted that differentially m⁶A-methylated and expressed circRNAs are highly clustered in pathways associated with function and development of nervous system, including axon cargo transport, nervous system development, long-term potentiation, and neurotrophic signaling pathways. Moreover, we demonstrated that the alteration of m⁶A-methylated circRNAs upon PQ exposure could be partially reversed by N-acetylcysteine pretreatment. The mechanistic analysis further demonstrated that N-acetylcysteine pretreatment attenuated the decreased expression of target genes (UBC and PPP2CA) induced by PQ. These findings revealed distinct patterns of differentially m⁶A-modified circRNAs, indicating that m⁶A could participate in a specific regulatory network of circRNAs to modulate the expression of downstream genes in response to PQ-induced oxidative stress. In conclusion, our work established a link between m⁶A modification of circRNAs and PQ-induced oxidative stress, and further studies are required to explore the underlying molecular mechanisms associated with PQ-induced neurotoxicity.
ArticleNumber 117816
Author Su, Qianqian
Yu, Guangxia
Shao, Wenya
Tang, Jianping
Wu, Siying
Zheng, Fuli
Li, Huangyuan
Chou, Wei-Chun
Chen, Nengzhou
Guo, Zhenkun
Author_xml – sequence: 1
  givenname: Nengzhou
  surname: Chen
  fullname: Chen, Nengzhou
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 2
  givenname: Jianping
  surname: Tang
  fullname: Tang, Jianping
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 3
  givenname: Qianqian
  surname: Su
  fullname: Su, Qianqian
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 4
  givenname: Wei-Chun
  surname: Chou
  fullname: Chou, Wei-Chun
  organization: Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, United States
– sequence: 5
  givenname: Fuli
  surname: Zheng
  fullname: Zheng, Fuli
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 6
  givenname: Zhenkun
  surname: Guo
  fullname: Guo, Zhenkun
  organization: The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 7
  givenname: Guangxia
  surname: Yu
  fullname: Yu, Guangxia
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 8
  givenname: Wenya
  surname: Shao
  fullname: Shao, Wenya
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 9
  givenname: Huangyuan
  surname: Li
  fullname: Li, Huangyuan
  organization: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
– sequence: 10
  givenname: Siying
  orcidid: 0000-0003-1799-1528
  surname: Wu
  fullname: Wu, Siying
  email: sywu@fjmu.edu.cn
  organization: Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
BookMark eNqFkT1PHDEURa2ISCwk_yCFS1LM4q-xZ1NEWiEgSAiiCGrLaz8nXs3Yi-1Zsf-eIUOVIlSvuedK950TdBRTBIS-ULKkhMrz7RLifpf6JSOMLilVHZUf0IJ2ijdSMHGEFoTJVaPEih6jk1K2hBDBOV-gzU-TzdNoahOiGy04nJ6DMzXsAZeaoRSc4ffYmwoF38lmgPrn0BsHMZUQAZ8Ncv0VD8kFH-yEpYiTxzZkOzEZ_7pbl0_oozd9gc9v9xQ9Xl0-XPxobu-vby7Wt40VvKsNF8zIlm8AVNs5Bd57IiWhjq2AGsJWneHSkQ5o25puo5RpBVfcW0u8IO2Gn6KzuXeX09MIpeohFAt9byKksWgmuWyJIKJ7P9pKQTmlTE3Rb3PU5lRKBq9tqH-H1mxCrynRrw70Vs8O9KsDPTuYYPEPvMthMPnwHvZ9xmB61z5A1sUGiJOdkMFW7VL4f8ELVKuk-A
CitedBy_id crossref_primary_10_1021_acs_est_5c00907
crossref_primary_10_1016_j_biopha_2023_114583
crossref_primary_10_1016_j_cossms_2023_101119
crossref_primary_10_1016_j_toxlet_2023_01_010
crossref_primary_10_1016_j_envpol_2024_124035
crossref_primary_10_1093_bfgp_elac055
crossref_primary_10_1016_j_ecoenv_2022_113503
crossref_primary_10_1016_j_ecoenv_2022_114215
crossref_primary_10_3389_fncel_2023_1328269
crossref_primary_10_1111_andr_13520
crossref_primary_10_1038_s41531_021_00265_9
crossref_primary_10_1016_j_tem_2022_12_006
crossref_primary_10_1186_s41021_023_00279_0
crossref_primary_10_3390_ijms23158122
crossref_primary_10_1016_j_ecoenv_2024_116169
crossref_primary_10_3390_cells12050753
crossref_primary_10_1016_j_ecoenv_2023_115356
crossref_primary_10_3389_fgene_2022_1055396
crossref_primary_10_1016_j_ecoenv_2023_114804
crossref_primary_10_1155_2022_8619275
crossref_primary_10_1016_j_neuroscience_2023_03_001
crossref_primary_10_1016_j_jhazmat_2024_134559
crossref_primary_10_1038_s41531_023_00615_9
crossref_primary_10_1111_jnc_15882
crossref_primary_10_3233_JPD_230457
crossref_primary_10_1016_j_aanat_2023_152180
crossref_primary_10_4103_NRR_NRR_D_23_01592
crossref_primary_10_1016_j_ecoenv_2024_117193
crossref_primary_10_1007_s41207_024_00537_9
crossref_primary_10_1016_j_cbi_2023_110376
crossref_primary_10_1186_s41021_021_00224_z
crossref_primary_10_2139_ssrn_4165343
crossref_primary_10_1002_iid3_1345
crossref_primary_10_3389_fnagi_2022_975248
Cites_doi 10.15252/embr.201744940
10.1016/j.neuron.2017.12.036
10.1038/nrm.2017.40
10.1038/ncomms12626
10.1016/j.bbrc.2016.01.183
10.1093/toxsci/kfz162
10.1038/nature11993
10.1038/nn.3975
10.1073/pnas.1115141108
10.1080/15476286.2015.1020271
10.1371/journal.pone.0118438
10.1007/s12035-016-0055-4
10.1186/s12943-020-01224-3
10.1038/nature12730
10.1038/cr.2014.151
10.1038/s41398-021-01443-2
10.1002/2211-5463.12485
10.1016/j.molcel.2019.07.016
10.1016/j.chemosphere.2016.09.068
10.1186/s13024-016-0143-y
10.1002/jat.1654
10.1038/cr.2017.31
10.1007/s00204-012-0935-y
10.1038/cdd.2009.217
10.1016/j.redox.2020.101475
10.1073/pnas.0906277106
10.1038/s41467-019-12651-2
10.1016/j.biopsych.2020.02.018
10.3390/genes7120116
10.1016/j.envpol.2020.115326
10.1111/j.1582-4934.2008.00543.x
10.1016/j.molcel.2017.10.002
10.1016/j.toxlet.2007.04.007
10.1002/brb3.921
10.1016/j.envpol.2020.116413
10.1016/j.toxlet.2018.04.002
10.1080/1028415021000033767
10.1016/j.tox.2017.02.005
10.1073/pnas.73.11.3852
10.1080/10409238.2016.1276882
10.3390/cells9030576
10.1016/j.cell.2017.05.045
10.1038/s41531-017-0033-1
10.1080/15548627.2019.1659617
10.1080/15548627.2017.1356975
10.1186/s12943-019-1036-9
10.1016/j.neuroscience.2006.03.069
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envpol.2021.117816
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 10_1016_j_envpol_2021_117816
S0269749121013981
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c438t-342a653bee758d7efff06601d29e1a0298a36d08e155a8b77a54373fcc0f405b3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 04:18:52 EDT 2025
Thu Aug 07 15:18:49 EDT 2025
Tue Jul 01 03:15:13 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Fri Feb 23 02:45:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords N6-methyladenosine (m6A)
Oxidative stress
Paraquat
Neurotoxicity
CircRNA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-342a653bee758d7efff06601d29e1a0298a36d08e155a8b77a54373fcc0f405b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1799-1528
PQID 2564131127
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636504048
proquest_miscellaneous_2564131127
crossref_citationtrail_10_1016_j_envpol_2021_117816
crossref_primary_10_1016_j_envpol_2021_117816
elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental pollution (1987)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Yang (bib5) 2015; 12
Xie, Gu, Cai, Wu, Chen (bib44) 2018; 8
Mccormack, Atienza, Johnston, Andersen, Vu, DiMonte (bib30) 2010; 9
Berry, Vecchia, Nicotera (bib1) 2010; 17
McCormack, Atienza, Langston, DiMonte (bib29) 2006; 141
Chen, Guo, Luo, Zheng, Shao, Yu (bib6) 2021; 272
Guo, Zhao, Li, Li, Li (bib15) 2018; 41
Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard (bib18) 2013; 495
Du, Zhao, He, Zhang, Xi, Liu (bib12) 2016; 7
Huang, Zhang, Bai, Han, Ju, Chen (bib21) 2020; 88
Zhang, Hou, Chen, Guo, Yuan, Yin (bib48) 2020; 19
Chen, Chen, Xia, Zhang, Pan, Ma (bib7) 2019; 10
Yabe, Tsuji, Mochida, Ikehara, Usui, Ohama (bib45) 2018; 8
Chen, Wang, Xu, Xiang, Ding, Yang (bib8) 2020; 31
Li, Wu, Shi (bib23) 2007; 171
Wang, Yang, Wang, Zhang, Wang, Zhang (bib36) 2018; 291
Sanger, Klotz, Riesner, Gross, Kleinschmidt (bib34) 1976; 73
Yang, Fan, Mao, Song, Wu, Zhang (bib46) 2017; 27
He, Roundtree, Evans, Pan (bib19) 2017; 169
Li, Wu, Wang, Lin, Zhang, Huang (bib25) 2012; 86
Weng, Wang, An, Cassin, Vissers, Liu (bib43) 2018; 97
Warda, Kretschmer, Hackert, Lenz, Urlaub, Höbartner (bib42) 2017; 18
Ling, Chang, Liu, Lai, Hsu (bib28) 2017; 167
Rappold, Cui, Chesser, Tibbett, Grima, Duan (bib33) 2011; 108
Cai, Zheng, Ding, Zhan, Gong, Li (bib4) 2019; 171
Chen, Chen, Ahmad, Verma, Kasturi, Amaya (bib9) 2019; 76
Floris, Zhang, Follesa, Sun (bib14) 2017; 54
Junn, Lee, Jeong, Chan, Im, Mouradian (bib22) 2009; 106
Tang, Zheng, Zheng, Li, Wang, Guo (bib35) 2020; 266
Wang, Ren, Cai, Lin, Wang, Zhang (bib37) 2017; 3
Zhao, Yang, Sun, Shi, Yang, Xiao (bib49) 2014; 24
Rao, Balachandran (bib32) 2002; 5
Zheng, Gonalves, Abiko, Li, Kumagai, Aschner (bib51) 2020; 34
Berulava, Rahmann, Rademacher, Klein-Hitpass, Horsthemke (bib2) 2015; 10
Lin, Ye, Long, Fan, Mao, Chen (bib27) 2016; 471
Wang, Balaji, Kaniyappan, Krüger, Irsen, Tepper (bib39) 2017; 12
Wang, Lu, Gomez, Hon, Yue, Han (bib40) 2013; 505
You, Vlatkovic, Babic, Will, Epstein, Tushev (bib47) 2015; 18
Coots, Liu, Mao, Dong, Zhou, Wan (bib10) 2017; 68
Wang, Wu, Liu, Zhao, Bi, Yao (bib41) 2019; 16
Cortés-López, Miura (bib11) 2016; 89
Li, Wu, Shi, Lian, Lin (bib24) 2011; 31
Zhao, Alexandrov, Jaber, Lukiw (bib50) 2016; 7
Guo, Zhu, Zeng, Qi, Tang, Wang (bib16) 2021; 11
Fischer, Leung (bib13) 2017; 52
Wang, Zhan, Ren, Wang, Zhang, Wu (bib38) 2017; 5
Huang, Zhang, Han, Bai, Zhou, Gan (bib20) 2017; 13
Bett, Benn, Ryu, Kopito, Bates (bib3) 2009; 13
Poganik, Ota, Ulrih (bib31) 2020; 9
Zlotorynski (bib52) 2017; 18
Lin, Beal (bib26) 2006; 787
Han, Wang, Yang, Yu, Zhou, Lu (bib17) 2019; 18
Wang (10.1016/j.envpol.2021.117816_bib40) 2013; 505
Fischer (10.1016/j.envpol.2021.117816_bib13) 2017; 52
Zheng (10.1016/j.envpol.2021.117816_bib51) 2020; 34
Zlotorynski (10.1016/j.envpol.2021.117816_bib52) 2017; 18
Chen (10.1016/j.envpol.2021.117816_bib6) 2021; 272
Guo (10.1016/j.envpol.2021.117816_bib16) 2021; 11
Zhao (10.1016/j.envpol.2021.117816_bib50) 2016; 7
Yang (10.1016/j.envpol.2021.117816_bib46) 2017; 27
Huang (10.1016/j.envpol.2021.117816_bib20) 2017; 13
Rao (10.1016/j.envpol.2021.117816_bib32) 2002; 5
Wang (10.1016/j.envpol.2021.117816_bib39) 2017; 12
Huang (10.1016/j.envpol.2021.117816_bib21) 2020; 88
He (10.1016/j.envpol.2021.117816_bib19) 2017; 169
Wang (10.1016/j.envpol.2021.117816_bib41) 2019; 16
Zhao (10.1016/j.envpol.2021.117816_bib49) 2014; 24
Han (10.1016/j.envpol.2021.117816_bib17) 2019; 18
Berulava (10.1016/j.envpol.2021.117816_bib2) 2015; 10
Hansen (10.1016/j.envpol.2021.117816_bib18) 2013; 495
Floris (10.1016/j.envpol.2021.117816_bib14) 2017; 54
Wang (10.1016/j.envpol.2021.117816_bib36) 2018; 291
Guo (10.1016/j.envpol.2021.117816_bib15) 2018; 41
Zhang (10.1016/j.envpol.2021.117816_bib48) 2020; 19
Junn (10.1016/j.envpol.2021.117816_bib22) 2009; 106
Warda (10.1016/j.envpol.2021.117816_bib42) 2017; 18
Berry (10.1016/j.envpol.2021.117816_bib1) 2010; 17
Bett (10.1016/j.envpol.2021.117816_bib3) 2009; 13
Lin (10.1016/j.envpol.2021.117816_bib26) 2006; 787
Mccormack (10.1016/j.envpol.2021.117816_bib30) 2010; 9
McCormack (10.1016/j.envpol.2021.117816_bib29) 2006; 141
Sanger (10.1016/j.envpol.2021.117816_bib34) 1976; 73
Xie (10.1016/j.envpol.2021.117816_bib44) 2018; 8
Chen (10.1016/j.envpol.2021.117816_bib8) 2020; 31
Weng (10.1016/j.envpol.2021.117816_bib43) 2018; 97
Rappold (10.1016/j.envpol.2021.117816_bib33) 2011; 108
You (10.1016/j.envpol.2021.117816_bib47) 2015; 18
Yabe (10.1016/j.envpol.2021.117816_bib45) 2018; 8
Poganik (10.1016/j.envpol.2021.117816_bib31) 2020; 9
Li (10.1016/j.envpol.2021.117816_bib24) 2011; 31
Cai (10.1016/j.envpol.2021.117816_bib4) 2019; 171
Lin (10.1016/j.envpol.2021.117816_bib27) 2016; 471
Coots (10.1016/j.envpol.2021.117816_bib10) 2017; 68
Ling (10.1016/j.envpol.2021.117816_bib28) 2017; 167
Tang (10.1016/j.envpol.2021.117816_bib35) 2020; 266
Li (10.1016/j.envpol.2021.117816_bib25) 2012; 86
Li (10.1016/j.envpol.2021.117816_bib23) 2007; 171
Chen (10.1016/j.envpol.2021.117816_bib9) 2019; 76
Wang (10.1016/j.envpol.2021.117816_bib38) 2017; 5
Wang (10.1016/j.envpol.2021.117816_bib37) 2017; 3
Chen (10.1016/j.envpol.2021.117816_bib7) 2019; 10
Chen (10.1016/j.envpol.2021.117816_bib5) 2015; 12
Du (10.1016/j.envpol.2021.117816_bib12) 2016; 7
Cortés-López (10.1016/j.envpol.2021.117816_bib11) 2016; 89
References_xml – volume: 52
  start-page: 220
  year: 2017
  end-page: 233
  ident: bib13
  article-title: CircRNAs: a regulator of cellular stress
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 106
  start-page: 13052
  year: 2009
  end-page: 13057
  ident: bib22
  article-title: Repression of α-synuclein expression and toxicity by microRNA-7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 1486
  year: 2018
  end-page: 1496
  ident: bib45
  article-title: A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation
  publication-title: FEBS Open Bio
– volume: 108
  start-page: 20766
  year: 2011
  end-page: 20771
  ident: bib33
  article-title: Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 787
  start-page: 795
  year: 2006
  ident: bib26
  article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
  publication-title: Nature
– volume: 76
  start-page: 96
  year: 2019
  end-page: 109
  ident: bib9
  article-title: N6-Methyladenosine modification controls circular RNA immunity
  publication-title: Mol. Cell.
– volume: 10
  start-page: 4695
  year: 2019
  ident: bib7
  article-title: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis
  publication-title: Nat. Commun.
– volume: 471
  start-page: 52
  year: 2016
  end-page: 56
  ident: bib27
  article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 10
  year: 2015
  ident: bib2
  article-title: N6-Adenosine methylation in MiRNAs
  publication-title: PloS One
– volume: 13
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib20
  article-title: Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG
  publication-title: Autophagy
– volume: 9
  start-page: 576
  year: 2020
  ident: bib31
  article-title: An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases
  publication-title: Cells
– volume: 54
  start-page: 5156
  year: 2017
  end-page: 5165
  ident: bib14
  article-title: Regulatory role of circular RNAs and neurological disorders
  publication-title: Mol. Neurobiol.
– volume: 5
  start-page: 291
  year: 2002
  end-page: 309
  ident: bib32
  article-title: Role of oxidative stress and antioxidants in neurodegenerative diseases
  publication-title: Nutr. Neurosci.
– volume: 24
  start-page: 1403
  year: 2014
  end-page: 1419
  ident: bib49
  article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
  publication-title: Cell Res.
– volume: 18
  start-page: 110
  year: 2019
  ident: bib17
  article-title: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner
  publication-title: Mol. Canc.
– volume: 73
  start-page: 3852
  year: 1976
  end-page: 3856
  ident: bib34
  article-title: Viroids are singlestranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 18
  start-page: 2004
  year: 2017
  end-page: 2014
  ident: bib42
  article-title: Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs
  publication-title: EMBO Rep.
– volume: 89
  start-page: 527
  year: 2016
  end-page: 537
  ident: bib11
  article-title: Emerging functions of circular RNAs
  publication-title: Yale J. Biol. Med.
– volume: 18
  start-page: 603
  year: 2015
  end-page: 610
  ident: bib47
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
– volume: 13
  start-page: 2645
  year: 2009
  end-page: 2657
  ident: bib3
  article-title: The polyubiquitin Ubc gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease
  publication-title: J. Cell Mol. Med.
– volume: 88
  start-page: 392
  year: 2020
  end-page: 404
  ident: bib21
  article-title: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors
  publication-title: Biol. Psychiatr.
– volume: 171
  start-page: 87
  year: 2007
  end-page: 98
  ident: bib23
  article-title: Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS
  publication-title: Toxicol. Lett.
– volume: 505
  start-page: 117
  year: 2013
  end-page: 120
  ident: bib40
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 169
  start-page: 1187
  year: 2017
  end-page: 1200
  ident: bib19
  article-title: Dynamic RNA modifications in gene expression regulation
  publication-title: Cell
– volume: 7
  start-page: 12626
  year: 2016
  ident: bib12
  article-title: YTHDF2 destabilizes m (6) A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex
  publication-title: Nat. Commun.
– volume: 11
  start-page: 328
  year: 2021
  ident: bib16
  article-title: A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota
  publication-title: . Psychiatry
– volume: 9
  start-page: 1030
  year: 2010
  end-page: 1037
  ident: bib30
  article-title: Role of oxidative stress in paraquat-induced dopaminergic cell degeneration
  publication-title: J. Neurochem.
– volume: 12
  start-page: 381
  year: 2015
  end-page: 388
  ident: bib5
  article-title: Regulation of circRNA biogenesis
  publication-title: RNA Biol.
– volume: 31
  start-page: 690
  year: 2011
  end-page: 697
  ident: bib24
  article-title: Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin–proteasome pathway, not MAPKs signaling
  publication-title: J. Appl. Toxicol.
– volume: 19
  start-page: 105
  year: 2020
  ident: bib48
  article-title: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs
  publication-title: Mol. Canc.
– volume: 68
  start-page: 504
  year: 2017
  end-page: 517
  ident: bib10
  article-title: m(6)A facilitates eIF4F-independent mRNA translation
  publication-title: Mol. Cell.
– volume: 5
  start-page: 38
  year: 2017
  ident: bib38
  article-title: Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration
  publication-title: J. Appl. Toxicol.
– volume: 27
  start-page: 626
  year: 2017
  end-page: 641
  ident: bib46
  article-title: Extensive translation of circular RNAs driven by N6-methyladenosine
  publication-title: Cell Res.
– volume: 7
  start-page: 116
  year: 2016
  ident: bib50
  article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7)
  publication-title: Genes
– volume: 31
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib8
  article-title: m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells
  publication-title: Autophagy
– volume: 97
  start-page: 313
  year: 2018
  end-page: 325
  ident: bib43
  article-title: Epitranscriptomic m (6) a regulation of axon regeneration in the adult mammalian nervous system
  publication-title: Neuron
– volume: 266
  start-page: 115326
  year: 2020
  ident: bib35
  article-title: Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 5
  year: 2017
  ident: bib39
  article-title: The release and trans-synaptic transmission of Tau via exosomes
  publication-title: Mol. Neurodegener.
– volume: 34
  start-page: 101475
  year: 2020
  ident: bib51
  article-title: Redox toxicology of environmental chemicals causing oxidative stress
  publication-title: Redox Bio
– volume: 18
  start-page: 277
  year: 2017
  ident: bib52
  article-title: DNA Damage Response: RNA m(6)A regulates DNA repair
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 167
  start-page: 10
  year: 2017
  end-page: 18
  ident: bib28
  article-title: Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos
  publication-title: Chemosphere
– volume: 17
  start-page: 1115
  year: 2010
  end-page: 1125
  ident: bib1
  article-title: Paraquat and Parkinson's disease
  publication-title: Cell Death Differ.
– volume: 171
  start-page: 515
  year: 2019
  end-page: 529
  ident: bib4
  article-title: Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells
  publication-title: Toxicol. Sci.
– volume: 272
  start-page: 116413
  year: 2021
  ident: bib6
  article-title: Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage
  publication-title: Environ. Pollut.
– volume: 41
  start-page: 1817
  year: 2018
  end-page: 1825
  ident: bib15
  article-title: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease
  publication-title: Int. Mol. Med.
– volume: 141
  start-page: 929
  year: 2006
  end-page: 937
  ident: bib29
  article-title: Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration
  publication-title: Neurosci
– volume: 291
  start-page: 11
  year: 2018
  end-page: 28
  ident: bib36
  article-title: Paraquat and MPTP induce alteration in the expression profile of long noncoding RNAs in the substantia nigra of mice: role of the transcription factor Nrf2
  publication-title: Toxicol. Lett. (Shannon)
– volume: 3
  start-page: 31
  year: 2017
  ident: bib37
  article-title: Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2
  publication-title: NPJ. Parkinsons Dis.
– volume: 86
  start-page: 1729
  year: 2012
  end-page: 1740
  ident: bib25
  article-title: Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells
  publication-title: Arch. Toxicol.
– volume: 8
  year: 2018
  ident: bib44
  article-title: Curcumin protects neural cells against ischemic injury in Neuro-2a cells and mouse brain with ischemic stroke
  publication-title: Brain Behav
– volume: 16
  start-page: 1221
  year: 2019
  end-page: 1235
  ident: bib41
  article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7
  publication-title: Autophagy
– volume: 495
  start-page: 384
  year: 2013
  end-page: 388
  ident: bib18
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
– volume: 41
  start-page: 1817
  year: 2018
  ident: 10.1016/j.envpol.2021.117816_bib15
  article-title: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease
  publication-title: Int. Mol. Med.
– volume: 18
  start-page: 2004
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib42
  article-title: Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201744940
– volume: 97
  start-page: 313
  year: 2018
  ident: 10.1016/j.envpol.2021.117816_bib43
  article-title: Epitranscriptomic m (6) a regulation of axon regeneration in the adult mammalian nervous system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.12.036
– volume: 18
  start-page: 277
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib52
  article-title: DNA Damage Response: RNA m(6)A regulates DNA repair
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.40
– volume: 7
  start-page: 12626
  year: 2016
  ident: 10.1016/j.envpol.2021.117816_bib12
  article-title: YTHDF2 destabilizes m (6) A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12626
– volume: 471
  start-page: 52
  year: 2016
  ident: 10.1016/j.envpol.2021.117816_bib27
  article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.01.183
– volume: 171
  start-page: 515
  year: 2019
  ident: 10.1016/j.envpol.2021.117816_bib4
  article-title: Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfz162
– volume: 495
  start-page: 384
  year: 2013
  ident: 10.1016/j.envpol.2021.117816_bib18
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 18
  start-page: 603
  year: 2015
  ident: 10.1016/j.envpol.2021.117816_bib47
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3975
– volume: 108
  start-page: 20766
  year: 2011
  ident: 10.1016/j.envpol.2021.117816_bib33
  article-title: Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1115141108
– volume: 12
  start-page: 381
  year: 2015
  ident: 10.1016/j.envpol.2021.117816_bib5
  article-title: Regulation of circRNA biogenesis
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1020271
– volume: 10
  year: 2015
  ident: 10.1016/j.envpol.2021.117816_bib2
  article-title: N6-Adenosine methylation in MiRNAs
  publication-title: PloS One
  doi: 10.1371/journal.pone.0118438
– volume: 31
  start-page: 1
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib8
  article-title: m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells
  publication-title: Autophagy
– volume: 54
  start-page: 5156
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib14
  article-title: Regulatory role of circular RNAs and neurological disorders
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-016-0055-4
– volume: 19
  start-page: 105
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib48
  article-title: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs
  publication-title: Mol. Canc.
  doi: 10.1186/s12943-020-01224-3
– volume: 505
  start-page: 117
  year: 2013
  ident: 10.1016/j.envpol.2021.117816_bib40
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 24
  start-page: 1403
  year: 2014
  ident: 10.1016/j.envpol.2021.117816_bib49
  article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.151
– volume: 11
  start-page: 328
  year: 2021
  ident: 10.1016/j.envpol.2021.117816_bib16
  article-title: A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-021-01443-2
– volume: 8
  start-page: 1486
  issue: 9
  year: 2018
  ident: 10.1016/j.envpol.2021.117816_bib45
  article-title: A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12485
– volume: 76
  start-page: 96
  year: 2019
  ident: 10.1016/j.envpol.2021.117816_bib9
  article-title: N6-Methyladenosine modification controls circular RNA immunity
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2019.07.016
– volume: 167
  start-page: 10
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib28
  article-title: Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.068
– volume: 12
  start-page: 5
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib39
  article-title: The release and trans-synaptic transmission of Tau via exosomes
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-016-0143-y
– volume: 31
  start-page: 690
  year: 2011
  ident: 10.1016/j.envpol.2021.117816_bib24
  article-title: Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin–proteasome pathway, not MAPKs signaling
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1654
– volume: 787
  start-page: 795
  year: 2006
  ident: 10.1016/j.envpol.2021.117816_bib26
  article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
  publication-title: Nature
– volume: 27
  start-page: 626
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib46
  article-title: Extensive translation of circular RNAs driven by N6-methyladenosine
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.31
– volume: 86
  start-page: 1729
  year: 2012
  ident: 10.1016/j.envpol.2021.117816_bib25
  article-title: Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-012-0935-y
– volume: 17
  start-page: 1115
  year: 2010
  ident: 10.1016/j.envpol.2021.117816_bib1
  article-title: Paraquat and Parkinson's disease
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.217
– volume: 34
  start-page: 101475
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib51
  article-title: Redox toxicology of environmental chemicals causing oxidative stress
  publication-title: Redox Bio
  doi: 10.1016/j.redox.2020.101475
– volume: 106
  start-page: 13052
  year: 2009
  ident: 10.1016/j.envpol.2021.117816_bib22
  article-title: Repression of α-synuclein expression and toxicity by microRNA-7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0906277106
– volume: 10
  start-page: 4695
  year: 2019
  ident: 10.1016/j.envpol.2021.117816_bib7
  article-title: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12651-2
– volume: 88
  start-page: 392
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib21
  article-title: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2020.02.018
– volume: 7
  start-page: 116
  year: 2016
  ident: 10.1016/j.envpol.2021.117816_bib50
  article-title: Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7)
  publication-title: Genes
  doi: 10.3390/genes7120116
– volume: 9
  start-page: 1030
  year: 2010
  ident: 10.1016/j.envpol.2021.117816_bib30
  article-title: Role of oxidative stress in paraquat-induced dopaminergic cell degeneration
  publication-title: J. Neurochem.
– volume: 266
  start-page: 115326
  issue: 2
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib35
  article-title: Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115326
– volume: 13
  start-page: 2645
  issue: 8B
  year: 2009
  ident: 10.1016/j.envpol.2021.117816_bib3
  article-title: The polyubiquitin Ubc gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/j.1582-4934.2008.00543.x
– volume: 68
  start-page: 504
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib10
  article-title: m(6)A facilitates eIF4F-independent mRNA translation
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.10.002
– volume: 171
  start-page: 87
  year: 2007
  ident: 10.1016/j.envpol.2021.117816_bib23
  article-title: Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2007.04.007
– volume: 8
  year: 2018
  ident: 10.1016/j.envpol.2021.117816_bib44
  article-title: Curcumin protects neural cells against ischemic injury in Neuro-2a cells and mouse brain with ischemic stroke
  publication-title: Brain Behav
  doi: 10.1002/brb3.921
– volume: 272
  start-page: 116413
  year: 2021
  ident: 10.1016/j.envpol.2021.117816_bib6
  article-title: Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116413
– volume: 89
  start-page: 527
  year: 2016
  ident: 10.1016/j.envpol.2021.117816_bib11
  article-title: Emerging functions of circular RNAs
  publication-title: Yale J. Biol. Med.
– volume: 291
  start-page: 11
  year: 2018
  ident: 10.1016/j.envpol.2021.117816_bib36
  article-title: Paraquat and MPTP induce alteration in the expression profile of long noncoding RNAs in the substantia nigra of mice: role of the transcription factor Nrf2
  publication-title: Toxicol. Lett. (Shannon)
  doi: 10.1016/j.toxlet.2018.04.002
– volume: 5
  start-page: 291
  year: 2002
  ident: 10.1016/j.envpol.2021.117816_bib32
  article-title: Role of oxidative stress and antioxidants in neurodegenerative diseases
  publication-title: Nutr. Neurosci.
  doi: 10.1080/1028415021000033767
– volume: 5
  start-page: 38
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib38
  article-title: Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration
  publication-title: J. Appl. Toxicol.
  doi: 10.1016/j.tox.2017.02.005
– volume: 73
  start-page: 3852
  year: 1976
  ident: 10.1016/j.envpol.2021.117816_bib34
  article-title: Viroids are singlestranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.73.11.3852
– volume: 52
  start-page: 220
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib13
  article-title: CircRNAs: a regulator of cellular stress
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2016.1276882
– volume: 9
  start-page: 576
  year: 2020
  ident: 10.1016/j.envpol.2021.117816_bib31
  article-title: An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases
  publication-title: Cells
  doi: 10.3390/cells9030576
– volume: 169
  start-page: 1187
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib19
  article-title: Dynamic RNA modifications in gene expression regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.045
– volume: 3
  start-page: 31
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib37
  article-title: Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2
  publication-title: NPJ. Parkinsons Dis.
  doi: 10.1038/s41531-017-0033-1
– volume: 16
  start-page: 1221
  year: 2019
  ident: 10.1016/j.envpol.2021.117816_bib41
  article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1659617
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2021.117816_bib20
  article-title: Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1356975
– volume: 18
  start-page: 110
  year: 2019
  ident: 10.1016/j.envpol.2021.117816_bib17
  article-title: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner
  publication-title: Mol. Canc.
  doi: 10.1186/s12943-019-1036-9
– volume: 141
  start-page: 929
  year: 2006
  ident: 10.1016/j.envpol.2021.117816_bib29
  article-title: Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration
  publication-title: Neurosci
  doi: 10.1016/j.neuroscience.2006.03.069
SSID ssj0004333
Score 2.5134375
Snippet Paraquat (PQ), a widely used herbicide and well-known oxidative stress inducer, has been linked to numerous neurodegenerative diseases, but the underlying...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117816
SubjectTerms acetylcysteine
axons
CircRNA
gene ontology
methylation
mice
N6-methyladenosine (m6A)
neurodevelopment
Neurotoxicity
Oxidative stress
Paraquat
Parkinson disease
pollution
precipitin tests
Title Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs
URI https://dx.doi.org/10.1016/j.envpol.2021.117816
https://www.proquest.com/docview/2564131127
https://www.proquest.com/docview/2636504048
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA6lvuiD1GuLtbVEEKkP8fY22WT3cSktp-Ih2kLfQnaTwJXe7nk_SvvSv92ZZNeqFAu-LOwyCSGTTL7ZzHxDyNvCe5maQrDKS8OEsRkzecqZhE2Z1Ap8olC94ctEjs_Fp4vsYoMc97kwGFbZ2f5o04O17r4Mu9kczqfT4XfwHgAMF8iABTAmpF8LoXCVf7i7D_MQPJaTB2GG0n36XIjxcs31vMULiHSEt5c5Vj1_-Hj6y1CH0-d0izzvYCMt48hekA3XDMh22YDLPLul72gI5Ax_yAfk2W8cgwOye3KfygY9dHt5uU2qr2ZhfqzNioFbDgq2tL2Z2sADTmMGCV3EQvVuSSeSYa3p2ytjkV0cuqdHM1m-p7PWYrBR0C9tPa2nixDZSr9NyuUOOT89OTses67iAqsFz1eMi9TIjFfOgRthlfPeAyRJRjYt3MggW7vh0ia5AxRi8kopkyE1kq_rxAPyq_gu2Wzaxr0ktOAewIlwzohKeHgkymZFZQExAAazao_wfqJ13dGRY1WMK93HnV3qqB6N6tFRPXuE_Wo1j3Qcj8irXof6j2Wl4cR4pOWbXuUadhxeo5jGteulBpAokKQoVf-QkRygrwDz-Oq_R7BPnuJbjJ05IJurxdq9BgS0qg7DEj8kT8qPn8eTnwVkBi0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOCLZUlE8jAYKD2WzsOMmhhxW02tJ2haCVenOd2EZB3WTZ7LbshT_VP8jYSSggRCWkXnJIbMvy2DPP8fMbgOeptSJUKaeZFYpypSOqkpBRgYsyyGPcE_nsDftjMTrk74-ioxU47-7COFpl6_sbn-69dfum345mf1oU_U-4e0AwnDoFLIQxyaBlVu6a5Rnu2-rNnXdo5BdhuL118HZE29QCNOcsmVPGQyUilhmDeFnHxlqLsTcY6DA1A-VkyRUTOkgMhluVZHGsIqcBZPM8sAhxMobtXoPrHN2FS5vw5vsFr4SzJn899o667nX39TypzJSn08qdeIQDd1yauDTrf4-Hf0QGH-6278DtFqeSYTMUd2HFlD1YG5a4R58syUvimaP-l3wPbv0iatiD9a2Lu3PYQus86jXIPqiZ-rpQc1qUGmeUJtW3QnvhcdJcWSEz89mlEzM1GQvqklsvT5R2cubYPHk1EcPXZFJpx27yE4pUluTFzFNpycfxsL4Hh1dih3VYLavS3AeSMotoiBujeMYtPoJYR2mmEaIg6NPxBrBuoGXe6p-7NBwnsiO6fZGNeaQzj2zMswH0Z61po_9xSfm4s6H8bR5LDFGX1HzWmVziEnfnNqo01aKWiEq5U0UK43-UEQyxNkd__OC_e_AUbowO9vfk3s549yHcdF8a4s4jWJ3PFuYxwq959sRPdwLHV72-fgA5CUE1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paraquat-induced+oxidative+stress+regulates+N6-methyladenosine+%28m6A%29+modification+of+circular+RNAs&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Chen%2C+Nengzhou&rft.au=Tang%2C+Jianping&rft.au=Su%2C+Qianqian&rft.au=Chou%2C+Wei-Chun&rft.date=2021-12-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=290&rft.spage=117816&rft_id=info:doi/10.1016%2Fj.envpol.2021.117816&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon