Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1 , 6 – 9 ). However, these...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 13; no. 5; pp. 371 - 375
Main Authors Mönig, Harry, Amirjalayer, Saeed, Timmer, Alexander, Hu, Zhixin, Liu, Lacheng, Díaz Arado, Oscar, Cnudde, Marvin, Strassert, Cristian Alejandro, Ji, Wei, Rohlfing, Michael, Fuchs, Harald
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1 , 6 – 9 ). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation 8 – 12 . Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip 13 – 15 . Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. Using a rigid tip removes artefacts associated with imaging the strongly varying tip–sample potential of intermolecular sites by atomic force microscopy.
AbstractList Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1–5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6–9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8–12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13–15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1 , 6 – 9 ). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation 8 – 12 . Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip 13 – 15 . Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. Using a rigid tip removes artefacts associated with imaging the strongly varying tip–sample potential of intermolecular sites by atomic force microscopy.
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs ). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation . Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip . Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.
Author Strassert, Cristian Alejandro
Mönig, Harry
Cnudde, Marvin
Amirjalayer, Saeed
Timmer, Alexander
Hu, Zhixin
Ji, Wei
Rohlfing, Michael
Fuchs, Harald
Liu, Lacheng
Díaz Arado, Oscar
Author_xml – sequence: 1
  givenname: Harry
  orcidid: 0000-0003-2639-9198
  surname: Mönig
  fullname: Mönig, Harry
  email: harry.moenig@uni-muenster.de
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0003-0777-5004
  surname: Amirjalayer
  fullname: Amirjalayer, Saeed
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 3
  givenname: Alexander
  surname: Timmer
  fullname: Timmer, Alexander
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 4
  givenname: Zhixin
  surname: Hu
  fullname: Hu, Zhixin
  organization: Center for Joint Quantum Studies and Department of Physics, Tianjin University
– sequence: 5
  givenname: Lacheng
  surname: Liu
  fullname: Liu, Lacheng
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 6
  givenname: Oscar
  surname: Díaz Arado
  fullname: Díaz Arado, Oscar
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 7
  givenname: Marvin
  surname: Cnudde
  fullname: Cnudde, Marvin
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 8
  givenname: Cristian Alejandro
  surname: Strassert
  fullname: Strassert, Cristian Alejandro
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
– sequence: 9
  givenname: Wei
  orcidid: 0000-0001-5249-6624
  surname: Ji
  fullname: Ji, Wei
  organization: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China
– sequence: 10
  givenname: Michael
  surname: Rohlfing
  fullname: Rohlfing, Michael
  organization: Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster
– sequence: 11
  givenname: Harald
  surname: Fuchs
  fullname: Fuchs, Harald
  organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29632397$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFjEUhYO02A_9AW4k0I2b0Xwns5RSrVAQoa5DZubOS8pMMk0y4vvvm9dpFQp2keQmPOdyc84ZOgoxAELvKPlICTefsqBSyYZQUxcRjXiFTqkWpuG8lUd_a6NP0FnOd4RI1jLxGp2wVnHGW32K7n-sLhRfXPG_ALucIecZQsFxxD4USHOcoF8nl7ar64uPIeNuj12Js-_xGFMPuFYp5j4ue-xnt_Nhh9d82OvTAgnH334AXPyS36Dj0U0Z3j6e5-jnl6vby-vm5vvXb5efb5pecFMaxozkAwXVdlIQ4ENHTKtJO_JR6YE7BbR-WWjdqlEyxqVzsme6Y0R1ZuwkP0cftr5Livcr5GJnn3uYJhcgrtkywrhmpppS0Ytn6F1cU6jTVYoLZZhWvFLvH6m1m2GwS6o_TXv7ZGYF9AYcrMgJRtv_MTaGkpyfLCX2EJvdYrM1NnuIzYqqpM-UT81f0rBNkysbdpD-Df1_0QPSZ6og
CitedBy_id crossref_primary_10_1021_jacs_8b02599
crossref_primary_10_1016_j_susc_2020_121590
crossref_primary_10_1021_acsnano_3c02819
crossref_primary_10_1039_D1NR04080D
crossref_primary_10_1088_1361_6528_ac4759
crossref_primary_10_1002_ange_201808640
crossref_primary_10_3390_s19204510
crossref_primary_10_1103_PhysRevMaterials_3_110302
crossref_primary_10_1039_D0CS00166J
crossref_primary_10_1016_j_surfrep_2020_100509
crossref_primary_10_1063_5_0147331
crossref_primary_10_1088_2632_2153_ab7d2f
crossref_primary_10_1021_acsnano_8b08209
crossref_primary_10_1021_acs_nanolett_8b00855
crossref_primary_10_1021_jacs_8b10067
crossref_primary_10_1088_1674_1056_ac6eec
crossref_primary_10_1002_ange_202005888
crossref_primary_10_1038_s41467_023_40942_2
crossref_primary_10_1021_acsenergylett_4c02281
crossref_primary_10_1103_PhysRevLett_122_196101
crossref_primary_10_1021_prechem_3c00072
crossref_primary_10_1021_acsnano_4c10522
crossref_primary_10_3367_UFNe_2017_11_038233
crossref_primary_10_1021_acsnano_2c04439
crossref_primary_10_1021_acsphotonics_3c00791
crossref_primary_10_1039_D1NR04471K
crossref_primary_10_1038_s42004_020_00444_4
crossref_primary_10_3390_molecules26134068
crossref_primary_10_1002_ange_202412978
crossref_primary_10_1021_jacs_2c01338
crossref_primary_10_1038_s41557_023_01310_1
crossref_primary_10_1063_1_5052264
crossref_primary_10_1021_acs_jpcc_8b09631
crossref_primary_10_1021_acs_nanolett_1c00268
crossref_primary_10_1126_science_ads0942
crossref_primary_10_1103_PhysRevB_103_075409
crossref_primary_10_1021_acsnano_9b01792
crossref_primary_10_1038_s41467_020_15965_8
crossref_primary_10_1088_0256_307X_37_11_117301
crossref_primary_10_1002_smll_202101637
crossref_primary_10_1142_S0218625X21400072
crossref_primary_10_1002_anie_202005888
crossref_primary_10_1038_s41557_021_00651_z
crossref_primary_10_1038_s41565_018_0110_6
crossref_primary_10_3762_bjnano_11_119
crossref_primary_10_1002_anie_201808640
crossref_primary_10_1021_acsnano_3c10412
crossref_primary_10_1021_acsnano_2c09463
crossref_primary_10_1038_s41557_021_00773_4
crossref_primary_10_1021_acs_jpcc_0c05858
crossref_primary_10_1016_j_progsurf_2019_100561
crossref_primary_10_1063_1_5085747
crossref_primary_10_1063_5_0052126
crossref_primary_10_1021_jacs_4c02424
crossref_primary_10_1038_s41467_024_50862_4
crossref_primary_10_1038_s41570_018_0007_9
crossref_primary_10_1063_5_0003291
crossref_primary_10_1073_pnas_1922452117
crossref_primary_10_1002_anie_202412978
crossref_primary_10_3762_bjnano_11_140
crossref_primary_10_1038_s41467_020_15898_2
crossref_primary_10_1002_chem_202402765
crossref_primary_10_1021_acsnano_4c03155
crossref_primary_10_1039_C9NR10450J
crossref_primary_10_1039_D1SC03733A
crossref_primary_10_1016_j_matt_2021_01_013
crossref_primary_10_1038_s41467_019_09686_w
crossref_primary_10_1016_j_nanoms_2019_10_005
crossref_primary_10_1039_C8CC05332D
crossref_primary_10_1063_5_0073933
crossref_primary_10_1126_science_aax8222
Cites_doi 10.1016/j.cclet.2016.08.004
10.1103/PhysRevLett.113.186102
10.1088/0953-8984/14/11/302
10.1126/science.1242603
10.1103/PhysRevLett.108.086101
10.1021/acs.nanolett.5b05251
10.1103/PhysRevB.86.155422
10.1103/PhysRevLett.116.096102
10.1002/anie.201002960
10.1126/science.aai8625
10.1038/nnano.2012.20
10.1038/ncomms4931
10.1103/PhysRevB.54.11169
10.1126/science.1238187
10.1103/PhysRevLett.80.2004
10.1002/jcc.20495
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.50.17953
10.1126/science.1249502
10.1126/science.1225621
10.1039/b508541a
10.1063/1.4793200
10.1021/ja104332t
10.1103/PhysRevB.90.085421
10.1021/acs.jpcc.5b09889
10.1103/PhysRevB.13.5188
10.1063/1.122948
10.1021/acsnano.5b06513
10.1103/PhysRevB.76.115421
10.1103/PhysRevLett.67.855
10.1103/PhysRevLett.92.246401
10.1021/j100096a001
10.1021/jp050962y
10.1088/0953-8984/22/2/022201
10.1126/science.254.5030.408
10.1038/nnano.2016.305
10.1103/PhysRevLett.112.166102
10.1103/PhysRevB.83.195131
10.1126/science.1176210
10.1021/nn4045358
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group May 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group May 2018
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-018-0104-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 375
ExternalDocumentID 29632397
10_1038_s41565_018_0104_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c438t-22853d1e69b540e3db089709f3f67d3a6e110447796f52235aa5c27b206b8fb53
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Mon Jul 21 11:44:53 EDT 2025
Fri Jul 25 08:58:37 EDT 2025
Mon Jul 21 05:58:24 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-22853d1e69b540e3db089709f3f67d3a6e110447796f52235aa5c27b206b8fb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5249-6624
0000-0003-0777-5004
0000-0003-2639-9198
PMID 29632397
PQID 2034682763
PQPubID 546299
PageCount 5
ParticipantIDs proquest_miscellaneous_2023728005
proquest_journals_2034682763
pubmed_primary_29632397
crossref_citationtrail_10_1038_s41565_018_0104_4
crossref_primary_10_1038_s41565_018_0104_4
springer_journals_10_1038_s41565_018_0104_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Weymouth, Hofmann, Giessibl (CR9) 2014; 343
Zhang (CR4) 2013; 342
Han (CR22) 2017; 358
Weigend, Ahlrichs (CR33) 2005; 7
Kern (CR30) 1991; 67
de Oteyza (CR3) 2013; 340
Soler (CR42) 2002; 14
Weiss, Wagner, Temirov, Tautz (CR21) 2010; 132
Hämäläinen (CR12) 2014; 113
Ellner (CR27) 2016; 16
CR32
Grimme (CR34) 2006; 27
Gross, Mohn, Moll, Liljeroth, Meyer (CR1) 2009; 325
Schneiderbauer, Emmrich, Weymouth, Giessibl (CR26) 2014; 112
Hapala (CR11) 2014; 90
Pavliček (CR5) 2017; 12
Pavliček (CR10) 2012; 108
Mohn, Gross, Moll, Meyer (CR2) 2012; 7
Van der Lit (CR19) 2016; 120
Kresse, Joubert (CR40) 1999; 59
Monkhorst, Pack (CR41) 1976; 13
Mönig (CR15) 2016; 10
Liu, Lu, Kappes, Ibers (CR16) 1991; 254
CR29
Kelly, Lee, Kantorovich (CR25) 2005; 109
Klimeš, Bowler, Michaelides (CR37) 2011; 83
Blöchl (CR39) 1994; 50
Mönig (CR14) 2013; 7
Gross (CR8) 2012; 337
Bamidele (CR13) 2012; 86
Stephens, Devlin, Chabalowski, Frisch (CR31) 1994; 98
Kresse, Furthmüller (CR35) 1996; 54
Mohn, Schuler, Gross, Meyer (CR7) 2013; 102
Rohlfing, Temirov, Tautz (CR23) 2007; 76
Dion, Rydberg, Schröder, Langreth, Lundqvist (CR36) 2004; 92
Klimeš, Bowler, Michaelides (CR38) 2010; 22
Bartels (CR6) 1998; 80
Sweetman (CR17) 2014; 5
Giessibl (CR28) 1998; 73
Desiraju (CR24) 2011; 50
Wang, Cheng, Qiu, Ji (CR18) 2017; 28
Van der Lit, Di Cicco, Hapala, Jelinek, Swart (CR20) 2016; 116
L Gross (104_CR1) 2009; 325
104_CR32
C Weiss (104_CR21) 2010; 132
HJ Monkhorst (104_CR41) 1976; 13
CG Wang (104_CR18) 2017; 28
DG Oteyza de (104_CR3) 2013; 340
PE Blöchl (104_CR39) 1994; 50
N Pavliček (104_CR10) 2012; 108
F Mohn (104_CR2) 2012; 7
F Weigend (104_CR33) 2005; 7
J Lit Van der (104_CR20) 2016; 116
SK Hämäläinen (104_CR12) 2014; 113
M Rohlfing (104_CR23) 2007; 76
M Schneiderbauer (104_CR26) 2014; 112
J Klimeš (104_CR38) 2010; 22
N Pavliček (104_CR5) 2017; 12
AJ Weymouth (104_CR9) 2014; 343
J Klimeš (104_CR37) 2011; 83
L Gross (104_CR8) 2012; 337
GR Desiraju (104_CR24) 2011; 50
J Bamidele (104_CR13) 2012; 86
104_CR29
PJ Stephens (104_CR31) 1994; 98
M Dion (104_CR36) 2004; 92
K Kern (104_CR30) 1991; 67
Z Han (104_CR22) 2017; 358
F Mohn (104_CR7) 2013; 102
S Liu (104_CR16) 1991; 254
M Ellner (104_CR27) 2016; 16
L Bartels (104_CR6) 1998; 80
H Mönig (104_CR15) 2016; 10
J Zhang (104_CR4) 2013; 342
G Kresse (104_CR35) 1996; 54
AM Sweetman (104_CR17) 2014; 5
SJ Grimme (104_CR34) 2006; 27
FJ Giessibl (104_CR28) 1998; 73
JM Soler (104_CR42) 2002; 14
G Kresse (104_CR40) 1999; 59
P Hapala (104_CR11) 2014; 90
J Lit Van der (104_CR19) 2016; 120
H Mönig (104_CR14) 2013; 7
REA Kelly (104_CR25) 2005; 109
29632396 - Nat Nanotechnol. 2018 May;13(5):358-359
References_xml – volume: 28
  start-page: 759
  year: 2017
  end-page: 764
  ident: CR18
  article-title: Unusually high electron density in an intermolecular non-bonding region: role of metal substrate
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2016.08.004
– volume: 113
  start-page: 186102
  year: 2014
  ident: CR12
  article-title: Intermolecular contrast in atomic force microscopy images without intermolecular bonds
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.186102
– volume: 14
  start-page: 2745
  year: 2002
  ident: CR42
  article-title: The SIESTA method for ab initio order- materials simulation
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 342
  start-page: 611
  year: 2013
  end-page: 614
  ident: CR4
  article-title: Real-space identification of intermolecular bonding with atomic force microscopy
  publication-title: Science
  doi: 10.1126/science.1242603
– volume: 108
  start-page: 086101
  year: 2012
  ident: CR10
  article-title: Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.086101
– volume: 16
  start-page: 1974
  year: 2016
  end-page: 1980
  ident: CR27
  article-title: The electric field of CO tips and its relevance for atomic force microscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05251
– volume: 86
  start-page: 155422
  year: 2012
  ident: CR13
  article-title: Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.155422
– volume: 116
  start-page: 096102
  year: 2016
  ident: CR20
  article-title: Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.096102
– volume: 50
  start-page: 52
  year: 2011
  end-page: 60
  ident: CR24
  article-title: A bond by any other name
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201002960
– volume: 358
  start-page: 206
  year: 2017
  end-page: 210
  ident: CR22
  article-title: Imaging the halogen bond in self-assembled halogenbenzenes on silver
  publication-title: Science
  doi: 10.1126/science.aai8625
– volume: 7
  start-page: 227
  year: 2012
  end-page: 231
  ident: CR2
  article-title: Imaging the charge distribution within a single molecule
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.20
– volume: 5
  year: 2014
  ident: CR17
  article-title: Mapping the force field of a hydrogen-bonded assembly
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4931
– ident: CR29
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR35
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 340
  start-page: 1434
  year: 2013
  end-page: 1437
  ident: CR3
  article-title: Direct imaging of covalent bond structure in single-molecule chemical reactions
  publication-title: Science
  doi: 10.1126/science.1238187
– volume: 80
  start-page: 2004
  year: 1998
  end-page: 2007
  ident: CR6
  article-title: Dynamics of electron-induced manipulation of individual CO molecules on Cu(110)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2004
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR34
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR40
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 343
  start-page: 1120
  year: 2014
  ident: CR9
  article-title: Quantifying molecular stiffness and interaction with lateral force microscopy
  publication-title: Science
  doi: 10.1126/science.1249502
– volume: 337
  start-page: 1326
  year: 2012
  end-page: 1329
  ident: CR8
  article-title: Bond-order discrimination by atomic force microscopy
  publication-title: Science
  doi: 10.1126/science.1225621
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  ident: CR33
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 102
  start-page: 073109
  year: 2013
  ident: CR7
  article-title: Different tips for high-resolution atomic force microscopy and scanning tunneling microcopy of single molecules
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793200
– volume: 132
  start-page: 11864
  year: 2010
  end-page: 11865
  ident: CR21
  article-title: Direct imaging of intermolecular bonds in scanning tunneling microscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104332t
– volume: 90
  start-page: 085421
  year: 2014
  ident: CR11
  article-title: Mechanism of high-resolution STM/AFM imaging with functionalized tips
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.085421
– volume: 120
  start-page: 318
  year: 2016
  end-page: 323
  ident: CR19
  article-title: Modeling the self-assembly of organic molecules in 2D molecular layers with different structures
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09889
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR41
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 73
  start-page: 3956
  year: 1998
  end-page: 3958
  ident: CR28
  article-title: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122948
– volume: 10
  start-page: 1201
  year: 2016
  end-page: 1209
  ident: CR15
  article-title: Submolecular imaging by noncontact atomic force microscopy with an oxygen atom rigidly connected to a metallic probe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06513
– volume: 76
  start-page: 115421
  year: 2007
  ident: CR23
  article-title: Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.115421
– volume: 67
  start-page: 855
  year: 1991
  end-page: 858
  ident: CR30
  article-title: Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu(100)-(2×1)O
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.855
– volume: 92
  start-page: 246401
  year: 2004
  ident: CR36
  article-title: Van der Waals density functional for general geometries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 98
  start-page: 11623
  year: 1994
  end-page: 11627
  ident: CR31
  article-title: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– ident: CR32
– volume: 109
  start-page: 11933
  year: 2005
  ident: CR25
  article-title: Homopairing possibilities of the DNA base adenine
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050962y
– volume: 22
  start-page: 022201
  year: 2010
  ident: CR38
  article-title: Chemical accuracy for the van der Waals density functional
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/2/022201
– volume: 254
  start-page: 408
  year: 1991
  end-page: 410
  ident: CR16
  article-title: The structure of the C molecule: X-ray crystal structure determination of a twin at 110 K
  publication-title: Science
  doi: 10.1126/science.254.5030.408
– volume: 12
  start-page: 308
  year: 2017
  end-page: 311
  ident: CR5
  article-title: Synthesis and characterization of triangulene
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.305
– volume: 112
  start-page: 166102
  year: 2014
  ident: CR26
  article-title: CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.166102
– volume: 83
  start-page: 195131
  year: 2011
  ident: CR37
  article-title: Van der Waals density functionals applied to solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 325
  start-page: 1110
  year: 2009
  end-page: 1114
  ident: CR1
  article-title: The chemical structure of a molecule resolved by atomic force microscopy
  publication-title: Science
  doi: 10.1126/science.1176210
– volume: 7
  start-page: 10233
  year: 2013
  end-page: 10244
  ident: CR14
  article-title: Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study
  publication-title: ACS Nano
  doi: 10.1021/nn4045358
– volume: 5
  year: 2014
  ident: 104_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4931
– volume: 67
  start-page: 855
  year: 1991
  ident: 104_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.855
– volume: 343
  start-page: 1120
  year: 2014
  ident: 104_CR9
  publication-title: Science
  doi: 10.1126/science.1249502
– volume: 27
  start-page: 1787
  year: 2006
  ident: 104_CR34
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 120
  start-page: 318
  year: 2016
  ident: 104_CR19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09889
– volume: 358
  start-page: 206
  year: 2017
  ident: 104_CR22
  publication-title: Science
  doi: 10.1126/science.aai8625
– volume: 7
  start-page: 3297
  year: 2005
  ident: 104_CR33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 92
  start-page: 246401
  year: 2004
  ident: 104_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 14
  start-page: 2745
  year: 2002
  ident: 104_CR42
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 50
  start-page: 17953
  year: 1994
  ident: 104_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 7
  start-page: 227
  year: 2012
  ident: 104_CR2
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.20
– volume: 22
  start-page: 022201
  year: 2010
  ident: 104_CR38
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/2/022201
– volume: 86
  start-page: 155422
  year: 2012
  ident: 104_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.155422
– volume: 50
  start-page: 52
  year: 2011
  ident: 104_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201002960
– volume: 80
  start-page: 2004
  year: 1998
  ident: 104_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2004
– volume: 109
  start-page: 11933
  year: 2005
  ident: 104_CR25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050962y
– volume: 13
  start-page: 5188
  year: 1976
  ident: 104_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 7
  start-page: 10233
  year: 2013
  ident: 104_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn4045358
– volume: 59
  start-page: 1758
  year: 1999
  ident: 104_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 102
  start-page: 073109
  year: 2013
  ident: 104_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793200
– volume: 10
  start-page: 1201
  year: 2016
  ident: 104_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06513
– volume: 98
  start-page: 11623
  year: 1994
  ident: 104_CR31
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 83
  start-page: 195131
  year: 2011
  ident: 104_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 113
  start-page: 186102
  year: 2014
  ident: 104_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.186102
– volume: 112
  start-page: 166102
  year: 2014
  ident: 104_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.166102
– volume: 116
  start-page: 096102
  year: 2016
  ident: 104_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.096102
– volume: 76
  start-page: 115421
  year: 2007
  ident: 104_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.115421
– volume: 108
  start-page: 086101
  year: 2012
  ident: 104_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.086101
– volume: 340
  start-page: 1434
  year: 2013
  ident: 104_CR3
  publication-title: Science
  doi: 10.1126/science.1238187
– volume: 90
  start-page: 085421
  year: 2014
  ident: 104_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.085421
– volume: 325
  start-page: 1110
  year: 2009
  ident: 104_CR1
  publication-title: Science
  doi: 10.1126/science.1176210
– volume: 342
  start-page: 611
  year: 2013
  ident: 104_CR4
  publication-title: Science
  doi: 10.1126/science.1242603
– volume: 254
  start-page: 408
  year: 1991
  ident: 104_CR16
  publication-title: Science
  doi: 10.1126/science.254.5030.408
– volume: 132
  start-page: 11864
  year: 2010
  ident: 104_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104332t
– ident: 104_CR32
– volume: 54
  start-page: 11169
  year: 1996
  ident: 104_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 28
  start-page: 759
  year: 2017
  ident: 104_CR18
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2016.08.004
– volume: 12
  start-page: 308
  year: 2017
  ident: 104_CR5
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.305
– ident: 104_CR29
– volume: 16
  start-page: 1974
  year: 2016
  ident: 104_CR27
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05251
– volume: 337
  start-page: 1326
  year: 2012
  ident: 104_CR8
  publication-title: Science
  doi: 10.1126/science.1225621
– volume: 73
  start-page: 3956
  year: 1998
  ident: 104_CR28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122948
– reference: 29632396 - Nat Nanotechnol. 2018 May;13(5):358-359
SSID ssj0052924
Score 2.5151234
Snippet Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually...
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds . The methodology usually involves...
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1–5. The methodology usually involves...
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 371
SubjectTerms 639/638/11
639/638/11/942
639/766/119/544
639/766/94
639/925/930/328/1262
Atomic force microscopy
Atomic structure
Bonding strength
Chemistry and Materials Science
Configurations
Copper
Copper oxides
Corrosion inhibitors
Deflection
Hydrogen bonding
Hydrogen bonds
Letter
Materials Science
Microscopy
Molecular chains
Nanotechnology
Nanotechnology and Microengineering
Oxygen
Passivity
Structural stability
Substrates
Tips
Title Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips
URI https://link.springer.com/article/10.1038/s41565-018-0104-4
https://www.ncbi.nlm.nih.gov/pubmed/29632397
https://www.proquest.com/docview/2034682763
https://www.proquest.com/docview/2023728005
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-svrQPpdoP06psoU8toXF3sx9PpYqnCJW2VLi3kN1s5MBLzssd1P--M_myIvoSSLJJlszXb3ZmZwA-obd1qHKtYhE4OigW3R3rbRknKOQmQfvn23XIHxfq7FKeT9Npv-DW9GmVg05sFXVRe1ojRyddSGU4isO3xU1MXaMoutq30HgGW1S6jFK69HR0uFJuu6a2WpoYXTE9RDWF-dqQ40Jpa5TKlchY3rdLD8Dmg0Bpa38mr-BlDxzZ947S27ARqh148V85wddw82udV-2mMVRhLB9rbrK6ZFQWYjkfeuF2p92ehoa5W4au93zmGSJYH9ickvRou8otm83bLkaM0uOvGF5ahCWr_86KwFazRfMGLicnf47P4r6lQuylMKuYczTPxWFQ1iFUC6JwibE6saUolS5ErgLCASm1tqpEZCbSPE89144nypnSpeItbFZ1FXaBIe4KQqGJL8tCWm2NR8oqb40TqAaciiAZfmjm-3rj1PbiOmvj3sJkHQ0ypEFGNMhkBJ_HRxZdsY2nBu8NVMp6uWuyOy6J4ON4GyWGwiB5Feo1jeGCmnIlaQTvOuqOX-OojzhCtAi-DOS-e_mjU3n_9FQ-wHPeMhrx2x5srpbrsI9QZuUOWn7Fo5mcHsDW0cnFz9__ALXc8DU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE4VLzr0sIiwQVk4e6u93FAFQJCSh8SUiv1ZrzrNYpE7DROVPKn-I3M2HEKquitR78tz-sbz-x8AK8w29pTuVaxCBwTFIvpjvW2jBM0cpNg_PPtf8jjEzU8k1_P0_M1-N2vhaG2yt4nto66qD39I8ckXUhlOJrD_uQiJtYoqq72FBqdWhyGxSWmbM37g08o39ecDz6ffhzGS1aB2EthZjHnGKGKvaCsQ7QSROESY3ViS1EqXYhcBYyIUmptVYngRKR5nnquHU-UM6Ujlgh0-RtSCEsWZQZfes-fctuR6GppYkz9dF9FFeZdQ4kStclR61giY_lvHLwGbq8VZtt4N7gPm0ugyj50mvUA1kL1EO79Nb7wEVx8m-dVu0gNXSbLVzM-WV0yGkMxHffcu91mt4aiYW7BMNUfjzxDxOwDG1NTIC2PWbDRuGVNYtSO_4PhrkmYsvrXqAhsNpo0j-HsVj72E1iv6ipsAUOcF4RCSFGWhbTaGo-apLw1TqDbcSqCpP-gmV_ONyeajZ9ZW2cXJutkkKEMMpJBJiN4s7pk0g33uOnknV5K2dLOm-xKKyN4uTqMFkpll7wK9ZzO4YJIwJI0gqeddFdP4-j_OELCCN724r66-X9fZfvmV3kBd4anx0fZ0cHJ4TO4y1ulI93bgfXZdB52EUbN3PNWdxl8v21j-QO8MiiY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCqIPxbtpq46gL0podmYyl4dSxLq0VouChX2LyWQiC91ku9lF96_56zwntyrFvvUx95Bz_XLOnA_gFaKtkUq1CoXnCFAswh3rbBFGaOQmwvjnmv-Qn0_V0Zn8OIknG_C7XwtDbZW9T2wcdV45-keOIF1IZTiaw17RtUV8ORwfzC9CYpCiSmtPp9GqyIlf_0T4Vu8fH6KsX3M-_vDt_VHYMQyETgqzDDnHaJWPvLIZZi5e5FlkrI5sIQqlc5Eqj9FRSq2tKjBREXGaxo7rjEcqM0VGjBHo_m9pEY_IxvRkAHsxty2hrpYmRBio-4qqMHs1gSZqmaM2skiG8t-YeCXRvVKkbWLf-B5sdUkre9dq2X3Y8OUDuPvXKMOHcPF1lZbNgjV0nywd5n2yqmA0kmIx63l42812PUXNsjVD2D-bOobZs_NsRg2CtFRmzaazhkGJUWv-D4a75n7Bql_T3LPldF4_grMb-diPYbOsSv8UGOZ8XihML4oil1Zb41CrlLMmE-iCMhVA1H_QxHWzzoly4zxpau7CJK0MEpRBQjJIZABvhkvm7aCP607e7aWUdDZfJ5caGsDL4TBaK5Vg0tJXKzqHCyIEi-IAnrTSHZ7G0RdyTA8DeNuL-_Lm_32V7etf5QXcRjNJPh2fnuzAHd7oHKneLmwuFyv_DDOqZfa8UV0G32_aVv4AndQsxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+assessment+of+intermolecular+interactions+by+atomic+force+microscopy+imaging+using+copper+oxide+tips&rft.jtitle=Nature+nanotechnology&rft.au=M%C3%B6nig%2C+Harry&rft.au=Amirjalayer%2C+Saeed&rft.au=Timmer%2C+Alexander&rft.au=Hu%2C+Zhixin&rft.date=2018-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=5&rft.spage=371&rft.epage=375&rft_id=info:doi/10.1038%2Fs41565-018-0104-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon