Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips
Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1 , 6 – 9 ). However, these...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 5; pp. 371 - 375 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds
1
–
5
. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs
1
,
6
–
9
). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation
8
–
12
. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip
13
–
15
. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.
Using a rigid tip removes artefacts associated with imaging the strongly varying tip–sample potential of intermolecular sites by atomic force microscopy. |
---|---|
AbstractList | Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1–5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6–9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8–12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13–15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds 1 – 5 . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1 , 6 – 9 ). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation 8 – 12 . Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip 13 – 15 . Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. Using a rigid tip removes artefacts associated with imaging the strongly varying tip–sample potential of intermolecular sites by atomic force microscopy. Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds . The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs ). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation . Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip . Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly. |
Author | Strassert, Cristian Alejandro Mönig, Harry Cnudde, Marvin Amirjalayer, Saeed Timmer, Alexander Hu, Zhixin Ji, Wei Rohlfing, Michael Fuchs, Harald Liu, Lacheng Díaz Arado, Oscar |
Author_xml | – sequence: 1 givenname: Harry orcidid: 0000-0003-2639-9198 surname: Mönig fullname: Mönig, Harry email: harry.moenig@uni-muenster.de organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 2 givenname: Saeed orcidid: 0000-0003-0777-5004 surname: Amirjalayer fullname: Amirjalayer, Saeed organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 3 givenname: Alexander surname: Timmer fullname: Timmer, Alexander organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 4 givenname: Zhixin surname: Hu fullname: Hu, Zhixin organization: Center for Joint Quantum Studies and Department of Physics, Tianjin University – sequence: 5 givenname: Lacheng surname: Liu fullname: Liu, Lacheng organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 6 givenname: Oscar surname: Díaz Arado fullname: Díaz Arado, Oscar organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 7 givenname: Marvin surname: Cnudde fullname: Cnudde, Marvin organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 8 givenname: Cristian Alejandro surname: Strassert fullname: Strassert, Cristian Alejandro organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology – sequence: 9 givenname: Wei orcidid: 0000-0001-5249-6624 surname: Ji fullname: Ji, Wei organization: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China – sequence: 10 givenname: Michael surname: Rohlfing fullname: Rohlfing, Michael organization: Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster – sequence: 11 givenname: Harald surname: Fuchs fullname: Fuchs, Harald organization: Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Center for Nanotechnology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29632397$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFjEUhYO02A_9AW4k0I2b0Xwns5RSrVAQoa5DZubOS8pMMk0y4vvvm9dpFQp2keQmPOdyc84ZOgoxAELvKPlICTefsqBSyYZQUxcRjXiFTqkWpuG8lUd_a6NP0FnOd4RI1jLxGp2wVnHGW32K7n-sLhRfXPG_ALucIecZQsFxxD4USHOcoF8nl7ar64uPIeNuj12Js-_xGFMPuFYp5j4ue-xnt_Nhh9d82OvTAgnH334AXPyS36Dj0U0Z3j6e5-jnl6vby-vm5vvXb5efb5pecFMaxozkAwXVdlIQ4ENHTKtJO_JR6YE7BbR-WWjdqlEyxqVzsme6Y0R1ZuwkP0cftr5Livcr5GJnn3uYJhcgrtkywrhmpppS0Ytn6F1cU6jTVYoLZZhWvFLvH6m1m2GwS6o_TXv7ZGYF9AYcrMgJRtv_MTaGkpyfLCX2EJvdYrM1NnuIzYqqpM-UT81f0rBNkysbdpD-Df1_0QPSZ6og |
CitedBy_id | crossref_primary_10_1021_jacs_8b02599 crossref_primary_10_1016_j_susc_2020_121590 crossref_primary_10_1021_acsnano_3c02819 crossref_primary_10_1039_D1NR04080D crossref_primary_10_1088_1361_6528_ac4759 crossref_primary_10_1002_ange_201808640 crossref_primary_10_3390_s19204510 crossref_primary_10_1103_PhysRevMaterials_3_110302 crossref_primary_10_1039_D0CS00166J crossref_primary_10_1016_j_surfrep_2020_100509 crossref_primary_10_1063_5_0147331 crossref_primary_10_1088_2632_2153_ab7d2f crossref_primary_10_1021_acsnano_8b08209 crossref_primary_10_1021_acs_nanolett_8b00855 crossref_primary_10_1021_jacs_8b10067 crossref_primary_10_1088_1674_1056_ac6eec crossref_primary_10_1002_ange_202005888 crossref_primary_10_1038_s41467_023_40942_2 crossref_primary_10_1021_acsenergylett_4c02281 crossref_primary_10_1103_PhysRevLett_122_196101 crossref_primary_10_1021_prechem_3c00072 crossref_primary_10_1021_acsnano_4c10522 crossref_primary_10_3367_UFNe_2017_11_038233 crossref_primary_10_1021_acsnano_2c04439 crossref_primary_10_1021_acsphotonics_3c00791 crossref_primary_10_1039_D1NR04471K crossref_primary_10_1038_s42004_020_00444_4 crossref_primary_10_3390_molecules26134068 crossref_primary_10_1002_ange_202412978 crossref_primary_10_1021_jacs_2c01338 crossref_primary_10_1038_s41557_023_01310_1 crossref_primary_10_1063_1_5052264 crossref_primary_10_1021_acs_jpcc_8b09631 crossref_primary_10_1021_acs_nanolett_1c00268 crossref_primary_10_1126_science_ads0942 crossref_primary_10_1103_PhysRevB_103_075409 crossref_primary_10_1021_acsnano_9b01792 crossref_primary_10_1038_s41467_020_15965_8 crossref_primary_10_1088_0256_307X_37_11_117301 crossref_primary_10_1002_smll_202101637 crossref_primary_10_1142_S0218625X21400072 crossref_primary_10_1002_anie_202005888 crossref_primary_10_1038_s41557_021_00651_z crossref_primary_10_1038_s41565_018_0110_6 crossref_primary_10_3762_bjnano_11_119 crossref_primary_10_1002_anie_201808640 crossref_primary_10_1021_acsnano_3c10412 crossref_primary_10_1021_acsnano_2c09463 crossref_primary_10_1038_s41557_021_00773_4 crossref_primary_10_1021_acs_jpcc_0c05858 crossref_primary_10_1016_j_progsurf_2019_100561 crossref_primary_10_1063_1_5085747 crossref_primary_10_1063_5_0052126 crossref_primary_10_1021_jacs_4c02424 crossref_primary_10_1038_s41467_024_50862_4 crossref_primary_10_1038_s41570_018_0007_9 crossref_primary_10_1063_5_0003291 crossref_primary_10_1073_pnas_1922452117 crossref_primary_10_1002_anie_202412978 crossref_primary_10_3762_bjnano_11_140 crossref_primary_10_1038_s41467_020_15898_2 crossref_primary_10_1002_chem_202402765 crossref_primary_10_1021_acsnano_4c03155 crossref_primary_10_1039_C9NR10450J crossref_primary_10_1039_D1SC03733A crossref_primary_10_1016_j_matt_2021_01_013 crossref_primary_10_1038_s41467_019_09686_w crossref_primary_10_1016_j_nanoms_2019_10_005 crossref_primary_10_1039_C8CC05332D crossref_primary_10_1063_5_0073933 crossref_primary_10_1126_science_aax8222 |
Cites_doi | 10.1016/j.cclet.2016.08.004 10.1103/PhysRevLett.113.186102 10.1088/0953-8984/14/11/302 10.1126/science.1242603 10.1103/PhysRevLett.108.086101 10.1021/acs.nanolett.5b05251 10.1103/PhysRevB.86.155422 10.1103/PhysRevLett.116.096102 10.1002/anie.201002960 10.1126/science.aai8625 10.1038/nnano.2012.20 10.1038/ncomms4931 10.1103/PhysRevB.54.11169 10.1126/science.1238187 10.1103/PhysRevLett.80.2004 10.1002/jcc.20495 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.50.17953 10.1126/science.1249502 10.1126/science.1225621 10.1039/b508541a 10.1063/1.4793200 10.1021/ja104332t 10.1103/PhysRevB.90.085421 10.1021/acs.jpcc.5b09889 10.1103/PhysRevB.13.5188 10.1063/1.122948 10.1021/acsnano.5b06513 10.1103/PhysRevB.76.115421 10.1103/PhysRevLett.67.855 10.1103/PhysRevLett.92.246401 10.1021/j100096a001 10.1021/jp050962y 10.1088/0953-8984/22/2/022201 10.1126/science.254.5030.408 10.1038/nnano.2016.305 10.1103/PhysRevLett.112.166102 10.1103/PhysRevB.83.195131 10.1126/science.1176210 10.1021/nn4045358 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group May 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group May 2018 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0104-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 375 |
ExternalDocumentID | 29632397 10_1038_s41565_018_0104_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c438t-22853d1e69b540e3db089709f3f67d3a6e110447796f52235aa5c27b206b8fb53 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Mon Jul 21 11:44:53 EDT 2025 Fri Jul 25 08:58:37 EDT 2025 Mon Jul 21 05:58:24 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-22853d1e69b540e3db089709f3f67d3a6e110447796f52235aa5c27b206b8fb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5249-6624 0000-0003-0777-5004 0000-0003-2639-9198 |
PMID | 29632397 |
PQID | 2034682763 |
PQPubID | 546299 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2023728005 proquest_journals_2034682763 pubmed_primary_29632397 crossref_citationtrail_10_1038_s41565_018_0104_4 crossref_primary_10_1038_s41565_018_0104_4 springer_journals_10_1038_s41565_018_0104_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Weymouth, Hofmann, Giessibl (CR9) 2014; 343 Zhang (CR4) 2013; 342 Han (CR22) 2017; 358 Weigend, Ahlrichs (CR33) 2005; 7 Kern (CR30) 1991; 67 de Oteyza (CR3) 2013; 340 Soler (CR42) 2002; 14 Weiss, Wagner, Temirov, Tautz (CR21) 2010; 132 Hämäläinen (CR12) 2014; 113 Ellner (CR27) 2016; 16 CR32 Grimme (CR34) 2006; 27 Gross, Mohn, Moll, Liljeroth, Meyer (CR1) 2009; 325 Schneiderbauer, Emmrich, Weymouth, Giessibl (CR26) 2014; 112 Hapala (CR11) 2014; 90 Pavliček (CR5) 2017; 12 Pavliček (CR10) 2012; 108 Mohn, Gross, Moll, Meyer (CR2) 2012; 7 Van der Lit (CR19) 2016; 120 Kresse, Joubert (CR40) 1999; 59 Monkhorst, Pack (CR41) 1976; 13 Mönig (CR15) 2016; 10 Liu, Lu, Kappes, Ibers (CR16) 1991; 254 CR29 Kelly, Lee, Kantorovich (CR25) 2005; 109 Klimeš, Bowler, Michaelides (CR37) 2011; 83 Blöchl (CR39) 1994; 50 Mönig (CR14) 2013; 7 Gross (CR8) 2012; 337 Bamidele (CR13) 2012; 86 Stephens, Devlin, Chabalowski, Frisch (CR31) 1994; 98 Kresse, Furthmüller (CR35) 1996; 54 Mohn, Schuler, Gross, Meyer (CR7) 2013; 102 Rohlfing, Temirov, Tautz (CR23) 2007; 76 Dion, Rydberg, Schröder, Langreth, Lundqvist (CR36) 2004; 92 Klimeš, Bowler, Michaelides (CR38) 2010; 22 Bartels (CR6) 1998; 80 Sweetman (CR17) 2014; 5 Giessibl (CR28) 1998; 73 Desiraju (CR24) 2011; 50 Wang, Cheng, Qiu, Ji (CR18) 2017; 28 Van der Lit, Di Cicco, Hapala, Jelinek, Swart (CR20) 2016; 116 L Gross (104_CR1) 2009; 325 104_CR32 C Weiss (104_CR21) 2010; 132 HJ Monkhorst (104_CR41) 1976; 13 CG Wang (104_CR18) 2017; 28 DG Oteyza de (104_CR3) 2013; 340 PE Blöchl (104_CR39) 1994; 50 N Pavliček (104_CR10) 2012; 108 F Mohn (104_CR2) 2012; 7 F Weigend (104_CR33) 2005; 7 J Lit Van der (104_CR20) 2016; 116 SK Hämäläinen (104_CR12) 2014; 113 M Rohlfing (104_CR23) 2007; 76 M Schneiderbauer (104_CR26) 2014; 112 J Klimeš (104_CR38) 2010; 22 N Pavliček (104_CR5) 2017; 12 AJ Weymouth (104_CR9) 2014; 343 J Klimeš (104_CR37) 2011; 83 L Gross (104_CR8) 2012; 337 GR Desiraju (104_CR24) 2011; 50 J Bamidele (104_CR13) 2012; 86 104_CR29 PJ Stephens (104_CR31) 1994; 98 M Dion (104_CR36) 2004; 92 K Kern (104_CR30) 1991; 67 Z Han (104_CR22) 2017; 358 F Mohn (104_CR7) 2013; 102 S Liu (104_CR16) 1991; 254 M Ellner (104_CR27) 2016; 16 L Bartels (104_CR6) 1998; 80 H Mönig (104_CR15) 2016; 10 J Zhang (104_CR4) 2013; 342 G Kresse (104_CR35) 1996; 54 AM Sweetman (104_CR17) 2014; 5 SJ Grimme (104_CR34) 2006; 27 FJ Giessibl (104_CR28) 1998; 73 JM Soler (104_CR42) 2002; 14 G Kresse (104_CR40) 1999; 59 P Hapala (104_CR11) 2014; 90 J Lit Van der (104_CR19) 2016; 120 H Mönig (104_CR14) 2013; 7 REA Kelly (104_CR25) 2005; 109 29632396 - Nat Nanotechnol. 2018 May;13(5):358-359 |
References_xml | – volume: 28 start-page: 759 year: 2017 end-page: 764 ident: CR18 article-title: Unusually high electron density in an intermolecular non-bonding region: role of metal substrate publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.08.004 – volume: 113 start-page: 186102 year: 2014 ident: CR12 article-title: Intermolecular contrast in atomic force microscopy images without intermolecular bonds publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.186102 – volume: 14 start-page: 2745 year: 2002 ident: CR42 article-title: The SIESTA method for ab initio order- materials simulation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 342 start-page: 611 year: 2013 end-page: 614 ident: CR4 article-title: Real-space identification of intermolecular bonding with atomic force microscopy publication-title: Science doi: 10.1126/science.1242603 – volume: 108 start-page: 086101 year: 2012 ident: CR10 article-title: Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.086101 – volume: 16 start-page: 1974 year: 2016 end-page: 1980 ident: CR27 article-title: The electric field of CO tips and its relevance for atomic force microscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05251 – volume: 86 start-page: 155422 year: 2012 ident: CR13 article-title: Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.155422 – volume: 116 start-page: 096102 year: 2016 ident: CR20 article-title: Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.096102 – volume: 50 start-page: 52 year: 2011 end-page: 60 ident: CR24 article-title: A bond by any other name publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201002960 – volume: 358 start-page: 206 year: 2017 end-page: 210 ident: CR22 article-title: Imaging the halogen bond in self-assembled halogenbenzenes on silver publication-title: Science doi: 10.1126/science.aai8625 – volume: 7 start-page: 227 year: 2012 end-page: 231 ident: CR2 article-title: Imaging the charge distribution within a single molecule publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.20 – volume: 5 year: 2014 ident: CR17 article-title: Mapping the force field of a hydrogen-bonded assembly publication-title: Nat. Commun. doi: 10.1038/ncomms4931 – ident: CR29 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR35 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 340 start-page: 1434 year: 2013 end-page: 1437 ident: CR3 article-title: Direct imaging of covalent bond structure in single-molecule chemical reactions publication-title: Science doi: 10.1126/science.1238187 – volume: 80 start-page: 2004 year: 1998 end-page: 2007 ident: CR6 article-title: Dynamics of electron-induced manipulation of individual CO molecules on Cu(110) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.2004 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR34 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: Comput. Chem. doi: 10.1002/jcc.20495 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR40 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR39 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 343 start-page: 1120 year: 2014 ident: CR9 article-title: Quantifying molecular stiffness and interaction with lateral force microscopy publication-title: Science doi: 10.1126/science.1249502 – volume: 337 start-page: 1326 year: 2012 end-page: 1329 ident: CR8 article-title: Bond-order discrimination by atomic force microscopy publication-title: Science doi: 10.1126/science.1225621 – volume: 7 start-page: 3297 year: 2005 end-page: 3305 ident: CR33 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 102 start-page: 073109 year: 2013 ident: CR7 article-title: Different tips for high-resolution atomic force microscopy and scanning tunneling microcopy of single molecules publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793200 – volume: 132 start-page: 11864 year: 2010 end-page: 11865 ident: CR21 article-title: Direct imaging of intermolecular bonds in scanning tunneling microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104332t – volume: 90 start-page: 085421 year: 2014 ident: CR11 article-title: Mechanism of high-resolution STM/AFM imaging with functionalized tips publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.085421 – volume: 120 start-page: 318 year: 2016 end-page: 323 ident: CR19 article-title: Modeling the self-assembly of organic molecules in 2D molecular layers with different structures publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09889 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR41 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 73 start-page: 3956 year: 1998 end-page: 3958 ident: CR28 article-title: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork publication-title: Appl. Phys. Lett. doi: 10.1063/1.122948 – volume: 10 start-page: 1201 year: 2016 end-page: 1209 ident: CR15 article-title: Submolecular imaging by noncontact atomic force microscopy with an oxygen atom rigidly connected to a metallic probe publication-title: ACS Nano doi: 10.1021/acsnano.5b06513 – volume: 76 start-page: 115421 year: 2007 ident: CR23 article-title: Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.115421 – volume: 67 start-page: 855 year: 1991 end-page: 858 ident: CR30 article-title: Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu(100)-(2×1)O publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.855 – volume: 92 start-page: 246401 year: 2004 ident: CR36 article-title: Van der Waals density functional for general geometries publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 98 start-page: 11623 year: 1994 end-page: 11627 ident: CR31 article-title: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – ident: CR32 – volume: 109 start-page: 11933 year: 2005 ident: CR25 article-title: Homopairing possibilities of the DNA base adenine publication-title: J. Phys. Chem. B doi: 10.1021/jp050962y – volume: 22 start-page: 022201 year: 2010 ident: CR38 article-title: Chemical accuracy for the van der Waals density functional publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/2/022201 – volume: 254 start-page: 408 year: 1991 end-page: 410 ident: CR16 article-title: The structure of the C molecule: X-ray crystal structure determination of a twin at 110 K publication-title: Science doi: 10.1126/science.254.5030.408 – volume: 12 start-page: 308 year: 2017 end-page: 311 ident: CR5 article-title: Synthesis and characterization of triangulene publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.305 – volume: 112 start-page: 166102 year: 2014 ident: CR26 article-title: CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.166102 – volume: 83 start-page: 195131 year: 2011 ident: CR37 article-title: Van der Waals density functionals applied to solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 325 start-page: 1110 year: 2009 end-page: 1114 ident: CR1 article-title: The chemical structure of a molecule resolved by atomic force microscopy publication-title: Science doi: 10.1126/science.1176210 – volume: 7 start-page: 10233 year: 2013 end-page: 10244 ident: CR14 article-title: Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study publication-title: ACS Nano doi: 10.1021/nn4045358 – volume: 5 year: 2014 ident: 104_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms4931 – volume: 67 start-page: 855 year: 1991 ident: 104_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.855 – volume: 343 start-page: 1120 year: 2014 ident: 104_CR9 publication-title: Science doi: 10.1126/science.1249502 – volume: 27 start-page: 1787 year: 2006 ident: 104_CR34 publication-title: Comput. Chem. doi: 10.1002/jcc.20495 – volume: 120 start-page: 318 year: 2016 ident: 104_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09889 – volume: 358 start-page: 206 year: 2017 ident: 104_CR22 publication-title: Science doi: 10.1126/science.aai8625 – volume: 7 start-page: 3297 year: 2005 ident: 104_CR33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 92 start-page: 246401 year: 2004 ident: 104_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 14 start-page: 2745 year: 2002 ident: 104_CR42 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 50 start-page: 17953 year: 1994 ident: 104_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 7 start-page: 227 year: 2012 ident: 104_CR2 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.20 – volume: 22 start-page: 022201 year: 2010 ident: 104_CR38 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/2/022201 – volume: 86 start-page: 155422 year: 2012 ident: 104_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.155422 – volume: 50 start-page: 52 year: 2011 ident: 104_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201002960 – volume: 80 start-page: 2004 year: 1998 ident: 104_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.2004 – volume: 109 start-page: 11933 year: 2005 ident: 104_CR25 publication-title: J. Phys. Chem. B doi: 10.1021/jp050962y – volume: 13 start-page: 5188 year: 1976 ident: 104_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 7 start-page: 10233 year: 2013 ident: 104_CR14 publication-title: ACS Nano doi: 10.1021/nn4045358 – volume: 59 start-page: 1758 year: 1999 ident: 104_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 102 start-page: 073109 year: 2013 ident: 104_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793200 – volume: 10 start-page: 1201 year: 2016 ident: 104_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.5b06513 – volume: 98 start-page: 11623 year: 1994 ident: 104_CR31 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 83 start-page: 195131 year: 2011 ident: 104_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 113 start-page: 186102 year: 2014 ident: 104_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.186102 – volume: 112 start-page: 166102 year: 2014 ident: 104_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.166102 – volume: 116 start-page: 096102 year: 2016 ident: 104_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.096102 – volume: 76 start-page: 115421 year: 2007 ident: 104_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.115421 – volume: 108 start-page: 086101 year: 2012 ident: 104_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.086101 – volume: 340 start-page: 1434 year: 2013 ident: 104_CR3 publication-title: Science doi: 10.1126/science.1238187 – volume: 90 start-page: 085421 year: 2014 ident: 104_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.085421 – volume: 325 start-page: 1110 year: 2009 ident: 104_CR1 publication-title: Science doi: 10.1126/science.1176210 – volume: 342 start-page: 611 year: 2013 ident: 104_CR4 publication-title: Science doi: 10.1126/science.1242603 – volume: 254 start-page: 408 year: 1991 ident: 104_CR16 publication-title: Science doi: 10.1126/science.254.5030.408 – volume: 132 start-page: 11864 year: 2010 ident: 104_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104332t – ident: 104_CR32 – volume: 54 start-page: 11169 year: 1996 ident: 104_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 28 start-page: 759 year: 2017 ident: 104_CR18 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.08.004 – volume: 12 start-page: 308 year: 2017 ident: 104_CR5 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.305 – ident: 104_CR29 – volume: 16 start-page: 1974 year: 2016 ident: 104_CR27 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05251 – volume: 337 start-page: 1326 year: 2012 ident: 104_CR8 publication-title: Science doi: 10.1126/science.1225621 – volume: 73 start-page: 3956 year: 1998 ident: 104_CR28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122948 – reference: 29632396 - Nat Nanotechnol. 2018 May;13(5):358-359 |
SSID | ssj0052924 |
Score | 2.5151234 |
Snippet | Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds
1
–
5
. The methodology usually... Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds . The methodology usually involves... Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1–5. The methodology usually involves... Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 371 |
SubjectTerms | 639/638/11 639/638/11/942 639/766/119/544 639/766/94 639/925/930/328/1262 Atomic force microscopy Atomic structure Bonding strength Chemistry and Materials Science Configurations Copper Copper oxides Corrosion inhibitors Deflection Hydrogen bonding Hydrogen bonds Letter Materials Science Microscopy Molecular chains Nanotechnology Nanotechnology and Microengineering Oxygen Passivity Structural stability Substrates Tips |
Title | Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips |
URI | https://link.springer.com/article/10.1038/s41565-018-0104-4 https://www.ncbi.nlm.nih.gov/pubmed/29632397 https://www.proquest.com/docview/2034682763 https://www.proquest.com/docview/2023728005 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-svrQPpdoP06psoU8toXF3sx9PpYqnCJW2VLi3kN1s5MBLzssd1P--M_myIvoSSLJJlszXb3ZmZwA-obd1qHKtYhE4OigW3R3rbRknKOQmQfvn23XIHxfq7FKeT9Npv-DW9GmVg05sFXVRe1ojRyddSGU4isO3xU1MXaMoutq30HgGW1S6jFK69HR0uFJuu6a2WpoYXTE9RDWF-dqQ40Jpa5TKlchY3rdLD8Dmg0Bpa38mr-BlDxzZ947S27ARqh148V85wddw82udV-2mMVRhLB9rbrK6ZFQWYjkfeuF2p92ehoa5W4au93zmGSJYH9ickvRou8otm83bLkaM0uOvGF5ahCWr_86KwFazRfMGLicnf47P4r6lQuylMKuYczTPxWFQ1iFUC6JwibE6saUolS5ErgLCASm1tqpEZCbSPE89144nypnSpeItbFZ1FXaBIe4KQqGJL8tCWm2NR8oqb40TqAaciiAZfmjm-3rj1PbiOmvj3sJkHQ0ypEFGNMhkBJ_HRxZdsY2nBu8NVMp6uWuyOy6J4ON4GyWGwiB5Feo1jeGCmnIlaQTvOuqOX-OojzhCtAi-DOS-e_mjU3n_9FQ-wHPeMhrx2x5srpbrsI9QZuUOWn7Fo5mcHsDW0cnFz9__ALXc8DU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE4VLzr0sIiwQVk4e6u93FAFQJCSh8SUiv1ZrzrNYpE7DROVPKn-I3M2HEKquitR78tz-sbz-x8AK8w29pTuVaxCBwTFIvpjvW2jBM0cpNg_PPtf8jjEzU8k1_P0_M1-N2vhaG2yt4nto66qD39I8ckXUhlOJrD_uQiJtYoqq72FBqdWhyGxSWmbM37g08o39ecDz6ffhzGS1aB2EthZjHnGKGKvaCsQ7QSROESY3ViS1EqXYhcBYyIUmptVYngRKR5nnquHU-UM6Ujlgh0-RtSCEsWZQZfes-fctuR6GppYkz9dF9FFeZdQ4kStclR61giY_lvHLwGbq8VZtt4N7gPm0ugyj50mvUA1kL1EO79Nb7wEVx8m-dVu0gNXSbLVzM-WV0yGkMxHffcu91mt4aiYW7BMNUfjzxDxOwDG1NTIC2PWbDRuGVNYtSO_4PhrkmYsvrXqAhsNpo0j-HsVj72E1iv6ipsAUOcF4RCSFGWhbTaGo-apLw1TqDbcSqCpP-gmV_ONyeajZ9ZW2cXJutkkKEMMpJBJiN4s7pk0g33uOnknV5K2dLOm-xKKyN4uTqMFkpll7wK9ZzO4YJIwJI0gqeddFdP4-j_OELCCN724r66-X9fZfvmV3kBd4anx0fZ0cHJ4TO4y1ulI93bgfXZdB52EUbN3PNWdxl8v21j-QO8MiiY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCqIPxbtpq46gL0podmYyl4dSxLq0VouChX2LyWQiC91ku9lF96_56zwntyrFvvUx95Bz_XLOnA_gFaKtkUq1CoXnCFAswh3rbBFGaOQmwvjnmv-Qn0_V0Zn8OIknG_C7XwtDbZW9T2wcdV45-keOIF1IZTiaw17RtUV8ORwfzC9CYpCiSmtPp9GqyIlf_0T4Vu8fH6KsX3M-_vDt_VHYMQyETgqzDDnHaJWPvLIZZi5e5FlkrI5sIQqlc5Eqj9FRSq2tKjBREXGaxo7rjEcqM0VGjBHo_m9pEY_IxvRkAHsxty2hrpYmRBio-4qqMHs1gSZqmaM2skiG8t-YeCXRvVKkbWLf-B5sdUkre9dq2X3Y8OUDuPvXKMOHcPF1lZbNgjV0nywd5n2yqmA0kmIx63l42812PUXNsjVD2D-bOobZs_NsRg2CtFRmzaazhkGJUWv-D4a75n7Bql_T3LPldF4_grMb-diPYbOsSv8UGOZ8XihML4oil1Zb41CrlLMmE-iCMhVA1H_QxHWzzoly4zxpau7CJK0MEpRBQjJIZABvhkvm7aCP607e7aWUdDZfJ5caGsDL4TBaK5Vg0tJXKzqHCyIEi-IAnrTSHZ7G0RdyTA8DeNuL-_Lm_32V7etf5QXcRjNJPh2fnuzAHd7oHKneLmwuFyv_DDOqZfa8UV0G32_aVv4AndQsxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+assessment+of+intermolecular+interactions+by+atomic+force+microscopy+imaging+using+copper+oxide+tips&rft.jtitle=Nature+nanotechnology&rft.au=M%C3%B6nig%2C+Harry&rft.au=Amirjalayer%2C+Saeed&rft.au=Timmer%2C+Alexander&rft.au=Hu%2C+Zhixin&rft.date=2018-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=5&rft.spage=371&rft.epage=375&rft_id=info:doi/10.1038%2Fs41565-018-0104-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |