Directional lasing in resonant semiconductor nanoantenna arrays
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, w...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 11; pp. 1042 - 1047 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (
Q
= 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
Active dielectric nanoantenna arrays exhibit low-threshold and high-quality-factor directional lasing achieved via a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. |
---|---|
AbstractList | High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent. High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor ( Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent. Active dielectric nanoantenna arrays exhibit low-threshold and high-quality-factor directional lasing achieved via a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent. |
Author | Bakker, Reuben M. Pan, Zhenying Ha, Son Tung Emani, Naresh Kumar Fu, Yuan Hsing Paniagua-Domínguez, Ramón Kuznetsov, Arseniy I. |
Author_xml | – sequence: 1 givenname: Son Tung surname: Ha fullname: Ha, Son Tung organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research – sequence: 2 givenname: Yuan Hsing surname: Fu fullname: Fu, Yuan Hsing organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Microelectronics, Agency for Science, Technology and Research – sequence: 3 givenname: Naresh Kumar orcidid: 0000-0002-0488-921X surname: Emani fullname: Emani, Naresh Kumar organization: Data Storage Institute, Agency for Science, Technology and Research, Indian Institute of Technology – sequence: 4 givenname: Zhenying surname: Pan fullname: Pan, Zhenying organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research – sequence: 5 givenname: Reuben M. surname: Bakker fullname: Bakker, Reuben M. organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research – sequence: 6 givenname: Ramón orcidid: 0000-0001-7836-681X surname: Paniagua-Domínguez fullname: Paniagua-Domínguez, Ramón organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research – sequence: 7 givenname: Arseniy I. surname: Kuznetsov fullname: Kuznetsov, Arseniy I. email: arseniy_kuznetsov@imre.a-star.edu.sg organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30127475$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LAzEYhINU7If-AC-y4MXLapI3u9mcROonFLzoOaTZbEnZJjXZPfTfm9JWoaCnhOGZIZkZo4HzziB0SfAtwVDdRUaKssgxqXJMWZEXJ2hEOKtyAFEMfu4VH6JxjEuMCyooO0NDwIRyxosRun-0wejOeqfarFXRukVmXRZMTIrrsmhWVntX97rzIUuST6pxTmUqBLWJ5-i0UW00F_tzgj6fnz6mr_ns_eVt-jDLNYOqyyktheCEMMyBMVXqWmGBKVDgpFasbMoaKoGh0EIYAFVCgw1vKl7PawpQwgTd7HLXwX_1JnZyZaM2bauc8X2UFAtCGalS4gRdH6FL34f0v0QRSCUALiFRV3uqn69MLdfBrlTYyEM1CeA7QAcfYzCN1LZT26a6oGwrCZbbEeRuBJlGkNsR5NZJjpyH8P88dOeJiXULE34f_bfpG2pplk0 |
CitedBy_id | crossref_primary_10_3367_UFNe_2021_12_039120 crossref_primary_10_1021_acs_nanolett_0c00403 crossref_primary_10_1021_acs_nanolett_0c01975 crossref_primary_10_1016_j_optcom_2023_130060 crossref_primary_10_1103_PhysRevResearch_6_L022020 crossref_primary_10_3390_nano11020484 crossref_primary_10_1117_1_AP_4_6_066004 crossref_primary_10_1002_adom_202201906 crossref_primary_10_1002_adom_201900383 crossref_primary_10_3390_bios13060631 crossref_primary_10_1002_adma_202003051 crossref_primary_10_1515_nanoph_2019_0024 crossref_primary_10_1103_PhysRevApplied_15_034041 crossref_primary_10_1063_5_0056243 crossref_primary_10_1103_PhysRevA_99_063805 crossref_primary_10_1088_1361_6463_acd8cb crossref_primary_10_1103_PhysRevA_110_013501 crossref_primary_10_1063_5_0150421 crossref_primary_10_1063_5_0147144 crossref_primary_10_1002_adom_202001469 crossref_primary_10_1021_acs_nanolett_1c03696 crossref_primary_10_3367_UFNr_2021_12_039120 crossref_primary_10_1021_acsphotonics_8b01365 crossref_primary_10_3788_LOP232221 crossref_primary_10_1515_nanoph_2023_0891 crossref_primary_10_3390_app12094207 crossref_primary_10_1515_nanoph_2020_0372 crossref_primary_10_3788_PI_2024_R01 crossref_primary_10_3390_photonics11111053 crossref_primary_10_1021_acsphotonics_8b01326 crossref_primary_10_3762_bjnano_14_45 crossref_primary_10_1002_adpr_202200207 crossref_primary_10_1039_D1NA00764E crossref_primary_10_1103_PhysRevB_106_045416 crossref_primary_10_1021_acsnano_4c02178 crossref_primary_10_1103_PhysRevB_102_125411 crossref_primary_10_1364_OE_532326 crossref_primary_10_1016_j_optlastec_2024_111176 crossref_primary_10_1021_acs_nanolett_3c01102 crossref_primary_10_1007_s00339_024_08139_6 crossref_primary_10_1021_acsphotonics_4c00600 crossref_primary_10_1515_nanoph_2020_0039 crossref_primary_10_1515_nanoph_2020_0158 crossref_primary_10_1038_s41467_022_35246_w crossref_primary_10_1088_1361_6463_acadec crossref_primary_10_1364_OL_445411 crossref_primary_10_1016_j_solmat_2022_111864 crossref_primary_10_1002_adfm_202309982 crossref_primary_10_1038_s41377_024_01548_5 crossref_primary_10_1515_nanoph_2024_0367 crossref_primary_10_1103_PhysRevLett_127_176101 crossref_primary_10_1364_JOSAA_469733 crossref_primary_10_1021_acsphotonics_0c01696 crossref_primary_10_1364_OE_373221 crossref_primary_10_3390_nano12152687 crossref_primary_10_1021_acsphotonics_4c00938 crossref_primary_10_3390_nano12010054 crossref_primary_10_1103_PhysRevApplied_11_024025 crossref_primary_10_1364_OE_421529 crossref_primary_10_1016_j_optmat_2023_113693 crossref_primary_10_1088_1361_6633_ac2aaf crossref_primary_10_1016_j_jallcom_2022_167232 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1021_acsphotonics_1c00937 crossref_primary_10_1063_5_0204694 crossref_primary_10_1016_j_fmre_2022_05_020 crossref_primary_10_1002_lpor_202200658 crossref_primary_10_1021_acs_nanolett_3c03786 crossref_primary_10_1038_s41467_024_53433_9 crossref_primary_10_1088_1367_2630_ab4f54 crossref_primary_10_1364_OE_28_001426 crossref_primary_10_1021_acsphotonics_0c00179 crossref_primary_10_1364_OL_398551 crossref_primary_10_1021_acs_nanolett_0c01646 crossref_primary_10_1103_PhysRevApplied_13_064032 crossref_primary_10_1021_acsnano_1c02204 crossref_primary_10_1103_PhysRevLett_129_133901 crossref_primary_10_1021_acs_jpcc_9b09430 crossref_primary_10_1002_smll_201906086 crossref_primary_10_1002_adom_202002001 crossref_primary_10_1002_adfm_202307660 crossref_primary_10_1002_adom_202001148 crossref_primary_10_1088_1402_4896_ad5ca2 crossref_primary_10_1364_OE_479755 crossref_primary_10_1016_j_optcom_2022_128904 crossref_primary_10_1002_lpor_202200303 crossref_primary_10_1515_nanoph_2020_0343 crossref_primary_10_1021_acsphotonics_2c01461 crossref_primary_10_1021_acs_nanolett_0c03818 crossref_primary_10_1515_nanoph_2023_0887 crossref_primary_10_1515_nanoph_2020_0346 crossref_primary_10_1364_OL_511314 crossref_primary_10_1021_acs_nanolett_0c01752 crossref_primary_10_1038_s41565_024_01780_5 crossref_primary_10_1186_s11671_021_03607_x crossref_primary_10_1088_1361_6463_ac055a crossref_primary_10_1080_09500340_2022_2073392 crossref_primary_10_1038_s41566_020_0641_x crossref_primary_10_1364_OE_509673 crossref_primary_10_1103_PhysRevLett_134_013805 crossref_primary_10_1002_adom_201801813 crossref_primary_10_1364_OME_484614 crossref_primary_10_1103_PhysRevB_109_035406 crossref_primary_10_1364_OL_413764 crossref_primary_10_1016_j_optcom_2020_126264 crossref_primary_10_1002_lpor_202301068 crossref_primary_10_1038_s41586_023_06789_9 crossref_primary_10_1002_lpor_202200564 crossref_primary_10_1016_j_cap_2024_06_001 crossref_primary_10_1063_5_0092758 crossref_primary_10_1021_acsphotonics_9b01719 crossref_primary_10_3389_fphy_2022_862962 crossref_primary_10_1002_adom_202200301 crossref_primary_10_1103_PhysRevB_108_115426 crossref_primary_10_1038_s42005_020_00453_8 crossref_primary_10_1088_1361_6463_acdf6a crossref_primary_10_1103_PhysRevA_110_033521 crossref_primary_10_1364_OE_532622 crossref_primary_10_1364_OL_452480 crossref_primary_10_1364_OSAC_425189 crossref_primary_10_1002_adfm_202314953 crossref_primary_10_2139_ssrn_3943843 crossref_primary_10_1007_s11141_021_10110_x crossref_primary_10_1021_acs_nanolett_8b03870 crossref_primary_10_1103_PhysRevResearch_5_043053 crossref_primary_10_1088_1361_6528_abdceb crossref_primary_10_1088_1367_2630_abde6c crossref_primary_10_1364_AO_405209 crossref_primary_10_1016_j_optcom_2024_131265 crossref_primary_10_1364_OE_420001 crossref_primary_10_1103_PhysRevLett_132_046601 crossref_primary_10_1021_acs_nanolett_3c02148 crossref_primary_10_1002_lpor_202200860 crossref_primary_10_1002_advs_202303929 crossref_primary_10_1109_JPROC_2020_2985048 crossref_primary_10_1002_adma_202007236 crossref_primary_10_1364_PRJ_417296 crossref_primary_10_1021_accountsmr_3c00138 crossref_primary_10_1016_j_optcom_2024_131255 crossref_primary_10_1021_acsnano_3c09798 crossref_primary_10_1021_acsnano_3c09793 crossref_primary_10_1002_adom_202200753 crossref_primary_10_1021_acsami_2c18629 crossref_primary_10_1021_acsphotonics_0c00078 crossref_primary_10_1126_sciadv_adf3470 crossref_primary_10_1103_PhysRevLett_122_153907 crossref_primary_10_1021_acsnano_0c01468 crossref_primary_10_1002_adpr_202000139 crossref_primary_10_1103_PhysRevLett_125_053902 crossref_primary_10_1002_adom_202301130 crossref_primary_10_1103_PhysRevApplied_15_044024 crossref_primary_10_1103_PhysRevB_104_125446 crossref_primary_10_1016_j_apsusc_2021_151723 crossref_primary_10_1002_adpr_202200100 crossref_primary_10_1038_s41467_020_18793_y crossref_primary_10_1103_PhysRevLett_123_253901 crossref_primary_10_1103_PhysRevLett_126_117402 crossref_primary_10_1364_AOP_495828 crossref_primary_10_1364_PRJ_417150 crossref_primary_10_1109_ACCESS_2024_3481313 crossref_primary_10_3390_photonics7020024 crossref_primary_10_1021_acs_nanolett_4c04217 crossref_primary_10_1002_adom_202001895 crossref_primary_10_1016_j_nuclphysa_2022_122397 crossref_primary_10_1002_adom_201901830 crossref_primary_10_1039_D2MA00910B crossref_primary_10_1515_nanoph_2024_0117 crossref_primary_10_1038_s41586_024_07674_9 crossref_primary_10_1126_science_aba4597 crossref_primary_10_1515_nanoph_2020_0285 crossref_primary_10_1016_j_photonics_2022_101022 crossref_primary_10_1021_acsnano_3c08270 crossref_primary_10_1007_s40766_021_00015_w crossref_primary_10_1088_1674_1056_ac8ce5 crossref_primary_10_1364_OL_447933 crossref_primary_10_1126_science_adm7442 crossref_primary_10_1021_acsnano_0c02730 crossref_primary_10_1021_acsnano_3c10471 crossref_primary_10_1515_nanoph_2019_0341 crossref_primary_10_1039_D1CC01084K crossref_primary_10_1038_s41566_022_01126_4 crossref_primary_10_1038_s41563_023_01531_2 crossref_primary_10_1063_5_0033056 crossref_primary_10_1021_acsphotonics_2c01066 crossref_primary_10_1117_1_JNP_18_046007 crossref_primary_10_1021_acsnano_1c00673 crossref_primary_10_1038_s41467_022_31877_1 crossref_primary_10_1038_s41566_021_00922_8 crossref_primary_10_1515_nanoph_2019_0110 crossref_primary_10_1364_OL_537421 crossref_primary_10_3390_nano11040998 crossref_primary_10_1088_1367_2630_ab97e9 crossref_primary_10_1364_OE_549375 crossref_primary_10_1002_lpor_202301339 crossref_primary_10_1088_1361_6463_ad933c crossref_primary_10_1088_1402_4896_ad497d crossref_primary_10_1364_PRJ_462474 crossref_primary_10_1021_acs_nanolett_4c03392 crossref_primary_10_2139_ssrn_4089581 crossref_primary_10_1126_sciadv_adf6649 crossref_primary_10_1002_smll_202102596 crossref_primary_10_3788_CJL241053 crossref_primary_10_1002_adma_202405978 crossref_primary_10_1021_acsnano_2c04628 crossref_primary_10_1109_TAP_2019_2938661 crossref_primary_10_1007_s11433_023_2207_9 crossref_primary_10_1080_09500340_2024_2442656 crossref_primary_10_1016_j_jqsrt_2022_108348 crossref_primary_10_1364_OL_533967 crossref_primary_10_1021_acsphotonics_9b01678 crossref_primary_10_3390_nano13162350 crossref_primary_10_1364_AO_471587 crossref_primary_10_1002_adma_202207317 crossref_primary_10_1364_OL_484472 crossref_primary_10_1364_OE_402887 crossref_primary_10_1515_nanoph_2021_0412 crossref_primary_10_1002_advs_202100139 crossref_primary_10_37188_lam_2024_005 crossref_primary_10_1364_OL_395625 crossref_primary_10_3390_photonics9110852 crossref_primary_10_1021_acs_nanolett_4c01797 crossref_primary_10_1088_1367_2630_ac55b2 crossref_primary_10_1088_2040_8986_ac4a21 crossref_primary_10_1088_1402_4896_adb524 crossref_primary_10_1021_acs_nanolett_0c04314 crossref_primary_10_1016_j_optcom_2023_129856 crossref_primary_10_1016_j_eng_2024_12_022 crossref_primary_10_1016_j_optmat_2024_115688 crossref_primary_10_1038_s41565_019_0584_x crossref_primary_10_1002_adom_202202305 crossref_primary_10_1103_PhysRevApplied_20_044075 crossref_primary_10_1088_1361_6463_acb55d crossref_primary_10_1038_s41598_019_52223_4 crossref_primary_10_1038_s41467_024_53952_5 crossref_primary_10_1038_s41467_024_46544_w crossref_primary_10_1002_smll_202411827 crossref_primary_10_1103_PhysRevB_101_155303 crossref_primary_10_1038_s41467_021_24502_0 crossref_primary_10_3390_mi11040449 crossref_primary_10_1364_OME_463585 crossref_primary_10_1038_s41377_022_00923_4 crossref_primary_10_1063_1_5132613 crossref_primary_10_1103_PhysRevApplied_14_044009 crossref_primary_10_1103_PhysRevB_108_205425 crossref_primary_10_1063_5_0067937 crossref_primary_10_1016_j_optlastec_2024_110776 crossref_primary_10_1088_2040_8986_abc1fb crossref_primary_10_1038_s41377_023_01295_z crossref_primary_10_1021_acs_nanolett_0c04660 crossref_primary_10_1109_JSTQE_2019_2902915 crossref_primary_10_1002_lpor_201900235 crossref_primary_10_1021_acs_nanolett_4c05817 crossref_primary_10_1103_PhysRevApplied_16_024059 crossref_primary_10_1016_j_scib_2018_12_003 crossref_primary_10_1021_acs_nanolett_3c05038 crossref_primary_10_1515_nanoph_2021_0640 crossref_primary_10_1002_adom_202202403 crossref_primary_10_1021_acsphotonics_4c02332 crossref_primary_10_3788_AOS230902 crossref_primary_10_1002_adom_202300909 crossref_primary_10_1063_1_5107449 crossref_primary_10_1515_nanoph_2024_0630 crossref_primary_10_1103_PhysRevLett_132_173802 crossref_primary_10_1002_adpr_202400116 crossref_primary_10_1364_OE_428602 crossref_primary_10_1002_lpor_202000242 crossref_primary_10_1021_acsphotonics_0c00858 crossref_primary_10_1016_j_wavemoti_2024_103348 crossref_primary_10_1021_acsphotonics_2c00901 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1002_adom_202303186 crossref_primary_10_1364_OE_27_022363 crossref_primary_10_1021_acsphotonics_4c02323 crossref_primary_10_1080_09500340_2021_1943554 crossref_primary_10_1016_j_optlastec_2021_107762 crossref_primary_10_1063_5_0189595 crossref_primary_10_1007_s11082_022_03991_3 crossref_primary_10_1002_adma_202003804 crossref_primary_10_1103_PhysRevA_108_013522 crossref_primary_10_34133_ultrafastscience_0033 crossref_primary_10_1038_s41467_022_34307_4 crossref_primary_10_1088_1367_2630_ac20e9 crossref_primary_10_1021_acs_nanolett_3c00727 crossref_primary_10_1063_1_5108641 crossref_primary_10_1039_D1RA07858E crossref_primary_10_1002_lpor_202300550 crossref_primary_10_1038_s41565_020_0754_x crossref_primary_10_1364_PRJ_427094 crossref_primary_10_1088_2515_7647_abc60e crossref_primary_10_1038_s41377_021_00707_2 crossref_primary_10_1002_adom_201801271 crossref_primary_10_1038_s41467_021_21196_2 crossref_primary_10_1002_adma_202300344 crossref_primary_10_1016_j_carbon_2021_06_037 crossref_primary_10_1002_lpor_202100118 crossref_primary_10_1038_s41467_023_39227_5 crossref_primary_10_1021_acs_nanolett_4c04511 crossref_primary_10_1088_2399_6528_ac0d48 crossref_primary_10_1364_OE_385088 crossref_primary_10_1002_lpor_202000263 crossref_primary_10_1038_s41467_024_54775_0 crossref_primary_10_1002_adma_202102232 crossref_primary_10_1109_JPROC_2019_2943183 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1088_1361_6463_ad35d2 crossref_primary_10_1016_j_isci_2025_112147 crossref_primary_10_1021_acsnano_1c07114 crossref_primary_10_1515_nanoph_2022_0427 crossref_primary_10_1103_PhysRevLett_129_173901 crossref_primary_10_3390_nano12132252 crossref_primary_10_1002_lpor_201900430 crossref_primary_10_1515_nanoph_2022_0781 crossref_primary_10_1021_acsphotonics_0c00723 crossref_primary_10_1021_acs_nanolett_1c01975 crossref_primary_10_1515_nanoph_2023_0195 crossref_primary_10_1515_nanoph_2021_0326 crossref_primary_10_1364_OE_487611 crossref_primary_10_1103_PhysRevApplied_20_044015 crossref_primary_10_1002_adom_202102679 crossref_primary_10_3390_photonics8110470 crossref_primary_10_1038_s44310_024_00018_5 crossref_primary_10_1002_lpor_202100574 crossref_primary_10_1002_adma_202310294 crossref_primary_10_1103_PhysRevB_100_115303 crossref_primary_10_1021_acsnano_2c05680 crossref_primary_10_1364_OPTICA_531864 crossref_primary_10_1021_acs_nanolett_1c02751 crossref_primary_10_1364_AOP_426047 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1038_s41467_025_57738_1 crossref_primary_10_1016_j_rinp_2024_107767 crossref_primary_10_1002_apxr_202400083 crossref_primary_10_1002_lpor_202100206 crossref_primary_10_1515_nanoph_2020_0654 crossref_primary_10_1364_OE_486873 crossref_primary_10_1515_nanoph_2020_0539 crossref_primary_10_1088_2040_8986_ac868d crossref_primary_10_1038_s42005_024_01777_5 crossref_primary_10_1103_PhysRevB_106_115434 crossref_primary_10_1021_acsphotonics_1c00968 crossref_primary_10_1109_JSTQE_2023_3241657 crossref_primary_10_1021_acsphotonics_2c01926 crossref_primary_10_1515_nanoph_2021_0265 crossref_primary_10_1515_nanoph_2021_0387 crossref_primary_10_1002_adom_202203118 crossref_primary_10_1364_OE_414011 crossref_primary_10_1103_PhysRevLett_125_013903 crossref_primary_10_1515_nanoph_2023_0373 crossref_primary_10_1021_acsphotonics_4c00319 crossref_primary_10_1063_5_0157430 crossref_primary_10_3103_S1541308X22040045 crossref_primary_10_1021_acs_nanolett_3c00772 crossref_primary_10_1515_nanoph_2021_0475 crossref_primary_10_1515_nanoph_2023_0281 crossref_primary_10_1038_s41565_018_0320_y crossref_primary_10_1002_adpr_202400060 crossref_primary_10_1103_PhysRevB_109_165439 crossref_primary_10_1126_sciadv_adn2723 crossref_primary_10_1515_nanoph_2023_0166 crossref_primary_10_1021_acsphotonics_3c00457 crossref_primary_10_1038_s41377_023_01130_5 crossref_primary_10_1038_s41467_022_30503_4 crossref_primary_10_1021_acsphotonics_1c01840 crossref_primary_10_1016_j_optlastec_2024_111103 crossref_primary_10_1002_lpor_202100661 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1038_s41467_024_54262_6 crossref_primary_10_1021_acsphotonics_2c00618 crossref_primary_10_1038_s42005_022_00884_5 crossref_primary_10_1038_s41566_021_00860_5 crossref_primary_10_1038_s41566_020_0658_1 crossref_primary_10_1515_nanoph_2023_0030 crossref_primary_10_1515_nanoph_2021_0368 crossref_primary_10_1038_s41598_024_79094_8 crossref_primary_10_1021_acsami_1c11995 crossref_primary_10_1515_nanoph_2023_0105 crossref_primary_10_1002_adom_202101308 crossref_primary_10_1002_adom_202002192 crossref_primary_10_1038_s42254_023_00642_8 crossref_primary_10_1002_adom_201801786 crossref_primary_10_1021_acsphotonics_1c01511 crossref_primary_10_1364_OE_427355 crossref_primary_10_1021_acsphotonics_2c01842 crossref_primary_10_1364_PRJ_7_001296 crossref_primary_10_1103_PhysRevLett_121_253901 crossref_primary_10_1364_OE_415377 crossref_primary_10_1364_OE_543279 crossref_primary_10_1103_PhysRevB_108_155416 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1038_s41467_024_46272_1 crossref_primary_10_1109_JPHOT_2024_3397706 crossref_primary_10_1021_acs_nanolett_0c02571 crossref_primary_10_1364_OPTICA_6_000996 crossref_primary_10_1021_acsphotonics_0c01319 crossref_primary_10_1021_acs_nanolett_2c04936 crossref_primary_10_1016_j_optcom_2020_126446 crossref_primary_10_29026_oea_2024_230148 crossref_primary_10_1002_adom_202100112 crossref_primary_10_1021_acsphotonics_4c01744 crossref_primary_10_1103_PhysRevB_110_035428 crossref_primary_10_1515_nanoph_2023_0369 crossref_primary_10_1364_PRJ_456260 crossref_primary_10_1103_PhysRevLett_122_014301 crossref_primary_10_1002_qute_201900126 crossref_primary_10_1021_acsphotonics_1c01416 crossref_primary_10_1021_acs_jpcc_0c02592 crossref_primary_10_1002_asia_201901447 crossref_primary_10_1103_PhysRevA_100_063803 crossref_primary_10_1002_adpr_202100280 crossref_primary_10_1364_OE_463790 crossref_primary_10_1063_5_0019353 crossref_primary_10_1002_solr_202100721 crossref_primary_10_1364_OE_462221 crossref_primary_10_1364_PRJ_470657 crossref_primary_10_1103_PhysRevLett_122_187402 crossref_primary_10_1007_s00340_020_07471_y crossref_primary_10_1103_PhysRevLett_121_193903 crossref_primary_10_1103_PhysRevLett_133_086901 crossref_primary_10_1364_OE_514969 crossref_primary_10_1021_acs_nanolett_1c01570 crossref_primary_10_1038_s41467_023_44164_4 crossref_primary_10_1364_AOP_11_000892 crossref_primary_10_1002_adom_202400296 crossref_primary_10_1038_s41377_022_00971_w crossref_primary_10_1186_s43074_021_00029_x crossref_primary_10_1103_PhysRevB_109_235431 crossref_primary_10_1109_JPHOT_2020_3042818 |
Cites_doi | 10.1038/lsa.2014.82 10.1038/nphoton.2017.39 10.1364/OE.25.014134 10.1021/acs.nanolett.6b01958 10.1126/science.aaf6644 10.1002/adom.201600240 10.1021/acs.nanolett.7b02952 10.1021/acs.nanolett.6b02076 10.1021/nl301391h 10.1039/C5NR07965A 10.1038/srep33394 10.1038/ncomms2167 10.1021/acs.nanolett.5b01752 10.1038/natrevmats.2016.48 10.1103/PhysRevLett.119.243901 10.1038/ncomms10362 10.1126/science.1253213 10.1021/nl4005018 10.1021/acs.nanolett.5b02926 10.1038/nature12289 10.1021/acsphotonics.6b00860 10.1021/acs.nanolett.8b00368 10.1364/OPTICA.3.001260 10.1063/1.5007007 10.1063/1.4990753 10.1103/PhysRevLett.107.183901 10.1038/ncomms15535 10.1038/ncomms2538 10.1126/science.aag2472 10.1002/lpor.201500041 10.1038/ncomms8915 10.1038/441946a 10.1038/ncomms8069 10.1038/srep00492 10.1038/nnano.2015.186 10.1021/ph500379p 10.1126/science.1061738 10.1021/nl503029j 10.1063/1.124361 10.1021/acs.nanolett.6b03525 10.1016/B978-012544415-6/50003-0 10.1038/srep30613 10.1038/nphoton.2014.75 10.1021/nl301594s 10.1038/nature20799 10.1021/acsphotonics.7b01533 10.1021/acs.nanolett.6b01816 10.1103/PhysRevLett.113.257401 10.1021/acsphotonics.7b01343 10.1002/0470068329 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Nov 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Nov 2018 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0245-5 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 1047 |
ExternalDocumentID | 30127475 10_1038_s41565_018_0245_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c438t-22699711407344a6cda090232371da46f6d389035c99e33a63f0e7f87dbd23363 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Tue Aug 05 10:52:21 EDT 2025 Fri Jul 25 08:56:18 EDT 2025 Mon Jul 21 05:58:31 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-22699711407344a6cda090232371da46f6d389035c99e33a63f0e7f87dbd23363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7836-681X 0000-0002-0488-921X |
PMID | 30127475 |
PQID | 2130053063 |
PQPubID | 546299 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2091241832 proquest_journals_2130053063 pubmed_primary_30127475 crossref_citationtrail_10_1038_s41565_018_0245_5 crossref_primary_10_1038_s41565_018_0245_5 springer_journals_10_1038_s41565_018_0245_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Caldarola (CR27) 2015; 6 Komar (CR9) 2018; 5 Camacho-Morales (CR17) 2016; 16 Liu (CR16) 2016; 16 Bulgakov, Maksimov (CR34) 2017; 25 Hirose (CR41) 2014; 8 Kuznetsov, Miroshnichenko, Fu, Zhang, Luk’yanchuk (CR3) 2012; 2 Chow, Jahnke, Gies (CR50) 2014; 3 Miyai (CR43) 2006; 441 CR38 Imada (CR39) 1999; 75 Arbabi, Horie, Ball, Bagheri, Faraon (CR12) 2015; 6 Zhao (CR22) 2016; 6 Shalaev (CR6) 2015; 15 Khaidarov (CR8) 2017; 17 Totero Gongora, Miroshnichenko, Kivshar, Fratalocchi (CR30) 2017; 8 Chong (CR7) 2015; 15 Fu, Kuznetsov, Miroshnichenko, Yu, Luk’yanchuk (CR20) 2013; 4 Staude (CR26) 2015; 2 Pan, Gu, Amili, Vallini, Fainman (CR51) 2016; 3 Rybin (CR36) 2017; 119 Sadrieva (CR37) 2017; 4 CR45 Yu (CR5) 2015; 9 Löchner (CR48) 2018; 5 Grinblat, Li, Nielsen, Oulton, Maier (CR18) 2016; 16 Kodigala (CR42) 2017; 541 Paniagua-Dominguez (CR25) 2016; 7 Paniagua-Dominguez (CR14) 2018; 18 Hsu (CR32) 2013; 499 Greffin (CR19) 2012; 3 Shcherbakov (CR15) 2014; 14 Zhen, Hsu, Lu, Stone, Soljacic (CR44) 2014; 113 Lin, Fan, Hasman, Brongersma (CR11) 2014; 345 Chang (CR49) 2012; 12 Noda, Yokoyama, Imada, Chutinan, Mochizuki (CR40) 2001; 293 Staude, Schilling (CR2) 2017; 11 Taghizadeh, Chung (CR52) 2017; 111 Liu, Keeler, Reno, Sinclair, Brener (CR47) 2016; 4 Chong (CR23) 2016; 3 Arbabi, Horie, Bagheri, Faraon (CR24) 2015; 10 Kuznetsov, Miroshnichenko, Brongersma, Kivshar, Luk’yanchuk (CR1) 2016; 354 Dmitriev (CR29) 2016; 8 Regmi (CR28) 2016; 16 Palik (CR46) 1997 Hsu, Zhen, Stone, Joannopoulos, Soljacic (CR33) 2016; 1 Emani (CR10) 2017; 111 Plotnik (CR31) 2011; 107 Evlyukhin (CR4) 2012; 12 Person (CR21) 2013; 13 Khorasaninejad (CR13) 2016; 352 Rivera (CR35) 2016; 6 S Person (245_CR21) 2013; 13 AI Kuznetsov (245_CR3) 2012; 2 JS Totero Gongora (245_CR30) 2017; 8 M Imada (245_CR39) 1999; 75 AB Evlyukhin (245_CR4) 2012; 12 Edward D. Palik (245_CR46) 1997 N Rivera (245_CR35) 2016; 6 S Liu (245_CR16) 2016; 16 R Camacho-Morales (245_CR17) 2016; 16 KE Chong (245_CR23) 2016; 3 R Regmi (245_CR28) 2016; 16 CW Hsu (245_CR32) 2013; 499 AI Kuznetsov (245_CR1) 2016; 354 R Paniagua-Dominguez (245_CR25) 2016; 7 CW Hsu (245_CR33) 2016; 1 S Noda (245_CR40) 2001; 293 E Miyai (245_CR43) 2006; 441 245_CR38 I Staude (245_CR26) 2015; 2 M Khorasaninejad (245_CR13) 2016; 352 NK Emani (245_CR10) 2017; 111 G Grinblat (245_CR18) 2016; 16 YH Fu (245_CR20) 2013; 4 A Kodigala (245_CR42) 2017; 541 YF Yu (245_CR5) 2015; 9 A Komar (245_CR9) 2018; 5 S Liu (245_CR47) 2016; 4 245_CR45 K Hirose (245_CR41) 2014; 8 R Paniagua-Dominguez (245_CR14) 2018; 18 I Staude (245_CR2) 2017; 11 JM Greffin (245_CR19) 2012; 3 MR Shcherbakov (245_CR15) 2014; 14 MV Rybin (245_CR36) 2017; 119 A Arbabi (245_CR24) 2015; 10 CC Chang (245_CR49) 2012; 12 PA Dmitriev (245_CR29) 2016; 8 M Caldarola (245_CR27) 2015; 6 KE Chong (245_CR7) 2015; 15 E Khaidarov (245_CR8) 2017; 17 A Taghizadeh (245_CR52) 2017; 111 B Zhen (245_CR44) 2014; 113 MI Shalaev (245_CR6) 2015; 15 WW Chow (245_CR50) 2014; 3 F Löchner (245_CR48) 2018; 5 ZF Sadrieva (245_CR37) 2017; 4 D Lin (245_CR11) 2014; 345 W Zhao (245_CR22) 2016; 6 Y Plotnik (245_CR31) 2011; 107 SH Pan (245_CR51) 2016; 3 A Arbabi (245_CR12) 2015; 6 EN Bulgakov (245_CR34) 2017; 25 |
References_xml | – ident: CR45 – volume: 3 start-page: e201 year: 2014 ident: CR50 article-title: Emission properties of nanolasers during the transition to lasing publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.82 – volume: 11 start-page: 274 year: 2017 end-page: 284 ident: CR2 article-title: Metamaterial-inspired silicon nanophotonics publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.39 – volume: 25 start-page: 14134 year: 2017 end-page: 14147 ident: CR34 article-title: Light enhancement by quasi-bound states in the continuum in dielectric arrays publication-title: Opt. Express doi: 10.1364/OE.25.014134 – volume: 16 start-page: 4635 year: 2016 end-page: 4640 ident: CR18 article-title: Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01958 – volume: 352 start-page: 1190 year: 2016 end-page: 1194 ident: CR13 article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging publication-title: Science doi: 10.1126/science.aaf6644 – volume: 4 start-page: 1457 year: 2016 end-page: 1462 ident: CR47 article-title: III–V semiconductor nanoresonators—a new strategy for passive, active, and nonlinear all-dielectric metamaterials publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600240 – volume: 17 start-page: 6267 year: 2017 end-page: 6272 ident: CR8 article-title: Asymmetric nanoantennas for ultrahigh angle broadband visible light bending publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02952 – volume: 16 start-page: 5143 year: 2016 end-page: 5151 ident: CR28 article-title: All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02076 – volume: 12 start-page: 4484 year: 2012 end-page: 4489 ident: CR49 article-title: Electrical and optical characterization of surface passivation in GaAs nanowires publication-title: Nano Lett. doi: 10.1021/nl301391h – volume: 8 start-page: 9721 year: 2016 end-page: 9726 ident: CR29 article-title: Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response publication-title: Nanoscale doi: 10.1039/C5NR07965A – volume: 6 year: 2016 ident: CR35 article-title: Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum publication-title: Sci. Rep. doi: 10.1038/srep33394 – volume: 3 year: 2012 ident: CR19 article-title: Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere publication-title: Nat. Commun. doi: 10.1038/ncomms2167 – volume: 15 start-page: 5369 year: 2015 end-page: 5374 ident: CR7 article-title: Polarization-independent silicon metadevices for efficient optical wavefront control publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01752 – volume: 1 start-page: 16048 year: 2016 ident: CR33 article-title: Bound states in the continuum publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.48 – volume: 119 start-page: 243901 year: 2017 ident: CR36 article-title: High-Q supercavity modes in subwavelength dielectric resonators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.243901 – volume: 7 year: 2016 ident: CR25 article-title: Generalized Brewster effect in dielectric metasurfaces publication-title: Nat. Commun. doi: 10.1038/ncomms10362 – volume: 345 start-page: 298 year: 2014 end-page: 302 ident: CR11 article-title: Dielectric gradient metasurface optical elements publication-title: Science doi: 10.1126/science.1253213 – volume: 13 start-page: 1806 year: 2013 end-page: 1809 ident: CR21 article-title: Demonstration of zero optical backscattering from single nanoparticles publication-title: Nano Lett. doi: 10.1021/nl4005018 – volume: 3 start-page: 514 year: 2016 end-page: 519 ident: CR23 article-title: Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms publication-title: ASC Photonics – volume: 15 start-page: 6261 year: 2015 end-page: 6266 ident: CR6 article-title: High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02926 – volume: 499 start-page: 188 year: 2013 end-page: 191 ident: CR32 article-title: Observation of trapped light within the radiation continuum publication-title: Nature doi: 10.1038/nature12289 – volume: 4 start-page: 723 year: 2017 end-page: 727 ident: CR37 article-title: Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00860 – volume: 18 start-page: 2124 year: 2018 end-page: 2132 ident: CR14 article-title: A metalens with a near-unity numerical aperture publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00368 – volume: 3 start-page: 1260 year: 2016 end-page: 1265 ident: CR51 article-title: Dynamic hysteresis in a coherent high-β nanolaser publication-title: Optica doi: 10.1364/OPTICA.3.001260 – volume: 111 start-page: 221101 year: 2017 ident: CR10 article-title: High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths publication-title: Appl. Phys. Lett. doi: 10.1063/1.5007007 – volume: 111 start-page: 031114 year: 2017 ident: CR52 article-title: Quasi bound states in the continuum with few unit cells of photonic crystal slab publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990753 – volume: 107 start-page: 183901 year: 2011 ident: CR31 article-title: Experimental observation of optical bound states in the continuum publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.183901 – volume: 8 year: 2017 ident: CR30 article-title: Anapole nanolasers for mode-locking and ultrafast pulse generation publication-title: Nat. Commun. doi: 10.1038/ncomms15535 – volume: 4 year: 2013 ident: CR20 article-title: Directional visible light scattering by silicon nanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms2538 – volume: 354 start-page: aag2472 year: 2016 ident: CR1 article-title: Optically resonant dielectric nanostructures publication-title: Science doi: 10.1126/science.aag2472 – volume: 9 start-page: 412 year: 2015 end-page: 418 ident: CR5 article-title: High‐transmission dielectric metasurface with 2π phase control at visible wavelengths publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201500041 – volume: 6 year: 2015 ident: CR27 article-title: Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion publication-title: Nat. Commun. doi: 10.1038/ncomms8915 – volume: 441 start-page: 946 year: 2006 ident: CR43 article-title: Photonics: lasers producing tailored beams publication-title: Nature doi: 10.1038/441946a – volume: 6 year: 2015 ident: CR12 article-title: Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays publication-title: Nat. Commun. doi: 10.1038/ncomms8069 – volume: 2 year: 2012 ident: CR3 article-title: Magnetic light publication-title: Sci. Rep. doi: 10.1038/srep00492 – volume: 10 start-page: 937 year: 2015 end-page: 943 ident: CR24 article-title: Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.186 – volume: 2 start-page: 172 year: 2015 end-page: 177 ident: CR26 article-title: Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles publication-title: ACS Photonics doi: 10.1021/ph500379p – volume: 293 start-page: 1123 year: 2001 end-page: 1125 ident: CR40 article-title: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design publication-title: Science doi: 10.1126/science.1061738 – volume: 14 start-page: 6488 year: 2014 end-page: 6492 ident: CR15 article-title: Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response publication-title: Nano Lett. doi: 10.1021/nl503029j – volume: 75 start-page: 316 year: 1999 end-page: 318 ident: CR39 article-title: Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure publication-title: App. Phys. Lett. doi: 10.1063/1.124361 – volume: 16 start-page: 7191 year: 2016 end-page: 7197 ident: CR17 article-title: Nonlinear generation of vector beams from AlGaAs nanoantennas publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b03525 – start-page: xvii year: 1997 end-page: xviii ident: CR46 article-title: Preface publication-title: Handbook of Optical Constants of Solids doi: 10.1016/B978-012544415-6/50003-0 – volume: 6 year: 2016 ident: CR22 article-title: Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode publication-title: Sci. Rep. doi: 10.1038/srep30613 – ident: CR38 – volume: 8 start-page: 406 year: 2014 end-page: 411 ident: CR41 article-title: Watt-class high-power, high-beam-quality photonic-crystal lasers publication-title: Nat. Photon doi: 10.1038/nphoton.2014.75 – volume: 12 start-page: 3749 year: 2012 end-page: 3755 ident: CR4 article-title: Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region publication-title: Nano Lett. doi: 10.1021/nl301594s – volume: 541 start-page: 196 year: 2017 end-page: 199 ident: CR42 article-title: Lasing action from photonic bound states in continuum publication-title: Nature doi: 10.1038/nature20799 – volume: 5 start-page: 1786 year: 2018 end-page: 1793 ident: CR48 article-title: Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01533 – volume: 16 start-page: 5426 year: 2016 end-page: 5432 ident: CR16 article-title: Resonantly enhanced second-harmonic generation using III−V semiconductor all-dielectric metasurfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01816 – volume: 113 start-page: 257401 year: 2014 ident: CR44 article-title: Topological nature of optical bound states in the continuum publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.257401 – volume: 5 start-page: 1742 year: 2018 end-page: 1748 ident: CR9 article-title: Dynamic beam switching by liquid crystal tunable dielectric metasurfaces publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01343 – volume: 345 start-page: 298 year: 2014 ident: 245_CR11 publication-title: Science doi: 10.1126/science.1253213 – volume: 119 start-page: 243901 year: 2017 ident: 245_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.243901 – volume: 3 year: 2012 ident: 245_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms2167 – volume: 14 start-page: 6488 year: 2014 ident: 245_CR15 publication-title: Nano Lett. doi: 10.1021/nl503029j – volume: 18 start-page: 2124 year: 2018 ident: 245_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00368 – volume: 7 year: 2016 ident: 245_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms10362 – volume: 2 start-page: 172 year: 2015 ident: 245_CR26 publication-title: ACS Photonics doi: 10.1021/ph500379p – volume: 11 start-page: 274 year: 2017 ident: 245_CR2 publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.39 – volume: 6 year: 2016 ident: 245_CR35 publication-title: Sci. Rep. doi: 10.1038/srep33394 – volume: 111 start-page: 221101 year: 2017 ident: 245_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5007007 – volume: 352 start-page: 1190 year: 2016 ident: 245_CR13 publication-title: Science doi: 10.1126/science.aaf6644 – volume: 2 year: 2012 ident: 245_CR3 publication-title: Sci. Rep. doi: 10.1038/srep00492 – start-page: xvii volume-title: Handbook of Optical Constants of Solids year: 1997 ident: 245_CR46 doi: 10.1016/B978-012544415-6/50003-0 – volume: 3 start-page: 1260 year: 2016 ident: 245_CR51 publication-title: Optica doi: 10.1364/OPTICA.3.001260 – volume: 15 start-page: 6261 year: 2015 ident: 245_CR6 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02926 – volume: 113 start-page: 257401 year: 2014 ident: 245_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.257401 – volume: 107 start-page: 183901 year: 2011 ident: 245_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.183901 – volume: 8 year: 2017 ident: 245_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms15535 – ident: 245_CR45 doi: 10.1002/0470068329 – volume: 4 start-page: 723 year: 2017 ident: 245_CR37 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00860 – volume: 499 start-page: 188 year: 2013 ident: 245_CR32 publication-title: Nature doi: 10.1038/nature12289 – volume: 5 start-page: 1786 year: 2018 ident: 245_CR48 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01533 – volume: 4 year: 2013 ident: 245_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms2538 – ident: 245_CR38 – volume: 12 start-page: 4484 year: 2012 ident: 245_CR49 publication-title: Nano Lett. doi: 10.1021/nl301391h – volume: 16 start-page: 4635 year: 2016 ident: 245_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01958 – volume: 3 start-page: e201 year: 2014 ident: 245_CR50 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.82 – volume: 3 start-page: 514 year: 2016 ident: 245_CR23 publication-title: ASC Photonics – volume: 10 start-page: 937 year: 2015 ident: 245_CR24 publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.186 – volume: 13 start-page: 1806 year: 2013 ident: 245_CR21 publication-title: Nano Lett. doi: 10.1021/nl4005018 – volume: 17 start-page: 6267 year: 2017 ident: 245_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02952 – volume: 16 start-page: 5143 year: 2016 ident: 245_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02076 – volume: 6 year: 2015 ident: 245_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms8069 – volume: 354 start-page: aag2472 year: 2016 ident: 245_CR1 publication-title: Science doi: 10.1126/science.aag2472 – volume: 75 start-page: 316 year: 1999 ident: 245_CR39 publication-title: App. Phys. Lett. doi: 10.1063/1.124361 – volume: 25 start-page: 14134 year: 2017 ident: 245_CR34 publication-title: Opt. Express doi: 10.1364/OE.25.014134 – volume: 5 start-page: 1742 year: 2018 ident: 245_CR9 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01343 – volume: 293 start-page: 1123 year: 2001 ident: 245_CR40 publication-title: Science doi: 10.1126/science.1061738 – volume: 441 start-page: 946 year: 2006 ident: 245_CR43 publication-title: Nature doi: 10.1038/441946a – volume: 8 start-page: 9721 year: 2016 ident: 245_CR29 publication-title: Nanoscale doi: 10.1039/C5NR07965A – volume: 541 start-page: 196 year: 2017 ident: 245_CR42 publication-title: Nature doi: 10.1038/nature20799 – volume: 12 start-page: 3749 year: 2012 ident: 245_CR4 publication-title: Nano Lett. doi: 10.1021/nl301594s – volume: 16 start-page: 7191 year: 2016 ident: 245_CR17 publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b03525 – volume: 6 year: 2016 ident: 245_CR22 publication-title: Sci. Rep. doi: 10.1038/srep30613 – volume: 15 start-page: 5369 year: 2015 ident: 245_CR7 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01752 – volume: 1 start-page: 16048 year: 2016 ident: 245_CR33 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.48 – volume: 16 start-page: 5426 year: 2016 ident: 245_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01816 – volume: 8 start-page: 406 year: 2014 ident: 245_CR41 publication-title: Nat. Photon doi: 10.1038/nphoton.2014.75 – volume: 6 year: 2015 ident: 245_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms8915 – volume: 4 start-page: 1457 year: 2016 ident: 245_CR47 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600240 – volume: 9 start-page: 412 year: 2015 ident: 245_CR5 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201500041 – volume: 111 start-page: 031114 year: 2017 ident: 245_CR52 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990753 |
SSID | ssj0052924 |
Score | 2.6871686 |
Snippet | High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1042 |
SubjectTerms | 142/126 639/624/1020/1093 639/624/399/1015 639/624/400/1021 Arrays Arsenides Chemistry and Materials Science Dielectric strength Directivity Electric dipoles Gallium Gallium arsenide Lasing Magnetic resonance Materials Science Nanoantennas Nanoparticles Nanotechnology Nanotechnology and Microengineering Q factors Quantum dots Resonance |
Title | Directional lasing in resonant semiconductor nanoantenna arrays |
URI | https://link.springer.com/article/10.1038/s41565-018-0245-5 https://www.ncbi.nlm.nih.gov/pubmed/30127475 https://www.proquest.com/docview/2130053063 https://www.proquest.com/docview/2091241832 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuJQD6oPCUkBB6qmVRTZ-nxAgtqhSEUIg7S1y7KRCQs6yWQ78e2byWKgQXHJIHMeasSff-BvPAPxwISuqzBfMWWXRQalSZoIds8yG1Hpvy0rS4eS_F-r8RvyZymm_4db0YZWDTWwNdag97ZEfZsS7SAS4_Gh2z6hqFLGrfQmNFVij1GUU0qWnS4dLZrYraquFYeiK6YHV5OawIceFwtYMI_KRyf__S6_A5iuitP3_TD7BRg8ck-NO05_hQxm_wPqLdIJf4ai3XwSuEzoeGf8ltzFBh7qmcJekoUD4OlKG13qe4K2axBqjS9x87h6bTbiZnF2fnrO-QALzgpsFQ-hkrUaPBtepEE754CjMkmdcj4MTqlIB8UjKpbe25NwpXqWlrowORcg4V_wbrMY6ltuQmLG36Ik4UwgtZCiMDK4srJZKu7Gq_AjSQTy577OHUxGLu7xlsbnJO4nmKNGcJJrLEfxcvjLrUme813h3kHner6Imf9b5CA6Wj3H-E6nhYlk_YBsEPIhC0DCNYKvT1fJrnHh1obHzX4Pynjt_cyg77w_lO3zMaNq05xF3YXUxfyj3EJgsiv129uHVTH7vw9rJ2cXl1RNqod5P |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8uFDASXEBWs377gCoELFv6OLVSb8GxE4SEkrLZCvVP8RuZyWMLquit18Rxopnx-Jt84xmAVyGJohKx4MEbjwFKlXGX_JQLnzIfoy8rTYeTDw7N_Fh9OdEna_B7PAtDaZWjT-wcdWoi_SPfFsS7aAS4cuf0J6euUcSuji00erPYK89_YcjWvtv9iPp9LcTs09GHOR-6CvCopFtyxBveWwwD0LiVCiamQLmJUkg7TUGZyiTcxDOpo_ellMHIKitt5WwqkpDSSJz3BtxUUnpaUW72efT8Wvi-ia5VjmPoZ0cWVbrtlgIlSpNznMhOrv_dBy-B20vEbLffze7CnQGosve9Zd2DtbK-Dxt_lS98ADuDvyQwz-g4Zv2Nfa8ZBvANpdewlhLvm5oqyjYLhpcaUmNdBxYWi3DePoTjaxHdI1ivm7rcBOam0WPkE1yhrNKpcDqFsvBWGxumpooTyEbx5HGoVk5NM37kHWsuXd5LNEeJ5iTRXE_gzeqR075Ux1WDt0aZ58OqbfMLG5vAy9VtXG9EooS6bM5wDAIsRD3oCCfwuNfV6m2SeHxlcfK3o_IuJv_vpzy5-lNewK350cF-vr97uPcUbgsyoe4s5BasLxdn5TMERcvieWeJDL5et-n_AdDQFfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLy7UCBIcAFZm9hxbB9QhSirlkLFgUp7M46doEqVUzZbof61_rrO5LEFVfTWa-I40czn8XyZ8QzAGxd4WXNfMmcKgwSlTpkOJmPchNR4b6pa0uHkbwfF7mH-ZS7na3A-noWhtMrRJnaGOjSe_pFPOcVdJDq4YloPaRHfd2bbJ78ZdZCiSOvYTqOHyH519gfpW_thbwd1_Zbz2ecfn3bZ0GGA-VzoJUPfwxiFlACBnueu8MFRnqLgQmXB5UVdBNzQUyG9MZUQrhB1Wqlaq1AGLkQhcN5bcFsJmdEaU_MV2ZPc9A11Va4Z0kA1RlSFnrZEmihlTjMKfDL57554xdG9EqTt9r7Zfbg3OK3Jxx5lD2Ctig9h469Sho9ge7Cd5NgndDQz_kqOYoJkvqFUm6SlJPwmUnXZZpHgpYZUGqNL3GLhztrHcHgjonsC67GJ1SYkOvMGWZDTZa5yGUotg6tKo2ShXFbUfgLpKB7rh8rl1EDj2HYRdKFtL1GLErUkUSsn8G71yElftuO6wVujzO2wglt7ibcJvF7dxrVHARUXq-YUx6CzhR4QGsUJPO11tXqboJh-rnDy96PyLif_76c8u_5TXsEdBL39unew_xzuckJQdyxyC9aXi9PqBfpHy_JlB8QEft408i8A8RUaIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+lasing+in+resonant+semiconductor+nanoantenna+arrays&rft.jtitle=Nature+nanotechnology&rft.au=Ha%2C+Son+Tung&rft.au=Fu%2C+Yuan+Hsing&rft.au=Emani%2C+Naresh+Kumar&rft.au=Pan%2C+Zhenying&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=11&rft.spage=1042&rft.epage=1047&rft_id=info:doi/10.1038%2Fs41565-018-0245-5&rft.externalDocID=10_1038_s41565_018_0245_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |