Directional lasing in resonant semiconductor nanoantenna arrays

High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, w...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 13; no. 11; pp. 1042 - 1047
Main Authors Ha, Son Tung, Fu, Yuan Hsing, Emani, Naresh Kumar, Pan, Zhenying, Bakker, Reuben M., Paniagua-Domínguez, Ramón, Kuznetsov, Arseniy I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor ( Q  = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent. Active dielectric nanoantenna arrays exhibit low-threshold and high-quality-factor directional lasing achieved via a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars.
AbstractList High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor ( Q  = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent. Active dielectric nanoantenna arrays exhibit low-threshold and high-quality-factor directional lasing achieved via a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars.
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
Author Bakker, Reuben M.
Pan, Zhenying
Ha, Son Tung
Emani, Naresh Kumar
Fu, Yuan Hsing
Paniagua-Domínguez, Ramón
Kuznetsov, Arseniy I.
Author_xml – sequence: 1
  givenname: Son Tung
  surname: Ha
  fullname: Ha, Son Tung
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 2
  givenname: Yuan Hsing
  surname: Fu
  fullname: Fu, Yuan Hsing
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Microelectronics, Agency for Science, Technology and Research
– sequence: 3
  givenname: Naresh Kumar
  orcidid: 0000-0002-0488-921X
  surname: Emani
  fullname: Emani, Naresh Kumar
  organization: Data Storage Institute, Agency for Science, Technology and Research, Indian Institute of Technology
– sequence: 4
  givenname: Zhenying
  surname: Pan
  fullname: Pan, Zhenying
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 5
  givenname: Reuben M.
  surname: Bakker
  fullname: Bakker, Reuben M.
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 6
  givenname: Ramón
  orcidid: 0000-0001-7836-681X
  surname: Paniagua-Domínguez
  fullname: Paniagua-Domínguez, Ramón
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 7
  givenname: Arseniy I.
  surname: Kuznetsov
  fullname: Kuznetsov, Arseniy I.
  email: arseniy_kuznetsov@imre.a-star.edu.sg
  organization: Data Storage Institute, Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30127475$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEYhINU7If-AC-y4MXLapI3u9mcROonFLzoOaTZbEnZJjXZPfTfm9JWoaCnhOGZIZkZo4HzziB0SfAtwVDdRUaKssgxqXJMWZEXJ2hEOKtyAFEMfu4VH6JxjEuMCyooO0NDwIRyxosRun-0wejOeqfarFXRukVmXRZMTIrrsmhWVntX97rzIUuST6pxTmUqBLWJ5-i0UW00F_tzgj6fnz6mr_ns_eVt-jDLNYOqyyktheCEMMyBMVXqWmGBKVDgpFasbMoaKoGh0EIYAFVCgw1vKl7PawpQwgTd7HLXwX_1JnZyZaM2bauc8X2UFAtCGalS4gRdH6FL34f0v0QRSCUALiFRV3uqn69MLdfBrlTYyEM1CeA7QAcfYzCN1LZT26a6oGwrCZbbEeRuBJlGkNsR5NZJjpyH8P88dOeJiXULE34f_bfpG2pplk0
CitedBy_id crossref_primary_10_3367_UFNe_2021_12_039120
crossref_primary_10_1021_acs_nanolett_0c00403
crossref_primary_10_1021_acs_nanolett_0c01975
crossref_primary_10_1016_j_optcom_2023_130060
crossref_primary_10_1103_PhysRevResearch_6_L022020
crossref_primary_10_3390_nano11020484
crossref_primary_10_1117_1_AP_4_6_066004
crossref_primary_10_1002_adom_202201906
crossref_primary_10_1002_adom_201900383
crossref_primary_10_3390_bios13060631
crossref_primary_10_1002_adma_202003051
crossref_primary_10_1515_nanoph_2019_0024
crossref_primary_10_1103_PhysRevApplied_15_034041
crossref_primary_10_1063_5_0056243
crossref_primary_10_1103_PhysRevA_99_063805
crossref_primary_10_1088_1361_6463_acd8cb
crossref_primary_10_1103_PhysRevA_110_013501
crossref_primary_10_1063_5_0150421
crossref_primary_10_1063_5_0147144
crossref_primary_10_1002_adom_202001469
crossref_primary_10_1021_acs_nanolett_1c03696
crossref_primary_10_3367_UFNr_2021_12_039120
crossref_primary_10_1021_acsphotonics_8b01365
crossref_primary_10_3788_LOP232221
crossref_primary_10_1515_nanoph_2023_0891
crossref_primary_10_3390_app12094207
crossref_primary_10_1515_nanoph_2020_0372
crossref_primary_10_3788_PI_2024_R01
crossref_primary_10_3390_photonics11111053
crossref_primary_10_1021_acsphotonics_8b01326
crossref_primary_10_3762_bjnano_14_45
crossref_primary_10_1002_adpr_202200207
crossref_primary_10_1039_D1NA00764E
crossref_primary_10_1103_PhysRevB_106_045416
crossref_primary_10_1021_acsnano_4c02178
crossref_primary_10_1103_PhysRevB_102_125411
crossref_primary_10_1364_OE_532326
crossref_primary_10_1016_j_optlastec_2024_111176
crossref_primary_10_1021_acs_nanolett_3c01102
crossref_primary_10_1007_s00339_024_08139_6
crossref_primary_10_1021_acsphotonics_4c00600
crossref_primary_10_1515_nanoph_2020_0039
crossref_primary_10_1515_nanoph_2020_0158
crossref_primary_10_1038_s41467_022_35246_w
crossref_primary_10_1088_1361_6463_acadec
crossref_primary_10_1364_OL_445411
crossref_primary_10_1016_j_solmat_2022_111864
crossref_primary_10_1002_adfm_202309982
crossref_primary_10_1038_s41377_024_01548_5
crossref_primary_10_1515_nanoph_2024_0367
crossref_primary_10_1103_PhysRevLett_127_176101
crossref_primary_10_1364_JOSAA_469733
crossref_primary_10_1021_acsphotonics_0c01696
crossref_primary_10_1364_OE_373221
crossref_primary_10_3390_nano12152687
crossref_primary_10_1021_acsphotonics_4c00938
crossref_primary_10_3390_nano12010054
crossref_primary_10_1103_PhysRevApplied_11_024025
crossref_primary_10_1364_OE_421529
crossref_primary_10_1016_j_optmat_2023_113693
crossref_primary_10_1088_1361_6633_ac2aaf
crossref_primary_10_1016_j_jallcom_2022_167232
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1021_acsphotonics_1c00937
crossref_primary_10_1063_5_0204694
crossref_primary_10_1016_j_fmre_2022_05_020
crossref_primary_10_1002_lpor_202200658
crossref_primary_10_1021_acs_nanolett_3c03786
crossref_primary_10_1038_s41467_024_53433_9
crossref_primary_10_1088_1367_2630_ab4f54
crossref_primary_10_1364_OE_28_001426
crossref_primary_10_1021_acsphotonics_0c00179
crossref_primary_10_1364_OL_398551
crossref_primary_10_1021_acs_nanolett_0c01646
crossref_primary_10_1103_PhysRevApplied_13_064032
crossref_primary_10_1021_acsnano_1c02204
crossref_primary_10_1103_PhysRevLett_129_133901
crossref_primary_10_1021_acs_jpcc_9b09430
crossref_primary_10_1002_smll_201906086
crossref_primary_10_1002_adom_202002001
crossref_primary_10_1002_adfm_202307660
crossref_primary_10_1002_adom_202001148
crossref_primary_10_1088_1402_4896_ad5ca2
crossref_primary_10_1364_OE_479755
crossref_primary_10_1016_j_optcom_2022_128904
crossref_primary_10_1002_lpor_202200303
crossref_primary_10_1515_nanoph_2020_0343
crossref_primary_10_1021_acsphotonics_2c01461
crossref_primary_10_1021_acs_nanolett_0c03818
crossref_primary_10_1515_nanoph_2023_0887
crossref_primary_10_1515_nanoph_2020_0346
crossref_primary_10_1364_OL_511314
crossref_primary_10_1021_acs_nanolett_0c01752
crossref_primary_10_1038_s41565_024_01780_5
crossref_primary_10_1186_s11671_021_03607_x
crossref_primary_10_1088_1361_6463_ac055a
crossref_primary_10_1080_09500340_2022_2073392
crossref_primary_10_1038_s41566_020_0641_x
crossref_primary_10_1364_OE_509673
crossref_primary_10_1103_PhysRevLett_134_013805
crossref_primary_10_1002_adom_201801813
crossref_primary_10_1364_OME_484614
crossref_primary_10_1103_PhysRevB_109_035406
crossref_primary_10_1364_OL_413764
crossref_primary_10_1016_j_optcom_2020_126264
crossref_primary_10_1002_lpor_202301068
crossref_primary_10_1038_s41586_023_06789_9
crossref_primary_10_1002_lpor_202200564
crossref_primary_10_1016_j_cap_2024_06_001
crossref_primary_10_1063_5_0092758
crossref_primary_10_1021_acsphotonics_9b01719
crossref_primary_10_3389_fphy_2022_862962
crossref_primary_10_1002_adom_202200301
crossref_primary_10_1103_PhysRevB_108_115426
crossref_primary_10_1038_s42005_020_00453_8
crossref_primary_10_1088_1361_6463_acdf6a
crossref_primary_10_1103_PhysRevA_110_033521
crossref_primary_10_1364_OE_532622
crossref_primary_10_1364_OL_452480
crossref_primary_10_1364_OSAC_425189
crossref_primary_10_1002_adfm_202314953
crossref_primary_10_2139_ssrn_3943843
crossref_primary_10_1007_s11141_021_10110_x
crossref_primary_10_1021_acs_nanolett_8b03870
crossref_primary_10_1103_PhysRevResearch_5_043053
crossref_primary_10_1088_1361_6528_abdceb
crossref_primary_10_1088_1367_2630_abde6c
crossref_primary_10_1364_AO_405209
crossref_primary_10_1016_j_optcom_2024_131265
crossref_primary_10_1364_OE_420001
crossref_primary_10_1103_PhysRevLett_132_046601
crossref_primary_10_1021_acs_nanolett_3c02148
crossref_primary_10_1002_lpor_202200860
crossref_primary_10_1002_advs_202303929
crossref_primary_10_1109_JPROC_2020_2985048
crossref_primary_10_1002_adma_202007236
crossref_primary_10_1364_PRJ_417296
crossref_primary_10_1021_accountsmr_3c00138
crossref_primary_10_1016_j_optcom_2024_131255
crossref_primary_10_1021_acsnano_3c09798
crossref_primary_10_1021_acsnano_3c09793
crossref_primary_10_1002_adom_202200753
crossref_primary_10_1021_acsami_2c18629
crossref_primary_10_1021_acsphotonics_0c00078
crossref_primary_10_1126_sciadv_adf3470
crossref_primary_10_1103_PhysRevLett_122_153907
crossref_primary_10_1021_acsnano_0c01468
crossref_primary_10_1002_adpr_202000139
crossref_primary_10_1103_PhysRevLett_125_053902
crossref_primary_10_1002_adom_202301130
crossref_primary_10_1103_PhysRevApplied_15_044024
crossref_primary_10_1103_PhysRevB_104_125446
crossref_primary_10_1016_j_apsusc_2021_151723
crossref_primary_10_1002_adpr_202200100
crossref_primary_10_1038_s41467_020_18793_y
crossref_primary_10_1103_PhysRevLett_123_253901
crossref_primary_10_1103_PhysRevLett_126_117402
crossref_primary_10_1364_AOP_495828
crossref_primary_10_1364_PRJ_417150
crossref_primary_10_1109_ACCESS_2024_3481313
crossref_primary_10_3390_photonics7020024
crossref_primary_10_1021_acs_nanolett_4c04217
crossref_primary_10_1002_adom_202001895
crossref_primary_10_1016_j_nuclphysa_2022_122397
crossref_primary_10_1002_adom_201901830
crossref_primary_10_1039_D2MA00910B
crossref_primary_10_1515_nanoph_2024_0117
crossref_primary_10_1038_s41586_024_07674_9
crossref_primary_10_1126_science_aba4597
crossref_primary_10_1515_nanoph_2020_0285
crossref_primary_10_1016_j_photonics_2022_101022
crossref_primary_10_1021_acsnano_3c08270
crossref_primary_10_1007_s40766_021_00015_w
crossref_primary_10_1088_1674_1056_ac8ce5
crossref_primary_10_1364_OL_447933
crossref_primary_10_1126_science_adm7442
crossref_primary_10_1021_acsnano_0c02730
crossref_primary_10_1021_acsnano_3c10471
crossref_primary_10_1515_nanoph_2019_0341
crossref_primary_10_1039_D1CC01084K
crossref_primary_10_1038_s41566_022_01126_4
crossref_primary_10_1038_s41563_023_01531_2
crossref_primary_10_1063_5_0033056
crossref_primary_10_1021_acsphotonics_2c01066
crossref_primary_10_1117_1_JNP_18_046007
crossref_primary_10_1021_acsnano_1c00673
crossref_primary_10_1038_s41467_022_31877_1
crossref_primary_10_1038_s41566_021_00922_8
crossref_primary_10_1515_nanoph_2019_0110
crossref_primary_10_1364_OL_537421
crossref_primary_10_3390_nano11040998
crossref_primary_10_1088_1367_2630_ab97e9
crossref_primary_10_1364_OE_549375
crossref_primary_10_1002_lpor_202301339
crossref_primary_10_1088_1361_6463_ad933c
crossref_primary_10_1088_1402_4896_ad497d
crossref_primary_10_1364_PRJ_462474
crossref_primary_10_1021_acs_nanolett_4c03392
crossref_primary_10_2139_ssrn_4089581
crossref_primary_10_1126_sciadv_adf6649
crossref_primary_10_1002_smll_202102596
crossref_primary_10_3788_CJL241053
crossref_primary_10_1002_adma_202405978
crossref_primary_10_1021_acsnano_2c04628
crossref_primary_10_1109_TAP_2019_2938661
crossref_primary_10_1007_s11433_023_2207_9
crossref_primary_10_1080_09500340_2024_2442656
crossref_primary_10_1016_j_jqsrt_2022_108348
crossref_primary_10_1364_OL_533967
crossref_primary_10_1021_acsphotonics_9b01678
crossref_primary_10_3390_nano13162350
crossref_primary_10_1364_AO_471587
crossref_primary_10_1002_adma_202207317
crossref_primary_10_1364_OL_484472
crossref_primary_10_1364_OE_402887
crossref_primary_10_1515_nanoph_2021_0412
crossref_primary_10_1002_advs_202100139
crossref_primary_10_37188_lam_2024_005
crossref_primary_10_1364_OL_395625
crossref_primary_10_3390_photonics9110852
crossref_primary_10_1021_acs_nanolett_4c01797
crossref_primary_10_1088_1367_2630_ac55b2
crossref_primary_10_1088_2040_8986_ac4a21
crossref_primary_10_1088_1402_4896_adb524
crossref_primary_10_1021_acs_nanolett_0c04314
crossref_primary_10_1016_j_optcom_2023_129856
crossref_primary_10_1016_j_eng_2024_12_022
crossref_primary_10_1016_j_optmat_2024_115688
crossref_primary_10_1038_s41565_019_0584_x
crossref_primary_10_1002_adom_202202305
crossref_primary_10_1103_PhysRevApplied_20_044075
crossref_primary_10_1088_1361_6463_acb55d
crossref_primary_10_1038_s41598_019_52223_4
crossref_primary_10_1038_s41467_024_53952_5
crossref_primary_10_1038_s41467_024_46544_w
crossref_primary_10_1002_smll_202411827
crossref_primary_10_1103_PhysRevB_101_155303
crossref_primary_10_1038_s41467_021_24502_0
crossref_primary_10_3390_mi11040449
crossref_primary_10_1364_OME_463585
crossref_primary_10_1038_s41377_022_00923_4
crossref_primary_10_1063_1_5132613
crossref_primary_10_1103_PhysRevApplied_14_044009
crossref_primary_10_1103_PhysRevB_108_205425
crossref_primary_10_1063_5_0067937
crossref_primary_10_1016_j_optlastec_2024_110776
crossref_primary_10_1088_2040_8986_abc1fb
crossref_primary_10_1038_s41377_023_01295_z
crossref_primary_10_1021_acs_nanolett_0c04660
crossref_primary_10_1109_JSTQE_2019_2902915
crossref_primary_10_1002_lpor_201900235
crossref_primary_10_1021_acs_nanolett_4c05817
crossref_primary_10_1103_PhysRevApplied_16_024059
crossref_primary_10_1016_j_scib_2018_12_003
crossref_primary_10_1021_acs_nanolett_3c05038
crossref_primary_10_1515_nanoph_2021_0640
crossref_primary_10_1002_adom_202202403
crossref_primary_10_1021_acsphotonics_4c02332
crossref_primary_10_3788_AOS230902
crossref_primary_10_1002_adom_202300909
crossref_primary_10_1063_1_5107449
crossref_primary_10_1515_nanoph_2024_0630
crossref_primary_10_1103_PhysRevLett_132_173802
crossref_primary_10_1002_adpr_202400116
crossref_primary_10_1364_OE_428602
crossref_primary_10_1002_lpor_202000242
crossref_primary_10_1021_acsphotonics_0c00858
crossref_primary_10_1016_j_wavemoti_2024_103348
crossref_primary_10_1021_acsphotonics_2c00901
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1002_adom_202303186
crossref_primary_10_1364_OE_27_022363
crossref_primary_10_1021_acsphotonics_4c02323
crossref_primary_10_1080_09500340_2021_1943554
crossref_primary_10_1016_j_optlastec_2021_107762
crossref_primary_10_1063_5_0189595
crossref_primary_10_1007_s11082_022_03991_3
crossref_primary_10_1002_adma_202003804
crossref_primary_10_1103_PhysRevA_108_013522
crossref_primary_10_34133_ultrafastscience_0033
crossref_primary_10_1038_s41467_022_34307_4
crossref_primary_10_1088_1367_2630_ac20e9
crossref_primary_10_1021_acs_nanolett_3c00727
crossref_primary_10_1063_1_5108641
crossref_primary_10_1039_D1RA07858E
crossref_primary_10_1002_lpor_202300550
crossref_primary_10_1038_s41565_020_0754_x
crossref_primary_10_1364_PRJ_427094
crossref_primary_10_1088_2515_7647_abc60e
crossref_primary_10_1038_s41377_021_00707_2
crossref_primary_10_1002_adom_201801271
crossref_primary_10_1038_s41467_021_21196_2
crossref_primary_10_1002_adma_202300344
crossref_primary_10_1016_j_carbon_2021_06_037
crossref_primary_10_1002_lpor_202100118
crossref_primary_10_1038_s41467_023_39227_5
crossref_primary_10_1021_acs_nanolett_4c04511
crossref_primary_10_1088_2399_6528_ac0d48
crossref_primary_10_1364_OE_385088
crossref_primary_10_1002_lpor_202000263
crossref_primary_10_1038_s41467_024_54775_0
crossref_primary_10_1002_adma_202102232
crossref_primary_10_1109_JPROC_2019_2943183
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1088_1361_6463_ad35d2
crossref_primary_10_1016_j_isci_2025_112147
crossref_primary_10_1021_acsnano_1c07114
crossref_primary_10_1515_nanoph_2022_0427
crossref_primary_10_1103_PhysRevLett_129_173901
crossref_primary_10_3390_nano12132252
crossref_primary_10_1002_lpor_201900430
crossref_primary_10_1515_nanoph_2022_0781
crossref_primary_10_1021_acsphotonics_0c00723
crossref_primary_10_1021_acs_nanolett_1c01975
crossref_primary_10_1515_nanoph_2023_0195
crossref_primary_10_1515_nanoph_2021_0326
crossref_primary_10_1364_OE_487611
crossref_primary_10_1103_PhysRevApplied_20_044015
crossref_primary_10_1002_adom_202102679
crossref_primary_10_3390_photonics8110470
crossref_primary_10_1038_s44310_024_00018_5
crossref_primary_10_1002_lpor_202100574
crossref_primary_10_1002_adma_202310294
crossref_primary_10_1103_PhysRevB_100_115303
crossref_primary_10_1021_acsnano_2c05680
crossref_primary_10_1364_OPTICA_531864
crossref_primary_10_1021_acs_nanolett_1c02751
crossref_primary_10_1364_AOP_426047
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1038_s41467_025_57738_1
crossref_primary_10_1016_j_rinp_2024_107767
crossref_primary_10_1002_apxr_202400083
crossref_primary_10_1002_lpor_202100206
crossref_primary_10_1515_nanoph_2020_0654
crossref_primary_10_1364_OE_486873
crossref_primary_10_1515_nanoph_2020_0539
crossref_primary_10_1088_2040_8986_ac868d
crossref_primary_10_1038_s42005_024_01777_5
crossref_primary_10_1103_PhysRevB_106_115434
crossref_primary_10_1021_acsphotonics_1c00968
crossref_primary_10_1109_JSTQE_2023_3241657
crossref_primary_10_1021_acsphotonics_2c01926
crossref_primary_10_1515_nanoph_2021_0265
crossref_primary_10_1515_nanoph_2021_0387
crossref_primary_10_1002_adom_202203118
crossref_primary_10_1364_OE_414011
crossref_primary_10_1103_PhysRevLett_125_013903
crossref_primary_10_1515_nanoph_2023_0373
crossref_primary_10_1021_acsphotonics_4c00319
crossref_primary_10_1063_5_0157430
crossref_primary_10_3103_S1541308X22040045
crossref_primary_10_1021_acs_nanolett_3c00772
crossref_primary_10_1515_nanoph_2021_0475
crossref_primary_10_1515_nanoph_2023_0281
crossref_primary_10_1038_s41565_018_0320_y
crossref_primary_10_1002_adpr_202400060
crossref_primary_10_1103_PhysRevB_109_165439
crossref_primary_10_1126_sciadv_adn2723
crossref_primary_10_1515_nanoph_2023_0166
crossref_primary_10_1021_acsphotonics_3c00457
crossref_primary_10_1038_s41377_023_01130_5
crossref_primary_10_1038_s41467_022_30503_4
crossref_primary_10_1021_acsphotonics_1c01840
crossref_primary_10_1016_j_optlastec_2024_111103
crossref_primary_10_1002_lpor_202100661
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1038_s41467_024_54262_6
crossref_primary_10_1021_acsphotonics_2c00618
crossref_primary_10_1038_s42005_022_00884_5
crossref_primary_10_1038_s41566_021_00860_5
crossref_primary_10_1038_s41566_020_0658_1
crossref_primary_10_1515_nanoph_2023_0030
crossref_primary_10_1515_nanoph_2021_0368
crossref_primary_10_1038_s41598_024_79094_8
crossref_primary_10_1021_acsami_1c11995
crossref_primary_10_1515_nanoph_2023_0105
crossref_primary_10_1002_adom_202101308
crossref_primary_10_1002_adom_202002192
crossref_primary_10_1038_s42254_023_00642_8
crossref_primary_10_1002_adom_201801786
crossref_primary_10_1021_acsphotonics_1c01511
crossref_primary_10_1364_OE_427355
crossref_primary_10_1021_acsphotonics_2c01842
crossref_primary_10_1364_PRJ_7_001296
crossref_primary_10_1103_PhysRevLett_121_253901
crossref_primary_10_1364_OE_415377
crossref_primary_10_1364_OE_543279
crossref_primary_10_1103_PhysRevB_108_155416
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1038_s41467_024_46272_1
crossref_primary_10_1109_JPHOT_2024_3397706
crossref_primary_10_1021_acs_nanolett_0c02571
crossref_primary_10_1364_OPTICA_6_000996
crossref_primary_10_1021_acsphotonics_0c01319
crossref_primary_10_1021_acs_nanolett_2c04936
crossref_primary_10_1016_j_optcom_2020_126446
crossref_primary_10_29026_oea_2024_230148
crossref_primary_10_1002_adom_202100112
crossref_primary_10_1021_acsphotonics_4c01744
crossref_primary_10_1103_PhysRevB_110_035428
crossref_primary_10_1515_nanoph_2023_0369
crossref_primary_10_1364_PRJ_456260
crossref_primary_10_1103_PhysRevLett_122_014301
crossref_primary_10_1002_qute_201900126
crossref_primary_10_1021_acsphotonics_1c01416
crossref_primary_10_1021_acs_jpcc_0c02592
crossref_primary_10_1002_asia_201901447
crossref_primary_10_1103_PhysRevA_100_063803
crossref_primary_10_1002_adpr_202100280
crossref_primary_10_1364_OE_463790
crossref_primary_10_1063_5_0019353
crossref_primary_10_1002_solr_202100721
crossref_primary_10_1364_OE_462221
crossref_primary_10_1364_PRJ_470657
crossref_primary_10_1103_PhysRevLett_122_187402
crossref_primary_10_1007_s00340_020_07471_y
crossref_primary_10_1103_PhysRevLett_121_193903
crossref_primary_10_1103_PhysRevLett_133_086901
crossref_primary_10_1364_OE_514969
crossref_primary_10_1021_acs_nanolett_1c01570
crossref_primary_10_1038_s41467_023_44164_4
crossref_primary_10_1364_AOP_11_000892
crossref_primary_10_1002_adom_202400296
crossref_primary_10_1038_s41377_022_00971_w
crossref_primary_10_1186_s43074_021_00029_x
crossref_primary_10_1103_PhysRevB_109_235431
crossref_primary_10_1109_JPHOT_2020_3042818
Cites_doi 10.1038/lsa.2014.82
10.1038/nphoton.2017.39
10.1364/OE.25.014134
10.1021/acs.nanolett.6b01958
10.1126/science.aaf6644
10.1002/adom.201600240
10.1021/acs.nanolett.7b02952
10.1021/acs.nanolett.6b02076
10.1021/nl301391h
10.1039/C5NR07965A
10.1038/srep33394
10.1038/ncomms2167
10.1021/acs.nanolett.5b01752
10.1038/natrevmats.2016.48
10.1103/PhysRevLett.119.243901
10.1038/ncomms10362
10.1126/science.1253213
10.1021/nl4005018
10.1021/acs.nanolett.5b02926
10.1038/nature12289
10.1021/acsphotonics.6b00860
10.1021/acs.nanolett.8b00368
10.1364/OPTICA.3.001260
10.1063/1.5007007
10.1063/1.4990753
10.1103/PhysRevLett.107.183901
10.1038/ncomms15535
10.1038/ncomms2538
10.1126/science.aag2472
10.1002/lpor.201500041
10.1038/ncomms8915
10.1038/441946a
10.1038/ncomms8069
10.1038/srep00492
10.1038/nnano.2015.186
10.1021/ph500379p
10.1126/science.1061738
10.1021/nl503029j
10.1063/1.124361
10.1021/acs.nanolett.6b03525
10.1016/B978-012544415-6/50003-0
10.1038/srep30613
10.1038/nphoton.2014.75
10.1021/nl301594s
10.1038/nature20799
10.1021/acsphotonics.7b01533
10.1021/acs.nanolett.6b01816
10.1103/PhysRevLett.113.257401
10.1021/acsphotonics.7b01343
10.1002/0470068329
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Nov 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Nov 2018
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-018-0245-5
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 1047
ExternalDocumentID 30127475
10_1038_s41565_018_0245_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c438t-22699711407344a6cda090232371da46f6d389035c99e33a63f0e7f87dbd23363
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Tue Aug 05 10:52:21 EDT 2025
Fri Jul 25 08:56:18 EDT 2025
Mon Jul 21 05:58:31 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-22699711407344a6cda090232371da46f6d389035c99e33a63f0e7f87dbd23363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7836-681X
0000-0002-0488-921X
PMID 30127475
PQID 2130053063
PQPubID 546299
PageCount 6
ParticipantIDs proquest_miscellaneous_2091241832
proquest_journals_2130053063
pubmed_primary_30127475
crossref_citationtrail_10_1038_s41565_018_0245_5
crossref_primary_10_1038_s41565_018_0245_5
springer_journals_10_1038_s41565_018_0245_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Caldarola (CR27) 2015; 6
Komar (CR9) 2018; 5
Camacho-Morales (CR17) 2016; 16
Liu (CR16) 2016; 16
Bulgakov, Maksimov (CR34) 2017; 25
Hirose (CR41) 2014; 8
Kuznetsov, Miroshnichenko, Fu, Zhang, Luk’yanchuk (CR3) 2012; 2
Chow, Jahnke, Gies (CR50) 2014; 3
Miyai (CR43) 2006; 441
CR38
Imada (CR39) 1999; 75
Arbabi, Horie, Ball, Bagheri, Faraon (CR12) 2015; 6
Zhao (CR22) 2016; 6
Shalaev (CR6) 2015; 15
Khaidarov (CR8) 2017; 17
Totero Gongora, Miroshnichenko, Kivshar, Fratalocchi (CR30) 2017; 8
Chong (CR7) 2015; 15
Fu, Kuznetsov, Miroshnichenko, Yu, Luk’yanchuk (CR20) 2013; 4
Staude (CR26) 2015; 2
Pan, Gu, Amili, Vallini, Fainman (CR51) 2016; 3
Rybin (CR36) 2017; 119
Sadrieva (CR37) 2017; 4
CR45
Yu (CR5) 2015; 9
Löchner (CR48) 2018; 5
Grinblat, Li, Nielsen, Oulton, Maier (CR18) 2016; 16
Kodigala (CR42) 2017; 541
Paniagua-Dominguez (CR25) 2016; 7
Paniagua-Dominguez (CR14) 2018; 18
Hsu (CR32) 2013; 499
Greffin (CR19) 2012; 3
Shcherbakov (CR15) 2014; 14
Zhen, Hsu, Lu, Stone, Soljacic (CR44) 2014; 113
Lin, Fan, Hasman, Brongersma (CR11) 2014; 345
Chang (CR49) 2012; 12
Noda, Yokoyama, Imada, Chutinan, Mochizuki (CR40) 2001; 293
Staude, Schilling (CR2) 2017; 11
Taghizadeh, Chung (CR52) 2017; 111
Liu, Keeler, Reno, Sinclair, Brener (CR47) 2016; 4
Chong (CR23) 2016; 3
Arbabi, Horie, Bagheri, Faraon (CR24) 2015; 10
Kuznetsov, Miroshnichenko, Brongersma, Kivshar, Luk’yanchuk (CR1) 2016; 354
Dmitriev (CR29) 2016; 8
Regmi (CR28) 2016; 16
Palik (CR46) 1997
Hsu, Zhen, Stone, Joannopoulos, Soljacic (CR33) 2016; 1
Emani (CR10) 2017; 111
Plotnik (CR31) 2011; 107
Evlyukhin (CR4) 2012; 12
Person (CR21) 2013; 13
Khorasaninejad (CR13) 2016; 352
Rivera (CR35) 2016; 6
S Person (245_CR21) 2013; 13
AI Kuznetsov (245_CR3) 2012; 2
JS Totero Gongora (245_CR30) 2017; 8
M Imada (245_CR39) 1999; 75
AB Evlyukhin (245_CR4) 2012; 12
Edward D. Palik (245_CR46) 1997
N Rivera (245_CR35) 2016; 6
S Liu (245_CR16) 2016; 16
R Camacho-Morales (245_CR17) 2016; 16
KE Chong (245_CR23) 2016; 3
R Regmi (245_CR28) 2016; 16
CW Hsu (245_CR32) 2013; 499
AI Kuznetsov (245_CR1) 2016; 354
R Paniagua-Dominguez (245_CR25) 2016; 7
CW Hsu (245_CR33) 2016; 1
S Noda (245_CR40) 2001; 293
E Miyai (245_CR43) 2006; 441
245_CR38
I Staude (245_CR26) 2015; 2
M Khorasaninejad (245_CR13) 2016; 352
NK Emani (245_CR10) 2017; 111
G Grinblat (245_CR18) 2016; 16
YH Fu (245_CR20) 2013; 4
A Kodigala (245_CR42) 2017; 541
YF Yu (245_CR5) 2015; 9
A Komar (245_CR9) 2018; 5
S Liu (245_CR47) 2016; 4
245_CR45
K Hirose (245_CR41) 2014; 8
R Paniagua-Dominguez (245_CR14) 2018; 18
I Staude (245_CR2) 2017; 11
JM Greffin (245_CR19) 2012; 3
MR Shcherbakov (245_CR15) 2014; 14
MV Rybin (245_CR36) 2017; 119
A Arbabi (245_CR24) 2015; 10
CC Chang (245_CR49) 2012; 12
PA Dmitriev (245_CR29) 2016; 8
M Caldarola (245_CR27) 2015; 6
KE Chong (245_CR7) 2015; 15
E Khaidarov (245_CR8) 2017; 17
A Taghizadeh (245_CR52) 2017; 111
B Zhen (245_CR44) 2014; 113
MI Shalaev (245_CR6) 2015; 15
WW Chow (245_CR50) 2014; 3
F Löchner (245_CR48) 2018; 5
ZF Sadrieva (245_CR37) 2017; 4
D Lin (245_CR11) 2014; 345
W Zhao (245_CR22) 2016; 6
Y Plotnik (245_CR31) 2011; 107
SH Pan (245_CR51) 2016; 3
A Arbabi (245_CR12) 2015; 6
EN Bulgakov (245_CR34) 2017; 25
References_xml – ident: CR45
– volume: 3
  start-page: e201
  year: 2014
  ident: CR50
  article-title: Emission properties of nanolasers during the transition to lasing
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.82
– volume: 11
  start-page: 274
  year: 2017
  end-page: 284
  ident: CR2
  article-title: Metamaterial-inspired silicon nanophotonics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.39
– volume: 25
  start-page: 14134
  year: 2017
  end-page: 14147
  ident: CR34
  article-title: Light enhancement by quasi-bound states in the continuum in dielectric arrays
  publication-title: Opt. Express
  doi: 10.1364/OE.25.014134
– volume: 16
  start-page: 4635
  year: 2016
  end-page: 4640
  ident: CR18
  article-title: Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01958
– volume: 352
  start-page: 1190
  year: 2016
  end-page: 1194
  ident: CR13
  article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging
  publication-title: Science
  doi: 10.1126/science.aaf6644
– volume: 4
  start-page: 1457
  year: 2016
  end-page: 1462
  ident: CR47
  article-title: III–V semiconductor nanoresonators—a new strategy for passive, active, and nonlinear all-dielectric metamaterials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600240
– volume: 17
  start-page: 6267
  year: 2017
  end-page: 6272
  ident: CR8
  article-title: Asymmetric nanoantennas for ultrahigh angle broadband visible light bending
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02952
– volume: 16
  start-page: 5143
  year: 2016
  end-page: 5151
  ident: CR28
  article-title: All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02076
– volume: 12
  start-page: 4484
  year: 2012
  end-page: 4489
  ident: CR49
  article-title: Electrical and optical characterization of surface passivation in GaAs nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl301391h
– volume: 8
  start-page: 9721
  year: 2016
  end-page: 9726
  ident: CR29
  article-title: Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response
  publication-title: Nanoscale
  doi: 10.1039/C5NR07965A
– volume: 6
  year: 2016
  ident: CR35
  article-title: Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum
  publication-title: Sci. Rep.
  doi: 10.1038/srep33394
– volume: 3
  year: 2012
  ident: CR19
  article-title: Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2167
– volume: 15
  start-page: 5369
  year: 2015
  end-page: 5374
  ident: CR7
  article-title: Polarization-independent silicon metadevices for efficient optical wavefront control
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01752
– volume: 1
  start-page: 16048
  year: 2016
  ident: CR33
  article-title: Bound states in the continuum
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.48
– volume: 119
  start-page: 243901
  year: 2017
  ident: CR36
  article-title: High-Q supercavity modes in subwavelength dielectric resonators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.243901
– volume: 7
  year: 2016
  ident: CR25
  article-title: Generalized Brewster effect in dielectric metasurfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10362
– volume: 345
  start-page: 298
  year: 2014
  end-page: 302
  ident: CR11
  article-title: Dielectric gradient metasurface optical elements
  publication-title: Science
  doi: 10.1126/science.1253213
– volume: 13
  start-page: 1806
  year: 2013
  end-page: 1809
  ident: CR21
  article-title: Demonstration of zero optical backscattering from single nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl4005018
– volume: 3
  start-page: 514
  year: 2016
  end-page: 519
  ident: CR23
  article-title: Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms
  publication-title: ASC Photonics
– volume: 15
  start-page: 6261
  year: 2015
  end-page: 6266
  ident: CR6
  article-title: High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02926
– volume: 499
  start-page: 188
  year: 2013
  end-page: 191
  ident: CR32
  article-title: Observation of trapped light within the radiation continuum
  publication-title: Nature
  doi: 10.1038/nature12289
– volume: 4
  start-page: 723
  year: 2017
  end-page: 727
  ident: CR37
  article-title: Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00860
– volume: 18
  start-page: 2124
  year: 2018
  end-page: 2132
  ident: CR14
  article-title: A metalens with a near-unity numerical aperture
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00368
– volume: 3
  start-page: 1260
  year: 2016
  end-page: 1265
  ident: CR51
  article-title: Dynamic hysteresis in a coherent high-β nanolaser
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001260
– volume: 111
  start-page: 221101
  year: 2017
  ident: CR10
  article-title: High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5007007
– volume: 111
  start-page: 031114
  year: 2017
  ident: CR52
  article-title: Quasi bound states in the continuum with few unit cells of photonic crystal slab
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990753
– volume: 107
  start-page: 183901
  year: 2011
  ident: CR31
  article-title: Experimental observation of optical bound states in the continuum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.183901
– volume: 8
  year: 2017
  ident: CR30
  article-title: Anapole nanolasers for mode-locking and ultrafast pulse generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15535
– volume: 4
  year: 2013
  ident: CR20
  article-title: Directional visible light scattering by silicon nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2538
– volume: 354
  start-page: aag2472
  year: 2016
  ident: CR1
  article-title: Optically resonant dielectric nanostructures
  publication-title: Science
  doi: 10.1126/science.aag2472
– volume: 9
  start-page: 412
  year: 2015
  end-page: 418
  ident: CR5
  article-title: High‐transmission dielectric metasurface with 2π phase control at visible wavelengths
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201500041
– volume: 6
  year: 2015
  ident: CR27
  article-title: Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8915
– volume: 441
  start-page: 946
  year: 2006
  ident: CR43
  article-title: Photonics: lasers producing tailored beams
  publication-title: Nature
  doi: 10.1038/441946a
– volume: 6
  year: 2015
  ident: CR12
  article-title: Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8069
– volume: 2
  year: 2012
  ident: CR3
  article-title: Magnetic light
  publication-title: Sci. Rep.
  doi: 10.1038/srep00492
– volume: 10
  start-page: 937
  year: 2015
  end-page: 943
  ident: CR24
  article-title: Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.186
– volume: 2
  start-page: 172
  year: 2015
  end-page: 177
  ident: CR26
  article-title: Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles
  publication-title: ACS Photonics
  doi: 10.1021/ph500379p
– volume: 293
  start-page: 1123
  year: 2001
  end-page: 1125
  ident: CR40
  article-title: Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design
  publication-title: Science
  doi: 10.1126/science.1061738
– volume: 14
  start-page: 6488
  year: 2014
  end-page: 6492
  ident: CR15
  article-title: Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response
  publication-title: Nano Lett.
  doi: 10.1021/nl503029j
– volume: 75
  start-page: 316
  year: 1999
  end-page: 318
  ident: CR39
  article-title: Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.124361
– volume: 16
  start-page: 7191
  year: 2016
  end-page: 7197
  ident: CR17
  article-title: Nonlinear generation of vector beams from AlGaAs nanoantennas
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b03525
– start-page: xvii
  year: 1997
  end-page: xviii
  ident: CR46
  article-title: Preface
  publication-title: Handbook of Optical Constants of Solids
  doi: 10.1016/B978-012544415-6/50003-0
– volume: 6
  year: 2016
  ident: CR22
  article-title: Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode
  publication-title: Sci. Rep.
  doi: 10.1038/srep30613
– ident: CR38
– volume: 8
  start-page: 406
  year: 2014
  end-page: 411
  ident: CR41
  article-title: Watt-class high-power, high-beam-quality photonic-crystal lasers
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.75
– volume: 12
  start-page: 3749
  year: 2012
  end-page: 3755
  ident: CR4
  article-title: Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region
  publication-title: Nano Lett.
  doi: 10.1021/nl301594s
– volume: 541
  start-page: 196
  year: 2017
  end-page: 199
  ident: CR42
  article-title: Lasing action from photonic bound states in continuum
  publication-title: Nature
  doi: 10.1038/nature20799
– volume: 5
  start-page: 1786
  year: 2018
  end-page: 1793
  ident: CR48
  article-title: Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01533
– volume: 16
  start-page: 5426
  year: 2016
  end-page: 5432
  ident: CR16
  article-title: Resonantly enhanced second-harmonic generation using III−V semiconductor all-dielectric metasurfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01816
– volume: 113
  start-page: 257401
  year: 2014
  ident: CR44
  article-title: Topological nature of optical bound states in the continuum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.257401
– volume: 5
  start-page: 1742
  year: 2018
  end-page: 1748
  ident: CR9
  article-title: Dynamic beam switching by liquid crystal tunable dielectric metasurfaces
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01343
– volume: 345
  start-page: 298
  year: 2014
  ident: 245_CR11
  publication-title: Science
  doi: 10.1126/science.1253213
– volume: 119
  start-page: 243901
  year: 2017
  ident: 245_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.243901
– volume: 3
  year: 2012
  ident: 245_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2167
– volume: 14
  start-page: 6488
  year: 2014
  ident: 245_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl503029j
– volume: 18
  start-page: 2124
  year: 2018
  ident: 245_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00368
– volume: 7
  year: 2016
  ident: 245_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10362
– volume: 2
  start-page: 172
  year: 2015
  ident: 245_CR26
  publication-title: ACS Photonics
  doi: 10.1021/ph500379p
– volume: 11
  start-page: 274
  year: 2017
  ident: 245_CR2
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.39
– volume: 6
  year: 2016
  ident: 245_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/srep33394
– volume: 111
  start-page: 221101
  year: 2017
  ident: 245_CR10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5007007
– volume: 352
  start-page: 1190
  year: 2016
  ident: 245_CR13
  publication-title: Science
  doi: 10.1126/science.aaf6644
– volume: 2
  year: 2012
  ident: 245_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/srep00492
– start-page: xvii
  volume-title: Handbook of Optical Constants of Solids
  year: 1997
  ident: 245_CR46
  doi: 10.1016/B978-012544415-6/50003-0
– volume: 3
  start-page: 1260
  year: 2016
  ident: 245_CR51
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001260
– volume: 15
  start-page: 6261
  year: 2015
  ident: 245_CR6
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02926
– volume: 113
  start-page: 257401
  year: 2014
  ident: 245_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.257401
– volume: 107
  start-page: 183901
  year: 2011
  ident: 245_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.183901
– volume: 8
  year: 2017
  ident: 245_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15535
– ident: 245_CR45
  doi: 10.1002/0470068329
– volume: 4
  start-page: 723
  year: 2017
  ident: 245_CR37
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00860
– volume: 499
  start-page: 188
  year: 2013
  ident: 245_CR32
  publication-title: Nature
  doi: 10.1038/nature12289
– volume: 5
  start-page: 1786
  year: 2018
  ident: 245_CR48
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01533
– volume: 4
  year: 2013
  ident: 245_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2538
– ident: 245_CR38
– volume: 12
  start-page: 4484
  year: 2012
  ident: 245_CR49
  publication-title: Nano Lett.
  doi: 10.1021/nl301391h
– volume: 16
  start-page: 4635
  year: 2016
  ident: 245_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01958
– volume: 3
  start-page: e201
  year: 2014
  ident: 245_CR50
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.82
– volume: 3
  start-page: 514
  year: 2016
  ident: 245_CR23
  publication-title: ASC Photonics
– volume: 10
  start-page: 937
  year: 2015
  ident: 245_CR24
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.186
– volume: 13
  start-page: 1806
  year: 2013
  ident: 245_CR21
  publication-title: Nano Lett.
  doi: 10.1021/nl4005018
– volume: 17
  start-page: 6267
  year: 2017
  ident: 245_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02952
– volume: 16
  start-page: 5143
  year: 2016
  ident: 245_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02076
– volume: 6
  year: 2015
  ident: 245_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8069
– volume: 354
  start-page: aag2472
  year: 2016
  ident: 245_CR1
  publication-title: Science
  doi: 10.1126/science.aag2472
– volume: 75
  start-page: 316
  year: 1999
  ident: 245_CR39
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.124361
– volume: 25
  start-page: 14134
  year: 2017
  ident: 245_CR34
  publication-title: Opt. Express
  doi: 10.1364/OE.25.014134
– volume: 5
  start-page: 1742
  year: 2018
  ident: 245_CR9
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01343
– volume: 293
  start-page: 1123
  year: 2001
  ident: 245_CR40
  publication-title: Science
  doi: 10.1126/science.1061738
– volume: 441
  start-page: 946
  year: 2006
  ident: 245_CR43
  publication-title: Nature
  doi: 10.1038/441946a
– volume: 8
  start-page: 9721
  year: 2016
  ident: 245_CR29
  publication-title: Nanoscale
  doi: 10.1039/C5NR07965A
– volume: 541
  start-page: 196
  year: 2017
  ident: 245_CR42
  publication-title: Nature
  doi: 10.1038/nature20799
– volume: 12
  start-page: 3749
  year: 2012
  ident: 245_CR4
  publication-title: Nano Lett.
  doi: 10.1021/nl301594s
– volume: 16
  start-page: 7191
  year: 2016
  ident: 245_CR17
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b03525
– volume: 6
  year: 2016
  ident: 245_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/srep30613
– volume: 15
  start-page: 5369
  year: 2015
  ident: 245_CR7
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01752
– volume: 1
  start-page: 16048
  year: 2016
  ident: 245_CR33
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.48
– volume: 16
  start-page: 5426
  year: 2016
  ident: 245_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01816
– volume: 8
  start-page: 406
  year: 2014
  ident: 245_CR41
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.75
– volume: 6
  year: 2015
  ident: 245_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8915
– volume: 4
  start-page: 1457
  year: 2016
  ident: 245_CR47
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600240
– volume: 9
  start-page: 412
  year: 2015
  ident: 245_CR5
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201500041
– volume: 111
  start-page: 031114
  year: 2017
  ident: 245_CR52
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990753
SSID ssj0052924
Score 2.6871686
Snippet High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1042
SubjectTerms 142/126
639/624/1020/1093
639/624/399/1015
639/624/400/1021
Arrays
Arsenides
Chemistry and Materials Science
Dielectric strength
Directivity
Electric dipoles
Gallium
Gallium arsenide
Lasing
Magnetic resonance
Materials Science
Nanoantennas
Nanoparticles
Nanotechnology
Nanotechnology and Microengineering
Q factors
Quantum dots
Resonance
Title Directional lasing in resonant semiconductor nanoantenna arrays
URI https://link.springer.com/article/10.1038/s41565-018-0245-5
https://www.ncbi.nlm.nih.gov/pubmed/30127475
https://www.proquest.com/docview/2130053063
https://www.proquest.com/docview/2091241832
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuJQD6oPCUkBB6qmVRTZ-nxAgtqhSEUIg7S1y7KRCQs6yWQ78e2byWKgQXHJIHMeasSff-BvPAPxwISuqzBfMWWXRQalSZoIds8yG1Hpvy0rS4eS_F-r8RvyZymm_4db0YZWDTWwNdag97ZEfZsS7SAS4_Gh2z6hqFLGrfQmNFVij1GUU0qWnS4dLZrYraquFYeiK6YHV5OawIceFwtYMI_KRyf__S6_A5iuitP3_TD7BRg8ck-NO05_hQxm_wPqLdIJf4ai3XwSuEzoeGf8ltzFBh7qmcJekoUD4OlKG13qe4K2axBqjS9x87h6bTbiZnF2fnrO-QALzgpsFQ-hkrUaPBtepEE754CjMkmdcj4MTqlIB8UjKpbe25NwpXqWlrowORcg4V_wbrMY6ltuQmLG36Ik4UwgtZCiMDK4srJZKu7Gq_AjSQTy577OHUxGLu7xlsbnJO4nmKNGcJJrLEfxcvjLrUme813h3kHner6Imf9b5CA6Wj3H-E6nhYlk_YBsEPIhC0DCNYKvT1fJrnHh1obHzX4Pynjt_cyg77w_lO3zMaNq05xF3YXUxfyj3EJgsiv129uHVTH7vw9rJ2cXl1RNqod5P
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8uFDASXEBWs377gCoELFv6OLVSb8GxE4SEkrLZCvVP8RuZyWMLquit18Rxopnx-Jt84xmAVyGJohKx4MEbjwFKlXGX_JQLnzIfoy8rTYeTDw7N_Fh9OdEna_B7PAtDaZWjT-wcdWoi_SPfFsS7aAS4cuf0J6euUcSuji00erPYK89_YcjWvtv9iPp9LcTs09GHOR-6CvCopFtyxBveWwwD0LiVCiamQLmJUkg7TUGZyiTcxDOpo_ellMHIKitt5WwqkpDSSJz3BtxUUnpaUW72efT8Wvi-ia5VjmPoZ0cWVbrtlgIlSpNznMhOrv_dBy-B20vEbLffze7CnQGosve9Zd2DtbK-Dxt_lS98ADuDvyQwz-g4Zv2Nfa8ZBvANpdewlhLvm5oqyjYLhpcaUmNdBxYWi3DePoTjaxHdI1ivm7rcBOam0WPkE1yhrNKpcDqFsvBWGxumpooTyEbx5HGoVk5NM37kHWsuXd5LNEeJ5iTRXE_gzeqR075Ux1WDt0aZ58OqbfMLG5vAy9VtXG9EooS6bM5wDAIsRD3oCCfwuNfV6m2SeHxlcfK3o_IuJv_vpzy5-lNewK350cF-vr97uPcUbgsyoe4s5BasLxdn5TMERcvieWeJDL5et-n_AdDQFfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLy7UCBIcAFZm9hxbB9QhSirlkLFgUp7M46doEqVUzZbof61_rrO5LEFVfTWa-I40czn8XyZ8QzAGxd4WXNfMmcKgwSlTpkOJmPchNR4b6pa0uHkbwfF7mH-ZS7na3A-noWhtMrRJnaGOjSe_pFPOcVdJDq4YloPaRHfd2bbJ78ZdZCiSOvYTqOHyH519gfpW_thbwd1_Zbz2ecfn3bZ0GGA-VzoJUPfwxiFlACBnueu8MFRnqLgQmXB5UVdBNzQUyG9MZUQrhB1Wqlaq1AGLkQhcN5bcFsJmdEaU_MV2ZPc9A11Va4Z0kA1RlSFnrZEmihlTjMKfDL57554xdG9EqTt9r7Zfbg3OK3Jxx5lD2Ctig9h469Sho9ge7Cd5NgndDQz_kqOYoJkvqFUm6SlJPwmUnXZZpHgpYZUGqNL3GLhztrHcHgjonsC67GJ1SYkOvMGWZDTZa5yGUotg6tKo2ShXFbUfgLpKB7rh8rl1EDj2HYRdKFtL1GLErUkUSsn8G71yElftuO6wVujzO2wglt7ibcJvF7dxrVHARUXq-YUx6CzhR4QGsUJPO11tXqboJh-rnDy96PyLif_76c8u_5TXsEdBL39unew_xzuckJQdyxyC9aXi9PqBfpHy_JlB8QEft408i8A8RUaIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directional+lasing+in+resonant+semiconductor+nanoantenna+arrays&rft.jtitle=Nature+nanotechnology&rft.au=Ha%2C+Son+Tung&rft.au=Fu%2C+Yuan+Hsing&rft.au=Emani%2C+Naresh+Kumar&rft.au=Pan%2C+Zhenying&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=11&rft.spage=1042&rft.epage=1047&rft_id=info:doi/10.1038%2Fs41565-018-0245-5&rft.externalDocID=10_1038_s41565_018_0245_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon