Biomaterial-assisted targeted modulation of immune cells in cancer treatment
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening o...
Saved in:
Published in | Nature materials Vol. 17; no. 9; pp. 761 - 772 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
Immunotherapies have shown significant promise in cancer treatment. This Review discusses how a range of materials have been employed to enhance the effectiveness of these therapies by mediating their delivery and immunomodulatory activity. |
---|---|
AbstractList | The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment. The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment. Immunotherapies have shown significant promise in cancer treatment. This Review discusses how a range of materials have been employed to enhance the effectiveness of these therapies by mediating their delivery and immunomodulatory activity. The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment. |
Author | Wang, Hua Mooney, David J. |
Author_xml | – sequence: 1 givenname: Hua surname: Wang fullname: Wang, Hua organization: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering – sequence: 2 givenname: David J. surname: Mooney fullname: Mooney, David J. email: mooneyd@seas.harvard.edu organization: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30104668$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYOMOA_9AW6k4MZNNY-mTZc6-IIBN7oOmfZ2yNAmY5Iu_PemdlQY0MXNvZDvJId75mhirAGEzgm-JpiJG58RnrMUExErK9LyCM1iz9Msz_FkPxNC6RTNvd9iTAnn-QmaMkxwZMQMre607VQAp1WbKu-1D1AnQbkNDENn675VQVuT2CbRXdcbSCpoW59ok1TKVOCS4ECFDkw4RceNaj2c7fsCvT3cvy6f0tXL4_PydpVWGRMhHVzwbM0rxoYqAZclJnURb5sGcK0E5XVR16XI-VpkQEtVUBLPnFWFyAVboKvx3Z2z7z34IDvtB1fKgO29pFgIWlKesYheHqBb2zsT3UUqIrgoGInUxZ7q1x3Ucud0p9yH_N5TBMgIVM5676D5QQiWQxZyzELGLOSQhSyjpjjQVDp87TI4pdt_lXRU-viL2YD7Nf236BO15JtS |
CitedBy_id | crossref_primary_10_1002_adfm_202100386 crossref_primary_10_1016_j_ccr_2019_04_004 crossref_primary_10_3390_gels7040224 crossref_primary_10_1039_D4RA06965J crossref_primary_10_1016_j_copbio_2018_11_010 crossref_primary_10_1016_j_bioactmat_2024_02_028 crossref_primary_10_1002_adma_201904156 crossref_primary_10_1002_adma_202204034 crossref_primary_10_1016_j_addr_2020_06_007 crossref_primary_10_1038_s41435_023_00245_4 crossref_primary_10_1039_C9NR08086D crossref_primary_10_1007_s40820_019_0305_x crossref_primary_10_1016_j_carbpol_2021_118211 crossref_primary_10_1016_j_celrep_2020_108609 crossref_primary_10_1016_j_cej_2022_135505 crossref_primary_10_1002_anie_202008386 crossref_primary_10_1021_acsbiomaterials_9b00978 crossref_primary_10_1016_j_bioactmat_2020_09_002 crossref_primary_10_1038_s41467_022_31551_6 crossref_primary_10_1039_D1TB01654G crossref_primary_10_1038_s41551_021_00720_1 crossref_primary_10_1126_sciadv_abb5223 crossref_primary_10_2147_IJN_S442446 crossref_primary_10_3390_pharmaceutics14040709 crossref_primary_10_1016_j_ijbiomac_2024_134778 crossref_primary_10_1002_wnan_1797 crossref_primary_10_1021_acsanm_1c01913 crossref_primary_10_1002_adhm_202002081 crossref_primary_10_1002_smtd_202100115 crossref_primary_10_1007_s11095_024_03722_1 crossref_primary_10_1021_acsami_1c04638 crossref_primary_10_1016_j_addr_2020_06_019 crossref_primary_10_1016_j_biomaterials_2020_119795 crossref_primary_10_1016_j_mser_2019_01_001 crossref_primary_10_1021_acscentsci_9b00060 crossref_primary_10_3390_cells12172147 crossref_primary_10_1016_j_addr_2022_114136 crossref_primary_10_3390_pharmaceutics16010022 crossref_primary_10_1063_5_0125692 crossref_primary_10_1002_mabi_202400049 crossref_primary_10_1038_s41551_020_0517_x crossref_primary_10_1016_j_apmt_2020_100839 crossref_primary_10_1016_j_jconrel_2023_05_016 crossref_primary_10_1016_j_vaccine_2019_10_036 crossref_primary_10_1038_s41467_025_56148_7 crossref_primary_10_1002_adhm_202100299 crossref_primary_10_1002_smtd_202001191 crossref_primary_10_1016_j_biopha_2021_111333 crossref_primary_10_1126_sciadv_abe7174 crossref_primary_10_1016_j_mtnano_2022_100285 crossref_primary_10_1016_j_apsb_2023_06_010 crossref_primary_10_1002_adma_202007630 crossref_primary_10_1007_s12274_023_5786_8 crossref_primary_10_1016_j_addr_2020_10_004 crossref_primary_10_1021_acs_molpharmaceut_3c00846 crossref_primary_10_1186_s12916_022_02614_8 crossref_primary_10_1002_wnan_1574 crossref_primary_10_1039_C8CS00896E crossref_primary_10_3390_vaccines12040373 crossref_primary_10_1126_sciadv_adg6007 crossref_primary_10_1016_j_addr_2020_07_023 crossref_primary_10_1002_adma_202208059 crossref_primary_10_1016_j_addr_2023_114897 crossref_primary_10_1039_C9CS00271E crossref_primary_10_1002_adma_202418322 crossref_primary_10_1016_j_iotech_2023_100395 crossref_primary_10_1016_j_ccell_2022_01_006 crossref_primary_10_1016_j_cej_2022_140688 crossref_primary_10_1016_j_mattod_2023_06_001 crossref_primary_10_1016_j_addr_2023_114895 crossref_primary_10_1038_s41565_020_00822_y crossref_primary_10_3390_pharmaceutics13091338 crossref_primary_10_1016_j_jconrel_2024_01_072 crossref_primary_10_1016_j_nantod_2023_102061 crossref_primary_10_1002_smll_202307299 crossref_primary_10_1039_D3TB02842A crossref_primary_10_1186_s13045_020_00946_7 crossref_primary_10_3389_fbioe_2022_972790 crossref_primary_10_1038_s41568_019_0186_9 crossref_primary_10_34133_bmr_0045 crossref_primary_10_1073_pnas_2204621120 crossref_primary_10_1002_adma_201808303 crossref_primary_10_1007_s12033_020_00296_2 crossref_primary_10_3389_fchem_2020_631351 crossref_primary_10_1016_j_biomaterials_2020_120584 crossref_primary_10_1016_j_bioactmat_2021_08_014 crossref_primary_10_1093_nsr_nwab172 crossref_primary_10_1021_acs_nanolett_2c00185 crossref_primary_10_1016_j_cej_2022_138139 crossref_primary_10_1002_adma_202407525 crossref_primary_10_1021_acsnano_9b00892 crossref_primary_10_1039_D4CS00450G crossref_primary_10_1038_s41563_024_01825_z crossref_primary_10_1038_s41563_020_0680_1 crossref_primary_10_3389_fonc_2022_1020088 crossref_primary_10_1186_s12951_021_01146_2 crossref_primary_10_1002_adtp_202200234 crossref_primary_10_3389_fchem_2020_597806 crossref_primary_10_1002_adma_202206370 crossref_primary_10_1016_j_apmt_2024_102299 crossref_primary_10_1002_wnan_1632 crossref_primary_10_1016_j_pmatsci_2023_101230 crossref_primary_10_1002_advs_201903441 crossref_primary_10_1002_adhm_202303294 crossref_primary_10_1016_j_nantod_2020_100923 crossref_primary_10_1021_acsnano_1c05392 crossref_primary_10_2147_IJN_S372048 crossref_primary_10_1039_D3MA01132A crossref_primary_10_1016_j_biomaterials_2021_120875 crossref_primary_10_1016_j_ijpharm_2019_118636 crossref_primary_10_1021_acsnano_3c08559 crossref_primary_10_3389_fonc_2022_834934 crossref_primary_10_1016_j_jconrel_2023_07_048 crossref_primary_10_1002_anie_202214992 crossref_primary_10_1002_adtp_201900215 crossref_primary_10_1039_C9TB02061F crossref_primary_10_1039_D4TB00769G crossref_primary_10_1016_j_biomaterials_2019_119599 crossref_primary_10_1021_acsnano_3c08792 crossref_primary_10_1002_adtp_201800157 crossref_primary_10_1016_j_biomaterials_2024_122474 crossref_primary_10_1021_acsbiomaterials_4c00412 crossref_primary_10_1016_j_engreg_2021_09_002 crossref_primary_10_1016_j_jconrel_2023_12_007 crossref_primary_10_3389_fimmu_2020_01633 crossref_primary_10_1002_adfm_202010637 crossref_primary_10_1016_j_canlet_2020_05_019 crossref_primary_10_1002_ange_202214992 crossref_primary_10_3390_pharmaceutics16111362 crossref_primary_10_1039_D0TB00436G crossref_primary_10_1016_j_engmed_2024_100038 crossref_primary_10_1002_adma_202100616 crossref_primary_10_1039_C9BM00393B crossref_primary_10_3389_fcell_2024_1514595 crossref_primary_10_1021_acsabm_3c00808 crossref_primary_10_1021_acsbiomaterials_4c02036 crossref_primary_10_1088_1748_605X_abd0c4 crossref_primary_10_1016_j_canlet_2019_08_009 crossref_primary_10_1002_anie_201912312 crossref_primary_10_1016_j_bioactmat_2020_12_010 crossref_primary_10_1002_ange_202305200 crossref_primary_10_1021_acsnano_9b07984 crossref_primary_10_1073_pnas_2107535118 crossref_primary_10_1002_adma_201902542 crossref_primary_10_1021_acsnano_1c02103 crossref_primary_10_1016_j_cobme_2018_12_004 crossref_primary_10_1039_C9NR08958F crossref_primary_10_1002_mba2_32 crossref_primary_10_1038_s41551_021_00826_6 crossref_primary_10_1007_s12274_020_3175_0 crossref_primary_10_1007_s11426_018_9397_5 crossref_primary_10_1021_acsnano_2c11037 crossref_primary_10_3390_polym14214753 crossref_primary_10_1002_bmm2_12039 crossref_primary_10_3390_vaccines9080935 crossref_primary_10_1002_advs_202200756 crossref_primary_10_1038_s41401_020_0414_6 crossref_primary_10_1002_adma_202309843 crossref_primary_10_1039_D0MA00957A crossref_primary_10_1186_s12951_022_01248_5 crossref_primary_10_1016_j_cej_2021_132329 crossref_primary_10_1002_adfm_202011171 crossref_primary_10_1002_adma_201900927 crossref_primary_10_1002_ange_201912312 crossref_primary_10_1002_adma_202003214 crossref_primary_10_1002_adma_202004788 crossref_primary_10_1002_anie_202305200 crossref_primary_10_1002_adfm_201806087 crossref_primary_10_1002_adma_202003458 crossref_primary_10_1021_acs_nanolett_9b00584 crossref_primary_10_1063_5_0166848 crossref_primary_10_1016_j_apmt_2021_101150 crossref_primary_10_1016_j_actbio_2021_08_014 crossref_primary_10_1016_j_jconrel_2022_02_023 crossref_primary_10_1016_j_omtn_2021_10_009 crossref_primary_10_1002_adhm_201801320 crossref_primary_10_1016_j_jconrel_2020_10_019 crossref_primary_10_1016_j_scib_2020_04_012 crossref_primary_10_3390_bios14030117 crossref_primary_10_1038_s41467_023_40270_5 crossref_primary_10_1002_adma_202208923 crossref_primary_10_1016_j_jconrel_2025_01_065 crossref_primary_10_3389_fimmu_2021_609762 crossref_primary_10_1002_mabi_202100039 crossref_primary_10_1016_j_nantod_2022_101543 crossref_primary_10_1016_j_jconrel_2022_10_023 crossref_primary_10_1039_C8CC09151J crossref_primary_10_1016_j_nantod_2023_102112 crossref_primary_10_1002_term_3200 crossref_primary_10_1038_s41568_024_00699_2 crossref_primary_10_1002_advs_202304124 crossref_primary_10_1016_j_biomaterials_2025_123274 crossref_primary_10_1126_sciadv_aaw6870 crossref_primary_10_1002_macp_202100443 crossref_primary_10_1021_acs_biomac_9b01351 crossref_primary_10_1016_j_smaim_2021_07_007 crossref_primary_10_1039_D2TB00337F crossref_primary_10_1007_s13346_021_00923_8 crossref_primary_10_1021_acsnano_2c11691 crossref_primary_10_1002_advs_202101184 crossref_primary_10_1002_advs_202200027 crossref_primary_10_1002_adma_202100106 crossref_primary_10_1155_2020_8459496 crossref_primary_10_1016_j_hsr_2023_100140 crossref_primary_10_1016_j_smim_2021_101541 crossref_primary_10_1016_j_nantod_2019_05_004 crossref_primary_10_1002_agt2_194 crossref_primary_10_1016_j_addr_2023_115122 crossref_primary_10_1089_ten_tec_2023_0090 crossref_primary_10_1002_adma_202308894 crossref_primary_10_1039_D3BM01894F crossref_primary_10_1002_ange_202008386 crossref_primary_10_1016_j_jconrel_2022_09_015 crossref_primary_10_1021_acs_chemrev_2c00179 crossref_primary_10_1021_acsnano_3c02370 crossref_primary_10_1007_s11814_021_0985_z crossref_primary_10_1016_j_cej_2023_142495 crossref_primary_10_1016_j_jconrel_2021_08_027 crossref_primary_10_1021_accountsmr_4c00105 crossref_primary_10_1039_D4CC00792A crossref_primary_10_3390_ijms24021231 crossref_primary_10_1016_j_canlet_2019_06_005 crossref_primary_10_1021_acs_biomac_9b01129 crossref_primary_10_1016_j_addr_2021_114046 crossref_primary_10_1016_j_cej_2021_129192 crossref_primary_10_1016_j_polymer_2024_127230 crossref_primary_10_1021_acsnano_9b04837 crossref_primary_10_3389_fimmu_2019_00931 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1021_acsnano_8b05950 crossref_primary_10_1016_j_addr_2022_114401 crossref_primary_10_1021_acsnano_0c10396 crossref_primary_10_1039_D3TB00221G crossref_primary_10_1016_j_nantod_2021_101163 crossref_primary_10_1021_acsami_1c08285 crossref_primary_10_1039_D0NR06182D crossref_primary_10_1186_s12935_022_02687_8 crossref_primary_10_1002_adfm_202316133 crossref_primary_10_1016_j_xcrm_2023_101113 crossref_primary_10_1016_j_nantod_2019_100773 crossref_primary_10_1016_j_jconrel_2019_05_008 crossref_primary_10_1016_j_ejca_2024_114224 crossref_primary_10_1080_2162402X_2021_1897295 crossref_primary_10_1039_C9RA00818G crossref_primary_10_1002_wnan_1612 crossref_primary_10_1016_j_biopha_2023_115048 crossref_primary_10_1002_adfm_202108971 crossref_primary_10_3389_fimmu_2021_771551 crossref_primary_10_1021_acsami_2c01256 crossref_primary_10_1038_s41467_020_14906_9 crossref_primary_10_1002_adhm_202101651 crossref_primary_10_1039_D0TB00892C crossref_primary_10_1016_j_biomaterials_2021_120893 crossref_primary_10_18632_aging_202264 crossref_primary_10_3389_fphar_2022_954955 crossref_primary_10_1021_acs_chemrev_0c00895 crossref_primary_10_1186_s12951_023_01977_1 crossref_primary_10_1021_acs_accounts_0c00313 crossref_primary_10_1002_adfm_201906922 crossref_primary_10_1038_s41596_023_00887_8 crossref_primary_10_3390_nano13243144 crossref_primary_10_1016_j_ijrobp_2021_09_010 crossref_primary_10_1186_s12951_025_03154_y crossref_primary_10_1017_erm_2021_25 crossref_primary_10_37349_emed_2020_00031 crossref_primary_10_4049_jimmunol_2300482 crossref_primary_10_1016_j_actbio_2024_07_031 crossref_primary_10_1093_nsr_nwae018 crossref_primary_10_1002_ange_202316606 crossref_primary_10_1039_D1SC05319A crossref_primary_10_1021_acs_biomac_9b01263 crossref_primary_10_1016_j_drup_2024_101098 crossref_primary_10_1039_D0NH00267D crossref_primary_10_1080_17425247_2024_2388832 crossref_primary_10_1002_advs_201900101 crossref_primary_10_1016_j_actbio_2019_02_012 crossref_primary_10_1016_j_addr_2021_114107 crossref_primary_10_1038_s41467_023_40886_7 crossref_primary_10_1016_j_cell_2021_02_030 crossref_primary_10_1016_j_lfs_2023_121997 crossref_primary_10_1021_jacs_1c08861 crossref_primary_10_1039_D2CS00247G crossref_primary_10_1039_C8BM01470A crossref_primary_10_1155_2021_6663035 crossref_primary_10_1021_acscentsci_2c00227 crossref_primary_10_1021_acsnano_3c03274 crossref_primary_10_1126_scitranslmed_aaz6606 crossref_primary_10_1002_advs_202002365 crossref_primary_10_1007_s12274_022_4809_1 crossref_primary_10_1016_j_apmt_2021_101110 crossref_primary_10_1016_j_jconrel_2024_12_076 crossref_primary_10_1016_j_engreg_2021_06_001 crossref_primary_10_3390_vaccines12060649 crossref_primary_10_3390_biomedicines12071473 crossref_primary_10_1126_sciadv_abd1631 crossref_primary_10_1002_ange_202111093 crossref_primary_10_1021_acsnano_1c08826 crossref_primary_10_1002_smll_202206228 crossref_primary_10_1002_adma_201901633 crossref_primary_10_1002_adma_202110340 crossref_primary_10_3389_fmats_2025_1534127 crossref_primary_10_37349_emed_2021_00031 crossref_primary_10_1021_acs_accounts_0c00341 crossref_primary_10_1007_s13233_021_9095_3 crossref_primary_10_1016_j_actbio_2023_04_043 crossref_primary_10_1038_s12276_024_01353_5 crossref_primary_10_1016_j_actbio_2022_08_042 crossref_primary_10_1002_advs_201903164 crossref_primary_10_1002_adfm_202416813 crossref_primary_10_1038_s41551_020_00644_2 crossref_primary_10_1126_science_abq6990 crossref_primary_10_1016_j_biomaterials_2019_119515 crossref_primary_10_1016_j_biomaterials_2019_119633 crossref_primary_10_1002_cbic_202100347 crossref_primary_10_1021_acs_chemrev_9b00833 crossref_primary_10_1016_j_nantod_2023_102042 crossref_primary_10_3389_fphar_2020_00960 crossref_primary_10_3390_cells9020419 crossref_primary_10_1002_mabi_202100087 crossref_primary_10_1038_s41467_023_43914_8 crossref_primary_10_1002_adma_202004172 crossref_primary_10_1002_adfm_202100088 crossref_primary_10_1002_adhm_202100412 crossref_primary_10_1016_j_jconrel_2021_11_043 crossref_primary_10_1002_adhm_202400235 crossref_primary_10_1016_j_chembiol_2019_12_007 crossref_primary_10_1016_j_bbiosy_2023_100073 crossref_primary_10_1021_acsapm_1c01216 crossref_primary_10_1142_S2810922822300033 crossref_primary_10_1016_j_copbio_2021_10_004 crossref_primary_10_3390_ijms25073849 crossref_primary_10_1021_acsbiomaterials_1c01274 crossref_primary_10_1021_acs_jmedchem_9b00511 crossref_primary_10_1016_j_mtnano_2019_100029 crossref_primary_10_1016_j_nano_2021_102369 crossref_primary_10_1039_D3TB01677C crossref_primary_10_3389_fphar_2021_679602 crossref_primary_10_1126_sciadv_abb4639 crossref_primary_10_1016_j_biomaterials_2022_121972 crossref_primary_10_1016_j_biomaterials_2019_119649 crossref_primary_10_1002_adma_201803953 crossref_primary_10_1016_j_apsb_2021_03_007 crossref_primary_10_1002_adfm_201903686 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1002_admt_202300688 crossref_primary_10_1002_anie_202316606 crossref_primary_10_1038_s41467_021_27434_x crossref_primary_10_1039_D2CS00486K crossref_primary_10_1002_jbm_a_36890 crossref_primary_10_1016_j_jconrel_2024_05_008 crossref_primary_10_1039_D3MD00397C crossref_primary_10_1002_adma_202202168 crossref_primary_10_1016_j_ctarc_2021_100303 crossref_primary_10_3390_pharmaceutics16040516 crossref_primary_10_1016_j_intimp_2024_112251 crossref_primary_10_3390_molecules25030490 crossref_primary_10_1016_j_ccr_2023_215332 crossref_primary_10_1038_s44222_024_00214_0 crossref_primary_10_3389_fonc_2023_1200646 crossref_primary_10_1088_2057_1976_ad4e3a crossref_primary_10_3390_cells14030203 crossref_primary_10_1016_j_cobme_2019_05_004 crossref_primary_10_1016_j_biomaterials_2022_121843 crossref_primary_10_1016_j_nantod_2023_101853 crossref_primary_10_1021_accountsmr_0c00079 crossref_primary_10_1007_s12195_023_00770_2 crossref_primary_10_1016_j_nantod_2022_101673 crossref_primary_10_1002_adfm_202002621 crossref_primary_10_1002_adma_202007663 crossref_primary_10_1002_adma_202210452 crossref_primary_10_1016_j_preme_2024_100013 crossref_primary_10_1038_s41467_019_11730_8 crossref_primary_10_1039_C8TB03162B crossref_primary_10_3389_fdmed_2024_1509775 crossref_primary_10_1002_anie_202111093 |
Cites_doi | 10.1016/S0005-2736(97)00122-3 10.1038/nbt.3104 10.1021/cr9001929 10.1038/mt.2008.11 10.1016/j.jconrel.2013.05.037 10.1172/JCI81083 10.1016/j.jconrel.2011.11.013 10.1158/1078-0432.CCR-10-3126 10.1038/nmat2357 10.1038/nbt.3071 10.1186/1479-5876-11-246 10.1016/j.immuni.2014.06.010 10.1006/clim.2000.4902 10.4049/jimmunol.1701155 10.3389/fimmu.2012.00013 10.1038/nm.2306 10.1021/nn900715g 10.1038/nmat3550 10.1016/S0952-7915(00)00144-8 10.1038/nbt.4047 10.1016/j.immuni.2008.09.013 10.1016/j.jconrel.2016.05.033 10.3390/vaccines3030662 10.1016/j.copbio.2016.02.001 10.1038/nri2506 10.1172/JCI81137 10.1016/j.jconrel.2015.03.023 10.1016/j.jconrel.2006.01.006 10.1200/JCO.2014.59.4358 10.1038/nmat2960 10.1002/adma.201402996 10.1126/scitranslmed.aar1916 10.1016/j.jconrel.2017.02.031 10.1158/0008-5472.CAN-09-0400 10.2337/db16-0946 10.1016/j.biomaterials.2015.04.043 10.1126/scitranslmed.aan0401 10.1038/nrclinonc.2014.111 10.1038/ncomms8556 10.1111/cas.12212 10.1016/j.jbiotec.2018.02.004 10.1016/j.biomaterials.2016.09.034 10.1021/acs.nanolett.5b05030 10.1038/s41551-016-0011 10.1016/j.canlet.2017.11.014 10.1038/nmat3355 10.1038/ncomms12499 10.1080/2162402X.2017.1414119 10.1158/1078-0432.CCR-15-1631 10.1016/j.biomaterials.2016.04.010 10.1126/science.aaa4971 10.1080/21645515.2015.1105415 10.1021/acs.chemrev.5b00109 10.1016/j.jim.2010.02.004 10.1016/j.bbrc.2007.12.112 10.1021/acs.nanolett.7b01193 10.1038/nrclinonc.2017.148 10.1021/nn502975r 10.1089/10430349950016375 10.1371/journal.pone.0166680 10.1371/journal.pone.0061646 10.1038/ncomms13193 10.1038/nrc.2016.36 10.1002/smll.201201470 10.1021/acsnano.5b06779 10.1126/scitranslmed.aan3682 10.1158/1078-0432.CCR-11-0951 10.1038/nrclinonc.2016.25 10.2147/BTT.S55196 10.1186/2051-1426-1-S1-P128 10.1371/journal.pone.0050946 10.1038/sj.bjc.6603240 10.1038/nnano.2017.113 10.1158/1078-0432.CCR-04-2111 10.1002/adhm.201500618 10.1021/nn405520d 10.1038/nnano.2016.168 10.1038/nbt.3119 10.1126/scitranslmed.3000359 10.1038/s41563-018-0028-2 10.1038/nature13954 10.1016/j.addr.2017.05.011 10.1016/S0140-6736(09)61248-4 10.1080/2162402X.2015.1026529 10.1016/j.addr.2012.04.005 10.1007/s11095-010-0361-x 10.1073/pnas.90.8.3539 10.1186/2051-1426-1-10 10.1038/nature12978 10.1038/nbt.3371 10.1038/nmat4822 10.1021/mp500589c 10.1126/science.aaf1328 10.1016/j.biomaterials.2013.09.050 10.1056/NEJMoa1001294 10.1016/j.biomaterials.2014.10.053 10.1126/science.aaa8172 10.1016/j.addr.2017.04.010 10.1016/j.cellimm.2007.07.002 10.1186/1479-5876-10-156 10.1038/82231 10.4049/jimmunol.179.7.4910 10.1080/2162402X.2015.1074374 10.1016/j.tibtech.2014.06.007 10.1021/ja2084338 10.1021/acsnano.7b05299 10.1007/s00262-015-1702-8 10.1002/adfm.201502139 10.1080/08830180600992472 10.1016/j.biomaterials.2009.06.001 10.1016/j.addr.2017.04.011 10.1038/nnano.2014.154 10.1158/1538-7445.AM2017-CT034 10.1158/2326-6066.CIR-14-0126 10.1038/nnano.2017.52 10.1002/adma.201706098 10.1016/j.jconrel.2014.02.001 10.1038/nm.2198 10.1021/jacs.6b09538 10.1002/adhm.201600773 10.1038/nature09737 10.1016/0163-7258(94)90023-X 10.1172/JCI59643 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Sep 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Sep 2018 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-018-0147-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Proquest Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 772 |
ExternalDocumentID | 30104668 10_1038_s41563_018_0147_9 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: 1 U01 CA214369 – fundername: NIH HHS grantid: 1 R01 EB023287 – fundername: NIH HHS grantid: 1 R01 CA223255 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c438t-215554b5c335c339e09901d7c43ffe0da825d7dd9865b84e29a72129a63c78683 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Sun Aug 24 03:53:28 EDT 2025 Fri Jul 25 09:04:26 EDT 2025 Thu Apr 03 07:00:44 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 02:13:59 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-215554b5c335c339e09901d7c43ffe0da825d7dd9865b84e29a72129a63c78683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 ObjectType-Review-3 content type line 23 |
PMID | 30104668 |
PQID | 2092507731 |
PQPubID | 27576 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2088292543 proquest_journals_2092507731 pubmed_primary_30104668 crossref_primary_10_1038_s41563_018_0147_9 crossref_citationtrail_10_1038_s41563_018_0147_9 springer_journals_10_1038_s41563_018_0147_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ParkJCombination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapyNat. Mater.20121189590510.1038/nmat33551:CAS:528:DC%2BC38XhtVeht7fL LauxIResponse differences between human CD4+ and CD8+ T-cells during CD28 co-stimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during agingClin. Immunol.20009618719710.1006/clim.2000.49021:CAS:528:DC%2BD3cXntFSiurk%3D MinYAntigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapyNat. Nanotech.20171287788210.1038/nnano.2017.1131:CAS:528:DC%2BC2sXhtVGnu7%2FJ AliOAEmerichDDranoffGMooneyDJIn situ regulation of DC subsets and T cells mediates tumour regression in miceSci. Transl. Med.200918ra1910.1126/scitranslmed.30003591:CAS:528:DC%2BC3cXhtVWkt73P UgelSIn vivo administration of artificial antigen presenting cells activates low avidity T cells for treatment of cancerCancer Res.2009699376938410.1158/0008-5472.CAN-09-04001:CAS:528:DC%2BD1MXhsFGrtbnK FadelTRA carbon nanotube–polymer composite for T-cell therapyNat. Nanotech.2014963964710.1038/nnano.2014.1541:CAS:528:DC%2BC2cXht1Gqt7%2FI ZhengYIn vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomesJ. Control. Release201317242643510.1016/j.jconrel.2013.05.0371:CAS:528:DC%2BC3sXhtVehtrfP SicaAMantovaniAMacrophage plasticity and polarization: in vivo veritasThe J. Clin. Investig.201212278779510.1172/JCI596431:CAS:528:DC%2BC38XjsV2ms7g%3D DranoffGVaccination with irradiated tumour cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumour immunityProc. Natl Acad. Sci. USA1993903539354310.1073/pnas.90.8.35391:CAS:528:DyaK3sXktVKqt78%3D SunshineJCPericaKSchneckJPGreenJJParticle shape dependence of CD8+ T cell activation by artificial antigen presenting cellsBiomaterials20143526927710.1016/j.biomaterials.2013.09.0501:CAS:528:DC%2BC3sXhsFOhsrbE MohsenMODelivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccinationJ. Control. Release20172519210010.1016/j.jconrel.2017.02.0311:CAS:528:DC%2BC2sXjvFahu74%3D ZhangH4–1BB is superior to CD28 co-stimulation for generating CD8(+) cytotoxic lymphocytes for adoptive immunotherapyJ. Immunol.20071794910491810.4049/jimmunol.179.7.49101:CAS:528:DC%2BD2sXhtVCrurfP FlachTLAlum interaction with dendritic cell membrane lipids is essential for its adjuvanticityNat. Med.20111747948710.1038/nm.23061:CAS:528:DC%2BC3MXjtVGmt70%3D IshiharaJMatrix-binding checkpoint immunotherapies enhance antitumour efficacy and reduce adverse eventsSci. Transl. Med.20179eaan040110.1126/scitranslmed.aan0401 VerbekeCSMooneyDJInjectable, pore-forming hydrogels for in vivo enrichment of immature dendritic cellsAdv. Healthc. Mater.201542677268710.1002/adhm.2015006181:CAS:528:DC%2BC2MXhs1Ogs7fK ShvedovaAACarbon nanotubes enhance metastatic growth of lung carcinoma via up‐regulation of myeloid‐derived suppressor cellsSmall201391691169510.1002/smll.2012014701:CAS:528:DC%2BC38Xhtlylt7jO MuellerSNTianSDeSimoneJMRapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunityMol. Pharm.2015121356136510.1021/mp500589c1:CAS:528:DC%2BC2MXlsVShtLk%3D NoyRPollardJeffrey W. Tumor-associated macrophages: from mechanisms to therapyImmunity201441496110.1016/j.immuni.2014.06.0101:CAS:528:DC%2BC2cXhtFOrsLvL KhalilDNSmithELBrentjensRJWolchokJDThe future of cancer treatment: immunomodulation, CARs and combination immunotherapyNat. Rev. Clin. Oncol.20161327329010.1038/nrclinonc.2016.251:CAS:528:DC%2BC28Xkt1Gjt7w%3D SongMLiuTShiCZhangXChenXBioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumour-associated macrophages toward M1-like phenotype and attenuating tumour hypoxiaACS Nano20161063364710.1021/acsnano.5b067791:CAS:528:DC%2BC2MXhvFOrur7F ChenPDendritic cell targeted vaccines: Recent progresses and challengesHum. Vaccines Immunother.20161261262210.1080/21645515.2015.1105415 FrancisDMThomasSNProgress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapyAdv. Drug Deliv. Rev.201715334210.1016/j.addr.2017.04.0111:CAS:528:DC%2BC2sXntVKrtb4%3D Caminschi, I., Maraskovsky, E. & Heath, W. R. Targeting dendritic cells in vivo for cancer therapy. Front. Immunol. https://doi.org/10.3389/fimmu.2012.00013 (2012). LiYTumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacyClin. Cancer Res.2011177047705710.1158/1078-0432.CCR-11-09511:CAS:528:DC%2BC3MXhsVKht7vE SinghASuriSRoyKIn-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cellsBiomaterials2009305187520010.1016/j.biomaterials.2009.06.0011:CAS:528:DC%2BD1MXpt1Cit7k%3D RekersNHThe immunocytokine L19-IL2: An interplay between radiotherapy and long-lasting systemic antitumour immune responsesOncoImmunology20187141411910.1080/2162402X.2017.1414119 BerinsteinNLSurvivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patientsOncoimmunology20154e102652910.1080/2162402X.2015.10265291:CAS:528:DC%2BC28XhsFKisLo%3D LynnGMIn vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicityNat. Biotechnol.2015331201121010.1038/nbt.33711:CAS:528:DC%2BC2MXhslantL%2FO LuoMA STING-activating nanovaccine for cancer immunotherapyNat. Nanotech.20171264865410.1038/nnano.2017.521:CAS:528:DC%2BC2sXmvVCmtr4%3D EggermontLJPaulisLETelJFigdorCGTowards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cellsTrends Biotechnol.20143245646510.1016/j.tibtech.2014.06.0071:CAS:528:DC%2BC2cXhtFSlsrnJ StephanMTMoonJJUmSHBershteynAIrvineDJTherapeutic cell engineering with surface-conjugated synthetic nanoparticlesNat. Med.2010161035104110.1038/nm.21981:CAS:528:DC%2BC3cXhtVaisLzI DeMuthPCPolymer multilayer tattooing for enhanced DNA vaccinationNat. Mater.20131236737610.1038/nmat35501:CAS:528:DC%2BC3sXhsVaqt7k%3D AliOALewinSADranoffGMooneyDJVaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumour eradicationCancer Immunol. Res.201649510010.1158/2326-6066.CIR-14-01261:CAS:528:DC%2BC28Xit1Kqs7g%3D RahimianSPolymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancerBiomaterials201561334010.1016/j.biomaterials.2015.04.0431:CAS:528:DC%2BC2MXotFCqt70%3D FreiburghausCSynergistic effects of agonistic co-stimulatory antibodies adsorbed to amphiphilic poly (γ-glutamic acid) nanoparticlesJ. Immunother. Cancer20131P12810.1186/2051-1426-1-S1-P128 CopierJDalgleishAOverview of tumour cell–based vaccinesInt. Rev. Immunol.20062529731910.1080/088301806009924721:CAS:528:DC%2BD2sXisl2ltg%3D%3D UmekiYInduction of potent antitumour immunity by sustained release of cationic antigen from a DNA‐based hydrogel with adjuvant activityAdv. Funct. Mater.2015255758576710.1002/adfm.2015021391:CAS:528:DC%2BC2MXhtlCjtbfM TumehPCPD-1 blockade induces responses by inhibiting adaptive immune resistanceNature201451556857110.1038/nature139541:CAS:528:DC%2BC2cXitFanu7jL MillingLZhangYIrvineDJDelivering safer immunotherapies for cancerAdv. Drug Deliv. Rev.20171147910110.1016/j.addr.2017.05.0111:CAS:528:DC%2BC2sXhtVantLnO ChenQPhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyNat. Commun.2016710.1038/ncomms131931:CAS:528:DC%2BC28XhslGrtrzN ZhangQwPrognostic significance of tumour-associated macrophages in solid tumour: a meta-analysis of the literaturePLOS One20127e5094610.1371/journal.pone.00509461:CAS:528:DC%2BC3sXnsVygsg%3D%3D PaavonenJEfficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young womenLancet200937430131410.1016/S0140-6736(09)61248-41:CAS:528:DC%2BD1MXovF2kt78%3D ThelinMAIn vivo enrichment of diabetogenic T cellsDiabetes2017662220222910.2337/db16-09461:CAS:528:DC%2BC2sXhvFKltrnJ WangCImmunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasisAdv. Mater.2014268154816210.1002/adma.2014029961:CAS:528:DC%2BC2cXitFWjsrjM KageyamaSDose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patientsJ. Transl. Med.20131124624610.1186/1479-5876-11-2461:CAS:528:DC%2BC2cXislOrsbk%3D BencherifSAInjectable cryogel-based whole-cell cancer vaccinesNat. Commun.2015610.1038/ncomms85561:CAS:528:DC%2BC2MXhsVKhtbbN HeCCore-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapyNat. Commun.2016710.1038/ncomms124991:CAS:528:DC%2BC28Xhtlyltr7N Combination vaccine immunotherapy (dribbles) for patients with definitively-treated stage III non-small cell lung cancer. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01909752 (2017). NeelapuSSChimeric antigen receptor T-cell therapy—assessment and management of toxicitiesNat. Rev. Clin. Oncol.201815476210.1038/nrclinonc.2017.1481:CAS:528:DC%2BC2sXhsFWnur%2FN PucciFSCS macrophages suppress melanoma by restricting tumour-derived vesicle–B cell interactionsScience201635224224610.1126/science.aaf13281:CAS:528:DC%2BC28XlsFSmurg%3D NgGReceptor-independent, direct membrane binding leads to cell-surface lipid sorting and syk kinase activation in dendritic cellsImmunity20082980781810.1016/j.immuni.2008.09.0131:CAS:528:DC%2BD1cXhsVaqsL7L RosaliaRACD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumour responsesBiomaterials201540889710.1016/j.bioma M Nishikawa (147_CR67) 2014; 180 Y Min (147_CR96) 2017; 12 ST Reddy (147_CR37) 2006; 112 147_CR44 147_CR48 NL Berinstein (147_CR46) 2012; 10 ER Steenblock (147_CR76) 2008; 16 B Wiemann (147_CR19) 1994; 64 MJ Ernsting (147_CR113) 2015; 206 147_CR39 MT Stephan (147_CR15) 2010; 16 J Kim (147_CR58) 2015; 33 OA Ali (147_CR54) 2009; 8 CD Walkey (147_CR30) 2012; 134 T Shimizu (147_CR101) 2008; 367 S Srivastava (147_CR7) 2018; 200 CS Verbeke (147_CR63) 2017; 6 C Oussoren (147_CR36) 1997; 1328 147_CR53 J Copier (147_CR22) 2006; 25 SN Mueller (147_CR38) 2015; 12 AA Shvedova (147_CR121) 2013; 9 147_CR59 147_CR57 GM Lynn (147_CR28) 2015; 33 Q Chen (147_CR14) 2016; 7 JG Gribben (147_CR50) 2005; 11 S Rahimian (147_CR89) 2015; 61 AM Rasmussen (147_CR80) 2010; 355 Qw Zhang (147_CR108) 2012; 7 YC Kim (147_CR69) 2012; 64 R Noy (147_CR107) 2014; 41 A Singh (147_CR60) 2009; 30 NL Berinstein (147_CR45) 2015; 4 C Wang (147_CR94) 2014; 26 P Sharma (147_CR127) 2015; 348 S Kageyama (147_CR49) 2013; 11 Y Mi (147_CR129) 2018; 30 MAM Gijs (147_CR81) 2010; 110 I Laux (147_CR82) 2000; 96 MA Cheever (147_CR24) 2011; 17 C Wang (147_CR13) 2016; 16 H Zhang (147_CR83) 2007; 179 SB Stephan (147_CR87) 2014; 33 S Shen (147_CR112) 2017; 17 DJ Irvine (147_CR11) 2015; 115 C He (147_CR97) 2016; 7 147_CR1 Y Fan (147_CR10) 2015; 3 CG Park (147_CR68) 2018; 10 K Perica (147_CR78) 2014; 8 SW Dow (147_CR102) 1999; 10 TR Fadel (147_CR79) 2014; 9 C Wang (147_CR91) 2018; 10 TN Schumacher (147_CR130) 2015; 348 MA Postow (147_CR3) 2015; 33 A Sexton (147_CR65) 2009; 3 SP Kasturi (147_CR31) 2011; 470 DN Khalil (147_CR2) 2016; 13 J Park (147_CR103) 2012; 11 OA Ali (147_CR99) 2016; 4 DH Charych (147_CR106) 2016; 22 RA Rosalia (147_CR40) 2015; 40 IC Kourtis (147_CR123) 2013; 8 RA Jabulowsky (147_CR43) 2017; 77 Y Umeki (147_CR66) 2015; 25 B Prakken (147_CR77) 2000; 6 I Melero (147_CR5) 2014; 11 A Sica (147_CR109) 2012; 122 AS Cheung (147_CR84) 2018; 36 DI Gabrilovich (147_CR4) 2009; 9 PC DeMuth (147_CR70) 2013; 12 M Song (147_CR120) 2016; 10 SL Topalian (147_CR126) 2016; 16 ST Koshy (147_CR12) 2016; 40 D Muraoka (147_CR25) 2014; 8 L Jeanbart (147_CR124) 2015; 64 F Teng (147_CR6) 2018; 414 J Ishihara (147_CR93) 2017; 9 PC DeMuth (147_CR61) 2013; 12 N Benne (147_CR29) 2016; 234 147_CR100 P Chen (147_CR41) 2016; 12 S Ugel (147_CR85) 2009; 69 DM Francis (147_CR73) 2017; 15 K Ohnishi (147_CR115) 2013; 104 Y Wang (147_CR117) 2017; 112 OA Ali (147_CR55) 2009; 1 F Pucci (147_CR114) 2016; 352 T Shiota (147_CR116) 2016; 11 AS Schmid (147_CR104) 2018; 271 NH Rekers (147_CR105) 2018; 7 N Mach (147_CR21) 2000; 12 Z Huang (147_CR118) 2012; 158 SS Neelapu (147_CR8) 2018; 15 R Kuai (147_CR27) 2017; 16 R Meir (147_CR74) 2017; 11 MS Sasso (147_CR125) 2016; 96 OA Ali (147_CR56) 2011; 28 C Freiburghaus (147_CR128) 2013; 1 TJ Moyer (147_CR16) 2016; 126 JM Pitt (147_CR51) 2016; 126 SA Bencherif (147_CR64) 2015; 6 C Shen (147_CR86) 2007; 247 JJ Moon (147_CR26) 2011; 10 S Zanganeh (147_CR119) 2016; 11 G Ng (147_CR34) 2008; 29 M Luo (147_CR35) 2017; 12 LJ Eggermont (147_CR71) 2014; 32 M Karkada (147_CR47) 2014; 8 MO Mohsen (147_CR32) 2017; 251 JC Sunshine (147_CR75) 2014; 35 JS Weber (147_CR9) 2015; 33 TL Flach (147_CR33) 2011; 17 X Duan (147_CR95) 2016; 138 J Paavonen (147_CR18) 2009; 374 SM Zeisberger (147_CR111) 2006; 95 C Wang (147_CR92) 2017; 1 147_CR122 C Ngambenjawong (147_CR110) 2017; 114 Y Li (147_CR90) 2016; 5 Y Li (147_CR52) 2011; 17 L Milling (147_CR17) 2017; 114 Y Zheng (147_CR72) 2013; 172 G Dranoff (147_CR20) 1993; 90 PW Kantoff (147_CR23) 2010; 363 H Liu (147_CR42) 2014; 507 CS Verbeke (147_CR62) 2015; 4 MA Thelin (147_CR88) 2017; 66 PC Tumeh (147_CR98) 2014; 515 |
References_xml | – reference: ChenPDendritic cell targeted vaccines: Recent progresses and challengesHum. Vaccines Immunother.20161261262210.1080/21645515.2015.1105415 – reference: SteenblockERFahmyTMA comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cellsMol. Ther.20081676577210.1038/mt.2008.111:CAS:528:DC%2BD1cXjslCnsb4%3D – reference: ZhangH4–1BB is superior to CD28 co-stimulation for generating CD8(+) cytotoxic lymphocytes for adoptive immunotherapyJ. Immunol.20071794910491810.4049/jimmunol.179.7.49101:CAS:528:DC%2BD2sXhtVCrurfP – reference: GijsMAMLacharmeFLehmannUMicrofluidic applications of magnetic particles for biological analysis and catalysisChem. Rev.20101101518156310.1021/cr90019291:CAS:528:DC%2BD1MXhsFWhsLzO – reference: WangCIn situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapyNat. Biomed. Eng.20171001110.1038/s41551-016-0011 – reference: PostowMACallahanMKWolchokJDImmune checkpoint blockade in cancer therapyJ. Clin. Oncol.2015331974198210.1200/JCO.2014.59.43581:CAS:528:DC%2BC2MXhsFKmt7%2FN – reference: CheeverMAHiganoCSPROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccineClin. Cancer Res.2011173520352610.1158/1078-0432.CCR-10-3126 – reference: VerbekeCSMooneyDJInjectable, pore-forming hydrogels for in vivo enrichment of immature dendritic cellsAdv. Healthc. Mater.201542677268710.1002/adhm.2015006181:CAS:528:DC%2BC2MXhs1Ogs7fK – reference: ZhangQwPrognostic significance of tumour-associated macrophages in solid tumour: a meta-analysis of the literaturePLOS One20127e5094610.1371/journal.pone.00509461:CAS:528:DC%2BC3sXnsVygsg%3D%3D – reference: SchmidASTintorDNeriDNovel antibody-cytokine fusion proteins featuring granulocyte-colony stimulating factor, interleukin-3 and interleukin-4 as payloadsJ. Biotechnol.2018271293610.1016/j.jbiotec.2018.02.0041:CAS:528:DC%2BC1cXjsl2qtLg%3D – reference: JeanbartLKourtisICvan der VliesAJSwartzMAHubbellJA6-thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumour-bearing miceCancer Immunol. Immunother.2015641033104610.1007/s00262-015-1702-81:CAS:528:DC%2BC2MXovVelurY%3D – reference: NoyRPollardJeffrey W. Tumor-associated macrophages: from mechanisms to therapyImmunity201441496110.1016/j.immuni.2014.06.0101:CAS:528:DC%2BC2cXhtFOrsLvL – reference: VerbekeCSMulticomponent injectable hydrogels for antigen-specific tolerogenic immune modulationAdv. Healthc. Mater.20176160077310.1002/adhm.2016007731:CAS:528:DC%2BC2sXhtlGnu7o%3D – reference: WiemannBStarnesCOColey’s toxins, tumour necrosis factor and cancer research: a historical perspectivePharmacol. Ther.19946452956410.1016/0163-7258(94)90023-X1:CAS:528:DyaK2MXjtVOrt70%3D – reference: CopierJDalgleishAOverview of tumour cell–based vaccinesInt. Rev. Immunol.20062529731910.1080/088301806009924721:CAS:528:DC%2BD2sXisl2ltg%3D%3D – reference: WalkeyCDOlsenJBGuoHEmiliAChanWCNanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptakeJ. Am. Chem. Soc.20121342139214710.1021/ja20843381:CAS:528:DC%2BC3MXhs1Gls7vN – reference: PittJMDendritic cell–derived exosomes for cancer therapyJ. Clin. Investig.20161261224123210.1172/JCI81137 – reference: ParkJCombination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapyNat. Mater.20121189590510.1038/nmat33551:CAS:528:DC%2BC38XhtVeht7fL – reference: ShimizuTNanogel DDS enables sustained release of IL-12 for tumour immunotherapyBiochem. Biophys. Res. Commun.200836733033510.1016/j.bbrc.2007.12.1121:CAS:528:DC%2BD1cXpsFynsw%3D%3D – reference: RekersNHThe immunocytokine L19-IL2: An interplay between radiotherapy and long-lasting systemic antitumour immune responsesOncoImmunology20187141411910.1080/2162402X.2017.1414119 – reference: Stewart, B. & Wild, C. P. World Cancer Report 2014 (World Health Organization, 2017). – reference: MohsenMODelivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccinationJ. Control. Release20172519210010.1016/j.jconrel.2017.02.0311:CAS:528:DC%2BC2sXjvFahu74%3D – reference: StephanMTMoonJJUmSHBershteynAIrvineDJTherapeutic cell engineering with surface-conjugated synthetic nanoparticlesNat. Med.2010161035104110.1038/nm.21981:CAS:528:DC%2BC3cXhtVaisLzI – reference: EggermontLJPaulisLETelJFigdorCGTowards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cellsTrends Biotechnol.20143245646510.1016/j.tibtech.2014.06.0071:CAS:528:DC%2BC2cXhtFSlsrnJ – reference: IshiharaJMatrix-binding checkpoint immunotherapies enhance antitumour efficacy and reduce adverse eventsSci. Transl. Med.20179eaan040110.1126/scitranslmed.aan0401 – reference: GabrilovichDINagarajSMyeloid-derived suppressor cells as regulators of the immune systemNat. Rev. Immunol.2009916217410.1038/nri25061:CAS:528:DC%2BD1MXhsFeqsbw%3D – reference: PaavonenJEfficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young womenLancet200937430131410.1016/S0140-6736(09)61248-41:CAS:528:DC%2BD1MXovF2kt78%3D – reference: NishikawaMInjectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen deliveryJ. Control. Release2014180253210.1016/j.jconrel.2014.02.0011:CAS:528:DC%2BC2cXkvVKjsLY%3D – reference: CheungASZhangDKYKoshySTMooneyDJScaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cellsNat. Biotechnol.20183616016910.1038/nbt.40471:CAS:528:DC%2BC1cXovVCitA%3D%3D – reference: KimJInjectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacyNat. Biotechnol.201533647210.1038/nbt.30711:CAS:528:DC%2BC2cXitVCksr7J – reference: FlachTLAlum interaction with dendritic cell membrane lipids is essential for its adjuvanticityNat. Med.20111747948710.1038/nm.23061:CAS:528:DC%2BC3MXjtVGmt70%3D – reference: ShenSSpatial targeting of tumour-associated macrophages and tumour cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapyNano Lett.2017173822382910.1021/acs.nanolett.7b011931:CAS:528:DC%2BC2sXnsV2jsLo%3D – reference: LiuHStructure-based programming of lymph-node targeting in molecular vaccinesNature201450751952210.1038/nature129781:CAS:528:DC%2BC2cXkvV2ru70%3D – reference: NgambenjawongCGustafsonHHPunSHProgress in tumour-associated macrophage (TAM)-targeted therapeuticsAdv. Drug Deliv. Rev.201711420622110.1016/j.addr.2017.04.0101:CAS:528:DC%2BC2sXnslKqtL0%3D – reference: Safety study of a recombinant protein vaccine to treat esophageal cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/nct01003808 (2013). – reference: KageyamaSDose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patientsJ. Transl. Med.20131124624610.1186/1479-5876-11-2461:CAS:528:DC%2BC2cXislOrsbk%3D – reference: AliOAEmerichDDranoffGMooneyDJIn situ regulation of DC subsets and T cells mediates tumour regression in miceSci. Transl. Med.200918ra1910.1126/scitranslmed.30003591:CAS:528:DC%2BC3cXhtVWkt73P – reference: BencherifSAInjectable cryogel-based whole-cell cancer vaccinesNat. Commun.2015610.1038/ncomms85561:CAS:528:DC%2BC2MXhsVKhtbbN – reference: WangCYeYHochuGMSadeghifarHGuZEnhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibodyNano Lett.2016162334234010.1021/acs.nanolett.5b050301:CAS:528:DC%2BC28Xks1aqt70%3D – reference: LuoMA STING-activating nanovaccine for cancer immunotherapyNat. Nanotech.20171264865410.1038/nnano.2017.521:CAS:528:DC%2BC2sXmvVCmtr4%3D – reference: RosaliaRACD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumour responsesBiomaterials201540889710.1016/j.biomaterials.2014.10.0531:CAS:528:DC%2BC2cXhvFantbfF – reference: MeleroITherapeutic vaccines for cancer: an overview of clinical trialsNat. Rev. Clin. Oncol.20141150952410.1038/nrclinonc.2014.1111:CAS:528:DC%2BC2cXhtFWiu7zJ – reference: TopalianSLTaubeJMAndersRAPardollDMMechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapyNat. Rev. Cancer20161627528710.1038/nrc.2016.361:CAS:528:DC%2BC28XmtVOrurc%3D – reference: UmekiYInduction of potent antitumour immunity by sustained release of cationic antigen from a DNA‐based hydrogel with adjuvant activityAdv. Funct. Mater.2015255758576710.1002/adfm.2015021391:CAS:528:DC%2BC2MXhtlCjtbfM – reference: Wesolowski, R., Markowitz, J. & Carson, W. E. Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J. Immunother. Cancerhttps://doi.org/10.1186/2051-1426-1-10 (2013). – reference: Caminschi, I., Maraskovsky, E. & Heath, W. R. Targeting dendritic cells in vivo for cancer therapy. Front. Immunol. https://doi.org/10.3389/fimmu.2012.00013 (2012). – reference: BenneNvan DuijnJKuiperJJiskootWSlütterBOrchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccinesJ. Control. Release201623412413410.1016/j.jconrel.2016.05.0331:CAS:528:DC%2BC28XpsVGktrg%3D – reference: NgGReceptor-independent, direct membrane binding leads to cell-surface lipid sorting and syk kinase activation in dendritic cellsImmunity20082980781810.1016/j.immuni.2008.09.0131:CAS:528:DC%2BD1cXhsVaqsL7L – reference: DPX-Survivac and checkpoint inhibitor in DLBCL. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct03349450 (2018). – reference: PericaKMagnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumour activityACS Nano201482252226010.1021/nn405520d1:CAS:528:DC%2BC2cXivFyks7g%3D – reference: LauxIResponse differences between human CD4+ and CD8+ T-cells during CD28 co-stimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during agingClin. Immunol.20009618719710.1006/clim.2000.49021:CAS:528:DC%2BD3cXntFSiurk%3D – reference: TumehPCPD-1 blockade induces responses by inhibiting adaptive immune resistanceNature201451556857110.1038/nature139541:CAS:528:DC%2BC2cXitFanu7jL – reference: KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdv. Drug Deliv. Rev.2012641547156810.1016/j.addr.2012.04.0051:CAS:528:DC%2BC38XnsVGjt78%3D – reference: JabulowskyRAA first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent melanoma immunotherapyCancer Res.201777CT03410.1158/1538-7445.AM2017-CT034 – reference: WangCIn situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapySci. Transl. Med.201810eaan368210.1126/scitranslmed.aan3682 – reference: BerinsteinNLSurvivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patientsOncoimmunology20154e102652910.1080/2162402X.2015.10265291:CAS:528:DC%2BC28XhsFKisLo%3D – reference: DeMuthPCPolymer multilayer tattooing for enhanced DNA vaccinationNat. Mater.20131236737610.1038/nmat35501:CAS:528:DC%2BC3sXhsVaqt7k%3D – reference: FreiburghausCSynergistic effects of agonistic co-stimulatory antibodies adsorbed to amphiphilic poly (γ-glutamic acid) nanoparticlesJ. Immunother. Cancer20131P12810.1186/2051-1426-1-S1-P128 – reference: KourtisICPeripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumours in micePLOS One20138e6164610.1371/journal.pone.00616461:CAS:528:DC%2BC3sXntVKrtbY%3D – reference: KasturiSPProgramming the magnitude and persistence of antibody responses with innate immunityNature201147054354710.1038/nature097371:CAS:528:DC%2BC3MXisVags7g%3D – reference: GribbenJGUnexpected association between induction of immunity to the universal tumour antigen CYP1B1 and response to next therapyClin. Cancer Res.2005114430443610.1158/1078-0432.CCR-04-21111:CAS:528:DC%2BD2MXltFeksrg%3D – reference: MeirRFast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapyACS Nano201711111271113410.1021/acsnano.7b052991:CAS:528:DC%2BC2sXhs1Grur%2FJ – reference: RahimianSPolymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancerBiomaterials201561334010.1016/j.biomaterials.2015.04.0431:CAS:528:DC%2BC2MXotFCqt70%3D – reference: IrvineDJHansonMCRakhraKTokatlianTSynthetic nanoparticles for vaccines and immunotherapyChem. Rev.2015115111091114610.1021/acs.chemrev.5b001091:CAS:528:DC%2BC2MXhtFequrbI – reference: LiYTumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacyClin. Cancer Res.2011177047705710.1158/1078-0432.CCR-11-09511:CAS:528:DC%2BC3MXhsVKht7vE – reference: LiYHydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumour immunityOncoImmunology20165e107437410.1080/2162402X.2015.10743741:CAS:528:DC%2BC28Xjslyjs7s%3D – reference: ShenCZhangJXiaLMengFXieWInduction of tumour antigen-specific cytotoxic T cell responses in naïve mice by latex microspheres-based artificial antigen-presenting cell constructsCell. Immunol.2007247283510.1016/j.cellimm.2007.07.0021:CAS:528:DC%2BD2sXhtFSnt77O – reference: AliOALewinSADranoffGMooneyDJVaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumour eradicationCancer Immunol. Res.201649510010.1158/2326-6066.CIR-14-01261:CAS:528:DC%2BC28Xit1Kqs7g%3D – reference: OussorenCZuidemaJCrommelinDJAStormGLymphatic uptake and biodistribution of liposomes after subcutaneous injection: II. Influence of liposomal size, lipid composition and lipid doseBiochim. Biophys. Acta1997132826127210.1016/S0005-2736(97)00122-31:CAS:528:DyaK2sXkvVartr8%3D – reference: SongMLiuTShiCZhangXChenXBioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumour-associated macrophages toward M1-like phenotype and attenuating tumour hypoxiaACS Nano20161063364710.1021/acsnano.5b067791:CAS:528:DC%2BC2MXhvFOrur7F – reference: Study of DPX-Survivac vaccine therapy and epacadostat in patients with recurrent ovarian cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/nct02785250 (2017). – reference: ShvedovaAACarbon nanotubes enhance metastatic growth of lung carcinoma via up‐regulation of myeloid‐derived suppressor cellsSmall201391691169510.1002/smll.2012014701:CAS:528:DC%2BC38Xhtlylt7jO – reference: AliOABiomaterial-Based Vaccine Induces Regression of Established Intracranial Glioma in RatsPharm. Res.2011281074108010.1007/s11095-010-0361-x1:CAS:528:DC%2BC3MXktFWlsg%3D%3D – reference: SunshineJCPericaKSchneckJPGreenJJParticle shape dependence of CD8+ T cell activation by artificial antigen presenting cellsBiomaterials20143526927710.1016/j.biomaterials.2013.09.0501:CAS:528:DC%2BC3sXhsFOhsrbE – reference: BerinsteinNLFirst-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patientsJ. Transl. Med.20121015615610.1186/1479-5876-10-1561:CAS:528:DC%2BC38XhvVShsr%2FJ – reference: FadelTRA carbon nanotube–polymer composite for T-cell therapyNat. Nanotech.2014963964710.1038/nnano.2014.1541:CAS:528:DC%2BC2cXht1Gqt7%2FI – reference: DuanXPhotodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumour immunity and antimetastatic effect on breast cancerJ. Am. Chem. Soc2016138166861669510.1021/jacs.6b095381:CAS:528:DC%2BC28XhvFyntbzM – reference: ZeisbergerSMClodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approachBr. J. Cancer20069527228110.1038/sj.bjc.66032401:CAS:528:DC%2BD28Xnsl2iu7o%3D – reference: ChenQPhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyNat. Commun.2016710.1038/ncomms131931:CAS:528:DC%2BC28XhslGrtrzN – reference: LynnGMIn vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicityNat. Biotechnol.2015331201121010.1038/nbt.33711:CAS:528:DC%2BC2MXhslantL%2FO – reference: AliOAHuebschNCaoLDranoffGMooneyDJInfection-mimicking materials to program dendritic cells in situNat. Mater.2009815115810.1038/nmat23571:CAS:528:DC%2BD1MXps1ejsw%3D%3D – reference: SicaAMantovaniAMacrophage plasticity and polarization: in vivo veritasThe J. Clin. Investig.201212278779510.1172/JCI596431:CAS:528:DC%2BC38XjsV2ms7g%3D – reference: StephanSBBiopolymer implants enhance the efficacy of adoptive T-cell therapyNat. Biotechnol.2014339710110.1038/nbt.31041:CAS:528:DC%2BC2cXitFCru7zF – reference: WangCImmunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasisAdv. Mater.2014268154816210.1002/adma.2014029961:CAS:528:DC%2BC2cXitFWjsrjM – reference: OhnishiKCD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinomaCancer Sci.20131041237124410.1111/cas.122121:CAS:528:DC%2BC3sXhtlKrsbfF – reference: SassoMSLow dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapyBiomaterials201696476210.1016/j.biomaterials.2016.04.0101:CAS:528:DC%2BC28Xms1Shs74%3D – reference: KhalilDNSmithELBrentjensRJWolchokJDThe future of cancer treatment: immunomodulation, CARs and combination immunotherapyNat. Rev. Clin. Oncol.20161327329010.1038/nrclinonc.2016.251:CAS:528:DC%2BC28Xkt1Gjt7w%3D – reference: MillingLZhangYIrvineDJDelivering safer immunotherapies for cancerAdv. Drug Deliv. Rev.20171147910110.1016/j.addr.2017.05.0111:CAS:528:DC%2BC2sXhtVantLnO – reference: Combination vaccine immunotherapy (dribbles) for patients with definitively-treated stage III non-small cell lung cancer. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01909752 (2017). – reference: Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. https://doi.org/10.1038/s41563-018-0028-2 (2018). – reference: WangYPolymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumour microenvironmentBiomaterials201711215316310.1016/j.biomaterials.2016.09.0341:CAS:528:DC%2BC28Xhs12nurjO – reference: DranoffGVaccination with irradiated tumour cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumour immunityProc. Natl Acad. Sci. USA1993903539354310.1073/pnas.90.8.35391:CAS:528:DyaK3sXktVKqt78%3D – reference: KuaiROchylLJBahjatKSSchwendemanAMoonJJDesigner vaccine nanodiscs for personalized cancer immunotherapyNat. Mater.20171648949610.1038/nmat48221:CAS:528:DC%2BC28XitFGitLvO – reference: NeelapuSSChimeric antigen receptor T-cell therapy—assessment and management of toxicitiesNat. Rev. Clin. Oncol.201815476210.1038/nrclinonc.2017.1481:CAS:528:DC%2BC2sXhsFWnur%2FN – reference: CharychDHNKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumour exposure, and marked efficacy in mouse tumour modelsClin. Cancer Res.20162268069010.1158/1078-0432.CCR-15-16311:CAS:528:DC%2BC28XitFeqs70%3D – reference: HeCCore-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapyNat. Commun.2016710.1038/ncomms124991:CAS:528:DC%2BC28Xhtlyltr7N – reference: HuangZTargeted delivery of oligonucleotides into tumour-associated macrophages for cancer immunotherapyJ. Control. Release201215828629210.1016/j.jconrel.2011.11.0131:CAS:528:DC%2BC38Xjt1ert74%3D – reference: MoyerTJZmolekACIrvineDJBeyond antigens and adjuvants: formulating future vaccinesJ. Clin. Investig.201612679980810.1172/JCI81083 – reference: ErnstingMJTargeting of metastasis-promoting tumour-associated fibroblasts and modulation of pancreatic tumour-associated stroma with a carboxymethylcellulose-docetaxel nanoparticleJ. Control. Release201520612213010.1016/j.jconrel.2015.03.0231:CAS:528:DC%2BC2MXltVShtbY%3D – reference: PucciFSCS macrophages suppress melanoma by restricting tumour-derived vesicle–B cell interactionsScience201635224224610.1126/science.aaf13281:CAS:528:DC%2BC28XlsFSmurg%3D – reference: ZanganehSIron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissuesNat. Nanotech.20161198699410.1038/nnano.2016.1681:CAS:528:DC%2BC28XhsFyms7fO – reference: DowSWIntravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastasesHum. Gene Ther.1999102961297210.1089/104303499500163751:CAS:528:DC%2BD3cXitFWl – reference: FanYMoonJJNanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapyVaccines2015366268510.3390/vaccines30306621:CAS:528:DC%2BC1cXlsFamsLw%3D – reference: MinYAntigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapyNat. Nanotech.20171287788210.1038/nnano.2017.1131:CAS:528:DC%2BC2sXhtVGnu7%2FJ – reference: MiYA dual immunotherapy nanoparticle improves T‐cell activation and cancer immunotherapyAdv. Mater.201830170609810.1002/adma.2017060981:CAS:528:DC%2BC1cXosVWnt78%3D – reference: ZhengYIn vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomesJ. Control. Release201317242643510.1016/j.jconrel.2013.05.0371:CAS:528:DC%2BC3sXhtVehtrfP – reference: SchumacherTNSchreiberRDNeoantigens in cancer immunotherapyScience2015348697410.1126/science.aaa49711:CAS:528:DC%2BC2MXls1Wmurc%3D – reference: MoonJJInterbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responsesNat. Mater.20111024325110.1038/nmat29601:CAS:528:DC%2BC3MXit1WlsLc%3D – reference: PrakkenBArtificial antigen-presenting cells as a tool to exploit the immune ‘synapse’Nat. Med.200061406141010.1038/822311:CAS:528:DC%2BD3cXosl2hs7c%3D – reference: KantoffPWSipuleucel-T immunotherapy for castration-resistant prostate cancerN. Engl. J. Med.201036341142210.1056/NEJMoa10012941:CAS:528:DC%2BC3cXhtVGlurrN – reference: MuellerSNTianSDeSimoneJMRapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunityMol. Pharm.2015121356136510.1021/mp500589c1:CAS:528:DC%2BC2MXlsVShtLk%3D – reference: UgelSIn vivo administration of artificial antigen presenting cells activates low avidity T cells for treatment of cancerCancer Res.2009699376938410.1158/0008-5472.CAN-09-04001:CAS:528:DC%2BD1MXhsFGrtbnK – reference: KoshySTMooneyDJBiomaterials for enhancing anti-cancer immunityCurr. Opin. Biotechnol.2016401810.1016/j.copbio.2016.02.0011:CAS:528:DC%2BC28XisFKjsr8%3D – reference: Dendritic cell activating scaffold in melanoma. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01753089 (2017). – reference: ThelinMAIn vivo enrichment of diabetogenic T cellsDiabetes2017662220222910.2337/db16-09461:CAS:528:DC%2BC2sXhvFKltrnJ – reference: ReddySTRehorASchmoekelHGHubbellJASwartzMAIn vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticlesJ. Control. Release2006112263410.1016/j.jconrel.2006.01.0061:CAS:528:DC%2BD28XjsFars7o%3D – reference: RasmussenAMEx vivo expansion protocol for human tumour specific T cells for adoptive T cell therapyJ. Immunol. Methods2010355526010.1016/j.jim.2010.02.0041:CAS:528:DC%2BC3cXks1Wqt7o%3D – reference: SrivastavaSRiddellSRChimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacyJ. Immunol.201820045946810.4049/jimmunol.17011551:CAS:528:DC%2BC1cXksVOhtQ%3D%3D – reference: FrancisDMThomasSNProgress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapyAdv. Drug Deliv. Rev.201715334210.1016/j.addr.2017.04.0111:CAS:528:DC%2BC2sXntVKrtb4%3D – reference: SextonAA protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsulesACS Nano200933391340010.1021/nn900715g1:CAS:528:DC%2BD1MXht1GltLzL – reference: TengFMengXKongLYuJProgress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic reviewCancer lett.201841416617310.1016/j.canlet.2017.11.0141:CAS:528:DC%2BC2sXhvVOrsbzO – reference: WeberJSMuléJJCancer immunotherapy meets biomaterialsNat. Biotechnol.201533444510.1038/nbt.31191:CAS:528:DC%2BC2MXmtVyhug%3D%3D – reference: SinghASuriSRoyKIn-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cellsBiomaterials2009305187520010.1016/j.biomaterials.2009.06.0011:CAS:528:DC%2BD1MXpt1Cit7k%3D – reference: ShiotaTThe clinical significance of CD169-positive lymph node macrophage in patients with breast cancerPLOS One201611e016668010.1371/journal.pone.01666801:CAS:528:DC%2BC2sXktFahurc%3D – reference: ParkCGExtended release of perioperative immunotherapy prevents tumour recurrence and eliminates metastasesSci. Transl. Med.201810eaar191610.1126/scitranslmed.aar1916 – reference: MachNDranoffGCytokine-secreting tumour cell vaccinesCurr. Opin. Immunol.20001257157510.1016/S0952-7915(00)00144-81:CAS:528:DC%2BD3cXmsVKltL4%3D – reference: SharmaPAllisonJPThe future of immune checkpoint therapyScience2015348566110.1126/science.aaa81721:CAS:528:DC%2BC2MXls1Wmurg%3D – reference: MuraokaDNanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumour immunityACS Nano201489209921810.1021/nn502975r1:CAS:528:DC%2BC2cXhsVGhtb7L – reference: KarkadaMBerinsteinNLMansourMTherapeutic vaccines and cancer: focus on DPX-0907Biol. Targets Ther.20148273810.2147/BTT.S551961:CAS:528:DC%2BC2cXhs1OmsLjM – volume: 1328 start-page: 261 year: 1997 ident: 147_CR36 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(97)00122-3 – volume: 33 start-page: 97 year: 2014 ident: 147_CR87 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3104 – volume: 110 start-page: 1518 year: 2010 ident: 147_CR81 publication-title: Chem. Rev. doi: 10.1021/cr9001929 – ident: 147_CR53 – volume: 16 start-page: 765 year: 2008 ident: 147_CR76 publication-title: Mol. Ther. doi: 10.1038/mt.2008.11 – volume: 172 start-page: 426 year: 2013 ident: 147_CR72 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.05.037 – volume: 126 start-page: 799 year: 2016 ident: 147_CR16 publication-title: J. Clin. Investig. doi: 10.1172/JCI81083 – volume: 158 start-page: 286 year: 2012 ident: 147_CR118 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.11.013 – volume: 17 start-page: 3520 year: 2011 ident: 147_CR24 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-3126 – volume: 8 start-page: 151 year: 2009 ident: 147_CR54 publication-title: Nat. Mater. doi: 10.1038/nmat2357 – volume: 33 start-page: 64 year: 2015 ident: 147_CR58 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3071 – volume: 11 start-page: 246 year: 2013 ident: 147_CR49 publication-title: J. Transl. Med. doi: 10.1186/1479-5876-11-246 – volume: 41 start-page: 49 year: 2014 ident: 147_CR107 publication-title: Immunity doi: 10.1016/j.immuni.2014.06.010 – volume: 96 start-page: 187 year: 2000 ident: 147_CR82 publication-title: Clin. Immunol. doi: 10.1006/clim.2000.4902 – volume: 200 start-page: 459 year: 2018 ident: 147_CR7 publication-title: J. Immunol. doi: 10.4049/jimmunol.1701155 – ident: 147_CR39 doi: 10.3389/fimmu.2012.00013 – volume: 17 start-page: 479 year: 2011 ident: 147_CR33 publication-title: Nat. Med. doi: 10.1038/nm.2306 – volume: 3 start-page: 3391 year: 2009 ident: 147_CR65 publication-title: ACS Nano doi: 10.1021/nn900715g – volume: 12 start-page: 367 year: 2013 ident: 147_CR70 publication-title: Nat. Mater. doi: 10.1038/nmat3550 – volume: 12 start-page: 571 year: 2000 ident: 147_CR21 publication-title: Curr. Opin. Immunol. doi: 10.1016/S0952-7915(00)00144-8 – volume: 36 start-page: 160 year: 2018 ident: 147_CR84 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4047 – ident: 147_CR1 – volume: 29 start-page: 807 year: 2008 ident: 147_CR34 publication-title: Immunity doi: 10.1016/j.immuni.2008.09.013 – volume: 234 start-page: 124 year: 2016 ident: 147_CR29 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.05.033 – ident: 147_CR44 – volume: 3 start-page: 662 year: 2015 ident: 147_CR10 publication-title: Vaccines doi: 10.3390/vaccines3030662 – volume: 40 start-page: 1 year: 2016 ident: 147_CR12 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.02.001 – volume: 9 start-page: 162 year: 2009 ident: 147_CR4 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2506 – volume: 126 start-page: 1224 year: 2016 ident: 147_CR51 publication-title: J. Clin. Investig. doi: 10.1172/JCI81137 – volume: 206 start-page: 122 year: 2015 ident: 147_CR113 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.03.023 – volume: 112 start-page: 26 year: 2006 ident: 147_CR37 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2006.01.006 – volume: 33 start-page: 1974 year: 2015 ident: 147_CR3 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.59.4358 – volume: 10 start-page: 243 year: 2011 ident: 147_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat2960 – volume: 26 start-page: 8154 year: 2014 ident: 147_CR94 publication-title: Adv. Mater. doi: 10.1002/adma.201402996 – volume: 10 start-page: eaar1916 year: 2018 ident: 147_CR68 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aar1916 – volume: 251 start-page: 92 year: 2017 ident: 147_CR32 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.02.031 – volume: 69 start-page: 9376 year: 2009 ident: 147_CR85 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-0400 – volume: 66 start-page: 2220 year: 2017 ident: 147_CR88 publication-title: Diabetes doi: 10.2337/db16-0946 – volume: 61 start-page: 33 year: 2015 ident: 147_CR89 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.04.043 – volume: 9 start-page: eaan0401 year: 2017 ident: 147_CR93 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan0401 – volume: 11 start-page: 509 year: 2014 ident: 147_CR5 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2014.111 – volume: 6 year: 2015 ident: 147_CR64 publication-title: Nat. Commun. doi: 10.1038/ncomms8556 – ident: 147_CR100 – volume: 104 start-page: 1237 year: 2013 ident: 147_CR115 publication-title: Cancer Sci. doi: 10.1111/cas.12212 – volume: 271 start-page: 29 year: 2018 ident: 147_CR104 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2018.02.004 – volume: 112 start-page: 153 year: 2017 ident: 147_CR117 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.034 – volume: 16 start-page: 2334 year: 2016 ident: 147_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05030 – volume: 1 start-page: 0011 year: 2017 ident: 147_CR92 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0011 – volume: 414 start-page: 166 year: 2018 ident: 147_CR6 publication-title: Cancer lett. doi: 10.1016/j.canlet.2017.11.014 – volume: 11 start-page: 895 year: 2012 ident: 147_CR103 publication-title: Nat. Mater. doi: 10.1038/nmat3355 – volume: 7 year: 2016 ident: 147_CR97 publication-title: Nat. Commun. doi: 10.1038/ncomms12499 – volume: 7 start-page: 1414119 year: 2018 ident: 147_CR105 publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1414119 – volume: 22 start-page: 680 year: 2016 ident: 147_CR106 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1631 – volume: 96 start-page: 47 year: 2016 ident: 147_CR125 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.04.010 – volume: 348 start-page: 69 year: 2015 ident: 147_CR130 publication-title: Science doi: 10.1126/science.aaa4971 – volume: 12 start-page: 612 year: 2016 ident: 147_CR41 publication-title: Hum. Vaccines Immunother. doi: 10.1080/21645515.2015.1105415 – volume: 115 start-page: 11109 year: 2015 ident: 147_CR11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00109 – volume: 355 start-page: 52 year: 2010 ident: 147_CR80 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2010.02.004 – volume: 367 start-page: 330 year: 2008 ident: 147_CR101 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.12.112 – volume: 17 start-page: 3822 year: 2017 ident: 147_CR112 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01193 – volume: 15 start-page: 47 year: 2018 ident: 147_CR8 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.148 – volume: 8 start-page: 9209 year: 2014 ident: 147_CR25 publication-title: ACS Nano doi: 10.1021/nn502975r – volume: 10 start-page: 2961 year: 1999 ident: 147_CR102 publication-title: Hum. Gene Ther. doi: 10.1089/10430349950016375 – volume: 11 start-page: e0166680 year: 2016 ident: 147_CR116 publication-title: PLOS One doi: 10.1371/journal.pone.0166680 – volume: 8 start-page: e61646 year: 2013 ident: 147_CR123 publication-title: PLOS One doi: 10.1371/journal.pone.0061646 – volume: 7 year: 2016 ident: 147_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms13193 – volume: 16 start-page: 275 year: 2016 ident: 147_CR126 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.36 – ident: 147_CR57 – volume: 9 start-page: 1691 year: 2013 ident: 147_CR121 publication-title: Small doi: 10.1002/smll.201201470 – volume: 10 start-page: 633 year: 2016 ident: 147_CR120 publication-title: ACS Nano doi: 10.1021/acsnano.5b06779 – volume: 10 start-page: eaan3682 year: 2018 ident: 147_CR91 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan3682 – volume: 17 start-page: 7047 year: 2011 ident: 147_CR52 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0951 – volume: 13 start-page: 273 year: 2016 ident: 147_CR2 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.25 – volume: 8 start-page: 27 year: 2014 ident: 147_CR47 publication-title: Biol. Targets Ther. doi: 10.2147/BTT.S55196 – volume: 1 start-page: P128 year: 2013 ident: 147_CR128 publication-title: J. Immunother. Cancer doi: 10.1186/2051-1426-1-S1-P128 – volume: 7 start-page: e50946 year: 2012 ident: 147_CR108 publication-title: PLOS One doi: 10.1371/journal.pone.0050946 – volume: 95 start-page: 272 year: 2006 ident: 147_CR111 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6603240 – volume: 12 start-page: 877 year: 2017 ident: 147_CR96 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.113 – volume: 11 start-page: 4430 year: 2005 ident: 147_CR50 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-04-2111 – volume: 4 start-page: 2677 year: 2015 ident: 147_CR62 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500618 – volume: 8 start-page: 2252 year: 2014 ident: 147_CR78 publication-title: ACS Nano doi: 10.1021/nn405520d – volume: 11 start-page: 986 year: 2016 ident: 147_CR119 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.168 – volume: 33 start-page: 44 year: 2015 ident: 147_CR9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3119 – volume: 1 start-page: 8ra19 year: 2009 ident: 147_CR55 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3000359 – ident: 147_CR59 doi: 10.1038/s41563-018-0028-2 – ident: 147_CR48 – volume: 515 start-page: 568 year: 2014 ident: 147_CR98 publication-title: Nature doi: 10.1038/nature13954 – volume: 114 start-page: 79 year: 2017 ident: 147_CR17 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.05.011 – volume: 374 start-page: 301 year: 2009 ident: 147_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(09)61248-4 – volume: 4 start-page: e1026529 year: 2015 ident: 147_CR45 publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1026529 – volume: 64 start-page: 1547 year: 2012 ident: 147_CR69 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.04.005 – volume: 28 start-page: 1074 year: 2011 ident: 147_CR56 publication-title: Pharm. Res. doi: 10.1007/s11095-010-0361-x – volume: 90 start-page: 3539 year: 1993 ident: 147_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.90.8.3539 – ident: 147_CR122 doi: 10.1186/2051-1426-1-10 – volume: 507 start-page: 519 year: 2014 ident: 147_CR42 publication-title: Nature doi: 10.1038/nature12978 – volume: 33 start-page: 1201 year: 2015 ident: 147_CR28 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3371 – volume: 16 start-page: 489 year: 2017 ident: 147_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat4822 – volume: 12 start-page: 1356 year: 2015 ident: 147_CR38 publication-title: Mol. Pharm. doi: 10.1021/mp500589c – volume: 352 start-page: 242 year: 2016 ident: 147_CR114 publication-title: Science doi: 10.1126/science.aaf1328 – volume: 35 start-page: 269 year: 2014 ident: 147_CR75 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.050 – volume: 363 start-page: 411 year: 2010 ident: 147_CR23 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1001294 – volume: 40 start-page: 88 year: 2015 ident: 147_CR40 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.053 – volume: 348 start-page: 56 year: 2015 ident: 147_CR127 publication-title: Science doi: 10.1126/science.aaa8172 – volume: 12 start-page: 367 year: 2013 ident: 147_CR61 publication-title: Nat. Mater. doi: 10.1038/nmat3550 – volume: 114 start-page: 206 year: 2017 ident: 147_CR110 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.04.010 – volume: 247 start-page: 28 year: 2007 ident: 147_CR86 publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2007.07.002 – volume: 10 start-page: 156 year: 2012 ident: 147_CR46 publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-156 – volume: 6 start-page: 1406 year: 2000 ident: 147_CR77 publication-title: Nat. Med. doi: 10.1038/82231 – volume: 179 start-page: 4910 year: 2007 ident: 147_CR83 publication-title: J. Immunol. doi: 10.4049/jimmunol.179.7.4910 – volume: 5 start-page: e1074374 year: 2016 ident: 147_CR90 publication-title: OncoImmunology doi: 10.1080/2162402X.2015.1074374 – volume: 32 start-page: 456 year: 2014 ident: 147_CR71 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.06.007 – volume: 134 start-page: 2139 year: 2012 ident: 147_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2084338 – volume: 11 start-page: 11127 year: 2017 ident: 147_CR74 publication-title: ACS Nano doi: 10.1021/acsnano.7b05299 – volume: 64 start-page: 1033 year: 2015 ident: 147_CR124 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-015-1702-8 – volume: 25 start-page: 5758 year: 2015 ident: 147_CR66 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502139 – volume: 25 start-page: 297 year: 2006 ident: 147_CR22 publication-title: Int. Rev. Immunol. doi: 10.1080/08830180600992472 – volume: 30 start-page: 5187 year: 2009 ident: 147_CR60 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.06.001 – volume: 15 start-page: 33 year: 2017 ident: 147_CR73 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.04.011 – volume: 9 start-page: 639 year: 2014 ident: 147_CR79 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.154 – volume: 77 start-page: CT034 year: 2017 ident: 147_CR43 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2017-CT034 – volume: 4 start-page: 95 year: 2016 ident: 147_CR99 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0126 – volume: 12 start-page: 648 year: 2017 ident: 147_CR35 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.52 – volume: 30 start-page: 1706098 year: 2018 ident: 147_CR129 publication-title: Adv. Mater. doi: 10.1002/adma.201706098 – volume: 180 start-page: 25 year: 2014 ident: 147_CR67 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.02.001 – volume: 16 start-page: 1035 year: 2010 ident: 147_CR15 publication-title: Nat. Med. doi: 10.1038/nm.2198 – volume: 138 start-page: 16686 year: 2016 ident: 147_CR95 publication-title: J. Am. Chem. Soc doi: 10.1021/jacs.6b09538 – volume: 6 start-page: 1600773 year: 2017 ident: 147_CR63 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600773 – volume: 470 start-page: 543 year: 2011 ident: 147_CR31 publication-title: Nature doi: 10.1038/nature09737 – volume: 64 start-page: 529 year: 1994 ident: 147_CR19 publication-title: Pharmacol. Ther. doi: 10.1016/0163-7258(94)90023-X – volume: 122 start-page: 787 year: 2012 ident: 147_CR109 publication-title: The J. Clin. Investig. doi: 10.1172/JCI59643 |
SSID | ssj0021556 |
Score | 2.6706789 |
SecondaryResourceType | review_article |
Snippet | The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 761 |
SubjectTerms | 631/250 631/67 639/166 639/301 Biomaterials Biomedical materials Cancer Cancer therapies Chemistry and Materials Science Condensed Matter Physics Immune system Immunotherapy Lymphocytes Macrophages Maintenance Materials Science Modulation Nanotechnology Optical and Electronic Materials Review Article Side effects Synergistic effect T cell receptors |
Title | Biomaterial-assisted targeted modulation of immune cells in cancer treatment |
URI | https://link.springer.com/article/10.1038/s41563-018-0147-9 https://www.ncbi.nlm.nih.gov/pubmed/30104668 https://www.proquest.com/docview/2092507731 https://www.proquest.com/docview/2088292543 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UveiD-G11SgSflOC2tE3yJCqbIjpEHOytLB-Fgbbq5v_vXT82RdxDQyFpm95dcvfLXXIAp6kxEu0CyyNjHQ9jT2Mu8hy1nWmrlrHe0Ubhx358Nwjvh9GwWnCbVGGV9ZxYTNQut7RGjiBdo7aWUrQv3z84ZY0i72qVQmMZGnR0GUm1HM4BF-rKcneRjDnaFZ3aqynUxYSAC0USUShXKLn-rZf-GJt_HKWF_ultwHplOLKrktObsOSzLVj7cZzgNjxcj3M0QAuZ4mgUEwcdK2O98eYtd1WuLpanbEwbQzyjhfsJG2fMEvs_2SzwfAcGve7LzR2vsiVwGwo15fS3UWgiKwRd2hcuLyexNk19y40QCzrpnFbIBhX6jh4h-sMyFlaqWIldWMnyzO8DExo1m9Zp7DqEV6yJTOhQ2yGeHbnUtgNo1bRKbHWUOGW0eE0Kl7ZQSUneBMmbEHkTHcDZ7JH38hyNRY2bNQOSakhNkrkABHAyq8bBQIQaZT7_ojYIGDTt7w9gr2Tc7GuCkGccqwDOa07OX_5vVw4Wd-UQVjuFDFHQWRNWpp9f_gitlKk5LkQRS9W7PYbGdbf_9PwNdWTi_w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCQcEGQBs6UjkUuiFjNuL90HhNgmAwycQOLWmV4sjQQ2MIMQP8U3UuWNIBRuHGxZ6sWt6mpXPdcGsJEZk6JeYHlsrONR4unMxZ6jtDNd2THWOwoUPjlN-ufR0UV8MQWPTSwMuVU238TyQ-0KS__IEaQrlNZpKrrb1zecqkaRdbUpoVGxxbF_uEfINt463Mf9_RmGvYOzvT6vqwpwGwk54SjjUISa2ApBl_Klacil2JplvuOGiJlc6pySuFwZ-VANESXhPRE2lYkUOO8HmIlwKIE92fvTAjycuYpmShOOekzYWFGF3BwTUCLPJXIdi1KuXsrBV8rtK8NsKe968zBXK6psp-KsBZjy-WeY_Sd94RcY7I4KVHhLHuaohBPHOFb5luPDVeHq2mCsyNiIAlE8I0PBmI1yZondblnr6P4Vzt-Fjt9gOi9yvwRMKJSkSmWJCwkfWRObyKF0Rfw8dJntBtBpaKVtnbqcKmhc6tKELqSuyKuRvJrIq1UAv9oh11Xejrc6rzYboOsjPNbPDBfAj7YZDx8Rapj74o76IEBRlE8ggMVq49q3CUK6SSID-N3s5PPk_13K8ttL-Q4f-2cnAz04PD1egU9hyU_k8LYK05PbO7-GGtLErJdsyeDve5-DJ9cxG4o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB_sCaV9kH7a1LPdQvvSstxdNsnuPhTR6qHVHlIq-LbefgQO2sR6d4j_Wv-6zuRLi9Q3HxICu9ksszM788vMzgC8z62VaBc4nlrneZIFkrk0cNR2dqSG1gVPB4W_TbL9k-TraXq6An_aszAUVtnuidVG7UtH_8gRpGvU1lKK0SBvwiKOd8db5785VZAiT2tbTqNmkcNwdYnwbf75YBfX-kMcj_d-fNnnTYUB7hKhFhz1HapTmzoh6NKhchN5ia15HoZ-ivjJS--1wqmrJMR6iogJ75lwUmVK4LgPYFUSKurB6s7e5Ph7B_dw7Ppsk8w4WjVx61MVajAn2ERxTBRIlkiu_9WKt0zdW27aSvuNn8BaY7ay7ZrPnsJKKJ7B4xvJDJ_D0c6sRPO34miOJjnxj2d1pDk-_Cp9UymMlTmb0bGUwMhtMGezgjlivgvWhb2_gJN7oeRL6BVlEV4BExr1qtZ55mNCS86mNvGoaxFNT33uRhEMW1oZ1yQyp3oaP03lUBfK1OQ1SF5D5DU6go_dK-d1Fo-7OvfbBTCNQM_NNftF8K5rRlEkQk2LUC6pD8IVTdkFIlivF677miDcm2Uqgk_tSl4P_t-pvL57Km_hIcqAOTqYHG7Ao7hiJ4p-60NvcbEMm2guLeybhi8ZnN23KPwFJ0EhHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomaterial-assisted+targeted+modulation+of+immune+cells+in+cancer+treatment&rft.jtitle=Nature+materials&rft.au=Wang%2C+Hua&rft.au=Mooney%2C+David+J&rft.date=2018-09-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=17&rft.issue=9&rft.spage=761&rft_id=info:doi/10.1038%2Fs41563-018-0147-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |