Biomaterial-assisted targeted modulation of immune cells in cancer treatment

The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening o...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 17; no. 9; pp. 761 - 772
Main Authors Wang, Hua, Mooney, David J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment. Immunotherapies have shown significant promise in cancer treatment. This Review discusses how a range of materials have been employed to enhance the effectiveness of these therapies by mediating their delivery and immunomodulatory activity.
AbstractList The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment. Immunotherapies have shown significant promise in cancer treatment. This Review discusses how a range of materials have been employed to enhance the effectiveness of these therapies by mediating their delivery and immunomodulatory activity.
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
Author Wang, Hua
Mooney, David J.
Author_xml – sequence: 1
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering
– sequence: 2
  givenname: David J.
  surname: Mooney
  fullname: Mooney, David J.
  email: mooneyd@seas.harvard.edu
  organization: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30104668$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYOMOA_9AW6k4MZNNY-mTZc6-IIBN7oOmfZ2yNAmY5Iu_PemdlQY0MXNvZDvJId75mhirAGEzgm-JpiJG58RnrMUExErK9LyCM1iz9Msz_FkPxNC6RTNvd9iTAnn-QmaMkxwZMQMre607VQAp1WbKu-1D1AnQbkNDENn675VQVuT2CbRXdcbSCpoW59ok1TKVOCS4ECFDkw4RceNaj2c7fsCvT3cvy6f0tXL4_PydpVWGRMhHVzwbM0rxoYqAZclJnURb5sGcK0E5XVR16XI-VpkQEtVUBLPnFWFyAVboKvx3Z2z7z34IDvtB1fKgO29pFgIWlKesYheHqBb2zsT3UUqIrgoGInUxZ7q1x3Ucud0p9yH_N5TBMgIVM5676D5QQiWQxZyzELGLOSQhSyjpjjQVDp87TI4pdt_lXRU-viL2YD7Nf236BO15JtS
CitedBy_id crossref_primary_10_1002_adfm_202100386
crossref_primary_10_1016_j_ccr_2019_04_004
crossref_primary_10_3390_gels7040224
crossref_primary_10_1039_D4RA06965J
crossref_primary_10_1016_j_copbio_2018_11_010
crossref_primary_10_1016_j_bioactmat_2024_02_028
crossref_primary_10_1002_adma_201904156
crossref_primary_10_1002_adma_202204034
crossref_primary_10_1016_j_addr_2020_06_007
crossref_primary_10_1038_s41435_023_00245_4
crossref_primary_10_1039_C9NR08086D
crossref_primary_10_1007_s40820_019_0305_x
crossref_primary_10_1016_j_carbpol_2021_118211
crossref_primary_10_1016_j_celrep_2020_108609
crossref_primary_10_1016_j_cej_2022_135505
crossref_primary_10_1002_anie_202008386
crossref_primary_10_1021_acsbiomaterials_9b00978
crossref_primary_10_1016_j_bioactmat_2020_09_002
crossref_primary_10_1038_s41467_022_31551_6
crossref_primary_10_1039_D1TB01654G
crossref_primary_10_1038_s41551_021_00720_1
crossref_primary_10_1126_sciadv_abb5223
crossref_primary_10_2147_IJN_S442446
crossref_primary_10_3390_pharmaceutics14040709
crossref_primary_10_1016_j_ijbiomac_2024_134778
crossref_primary_10_1002_wnan_1797
crossref_primary_10_1021_acsanm_1c01913
crossref_primary_10_1002_adhm_202002081
crossref_primary_10_1002_smtd_202100115
crossref_primary_10_1007_s11095_024_03722_1
crossref_primary_10_1021_acsami_1c04638
crossref_primary_10_1016_j_addr_2020_06_019
crossref_primary_10_1016_j_biomaterials_2020_119795
crossref_primary_10_1016_j_mser_2019_01_001
crossref_primary_10_1021_acscentsci_9b00060
crossref_primary_10_3390_cells12172147
crossref_primary_10_1016_j_addr_2022_114136
crossref_primary_10_3390_pharmaceutics16010022
crossref_primary_10_1063_5_0125692
crossref_primary_10_1002_mabi_202400049
crossref_primary_10_1038_s41551_020_0517_x
crossref_primary_10_1016_j_apmt_2020_100839
crossref_primary_10_1016_j_jconrel_2023_05_016
crossref_primary_10_1016_j_vaccine_2019_10_036
crossref_primary_10_1038_s41467_025_56148_7
crossref_primary_10_1002_adhm_202100299
crossref_primary_10_1002_smtd_202001191
crossref_primary_10_1016_j_biopha_2021_111333
crossref_primary_10_1126_sciadv_abe7174
crossref_primary_10_1016_j_mtnano_2022_100285
crossref_primary_10_1016_j_apsb_2023_06_010
crossref_primary_10_1002_adma_202007630
crossref_primary_10_1007_s12274_023_5786_8
crossref_primary_10_1016_j_addr_2020_10_004
crossref_primary_10_1021_acs_molpharmaceut_3c00846
crossref_primary_10_1186_s12916_022_02614_8
crossref_primary_10_1002_wnan_1574
crossref_primary_10_1039_C8CS00896E
crossref_primary_10_3390_vaccines12040373
crossref_primary_10_1126_sciadv_adg6007
crossref_primary_10_1016_j_addr_2020_07_023
crossref_primary_10_1002_adma_202208059
crossref_primary_10_1016_j_addr_2023_114897
crossref_primary_10_1039_C9CS00271E
crossref_primary_10_1002_adma_202418322
crossref_primary_10_1016_j_iotech_2023_100395
crossref_primary_10_1016_j_ccell_2022_01_006
crossref_primary_10_1016_j_cej_2022_140688
crossref_primary_10_1016_j_mattod_2023_06_001
crossref_primary_10_1016_j_addr_2023_114895
crossref_primary_10_1038_s41565_020_00822_y
crossref_primary_10_3390_pharmaceutics13091338
crossref_primary_10_1016_j_jconrel_2024_01_072
crossref_primary_10_1016_j_nantod_2023_102061
crossref_primary_10_1002_smll_202307299
crossref_primary_10_1039_D3TB02842A
crossref_primary_10_1186_s13045_020_00946_7
crossref_primary_10_3389_fbioe_2022_972790
crossref_primary_10_1038_s41568_019_0186_9
crossref_primary_10_34133_bmr_0045
crossref_primary_10_1073_pnas_2204621120
crossref_primary_10_1002_adma_201808303
crossref_primary_10_1007_s12033_020_00296_2
crossref_primary_10_3389_fchem_2020_631351
crossref_primary_10_1016_j_biomaterials_2020_120584
crossref_primary_10_1016_j_bioactmat_2021_08_014
crossref_primary_10_1093_nsr_nwab172
crossref_primary_10_1021_acs_nanolett_2c00185
crossref_primary_10_1016_j_cej_2022_138139
crossref_primary_10_1002_adma_202407525
crossref_primary_10_1021_acsnano_9b00892
crossref_primary_10_1039_D4CS00450G
crossref_primary_10_1038_s41563_024_01825_z
crossref_primary_10_1038_s41563_020_0680_1
crossref_primary_10_3389_fonc_2022_1020088
crossref_primary_10_1186_s12951_021_01146_2
crossref_primary_10_1002_adtp_202200234
crossref_primary_10_3389_fchem_2020_597806
crossref_primary_10_1002_adma_202206370
crossref_primary_10_1016_j_apmt_2024_102299
crossref_primary_10_1002_wnan_1632
crossref_primary_10_1016_j_pmatsci_2023_101230
crossref_primary_10_1002_advs_201903441
crossref_primary_10_1002_adhm_202303294
crossref_primary_10_1016_j_nantod_2020_100923
crossref_primary_10_1021_acsnano_1c05392
crossref_primary_10_2147_IJN_S372048
crossref_primary_10_1039_D3MA01132A
crossref_primary_10_1016_j_biomaterials_2021_120875
crossref_primary_10_1016_j_ijpharm_2019_118636
crossref_primary_10_1021_acsnano_3c08559
crossref_primary_10_3389_fonc_2022_834934
crossref_primary_10_1016_j_jconrel_2023_07_048
crossref_primary_10_1002_anie_202214992
crossref_primary_10_1002_adtp_201900215
crossref_primary_10_1039_C9TB02061F
crossref_primary_10_1039_D4TB00769G
crossref_primary_10_1016_j_biomaterials_2019_119599
crossref_primary_10_1021_acsnano_3c08792
crossref_primary_10_1002_adtp_201800157
crossref_primary_10_1016_j_biomaterials_2024_122474
crossref_primary_10_1021_acsbiomaterials_4c00412
crossref_primary_10_1016_j_engreg_2021_09_002
crossref_primary_10_1016_j_jconrel_2023_12_007
crossref_primary_10_3389_fimmu_2020_01633
crossref_primary_10_1002_adfm_202010637
crossref_primary_10_1016_j_canlet_2020_05_019
crossref_primary_10_1002_ange_202214992
crossref_primary_10_3390_pharmaceutics16111362
crossref_primary_10_1039_D0TB00436G
crossref_primary_10_1016_j_engmed_2024_100038
crossref_primary_10_1002_adma_202100616
crossref_primary_10_1039_C9BM00393B
crossref_primary_10_3389_fcell_2024_1514595
crossref_primary_10_1021_acsabm_3c00808
crossref_primary_10_1021_acsbiomaterials_4c02036
crossref_primary_10_1088_1748_605X_abd0c4
crossref_primary_10_1016_j_canlet_2019_08_009
crossref_primary_10_1002_anie_201912312
crossref_primary_10_1016_j_bioactmat_2020_12_010
crossref_primary_10_1002_ange_202305200
crossref_primary_10_1021_acsnano_9b07984
crossref_primary_10_1073_pnas_2107535118
crossref_primary_10_1002_adma_201902542
crossref_primary_10_1021_acsnano_1c02103
crossref_primary_10_1016_j_cobme_2018_12_004
crossref_primary_10_1039_C9NR08958F
crossref_primary_10_1002_mba2_32
crossref_primary_10_1038_s41551_021_00826_6
crossref_primary_10_1007_s12274_020_3175_0
crossref_primary_10_1007_s11426_018_9397_5
crossref_primary_10_1021_acsnano_2c11037
crossref_primary_10_3390_polym14214753
crossref_primary_10_1002_bmm2_12039
crossref_primary_10_3390_vaccines9080935
crossref_primary_10_1002_advs_202200756
crossref_primary_10_1038_s41401_020_0414_6
crossref_primary_10_1002_adma_202309843
crossref_primary_10_1039_D0MA00957A
crossref_primary_10_1186_s12951_022_01248_5
crossref_primary_10_1016_j_cej_2021_132329
crossref_primary_10_1002_adfm_202011171
crossref_primary_10_1002_adma_201900927
crossref_primary_10_1002_ange_201912312
crossref_primary_10_1002_adma_202003214
crossref_primary_10_1002_adma_202004788
crossref_primary_10_1002_anie_202305200
crossref_primary_10_1002_adfm_201806087
crossref_primary_10_1002_adma_202003458
crossref_primary_10_1021_acs_nanolett_9b00584
crossref_primary_10_1063_5_0166848
crossref_primary_10_1016_j_apmt_2021_101150
crossref_primary_10_1016_j_actbio_2021_08_014
crossref_primary_10_1016_j_jconrel_2022_02_023
crossref_primary_10_1016_j_omtn_2021_10_009
crossref_primary_10_1002_adhm_201801320
crossref_primary_10_1016_j_jconrel_2020_10_019
crossref_primary_10_1016_j_scib_2020_04_012
crossref_primary_10_3390_bios14030117
crossref_primary_10_1038_s41467_023_40270_5
crossref_primary_10_1002_adma_202208923
crossref_primary_10_1016_j_jconrel_2025_01_065
crossref_primary_10_3389_fimmu_2021_609762
crossref_primary_10_1002_mabi_202100039
crossref_primary_10_1016_j_nantod_2022_101543
crossref_primary_10_1016_j_jconrel_2022_10_023
crossref_primary_10_1039_C8CC09151J
crossref_primary_10_1016_j_nantod_2023_102112
crossref_primary_10_1002_term_3200
crossref_primary_10_1038_s41568_024_00699_2
crossref_primary_10_1002_advs_202304124
crossref_primary_10_1016_j_biomaterials_2025_123274
crossref_primary_10_1126_sciadv_aaw6870
crossref_primary_10_1002_macp_202100443
crossref_primary_10_1021_acs_biomac_9b01351
crossref_primary_10_1016_j_smaim_2021_07_007
crossref_primary_10_1039_D2TB00337F
crossref_primary_10_1007_s13346_021_00923_8
crossref_primary_10_1021_acsnano_2c11691
crossref_primary_10_1002_advs_202101184
crossref_primary_10_1002_advs_202200027
crossref_primary_10_1002_adma_202100106
crossref_primary_10_1155_2020_8459496
crossref_primary_10_1016_j_hsr_2023_100140
crossref_primary_10_1016_j_smim_2021_101541
crossref_primary_10_1016_j_nantod_2019_05_004
crossref_primary_10_1002_agt2_194
crossref_primary_10_1016_j_addr_2023_115122
crossref_primary_10_1089_ten_tec_2023_0090
crossref_primary_10_1002_adma_202308894
crossref_primary_10_1039_D3BM01894F
crossref_primary_10_1002_ange_202008386
crossref_primary_10_1016_j_jconrel_2022_09_015
crossref_primary_10_1021_acs_chemrev_2c00179
crossref_primary_10_1021_acsnano_3c02370
crossref_primary_10_1007_s11814_021_0985_z
crossref_primary_10_1016_j_cej_2023_142495
crossref_primary_10_1016_j_jconrel_2021_08_027
crossref_primary_10_1021_accountsmr_4c00105
crossref_primary_10_1039_D4CC00792A
crossref_primary_10_3390_ijms24021231
crossref_primary_10_1016_j_canlet_2019_06_005
crossref_primary_10_1021_acs_biomac_9b01129
crossref_primary_10_1016_j_addr_2021_114046
crossref_primary_10_1016_j_cej_2021_129192
crossref_primary_10_1016_j_polymer_2024_127230
crossref_primary_10_1021_acsnano_9b04837
crossref_primary_10_3389_fimmu_2019_00931
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1021_acsnano_8b05950
crossref_primary_10_1016_j_addr_2022_114401
crossref_primary_10_1021_acsnano_0c10396
crossref_primary_10_1039_D3TB00221G
crossref_primary_10_1016_j_nantod_2021_101163
crossref_primary_10_1021_acsami_1c08285
crossref_primary_10_1039_D0NR06182D
crossref_primary_10_1186_s12935_022_02687_8
crossref_primary_10_1002_adfm_202316133
crossref_primary_10_1016_j_xcrm_2023_101113
crossref_primary_10_1016_j_nantod_2019_100773
crossref_primary_10_1016_j_jconrel_2019_05_008
crossref_primary_10_1016_j_ejca_2024_114224
crossref_primary_10_1080_2162402X_2021_1897295
crossref_primary_10_1039_C9RA00818G
crossref_primary_10_1002_wnan_1612
crossref_primary_10_1016_j_biopha_2023_115048
crossref_primary_10_1002_adfm_202108971
crossref_primary_10_3389_fimmu_2021_771551
crossref_primary_10_1021_acsami_2c01256
crossref_primary_10_1038_s41467_020_14906_9
crossref_primary_10_1002_adhm_202101651
crossref_primary_10_1039_D0TB00892C
crossref_primary_10_1016_j_biomaterials_2021_120893
crossref_primary_10_18632_aging_202264
crossref_primary_10_3389_fphar_2022_954955
crossref_primary_10_1021_acs_chemrev_0c00895
crossref_primary_10_1186_s12951_023_01977_1
crossref_primary_10_1021_acs_accounts_0c00313
crossref_primary_10_1002_adfm_201906922
crossref_primary_10_1038_s41596_023_00887_8
crossref_primary_10_3390_nano13243144
crossref_primary_10_1016_j_ijrobp_2021_09_010
crossref_primary_10_1186_s12951_025_03154_y
crossref_primary_10_1017_erm_2021_25
crossref_primary_10_37349_emed_2020_00031
crossref_primary_10_4049_jimmunol_2300482
crossref_primary_10_1016_j_actbio_2024_07_031
crossref_primary_10_1093_nsr_nwae018
crossref_primary_10_1002_ange_202316606
crossref_primary_10_1039_D1SC05319A
crossref_primary_10_1021_acs_biomac_9b01263
crossref_primary_10_1016_j_drup_2024_101098
crossref_primary_10_1039_D0NH00267D
crossref_primary_10_1080_17425247_2024_2388832
crossref_primary_10_1002_advs_201900101
crossref_primary_10_1016_j_actbio_2019_02_012
crossref_primary_10_1016_j_addr_2021_114107
crossref_primary_10_1038_s41467_023_40886_7
crossref_primary_10_1016_j_cell_2021_02_030
crossref_primary_10_1016_j_lfs_2023_121997
crossref_primary_10_1021_jacs_1c08861
crossref_primary_10_1039_D2CS00247G
crossref_primary_10_1039_C8BM01470A
crossref_primary_10_1155_2021_6663035
crossref_primary_10_1021_acscentsci_2c00227
crossref_primary_10_1021_acsnano_3c03274
crossref_primary_10_1126_scitranslmed_aaz6606
crossref_primary_10_1002_advs_202002365
crossref_primary_10_1007_s12274_022_4809_1
crossref_primary_10_1016_j_apmt_2021_101110
crossref_primary_10_1016_j_jconrel_2024_12_076
crossref_primary_10_1016_j_engreg_2021_06_001
crossref_primary_10_3390_vaccines12060649
crossref_primary_10_3390_biomedicines12071473
crossref_primary_10_1126_sciadv_abd1631
crossref_primary_10_1002_ange_202111093
crossref_primary_10_1021_acsnano_1c08826
crossref_primary_10_1002_smll_202206228
crossref_primary_10_1002_adma_201901633
crossref_primary_10_1002_adma_202110340
crossref_primary_10_3389_fmats_2025_1534127
crossref_primary_10_37349_emed_2021_00031
crossref_primary_10_1021_acs_accounts_0c00341
crossref_primary_10_1007_s13233_021_9095_3
crossref_primary_10_1016_j_actbio_2023_04_043
crossref_primary_10_1038_s12276_024_01353_5
crossref_primary_10_1016_j_actbio_2022_08_042
crossref_primary_10_1002_advs_201903164
crossref_primary_10_1002_adfm_202416813
crossref_primary_10_1038_s41551_020_00644_2
crossref_primary_10_1126_science_abq6990
crossref_primary_10_1016_j_biomaterials_2019_119515
crossref_primary_10_1016_j_biomaterials_2019_119633
crossref_primary_10_1002_cbic_202100347
crossref_primary_10_1021_acs_chemrev_9b00833
crossref_primary_10_1016_j_nantod_2023_102042
crossref_primary_10_3389_fphar_2020_00960
crossref_primary_10_3390_cells9020419
crossref_primary_10_1002_mabi_202100087
crossref_primary_10_1038_s41467_023_43914_8
crossref_primary_10_1002_adma_202004172
crossref_primary_10_1002_adfm_202100088
crossref_primary_10_1002_adhm_202100412
crossref_primary_10_1016_j_jconrel_2021_11_043
crossref_primary_10_1002_adhm_202400235
crossref_primary_10_1016_j_chembiol_2019_12_007
crossref_primary_10_1016_j_bbiosy_2023_100073
crossref_primary_10_1021_acsapm_1c01216
crossref_primary_10_1142_S2810922822300033
crossref_primary_10_1016_j_copbio_2021_10_004
crossref_primary_10_3390_ijms25073849
crossref_primary_10_1021_acsbiomaterials_1c01274
crossref_primary_10_1021_acs_jmedchem_9b00511
crossref_primary_10_1016_j_mtnano_2019_100029
crossref_primary_10_1016_j_nano_2021_102369
crossref_primary_10_1039_D3TB01677C
crossref_primary_10_3389_fphar_2021_679602
crossref_primary_10_1126_sciadv_abb4639
crossref_primary_10_1016_j_biomaterials_2022_121972
crossref_primary_10_1016_j_biomaterials_2019_119649
crossref_primary_10_1002_adma_201803953
crossref_primary_10_1016_j_apsb_2021_03_007
crossref_primary_10_1002_adfm_201903686
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1002_admt_202300688
crossref_primary_10_1002_anie_202316606
crossref_primary_10_1038_s41467_021_27434_x
crossref_primary_10_1039_D2CS00486K
crossref_primary_10_1002_jbm_a_36890
crossref_primary_10_1016_j_jconrel_2024_05_008
crossref_primary_10_1039_D3MD00397C
crossref_primary_10_1002_adma_202202168
crossref_primary_10_1016_j_ctarc_2021_100303
crossref_primary_10_3390_pharmaceutics16040516
crossref_primary_10_1016_j_intimp_2024_112251
crossref_primary_10_3390_molecules25030490
crossref_primary_10_1016_j_ccr_2023_215332
crossref_primary_10_1038_s44222_024_00214_0
crossref_primary_10_3389_fonc_2023_1200646
crossref_primary_10_1088_2057_1976_ad4e3a
crossref_primary_10_3390_cells14030203
crossref_primary_10_1016_j_cobme_2019_05_004
crossref_primary_10_1016_j_biomaterials_2022_121843
crossref_primary_10_1016_j_nantod_2023_101853
crossref_primary_10_1021_accountsmr_0c00079
crossref_primary_10_1007_s12195_023_00770_2
crossref_primary_10_1016_j_nantod_2022_101673
crossref_primary_10_1002_adfm_202002621
crossref_primary_10_1002_adma_202007663
crossref_primary_10_1002_adma_202210452
crossref_primary_10_1016_j_preme_2024_100013
crossref_primary_10_1038_s41467_019_11730_8
crossref_primary_10_1039_C8TB03162B
crossref_primary_10_3389_fdmed_2024_1509775
crossref_primary_10_1002_anie_202111093
Cites_doi 10.1016/S0005-2736(97)00122-3
10.1038/nbt.3104
10.1021/cr9001929
10.1038/mt.2008.11
10.1016/j.jconrel.2013.05.037
10.1172/JCI81083
10.1016/j.jconrel.2011.11.013
10.1158/1078-0432.CCR-10-3126
10.1038/nmat2357
10.1038/nbt.3071
10.1186/1479-5876-11-246
10.1016/j.immuni.2014.06.010
10.1006/clim.2000.4902
10.4049/jimmunol.1701155
10.3389/fimmu.2012.00013
10.1038/nm.2306
10.1021/nn900715g
10.1038/nmat3550
10.1016/S0952-7915(00)00144-8
10.1038/nbt.4047
10.1016/j.immuni.2008.09.013
10.1016/j.jconrel.2016.05.033
10.3390/vaccines3030662
10.1016/j.copbio.2016.02.001
10.1038/nri2506
10.1172/JCI81137
10.1016/j.jconrel.2015.03.023
10.1016/j.jconrel.2006.01.006
10.1200/JCO.2014.59.4358
10.1038/nmat2960
10.1002/adma.201402996
10.1126/scitranslmed.aar1916
10.1016/j.jconrel.2017.02.031
10.1158/0008-5472.CAN-09-0400
10.2337/db16-0946
10.1016/j.biomaterials.2015.04.043
10.1126/scitranslmed.aan0401
10.1038/nrclinonc.2014.111
10.1038/ncomms8556
10.1111/cas.12212
10.1016/j.jbiotec.2018.02.004
10.1016/j.biomaterials.2016.09.034
10.1021/acs.nanolett.5b05030
10.1038/s41551-016-0011
10.1016/j.canlet.2017.11.014
10.1038/nmat3355
10.1038/ncomms12499
10.1080/2162402X.2017.1414119
10.1158/1078-0432.CCR-15-1631
10.1016/j.biomaterials.2016.04.010
10.1126/science.aaa4971
10.1080/21645515.2015.1105415
10.1021/acs.chemrev.5b00109
10.1016/j.jim.2010.02.004
10.1016/j.bbrc.2007.12.112
10.1021/acs.nanolett.7b01193
10.1038/nrclinonc.2017.148
10.1021/nn502975r
10.1089/10430349950016375
10.1371/journal.pone.0166680
10.1371/journal.pone.0061646
10.1038/ncomms13193
10.1038/nrc.2016.36
10.1002/smll.201201470
10.1021/acsnano.5b06779
10.1126/scitranslmed.aan3682
10.1158/1078-0432.CCR-11-0951
10.1038/nrclinonc.2016.25
10.2147/BTT.S55196
10.1186/2051-1426-1-S1-P128
10.1371/journal.pone.0050946
10.1038/sj.bjc.6603240
10.1038/nnano.2017.113
10.1158/1078-0432.CCR-04-2111
10.1002/adhm.201500618
10.1021/nn405520d
10.1038/nnano.2016.168
10.1038/nbt.3119
10.1126/scitranslmed.3000359
10.1038/s41563-018-0028-2
10.1038/nature13954
10.1016/j.addr.2017.05.011
10.1016/S0140-6736(09)61248-4
10.1080/2162402X.2015.1026529
10.1016/j.addr.2012.04.005
10.1007/s11095-010-0361-x
10.1073/pnas.90.8.3539
10.1186/2051-1426-1-10
10.1038/nature12978
10.1038/nbt.3371
10.1038/nmat4822
10.1021/mp500589c
10.1126/science.aaf1328
10.1016/j.biomaterials.2013.09.050
10.1056/NEJMoa1001294
10.1016/j.biomaterials.2014.10.053
10.1126/science.aaa8172
10.1016/j.addr.2017.04.010
10.1016/j.cellimm.2007.07.002
10.1186/1479-5876-10-156
10.1038/82231
10.4049/jimmunol.179.7.4910
10.1080/2162402X.2015.1074374
10.1016/j.tibtech.2014.06.007
10.1021/ja2084338
10.1021/acsnano.7b05299
10.1007/s00262-015-1702-8
10.1002/adfm.201502139
10.1080/08830180600992472
10.1016/j.biomaterials.2009.06.001
10.1016/j.addr.2017.04.011
10.1038/nnano.2014.154
10.1158/1538-7445.AM2017-CT034
10.1158/2326-6066.CIR-14-0126
10.1038/nnano.2017.52
10.1002/adma.201706098
10.1016/j.jconrel.2014.02.001
10.1038/nm.2198
10.1021/jacs.6b09538
10.1002/adhm.201600773
10.1038/nature09737
10.1016/0163-7258(94)90023-X
10.1172/JCI59643
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Sep 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Sep 2018
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-018-0147-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 772
ExternalDocumentID 30104668
10_1038_s41563_018_0147_9
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: 1 U01 CA214369
– fundername: NIH HHS
  grantid: 1 R01 EB023287
– fundername: NIH HHS
  grantid: 1 R01 CA223255
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c438t-215554b5c335c339e09901d7c43ffe0da825d7dd9865b84e29a72129a63c78683
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Sun Aug 24 03:53:28 EDT 2025
Fri Jul 25 09:04:26 EDT 2025
Thu Apr 03 07:00:44 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Tue Jul 01 02:13:59 EDT 2025
Fri Feb 21 02:40:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-215554b5c335c339e09901d7c43ffe0da825d7dd9865b84e29a72129a63c78683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
ObjectType-Review-3
content type line 23
PMID 30104668
PQID 2092507731
PQPubID 27576
PageCount 12
ParticipantIDs proquest_miscellaneous_2088292543
proquest_journals_2092507731
pubmed_primary_30104668
crossref_primary_10_1038_s41563_018_0147_9
crossref_citationtrail_10_1038_s41563_018_0147_9
springer_journals_10_1038_s41563_018_0147_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ParkJCombination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapyNat. Mater.20121189590510.1038/nmat33551:CAS:528:DC%2BC38XhtVeht7fL
LauxIResponse differences between human CD4+ and CD8+ T-cells during CD28 co-stimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during agingClin. Immunol.20009618719710.1006/clim.2000.49021:CAS:528:DC%2BD3cXntFSiurk%3D
MinYAntigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapyNat. Nanotech.20171287788210.1038/nnano.2017.1131:CAS:528:DC%2BC2sXhtVGnu7%2FJ
AliOAEmerichDDranoffGMooneyDJIn situ regulation of DC subsets and T cells mediates tumour regression in miceSci. Transl. Med.200918ra1910.1126/scitranslmed.30003591:CAS:528:DC%2BC3cXhtVWkt73P
UgelSIn vivo administration of artificial antigen presenting cells activates low avidity T cells for treatment of cancerCancer Res.2009699376938410.1158/0008-5472.CAN-09-04001:CAS:528:DC%2BD1MXhsFGrtbnK
FadelTRA carbon nanotube–polymer composite for T-cell therapyNat. Nanotech.2014963964710.1038/nnano.2014.1541:CAS:528:DC%2BC2cXht1Gqt7%2FI
ZhengYIn vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomesJ. Control. Release201317242643510.1016/j.jconrel.2013.05.0371:CAS:528:DC%2BC3sXhtVehtrfP
SicaAMantovaniAMacrophage plasticity and polarization: in vivo veritasThe J. Clin. Investig.201212278779510.1172/JCI596431:CAS:528:DC%2BC38XjsV2ms7g%3D
DranoffGVaccination with irradiated tumour cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumour immunityProc. Natl Acad. Sci. USA1993903539354310.1073/pnas.90.8.35391:CAS:528:DyaK3sXktVKqt78%3D
SunshineJCPericaKSchneckJPGreenJJParticle shape dependence of CD8+ T cell activation by artificial antigen presenting cellsBiomaterials20143526927710.1016/j.biomaterials.2013.09.0501:CAS:528:DC%2BC3sXhsFOhsrbE
MohsenMODelivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccinationJ. Control. Release20172519210010.1016/j.jconrel.2017.02.0311:CAS:528:DC%2BC2sXjvFahu74%3D
ZhangH4–1BB is superior to CD28 co-stimulation for generating CD8(+) cytotoxic lymphocytes for adoptive immunotherapyJ. Immunol.20071794910491810.4049/jimmunol.179.7.49101:CAS:528:DC%2BD2sXhtVCrurfP
FlachTLAlum interaction with dendritic cell membrane lipids is essential for its adjuvanticityNat. Med.20111747948710.1038/nm.23061:CAS:528:DC%2BC3MXjtVGmt70%3D
IshiharaJMatrix-binding checkpoint immunotherapies enhance antitumour efficacy and reduce adverse eventsSci. Transl. Med.20179eaan040110.1126/scitranslmed.aan0401
VerbekeCSMooneyDJInjectable, pore-forming hydrogels for in vivo enrichment of immature dendritic cellsAdv. Healthc. Mater.201542677268710.1002/adhm.2015006181:CAS:528:DC%2BC2MXhs1Ogs7fK
ShvedovaAACarbon nanotubes enhance metastatic growth of lung carcinoma via up‐regulation of myeloid‐derived suppressor cellsSmall201391691169510.1002/smll.2012014701:CAS:528:DC%2BC38Xhtlylt7jO
MuellerSNTianSDeSimoneJMRapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunityMol. Pharm.2015121356136510.1021/mp500589c1:CAS:528:DC%2BC2MXlsVShtLk%3D
NoyRPollardJeffrey W. Tumor-associated macrophages: from mechanisms to therapyImmunity201441496110.1016/j.immuni.2014.06.0101:CAS:528:DC%2BC2cXhtFOrsLvL
KhalilDNSmithELBrentjensRJWolchokJDThe future of cancer treatment: immunomodulation, CARs and combination immunotherapyNat. Rev. Clin. Oncol.20161327329010.1038/nrclinonc.2016.251:CAS:528:DC%2BC28Xkt1Gjt7w%3D
SongMLiuTShiCZhangXChenXBioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumour-associated macrophages toward M1-like phenotype and attenuating tumour hypoxiaACS Nano20161063364710.1021/acsnano.5b067791:CAS:528:DC%2BC2MXhvFOrur7F
ChenPDendritic cell targeted vaccines: Recent progresses and challengesHum. Vaccines Immunother.20161261262210.1080/21645515.2015.1105415
FrancisDMThomasSNProgress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapyAdv. Drug Deliv. Rev.201715334210.1016/j.addr.2017.04.0111:CAS:528:DC%2BC2sXntVKrtb4%3D
Caminschi, I., Maraskovsky, E. & Heath, W. R. Targeting dendritic cells in vivo for cancer therapy. Front. Immunol. https://doi.org/10.3389/fimmu.2012.00013 (2012).
LiYTumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacyClin. Cancer Res.2011177047705710.1158/1078-0432.CCR-11-09511:CAS:528:DC%2BC3MXhsVKht7vE
SinghASuriSRoyKIn-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cellsBiomaterials2009305187520010.1016/j.biomaterials.2009.06.0011:CAS:528:DC%2BD1MXpt1Cit7k%3D
RekersNHThe immunocytokine L19-IL2: An interplay between radiotherapy and long-lasting systemic antitumour immune responsesOncoImmunology20187141411910.1080/2162402X.2017.1414119
BerinsteinNLSurvivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patientsOncoimmunology20154e102652910.1080/2162402X.2015.10265291:CAS:528:DC%2BC28XhsFKisLo%3D
LynnGMIn vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicityNat. Biotechnol.2015331201121010.1038/nbt.33711:CAS:528:DC%2BC2MXhslantL%2FO
LuoMA STING-activating nanovaccine for cancer immunotherapyNat. Nanotech.20171264865410.1038/nnano.2017.521:CAS:528:DC%2BC2sXmvVCmtr4%3D
EggermontLJPaulisLETelJFigdorCGTowards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cellsTrends Biotechnol.20143245646510.1016/j.tibtech.2014.06.0071:CAS:528:DC%2BC2cXhtFSlsrnJ
StephanMTMoonJJUmSHBershteynAIrvineDJTherapeutic cell engineering with surface-conjugated synthetic nanoparticlesNat. Med.2010161035104110.1038/nm.21981:CAS:528:DC%2BC3cXhtVaisLzI
DeMuthPCPolymer multilayer tattooing for enhanced DNA vaccinationNat. Mater.20131236737610.1038/nmat35501:CAS:528:DC%2BC3sXhsVaqt7k%3D
AliOALewinSADranoffGMooneyDJVaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumour eradicationCancer Immunol. Res.201649510010.1158/2326-6066.CIR-14-01261:CAS:528:DC%2BC28Xit1Kqs7g%3D
RahimianSPolymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancerBiomaterials201561334010.1016/j.biomaterials.2015.04.0431:CAS:528:DC%2BC2MXotFCqt70%3D
FreiburghausCSynergistic effects of agonistic co-stimulatory antibodies adsorbed to amphiphilic poly (γ-glutamic acid) nanoparticlesJ. Immunother. Cancer20131P12810.1186/2051-1426-1-S1-P128
CopierJDalgleishAOverview of tumour cell–based vaccinesInt. Rev. Immunol.20062529731910.1080/088301806009924721:CAS:528:DC%2BD2sXisl2ltg%3D%3D
UmekiYInduction of potent antitumour immunity by sustained release of cationic antigen from a DNA‐based hydrogel with adjuvant activityAdv. Funct. Mater.2015255758576710.1002/adfm.2015021391:CAS:528:DC%2BC2MXhtlCjtbfM
TumehPCPD-1 blockade induces responses by inhibiting adaptive immune resistanceNature201451556857110.1038/nature139541:CAS:528:DC%2BC2cXitFanu7jL
MillingLZhangYIrvineDJDelivering safer immunotherapies for cancerAdv. Drug Deliv. Rev.20171147910110.1016/j.addr.2017.05.0111:CAS:528:DC%2BC2sXhtVantLnO
ChenQPhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyNat. Commun.2016710.1038/ncomms131931:CAS:528:DC%2BC28XhslGrtrzN
ZhangQwPrognostic significance of tumour-associated macrophages in solid tumour: a meta-analysis of the literaturePLOS One20127e5094610.1371/journal.pone.00509461:CAS:528:DC%2BC3sXnsVygsg%3D%3D
PaavonenJEfficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young womenLancet200937430131410.1016/S0140-6736(09)61248-41:CAS:528:DC%2BD1MXovF2kt78%3D
ThelinMAIn vivo enrichment of diabetogenic T cellsDiabetes2017662220222910.2337/db16-09461:CAS:528:DC%2BC2sXhvFKltrnJ
WangCImmunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasisAdv. Mater.2014268154816210.1002/adma.2014029961:CAS:528:DC%2BC2cXitFWjsrjM
KageyamaSDose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patientsJ. Transl. Med.20131124624610.1186/1479-5876-11-2461:CAS:528:DC%2BC2cXislOrsbk%3D
BencherifSAInjectable cryogel-based whole-cell cancer vaccinesNat. Commun.2015610.1038/ncomms85561:CAS:528:DC%2BC2MXhsVKhtbbN
HeCCore-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapyNat. Commun.2016710.1038/ncomms124991:CAS:528:DC%2BC28Xhtlyltr7N
Combination vaccine immunotherapy (dribbles) for patients with definitively-treated stage III non-small cell lung cancer. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01909752 (2017).
NeelapuSSChimeric antigen receptor T-cell therapy—assessment and management of toxicitiesNat. Rev. Clin. Oncol.201815476210.1038/nrclinonc.2017.1481:CAS:528:DC%2BC2sXhsFWnur%2FN
PucciFSCS macrophages suppress melanoma by restricting tumour-derived vesicle–B cell interactionsScience201635224224610.1126/science.aaf13281:CAS:528:DC%2BC28XlsFSmurg%3D
NgGReceptor-independent, direct membrane binding leads to cell-surface lipid sorting and syk kinase activation in dendritic cellsImmunity20082980781810.1016/j.immuni.2008.09.0131:CAS:528:DC%2BD1cXhsVaqsL7L
RosaliaRACD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumour responsesBiomaterials201540889710.1016/j.bioma
M Nishikawa (147_CR67) 2014; 180
Y Min (147_CR96) 2017; 12
ST Reddy (147_CR37) 2006; 112
147_CR44
147_CR48
NL Berinstein (147_CR46) 2012; 10
ER Steenblock (147_CR76) 2008; 16
B Wiemann (147_CR19) 1994; 64
MJ Ernsting (147_CR113) 2015; 206
147_CR39
MT Stephan (147_CR15) 2010; 16
J Kim (147_CR58) 2015; 33
OA Ali (147_CR54) 2009; 8
CD Walkey (147_CR30) 2012; 134
T Shimizu (147_CR101) 2008; 367
S Srivastava (147_CR7) 2018; 200
CS Verbeke (147_CR63) 2017; 6
C Oussoren (147_CR36) 1997; 1328
147_CR53
J Copier (147_CR22) 2006; 25
SN Mueller (147_CR38) 2015; 12
AA Shvedova (147_CR121) 2013; 9
147_CR59
147_CR57
GM Lynn (147_CR28) 2015; 33
Q Chen (147_CR14) 2016; 7
JG Gribben (147_CR50) 2005; 11
S Rahimian (147_CR89) 2015; 61
AM Rasmussen (147_CR80) 2010; 355
Qw Zhang (147_CR108) 2012; 7
YC Kim (147_CR69) 2012; 64
R Noy (147_CR107) 2014; 41
A Singh (147_CR60) 2009; 30
NL Berinstein (147_CR45) 2015; 4
C Wang (147_CR94) 2014; 26
P Sharma (147_CR127) 2015; 348
S Kageyama (147_CR49) 2013; 11
Y Mi (147_CR129) 2018; 30
MAM Gijs (147_CR81) 2010; 110
I Laux (147_CR82) 2000; 96
MA Cheever (147_CR24) 2011; 17
C Wang (147_CR13) 2016; 16
H Zhang (147_CR83) 2007; 179
SB Stephan (147_CR87) 2014; 33
S Shen (147_CR112) 2017; 17
DJ Irvine (147_CR11) 2015; 115
C He (147_CR97) 2016; 7
147_CR1
Y Fan (147_CR10) 2015; 3
CG Park (147_CR68) 2018; 10
K Perica (147_CR78) 2014; 8
SW Dow (147_CR102) 1999; 10
TR Fadel (147_CR79) 2014; 9
C Wang (147_CR91) 2018; 10
TN Schumacher (147_CR130) 2015; 348
MA Postow (147_CR3) 2015; 33
A Sexton (147_CR65) 2009; 3
SP Kasturi (147_CR31) 2011; 470
DN Khalil (147_CR2) 2016; 13
J Park (147_CR103) 2012; 11
OA Ali (147_CR99) 2016; 4
DH Charych (147_CR106) 2016; 22
RA Rosalia (147_CR40) 2015; 40
IC Kourtis (147_CR123) 2013; 8
RA Jabulowsky (147_CR43) 2017; 77
Y Umeki (147_CR66) 2015; 25
B Prakken (147_CR77) 2000; 6
I Melero (147_CR5) 2014; 11
A Sica (147_CR109) 2012; 122
AS Cheung (147_CR84) 2018; 36
DI Gabrilovich (147_CR4) 2009; 9
PC DeMuth (147_CR70) 2013; 12
M Song (147_CR120) 2016; 10
SL Topalian (147_CR126) 2016; 16
ST Koshy (147_CR12) 2016; 40
D Muraoka (147_CR25) 2014; 8
L Jeanbart (147_CR124) 2015; 64
F Teng (147_CR6) 2018; 414
J Ishihara (147_CR93) 2017; 9
PC DeMuth (147_CR61) 2013; 12
N Benne (147_CR29) 2016; 234
147_CR100
P Chen (147_CR41) 2016; 12
S Ugel (147_CR85) 2009; 69
DM Francis (147_CR73) 2017; 15
K Ohnishi (147_CR115) 2013; 104
Y Wang (147_CR117) 2017; 112
OA Ali (147_CR55) 2009; 1
F Pucci (147_CR114) 2016; 352
T Shiota (147_CR116) 2016; 11
AS Schmid (147_CR104) 2018; 271
NH Rekers (147_CR105) 2018; 7
N Mach (147_CR21) 2000; 12
Z Huang (147_CR118) 2012; 158
SS Neelapu (147_CR8) 2018; 15
R Kuai (147_CR27) 2017; 16
R Meir (147_CR74) 2017; 11
MS Sasso (147_CR125) 2016; 96
OA Ali (147_CR56) 2011; 28
C Freiburghaus (147_CR128) 2013; 1
TJ Moyer (147_CR16) 2016; 126
JM Pitt (147_CR51) 2016; 126
SA Bencherif (147_CR64) 2015; 6
C Shen (147_CR86) 2007; 247
JJ Moon (147_CR26) 2011; 10
S Zanganeh (147_CR119) 2016; 11
G Ng (147_CR34) 2008; 29
M Luo (147_CR35) 2017; 12
LJ Eggermont (147_CR71) 2014; 32
M Karkada (147_CR47) 2014; 8
MO Mohsen (147_CR32) 2017; 251
JC Sunshine (147_CR75) 2014; 35
JS Weber (147_CR9) 2015; 33
TL Flach (147_CR33) 2011; 17
X Duan (147_CR95) 2016; 138
J Paavonen (147_CR18) 2009; 374
SM Zeisberger (147_CR111) 2006; 95
C Wang (147_CR92) 2017; 1
147_CR122
C Ngambenjawong (147_CR110) 2017; 114
Y Li (147_CR90) 2016; 5
Y Li (147_CR52) 2011; 17
L Milling (147_CR17) 2017; 114
Y Zheng (147_CR72) 2013; 172
G Dranoff (147_CR20) 1993; 90
PW Kantoff (147_CR23) 2010; 363
H Liu (147_CR42) 2014; 507
CS Verbeke (147_CR62) 2015; 4
MA Thelin (147_CR88) 2017; 66
PC Tumeh (147_CR98) 2014; 515
References_xml – reference: ChenPDendritic cell targeted vaccines: Recent progresses and challengesHum. Vaccines Immunother.20161261262210.1080/21645515.2015.1105415
– reference: SteenblockERFahmyTMA comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cellsMol. Ther.20081676577210.1038/mt.2008.111:CAS:528:DC%2BD1cXjslCnsb4%3D
– reference: ZhangH4–1BB is superior to CD28 co-stimulation for generating CD8(+) cytotoxic lymphocytes for adoptive immunotherapyJ. Immunol.20071794910491810.4049/jimmunol.179.7.49101:CAS:528:DC%2BD2sXhtVCrurfP
– reference: GijsMAMLacharmeFLehmannUMicrofluidic applications of magnetic particles for biological analysis and catalysisChem. Rev.20101101518156310.1021/cr90019291:CAS:528:DC%2BD1MXhsFWhsLzO
– reference: WangCIn situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapyNat. Biomed. Eng.20171001110.1038/s41551-016-0011
– reference: PostowMACallahanMKWolchokJDImmune checkpoint blockade in cancer therapyJ. Clin. Oncol.2015331974198210.1200/JCO.2014.59.43581:CAS:528:DC%2BC2MXhsFKmt7%2FN
– reference: CheeverMAHiganoCSPROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccineClin. Cancer Res.2011173520352610.1158/1078-0432.CCR-10-3126
– reference: VerbekeCSMooneyDJInjectable, pore-forming hydrogels for in vivo enrichment of immature dendritic cellsAdv. Healthc. Mater.201542677268710.1002/adhm.2015006181:CAS:528:DC%2BC2MXhs1Ogs7fK
– reference: ZhangQwPrognostic significance of tumour-associated macrophages in solid tumour: a meta-analysis of the literaturePLOS One20127e5094610.1371/journal.pone.00509461:CAS:528:DC%2BC3sXnsVygsg%3D%3D
– reference: SchmidASTintorDNeriDNovel antibody-cytokine fusion proteins featuring granulocyte-colony stimulating factor, interleukin-3 and interleukin-4 as payloadsJ. Biotechnol.2018271293610.1016/j.jbiotec.2018.02.0041:CAS:528:DC%2BC1cXjsl2qtLg%3D
– reference: JeanbartLKourtisICvan der VliesAJSwartzMAHubbellJA6-thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumour-bearing miceCancer Immunol. Immunother.2015641033104610.1007/s00262-015-1702-81:CAS:528:DC%2BC2MXovVelurY%3D
– reference: NoyRPollardJeffrey W. Tumor-associated macrophages: from mechanisms to therapyImmunity201441496110.1016/j.immuni.2014.06.0101:CAS:528:DC%2BC2cXhtFOrsLvL
– reference: VerbekeCSMulticomponent injectable hydrogels for antigen-specific tolerogenic immune modulationAdv. Healthc. Mater.20176160077310.1002/adhm.2016007731:CAS:528:DC%2BC2sXhtlGnu7o%3D
– reference: WiemannBStarnesCOColey’s toxins, tumour necrosis factor and cancer research: a historical perspectivePharmacol. Ther.19946452956410.1016/0163-7258(94)90023-X1:CAS:528:DyaK2MXjtVOrt70%3D
– reference: CopierJDalgleishAOverview of tumour cell–based vaccinesInt. Rev. Immunol.20062529731910.1080/088301806009924721:CAS:528:DC%2BD2sXisl2ltg%3D%3D
– reference: WalkeyCDOlsenJBGuoHEmiliAChanWCNanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptakeJ. Am. Chem. Soc.20121342139214710.1021/ja20843381:CAS:528:DC%2BC3MXhs1Gls7vN
– reference: PittJMDendritic cell–derived exosomes for cancer therapyJ. Clin. Investig.20161261224123210.1172/JCI81137
– reference: ParkJCombination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapyNat. Mater.20121189590510.1038/nmat33551:CAS:528:DC%2BC38XhtVeht7fL
– reference: ShimizuTNanogel DDS enables sustained release of IL-12 for tumour immunotherapyBiochem. Biophys. Res. Commun.200836733033510.1016/j.bbrc.2007.12.1121:CAS:528:DC%2BD1cXpsFynsw%3D%3D
– reference: RekersNHThe immunocytokine L19-IL2: An interplay between radiotherapy and long-lasting systemic antitumour immune responsesOncoImmunology20187141411910.1080/2162402X.2017.1414119
– reference: Stewart, B. & Wild, C. P. World Cancer Report 2014 (World Health Organization, 2017).
– reference: MohsenMODelivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccinationJ. Control. Release20172519210010.1016/j.jconrel.2017.02.0311:CAS:528:DC%2BC2sXjvFahu74%3D
– reference: StephanMTMoonJJUmSHBershteynAIrvineDJTherapeutic cell engineering with surface-conjugated synthetic nanoparticlesNat. Med.2010161035104110.1038/nm.21981:CAS:528:DC%2BC3cXhtVaisLzI
– reference: EggermontLJPaulisLETelJFigdorCGTowards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cellsTrends Biotechnol.20143245646510.1016/j.tibtech.2014.06.0071:CAS:528:DC%2BC2cXhtFSlsrnJ
– reference: IshiharaJMatrix-binding checkpoint immunotherapies enhance antitumour efficacy and reduce adverse eventsSci. Transl. Med.20179eaan040110.1126/scitranslmed.aan0401
– reference: GabrilovichDINagarajSMyeloid-derived suppressor cells as regulators of the immune systemNat. Rev. Immunol.2009916217410.1038/nri25061:CAS:528:DC%2BD1MXhsFeqsbw%3D
– reference: PaavonenJEfficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young womenLancet200937430131410.1016/S0140-6736(09)61248-41:CAS:528:DC%2BD1MXovF2kt78%3D
– reference: NishikawaMInjectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen deliveryJ. Control. Release2014180253210.1016/j.jconrel.2014.02.0011:CAS:528:DC%2BC2cXkvVKjsLY%3D
– reference: CheungASZhangDKYKoshySTMooneyDJScaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cellsNat. Biotechnol.20183616016910.1038/nbt.40471:CAS:528:DC%2BC1cXovVCitA%3D%3D
– reference: KimJInjectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacyNat. Biotechnol.201533647210.1038/nbt.30711:CAS:528:DC%2BC2cXitVCksr7J
– reference: FlachTLAlum interaction with dendritic cell membrane lipids is essential for its adjuvanticityNat. Med.20111747948710.1038/nm.23061:CAS:528:DC%2BC3MXjtVGmt70%3D
– reference: ShenSSpatial targeting of tumour-associated macrophages and tumour cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapyNano Lett.2017173822382910.1021/acs.nanolett.7b011931:CAS:528:DC%2BC2sXnsV2jsLo%3D
– reference: LiuHStructure-based programming of lymph-node targeting in molecular vaccinesNature201450751952210.1038/nature129781:CAS:528:DC%2BC2cXkvV2ru70%3D
– reference: NgambenjawongCGustafsonHHPunSHProgress in tumour-associated macrophage (TAM)-targeted therapeuticsAdv. Drug Deliv. Rev.201711420622110.1016/j.addr.2017.04.0101:CAS:528:DC%2BC2sXnslKqtL0%3D
– reference: Safety study of a recombinant protein vaccine to treat esophageal cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/nct01003808 (2013).
– reference: KageyamaSDose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patientsJ. Transl. Med.20131124624610.1186/1479-5876-11-2461:CAS:528:DC%2BC2cXislOrsbk%3D
– reference: AliOAEmerichDDranoffGMooneyDJIn situ regulation of DC subsets and T cells mediates tumour regression in miceSci. Transl. Med.200918ra1910.1126/scitranslmed.30003591:CAS:528:DC%2BC3cXhtVWkt73P
– reference: BencherifSAInjectable cryogel-based whole-cell cancer vaccinesNat. Commun.2015610.1038/ncomms85561:CAS:528:DC%2BC2MXhsVKhtbbN
– reference: WangCYeYHochuGMSadeghifarHGuZEnhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibodyNano Lett.2016162334234010.1021/acs.nanolett.5b050301:CAS:528:DC%2BC28Xks1aqt70%3D
– reference: LuoMA STING-activating nanovaccine for cancer immunotherapyNat. Nanotech.20171264865410.1038/nnano.2017.521:CAS:528:DC%2BC2sXmvVCmtr4%3D
– reference: RosaliaRACD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumour responsesBiomaterials201540889710.1016/j.biomaterials.2014.10.0531:CAS:528:DC%2BC2cXhvFantbfF
– reference: MeleroITherapeutic vaccines for cancer: an overview of clinical trialsNat. Rev. Clin. Oncol.20141150952410.1038/nrclinonc.2014.1111:CAS:528:DC%2BC2cXhtFWiu7zJ
– reference: TopalianSLTaubeJMAndersRAPardollDMMechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapyNat. Rev. Cancer20161627528710.1038/nrc.2016.361:CAS:528:DC%2BC28XmtVOrurc%3D
– reference: UmekiYInduction of potent antitumour immunity by sustained release of cationic antigen from a DNA‐based hydrogel with adjuvant activityAdv. Funct. Mater.2015255758576710.1002/adfm.2015021391:CAS:528:DC%2BC2MXhtlCjtbfM
– reference: Wesolowski, R., Markowitz, J. & Carson, W. E. Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J. Immunother. Cancerhttps://doi.org/10.1186/2051-1426-1-10 (2013).
– reference: Caminschi, I., Maraskovsky, E. & Heath, W. R. Targeting dendritic cells in vivo for cancer therapy. Front. Immunol. https://doi.org/10.3389/fimmu.2012.00013 (2012).
– reference: BenneNvan DuijnJKuiperJJiskootWSlütterBOrchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccinesJ. Control. Release201623412413410.1016/j.jconrel.2016.05.0331:CAS:528:DC%2BC28XpsVGktrg%3D
– reference: NgGReceptor-independent, direct membrane binding leads to cell-surface lipid sorting and syk kinase activation in dendritic cellsImmunity20082980781810.1016/j.immuni.2008.09.0131:CAS:528:DC%2BD1cXhsVaqsL7L
– reference: DPX-Survivac and checkpoint inhibitor in DLBCL. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct03349450 (2018).
– reference: PericaKMagnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumour activityACS Nano201482252226010.1021/nn405520d1:CAS:528:DC%2BC2cXivFyks7g%3D
– reference: LauxIResponse differences between human CD4+ and CD8+ T-cells during CD28 co-stimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during agingClin. Immunol.20009618719710.1006/clim.2000.49021:CAS:528:DC%2BD3cXntFSiurk%3D
– reference: TumehPCPD-1 blockade induces responses by inhibiting adaptive immune resistanceNature201451556857110.1038/nature139541:CAS:528:DC%2BC2cXitFanu7jL
– reference: KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdv. Drug Deliv. Rev.2012641547156810.1016/j.addr.2012.04.0051:CAS:528:DC%2BC38XnsVGjt78%3D
– reference: JabulowskyRAA first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent melanoma immunotherapyCancer Res.201777CT03410.1158/1538-7445.AM2017-CT034
– reference: WangCIn situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapySci. Transl. Med.201810eaan368210.1126/scitranslmed.aan3682
– reference: BerinsteinNLSurvivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patientsOncoimmunology20154e102652910.1080/2162402X.2015.10265291:CAS:528:DC%2BC28XhsFKisLo%3D
– reference: DeMuthPCPolymer multilayer tattooing for enhanced DNA vaccinationNat. Mater.20131236737610.1038/nmat35501:CAS:528:DC%2BC3sXhsVaqt7k%3D
– reference: FreiburghausCSynergistic effects of agonistic co-stimulatory antibodies adsorbed to amphiphilic poly (γ-glutamic acid) nanoparticlesJ. Immunother. Cancer20131P12810.1186/2051-1426-1-S1-P128
– reference: KourtisICPeripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumours in micePLOS One20138e6164610.1371/journal.pone.00616461:CAS:528:DC%2BC3sXntVKrtbY%3D
– reference: KasturiSPProgramming the magnitude and persistence of antibody responses with innate immunityNature201147054354710.1038/nature097371:CAS:528:DC%2BC3MXisVags7g%3D
– reference: GribbenJGUnexpected association between induction of immunity to the universal tumour antigen CYP1B1 and response to next therapyClin. Cancer Res.2005114430443610.1158/1078-0432.CCR-04-21111:CAS:528:DC%2BD2MXltFeksrg%3D
– reference: MeirRFast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapyACS Nano201711111271113410.1021/acsnano.7b052991:CAS:528:DC%2BC2sXhs1Grur%2FJ
– reference: RahimianSPolymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancerBiomaterials201561334010.1016/j.biomaterials.2015.04.0431:CAS:528:DC%2BC2MXotFCqt70%3D
– reference: IrvineDJHansonMCRakhraKTokatlianTSynthetic nanoparticles for vaccines and immunotherapyChem. Rev.2015115111091114610.1021/acs.chemrev.5b001091:CAS:528:DC%2BC2MXhtFequrbI
– reference: LiYTumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacyClin. Cancer Res.2011177047705710.1158/1078-0432.CCR-11-09511:CAS:528:DC%2BC3MXhsVKht7vE
– reference: LiYHydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumour immunityOncoImmunology20165e107437410.1080/2162402X.2015.10743741:CAS:528:DC%2BC28Xjslyjs7s%3D
– reference: ShenCZhangJXiaLMengFXieWInduction of tumour antigen-specific cytotoxic T cell responses in naïve mice by latex microspheres-based artificial antigen-presenting cell constructsCell. Immunol.2007247283510.1016/j.cellimm.2007.07.0021:CAS:528:DC%2BD2sXhtFSnt77O
– reference: AliOALewinSADranoffGMooneyDJVaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumour eradicationCancer Immunol. Res.201649510010.1158/2326-6066.CIR-14-01261:CAS:528:DC%2BC28Xit1Kqs7g%3D
– reference: OussorenCZuidemaJCrommelinDJAStormGLymphatic uptake and biodistribution of liposomes after subcutaneous injection: II. Influence of liposomal size, lipid composition and lipid doseBiochim. Biophys. Acta1997132826127210.1016/S0005-2736(97)00122-31:CAS:528:DyaK2sXkvVartr8%3D
– reference: SongMLiuTShiCZhangXChenXBioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumour-associated macrophages toward M1-like phenotype and attenuating tumour hypoxiaACS Nano20161063364710.1021/acsnano.5b067791:CAS:528:DC%2BC2MXhvFOrur7F
– reference: Study of DPX-Survivac vaccine therapy and epacadostat in patients with recurrent ovarian cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/nct02785250 (2017).
– reference: ShvedovaAACarbon nanotubes enhance metastatic growth of lung carcinoma via up‐regulation of myeloid‐derived suppressor cellsSmall201391691169510.1002/smll.2012014701:CAS:528:DC%2BC38Xhtlylt7jO
– reference: AliOABiomaterial-Based Vaccine Induces Regression of Established Intracranial Glioma in RatsPharm. Res.2011281074108010.1007/s11095-010-0361-x1:CAS:528:DC%2BC3MXktFWlsg%3D%3D
– reference: SunshineJCPericaKSchneckJPGreenJJParticle shape dependence of CD8+ T cell activation by artificial antigen presenting cellsBiomaterials20143526927710.1016/j.biomaterials.2013.09.0501:CAS:528:DC%2BC3sXhsFOhsrbE
– reference: BerinsteinNLFirst-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patientsJ. Transl. Med.20121015615610.1186/1479-5876-10-1561:CAS:528:DC%2BC38XhvVShsr%2FJ
– reference: FadelTRA carbon nanotube–polymer composite for T-cell therapyNat. Nanotech.2014963964710.1038/nnano.2014.1541:CAS:528:DC%2BC2cXht1Gqt7%2FI
– reference: DuanXPhotodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumour immunity and antimetastatic effect on breast cancerJ. Am. Chem. Soc2016138166861669510.1021/jacs.6b095381:CAS:528:DC%2BC28XhvFyntbzM
– reference: ZeisbergerSMClodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approachBr. J. Cancer20069527228110.1038/sj.bjc.66032401:CAS:528:DC%2BD28Xnsl2iu7o%3D
– reference: ChenQPhotothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapyNat. Commun.2016710.1038/ncomms131931:CAS:528:DC%2BC28XhslGrtrzN
– reference: LynnGMIn vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicityNat. Biotechnol.2015331201121010.1038/nbt.33711:CAS:528:DC%2BC2MXhslantL%2FO
– reference: AliOAHuebschNCaoLDranoffGMooneyDJInfection-mimicking materials to program dendritic cells in situNat. Mater.2009815115810.1038/nmat23571:CAS:528:DC%2BD1MXps1ejsw%3D%3D
– reference: SicaAMantovaniAMacrophage plasticity and polarization: in vivo veritasThe J. Clin. Investig.201212278779510.1172/JCI596431:CAS:528:DC%2BC38XjsV2ms7g%3D
– reference: StephanSBBiopolymer implants enhance the efficacy of adoptive T-cell therapyNat. Biotechnol.2014339710110.1038/nbt.31041:CAS:528:DC%2BC2cXitFCru7zF
– reference: WangCImmunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasisAdv. Mater.2014268154816210.1002/adma.2014029961:CAS:528:DC%2BC2cXitFWjsrjM
– reference: OhnishiKCD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinomaCancer Sci.20131041237124410.1111/cas.122121:CAS:528:DC%2BC3sXhtlKrsbfF
– reference: SassoMSLow dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapyBiomaterials201696476210.1016/j.biomaterials.2016.04.0101:CAS:528:DC%2BC28Xms1Shs74%3D
– reference: KhalilDNSmithELBrentjensRJWolchokJDThe future of cancer treatment: immunomodulation, CARs and combination immunotherapyNat. Rev. Clin. Oncol.20161327329010.1038/nrclinonc.2016.251:CAS:528:DC%2BC28Xkt1Gjt7w%3D
– reference: MillingLZhangYIrvineDJDelivering safer immunotherapies for cancerAdv. Drug Deliv. Rev.20171147910110.1016/j.addr.2017.05.0111:CAS:528:DC%2BC2sXhtVantLnO
– reference: Combination vaccine immunotherapy (dribbles) for patients with definitively-treated stage III non-small cell lung cancer. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01909752 (2017).
– reference: Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. https://doi.org/10.1038/s41563-018-0028-2 (2018).
– reference: WangYPolymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumour microenvironmentBiomaterials201711215316310.1016/j.biomaterials.2016.09.0341:CAS:528:DC%2BC28Xhs12nurjO
– reference: DranoffGVaccination with irradiated tumour cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumour immunityProc. Natl Acad. Sci. USA1993903539354310.1073/pnas.90.8.35391:CAS:528:DyaK3sXktVKqt78%3D
– reference: KuaiROchylLJBahjatKSSchwendemanAMoonJJDesigner vaccine nanodiscs for personalized cancer immunotherapyNat. Mater.20171648949610.1038/nmat48221:CAS:528:DC%2BC28XitFGitLvO
– reference: NeelapuSSChimeric antigen receptor T-cell therapy—assessment and management of toxicitiesNat. Rev. Clin. Oncol.201815476210.1038/nrclinonc.2017.1481:CAS:528:DC%2BC2sXhsFWnur%2FN
– reference: CharychDHNKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumour exposure, and marked efficacy in mouse tumour modelsClin. Cancer Res.20162268069010.1158/1078-0432.CCR-15-16311:CAS:528:DC%2BC28XitFeqs70%3D
– reference: HeCCore-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapyNat. Commun.2016710.1038/ncomms124991:CAS:528:DC%2BC28Xhtlyltr7N
– reference: HuangZTargeted delivery of oligonucleotides into tumour-associated macrophages for cancer immunotherapyJ. Control. Release201215828629210.1016/j.jconrel.2011.11.0131:CAS:528:DC%2BC38Xjt1ert74%3D
– reference: MoyerTJZmolekACIrvineDJBeyond antigens and adjuvants: formulating future vaccinesJ. Clin. Investig.201612679980810.1172/JCI81083
– reference: ErnstingMJTargeting of metastasis-promoting tumour-associated fibroblasts and modulation of pancreatic tumour-associated stroma with a carboxymethylcellulose-docetaxel nanoparticleJ. Control. Release201520612213010.1016/j.jconrel.2015.03.0231:CAS:528:DC%2BC2MXltVShtbY%3D
– reference: PucciFSCS macrophages suppress melanoma by restricting tumour-derived vesicle–B cell interactionsScience201635224224610.1126/science.aaf13281:CAS:528:DC%2BC28XlsFSmurg%3D
– reference: ZanganehSIron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissuesNat. Nanotech.20161198699410.1038/nnano.2016.1681:CAS:528:DC%2BC28XhsFyms7fO
– reference: DowSWIntravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastasesHum. Gene Ther.1999102961297210.1089/104303499500163751:CAS:528:DC%2BD3cXitFWl
– reference: FanYMoonJJNanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapyVaccines2015366268510.3390/vaccines30306621:CAS:528:DC%2BC1cXlsFamsLw%3D
– reference: MinYAntigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapyNat. Nanotech.20171287788210.1038/nnano.2017.1131:CAS:528:DC%2BC2sXhtVGnu7%2FJ
– reference: MiYA dual immunotherapy nanoparticle improves T‐cell activation and cancer immunotherapyAdv. Mater.201830170609810.1002/adma.2017060981:CAS:528:DC%2BC1cXosVWnt78%3D
– reference: ZhengYIn vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomesJ. Control. Release201317242643510.1016/j.jconrel.2013.05.0371:CAS:528:DC%2BC3sXhtVehtrfP
– reference: SchumacherTNSchreiberRDNeoantigens in cancer immunotherapyScience2015348697410.1126/science.aaa49711:CAS:528:DC%2BC2MXls1Wmurc%3D
– reference: MoonJJInterbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responsesNat. Mater.20111024325110.1038/nmat29601:CAS:528:DC%2BC3MXit1WlsLc%3D
– reference: PrakkenBArtificial antigen-presenting cells as a tool to exploit the immune ‘synapse’Nat. Med.200061406141010.1038/822311:CAS:528:DC%2BD3cXosl2hs7c%3D
– reference: KantoffPWSipuleucel-T immunotherapy for castration-resistant prostate cancerN. Engl. J. Med.201036341142210.1056/NEJMoa10012941:CAS:528:DC%2BC3cXhtVGlurrN
– reference: MuellerSNTianSDeSimoneJMRapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunityMol. Pharm.2015121356136510.1021/mp500589c1:CAS:528:DC%2BC2MXlsVShtLk%3D
– reference: UgelSIn vivo administration of artificial antigen presenting cells activates low avidity T cells for treatment of cancerCancer Res.2009699376938410.1158/0008-5472.CAN-09-04001:CAS:528:DC%2BD1MXhsFGrtbnK
– reference: KoshySTMooneyDJBiomaterials for enhancing anti-cancer immunityCurr. Opin. Biotechnol.2016401810.1016/j.copbio.2016.02.0011:CAS:528:DC%2BC28XisFKjsr8%3D
– reference: Dendritic cell activating scaffold in melanoma. ClinicalTrials.orghttps://clinicaltrials.gov/show/nct01753089 (2017).
– reference: ThelinMAIn vivo enrichment of diabetogenic T cellsDiabetes2017662220222910.2337/db16-09461:CAS:528:DC%2BC2sXhvFKltrnJ
– reference: ReddySTRehorASchmoekelHGHubbellJASwartzMAIn vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticlesJ. Control. Release2006112263410.1016/j.jconrel.2006.01.0061:CAS:528:DC%2BD28XjsFars7o%3D
– reference: RasmussenAMEx vivo expansion protocol for human tumour specific T cells for adoptive T cell therapyJ. Immunol. Methods2010355526010.1016/j.jim.2010.02.0041:CAS:528:DC%2BC3cXks1Wqt7o%3D
– reference: SrivastavaSRiddellSRChimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacyJ. Immunol.201820045946810.4049/jimmunol.17011551:CAS:528:DC%2BC1cXksVOhtQ%3D%3D
– reference: FrancisDMThomasSNProgress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapyAdv. Drug Deliv. Rev.201715334210.1016/j.addr.2017.04.0111:CAS:528:DC%2BC2sXntVKrtb4%3D
– reference: SextonAA protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsulesACS Nano200933391340010.1021/nn900715g1:CAS:528:DC%2BD1MXht1GltLzL
– reference: TengFMengXKongLYuJProgress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic reviewCancer lett.201841416617310.1016/j.canlet.2017.11.0141:CAS:528:DC%2BC2sXhvVOrsbzO
– reference: WeberJSMuléJJCancer immunotherapy meets biomaterialsNat. Biotechnol.201533444510.1038/nbt.31191:CAS:528:DC%2BC2MXmtVyhug%3D%3D
– reference: SinghASuriSRoyKIn-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cellsBiomaterials2009305187520010.1016/j.biomaterials.2009.06.0011:CAS:528:DC%2BD1MXpt1Cit7k%3D
– reference: ShiotaTThe clinical significance of CD169-positive lymph node macrophage in patients with breast cancerPLOS One201611e016668010.1371/journal.pone.01666801:CAS:528:DC%2BC2sXktFahurc%3D
– reference: ParkCGExtended release of perioperative immunotherapy prevents tumour recurrence and eliminates metastasesSci. Transl. Med.201810eaar191610.1126/scitranslmed.aar1916
– reference: MachNDranoffGCytokine-secreting tumour cell vaccinesCurr. Opin. Immunol.20001257157510.1016/S0952-7915(00)00144-81:CAS:528:DC%2BD3cXmsVKltL4%3D
– reference: SharmaPAllisonJPThe future of immune checkpoint therapyScience2015348566110.1126/science.aaa81721:CAS:528:DC%2BC2MXls1Wmurg%3D
– reference: MuraokaDNanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumour immunityACS Nano201489209921810.1021/nn502975r1:CAS:528:DC%2BC2cXhsVGhtb7L
– reference: KarkadaMBerinsteinNLMansourMTherapeutic vaccines and cancer: focus on DPX-0907Biol. Targets Ther.20148273810.2147/BTT.S551961:CAS:528:DC%2BC2cXhs1OmsLjM
– volume: 1328
  start-page: 261
  year: 1997
  ident: 147_CR36
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(97)00122-3
– volume: 33
  start-page: 97
  year: 2014
  ident: 147_CR87
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3104
– volume: 110
  start-page: 1518
  year: 2010
  ident: 147_CR81
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001929
– ident: 147_CR53
– volume: 16
  start-page: 765
  year: 2008
  ident: 147_CR76
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.11
– volume: 172
  start-page: 426
  year: 2013
  ident: 147_CR72
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.05.037
– volume: 126
  start-page: 799
  year: 2016
  ident: 147_CR16
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI81083
– volume: 158
  start-page: 286
  year: 2012
  ident: 147_CR118
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.11.013
– volume: 17
  start-page: 3520
  year: 2011
  ident: 147_CR24
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-3126
– volume: 8
  start-page: 151
  year: 2009
  ident: 147_CR54
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2357
– volume: 33
  start-page: 64
  year: 2015
  ident: 147_CR58
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3071
– volume: 11
  start-page: 246
  year: 2013
  ident: 147_CR49
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-11-246
– volume: 41
  start-page: 49
  year: 2014
  ident: 147_CR107
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.010
– volume: 96
  start-page: 187
  year: 2000
  ident: 147_CR82
  publication-title: Clin. Immunol.
  doi: 10.1006/clim.2000.4902
– volume: 200
  start-page: 459
  year: 2018
  ident: 147_CR7
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701155
– ident: 147_CR39
  doi: 10.3389/fimmu.2012.00013
– volume: 17
  start-page: 479
  year: 2011
  ident: 147_CR33
  publication-title: Nat. Med.
  doi: 10.1038/nm.2306
– volume: 3
  start-page: 3391
  year: 2009
  ident: 147_CR65
  publication-title: ACS Nano
  doi: 10.1021/nn900715g
– volume: 12
  start-page: 367
  year: 2013
  ident: 147_CR70
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3550
– volume: 12
  start-page: 571
  year: 2000
  ident: 147_CR21
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(00)00144-8
– volume: 36
  start-page: 160
  year: 2018
  ident: 147_CR84
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4047
– ident: 147_CR1
– volume: 29
  start-page: 807
  year: 2008
  ident: 147_CR34
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.013
– volume: 234
  start-page: 124
  year: 2016
  ident: 147_CR29
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.05.033
– ident: 147_CR44
– volume: 3
  start-page: 662
  year: 2015
  ident: 147_CR10
  publication-title: Vaccines
  doi: 10.3390/vaccines3030662
– volume: 40
  start-page: 1
  year: 2016
  ident: 147_CR12
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.02.001
– volume: 9
  start-page: 162
  year: 2009
  ident: 147_CR4
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2506
– volume: 126
  start-page: 1224
  year: 2016
  ident: 147_CR51
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI81137
– volume: 206
  start-page: 122
  year: 2015
  ident: 147_CR113
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.03.023
– volume: 112
  start-page: 26
  year: 2006
  ident: 147_CR37
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2006.01.006
– volume: 33
  start-page: 1974
  year: 2015
  ident: 147_CR3
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.59.4358
– volume: 10
  start-page: 243
  year: 2011
  ident: 147_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2960
– volume: 26
  start-page: 8154
  year: 2014
  ident: 147_CR94
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402996
– volume: 10
  start-page: eaar1916
  year: 2018
  ident: 147_CR68
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aar1916
– volume: 251
  start-page: 92
  year: 2017
  ident: 147_CR32
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.02.031
– volume: 69
  start-page: 9376
  year: 2009
  ident: 147_CR85
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-0400
– volume: 66
  start-page: 2220
  year: 2017
  ident: 147_CR88
  publication-title: Diabetes
  doi: 10.2337/db16-0946
– volume: 61
  start-page: 33
  year: 2015
  ident: 147_CR89
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.04.043
– volume: 9
  start-page: eaan0401
  year: 2017
  ident: 147_CR93
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan0401
– volume: 11
  start-page: 509
  year: 2014
  ident: 147_CR5
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2014.111
– volume: 6
  year: 2015
  ident: 147_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8556
– ident: 147_CR100
– volume: 104
  start-page: 1237
  year: 2013
  ident: 147_CR115
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12212
– volume: 271
  start-page: 29
  year: 2018
  ident: 147_CR104
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2018.02.004
– volume: 112
  start-page: 153
  year: 2017
  ident: 147_CR117
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.034
– volume: 16
  start-page: 2334
  year: 2016
  ident: 147_CR13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05030
– volume: 1
  start-page: 0011
  year: 2017
  ident: 147_CR92
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0011
– volume: 414
  start-page: 166
  year: 2018
  ident: 147_CR6
  publication-title: Cancer lett.
  doi: 10.1016/j.canlet.2017.11.014
– volume: 11
  start-page: 895
  year: 2012
  ident: 147_CR103
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3355
– volume: 7
  year: 2016
  ident: 147_CR97
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12499
– volume: 7
  start-page: 1414119
  year: 2018
  ident: 147_CR105
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1414119
– volume: 22
  start-page: 680
  year: 2016
  ident: 147_CR106
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-1631
– volume: 96
  start-page: 47
  year: 2016
  ident: 147_CR125
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.04.010
– volume: 348
  start-page: 69
  year: 2015
  ident: 147_CR130
  publication-title: Science
  doi: 10.1126/science.aaa4971
– volume: 12
  start-page: 612
  year: 2016
  ident: 147_CR41
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2015.1105415
– volume: 115
  start-page: 11109
  year: 2015
  ident: 147_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00109
– volume: 355
  start-page: 52
  year: 2010
  ident: 147_CR80
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2010.02.004
– volume: 367
  start-page: 330
  year: 2008
  ident: 147_CR101
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.12.112
– volume: 17
  start-page: 3822
  year: 2017
  ident: 147_CR112
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01193
– volume: 15
  start-page: 47
  year: 2018
  ident: 147_CR8
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.148
– volume: 8
  start-page: 9209
  year: 2014
  ident: 147_CR25
  publication-title: ACS Nano
  doi: 10.1021/nn502975r
– volume: 10
  start-page: 2961
  year: 1999
  ident: 147_CR102
  publication-title: Hum. Gene Ther.
  doi: 10.1089/10430349950016375
– volume: 11
  start-page: e0166680
  year: 2016
  ident: 147_CR116
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0166680
– volume: 8
  start-page: e61646
  year: 2013
  ident: 147_CR123
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0061646
– volume: 7
  year: 2016
  ident: 147_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13193
– volume: 16
  start-page: 275
  year: 2016
  ident: 147_CR126
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.36
– ident: 147_CR57
– volume: 9
  start-page: 1691
  year: 2013
  ident: 147_CR121
  publication-title: Small
  doi: 10.1002/smll.201201470
– volume: 10
  start-page: 633
  year: 2016
  ident: 147_CR120
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06779
– volume: 10
  start-page: eaan3682
  year: 2018
  ident: 147_CR91
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan3682
– volume: 17
  start-page: 7047
  year: 2011
  ident: 147_CR52
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-0951
– volume: 13
  start-page: 273
  year: 2016
  ident: 147_CR2
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.25
– volume: 8
  start-page: 27
  year: 2014
  ident: 147_CR47
  publication-title: Biol. Targets Ther.
  doi: 10.2147/BTT.S55196
– volume: 1
  start-page: P128
  year: 2013
  ident: 147_CR128
  publication-title: J. Immunother. Cancer
  doi: 10.1186/2051-1426-1-S1-P128
– volume: 7
  start-page: e50946
  year: 2012
  ident: 147_CR108
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0050946
– volume: 95
  start-page: 272
  year: 2006
  ident: 147_CR111
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6603240
– volume: 12
  start-page: 877
  year: 2017
  ident: 147_CR96
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.113
– volume: 11
  start-page: 4430
  year: 2005
  ident: 147_CR50
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-2111
– volume: 4
  start-page: 2677
  year: 2015
  ident: 147_CR62
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500618
– volume: 8
  start-page: 2252
  year: 2014
  ident: 147_CR78
  publication-title: ACS Nano
  doi: 10.1021/nn405520d
– volume: 11
  start-page: 986
  year: 2016
  ident: 147_CR119
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.168
– volume: 33
  start-page: 44
  year: 2015
  ident: 147_CR9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3119
– volume: 1
  start-page: 8ra19
  year: 2009
  ident: 147_CR55
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3000359
– ident: 147_CR59
  doi: 10.1038/s41563-018-0028-2
– ident: 147_CR48
– volume: 515
  start-page: 568
  year: 2014
  ident: 147_CR98
  publication-title: Nature
  doi: 10.1038/nature13954
– volume: 114
  start-page: 79
  year: 2017
  ident: 147_CR17
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.05.011
– volume: 374
  start-page: 301
  year: 2009
  ident: 147_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61248-4
– volume: 4
  start-page: e1026529
  year: 2015
  ident: 147_CR45
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1026529
– volume: 64
  start-page: 1547
  year: 2012
  ident: 147_CR69
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.04.005
– volume: 28
  start-page: 1074
  year: 2011
  ident: 147_CR56
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0361-x
– volume: 90
  start-page: 3539
  year: 1993
  ident: 147_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.90.8.3539
– ident: 147_CR122
  doi: 10.1186/2051-1426-1-10
– volume: 507
  start-page: 519
  year: 2014
  ident: 147_CR42
  publication-title: Nature
  doi: 10.1038/nature12978
– volume: 33
  start-page: 1201
  year: 2015
  ident: 147_CR28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3371
– volume: 16
  start-page: 489
  year: 2017
  ident: 147_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4822
– volume: 12
  start-page: 1356
  year: 2015
  ident: 147_CR38
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500589c
– volume: 352
  start-page: 242
  year: 2016
  ident: 147_CR114
  publication-title: Science
  doi: 10.1126/science.aaf1328
– volume: 35
  start-page: 269
  year: 2014
  ident: 147_CR75
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.09.050
– volume: 363
  start-page: 411
  year: 2010
  ident: 147_CR23
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1001294
– volume: 40
  start-page: 88
  year: 2015
  ident: 147_CR40
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.053
– volume: 348
  start-page: 56
  year: 2015
  ident: 147_CR127
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 12
  start-page: 367
  year: 2013
  ident: 147_CR61
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3550
– volume: 114
  start-page: 206
  year: 2017
  ident: 147_CR110
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.04.010
– volume: 247
  start-page: 28
  year: 2007
  ident: 147_CR86
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2007.07.002
– volume: 10
  start-page: 156
  year: 2012
  ident: 147_CR46
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-10-156
– volume: 6
  start-page: 1406
  year: 2000
  ident: 147_CR77
  publication-title: Nat. Med.
  doi: 10.1038/82231
– volume: 179
  start-page: 4910
  year: 2007
  ident: 147_CR83
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.7.4910
– volume: 5
  start-page: e1074374
  year: 2016
  ident: 147_CR90
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2015.1074374
– volume: 32
  start-page: 456
  year: 2014
  ident: 147_CR71
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.06.007
– volume: 134
  start-page: 2139
  year: 2012
  ident: 147_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2084338
– volume: 11
  start-page: 11127
  year: 2017
  ident: 147_CR74
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05299
– volume: 64
  start-page: 1033
  year: 2015
  ident: 147_CR124
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-015-1702-8
– volume: 25
  start-page: 5758
  year: 2015
  ident: 147_CR66
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502139
– volume: 25
  start-page: 297
  year: 2006
  ident: 147_CR22
  publication-title: Int. Rev. Immunol.
  doi: 10.1080/08830180600992472
– volume: 30
  start-page: 5187
  year: 2009
  ident: 147_CR60
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.001
– volume: 15
  start-page: 33
  year: 2017
  ident: 147_CR73
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.04.011
– volume: 9
  start-page: 639
  year: 2014
  ident: 147_CR79
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.154
– volume: 77
  start-page: CT034
  year: 2017
  ident: 147_CR43
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2017-CT034
– volume: 4
  start-page: 95
  year: 2016
  ident: 147_CR99
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0126
– volume: 12
  start-page: 648
  year: 2017
  ident: 147_CR35
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.52
– volume: 30
  start-page: 1706098
  year: 2018
  ident: 147_CR129
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706098
– volume: 180
  start-page: 25
  year: 2014
  ident: 147_CR67
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.02.001
– volume: 16
  start-page: 1035
  year: 2010
  ident: 147_CR15
  publication-title: Nat. Med.
  doi: 10.1038/nm.2198
– volume: 138
  start-page: 16686
  year: 2016
  ident: 147_CR95
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.6b09538
– volume: 6
  start-page: 1600773
  year: 2017
  ident: 147_CR63
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600773
– volume: 470
  start-page: 543
  year: 2011
  ident: 147_CR31
  publication-title: Nature
  doi: 10.1038/nature09737
– volume: 64
  start-page: 529
  year: 1994
  ident: 147_CR19
  publication-title: Pharmacol. Ther.
  doi: 10.1016/0163-7258(94)90023-X
– volume: 122
  start-page: 787
  year: 2012
  ident: 147_CR109
  publication-title: The J. Clin. Investig.
  doi: 10.1172/JCI59643
SSID ssj0021556
Score 2.6706789
SecondaryResourceType review_article
Snippet The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 761
SubjectTerms 631/250
631/67
639/166
639/301
Biomaterials
Biomedical materials
Cancer
Cancer therapies
Chemistry and Materials Science
Condensed Matter Physics
Immune system
Immunotherapy
Lymphocytes
Macrophages
Maintenance
Materials Science
Modulation
Nanotechnology
Optical and Electronic Materials
Review Article
Side effects
Synergistic effect
T cell receptors
Title Biomaterial-assisted targeted modulation of immune cells in cancer treatment
URI https://link.springer.com/article/10.1038/s41563-018-0147-9
https://www.ncbi.nlm.nih.gov/pubmed/30104668
https://www.proquest.com/docview/2092507731
https://www.proquest.com/docview/2088292543
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UveiD-G11SgSflOC2tE3yJCqbIjpEHOytLB-Fgbbq5v_vXT82RdxDQyFpm95dcvfLXXIAp6kxEu0CyyNjHQ9jT2Mu8hy1nWmrlrHe0Ubhx358Nwjvh9GwWnCbVGGV9ZxYTNQut7RGjiBdo7aWUrQv3z84ZY0i72qVQmMZGnR0GUm1HM4BF-rKcneRjDnaFZ3aqynUxYSAC0USUShXKLn-rZf-GJt_HKWF_ultwHplOLKrktObsOSzLVj7cZzgNjxcj3M0QAuZ4mgUEwcdK2O98eYtd1WuLpanbEwbQzyjhfsJG2fMEvs_2SzwfAcGve7LzR2vsiVwGwo15fS3UWgiKwRd2hcuLyexNk19y40QCzrpnFbIBhX6jh4h-sMyFlaqWIldWMnyzO8DExo1m9Zp7DqEV6yJTOhQ2yGeHbnUtgNo1bRKbHWUOGW0eE0Kl7ZQSUneBMmbEHkTHcDZ7JH38hyNRY2bNQOSakhNkrkABHAyq8bBQIQaZT7_ojYIGDTt7w9gr2Tc7GuCkGccqwDOa07OX_5vVw4Wd-UQVjuFDFHQWRNWpp9f_gitlKk5LkQRS9W7PYbGdbf_9PwNdWTi_w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCQcEGQBs6UjkUuiFjNuL90HhNgmAwycQOLWmV4sjQQ2MIMQP8U3UuWNIBRuHGxZ6sWt6mpXPdcGsJEZk6JeYHlsrONR4unMxZ6jtDNd2THWOwoUPjlN-ufR0UV8MQWPTSwMuVU238TyQ-0KS__IEaQrlNZpKrrb1zecqkaRdbUpoVGxxbF_uEfINt463Mf9_RmGvYOzvT6vqwpwGwk54SjjUISa2ApBl_Klacil2JplvuOGiJlc6pySuFwZ-VANESXhPRE2lYkUOO8HmIlwKIE92fvTAjycuYpmShOOekzYWFGF3BwTUCLPJXIdi1KuXsrBV8rtK8NsKe968zBXK6psp-KsBZjy-WeY_Sd94RcY7I4KVHhLHuaohBPHOFb5luPDVeHq2mCsyNiIAlE8I0PBmI1yZondblnr6P4Vzt-Fjt9gOi9yvwRMKJSkSmWJCwkfWRObyKF0Rfw8dJntBtBpaKVtnbqcKmhc6tKELqSuyKuRvJrIq1UAv9oh11Xejrc6rzYboOsjPNbPDBfAj7YZDx8Rapj74o76IEBRlE8ggMVq49q3CUK6SSID-N3s5PPk_13K8ttL-Q4f-2cnAz04PD1egU9hyU_k8LYK05PbO7-GGtLErJdsyeDve5-DJ9cxG4o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB_sCaV9kH7a1LPdQvvSstxdNsnuPhTR6qHVHlIq-LbefgQO2sR6d4j_Wv-6zuRLi9Q3HxICu9ksszM788vMzgC8z62VaBc4nlrneZIFkrk0cNR2dqSG1gVPB4W_TbL9k-TraXq6An_aszAUVtnuidVG7UtH_8gRpGvU1lKK0SBvwiKOd8db5785VZAiT2tbTqNmkcNwdYnwbf75YBfX-kMcj_d-fNnnTYUB7hKhFhz1HapTmzoh6NKhchN5ia15HoZ-ivjJS--1wqmrJMR6iogJ75lwUmVK4LgPYFUSKurB6s7e5Ph7B_dw7Ppsk8w4WjVx61MVajAn2ERxTBRIlkiu_9WKt0zdW27aSvuNn8BaY7ay7ZrPnsJKKJ7B4xvJDJ_D0c6sRPO34miOJjnxj2d1pDk-_Cp9UymMlTmb0bGUwMhtMGezgjlivgvWhb2_gJN7oeRL6BVlEV4BExr1qtZ55mNCS86mNvGoaxFNT33uRhEMW1oZ1yQyp3oaP03lUBfK1OQ1SF5D5DU6go_dK-d1Fo-7OvfbBTCNQM_NNftF8K5rRlEkQk2LUC6pD8IVTdkFIlivF677miDcm2Uqgk_tSl4P_t-pvL57Km_hIcqAOTqYHG7Ao7hiJ4p-60NvcbEMm2guLeybhi8ZnN23KPwFJ0EhHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomaterial-assisted+targeted+modulation+of+immune+cells+in+cancer+treatment&rft.jtitle=Nature+materials&rft.au=Wang%2C+Hua&rft.au=Mooney%2C+David+J&rft.date=2018-09-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=17&rft.issue=9&rft.spage=761&rft_id=info:doi/10.1038%2Fs41563-018-0147-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon