Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim

The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 44; no. 8; pp. 2542 - 2557
Main Authors Porsa, Sina, Lin, Yi-Chung, Pandy, Marcus G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
AbstractList The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
Author Pandy, Marcus G.
Porsa, Sina
Lin, Yi-Chung
Author_xml – sequence: 1
  givenname: Sina
  surname: Porsa
  fullname: Porsa, Sina
  organization: Department of Mechanical Engineering, University of Melbourne
– sequence: 2
  givenname: Yi-Chung
  surname: Lin
  fullname: Lin, Yi-Chung
  organization: Department of Mechanical Engineering, University of Melbourne
– sequence: 3
  givenname: Marcus G.
  surname: Pandy
  fullname: Pandy, Marcus G.
  email: pandym@unimelb.edu.au
  organization: Department of Mechanical Engineering, University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26715209$$D View this record in MEDLINE/PubMed
BookMark eNqN0ktPFTEYBuDGQOSA_gA3pokbN6O9TC-zlOONBIKJsJ50Ot9wSmbase3R8O_tYdAYEoFVN8_by9f3EO354AGhV5S8o4So94mSmjcVoaKigutKPkMrKhSvGqnlHloR0pBKNrI-QIcpXRNCqebiOTpgUlHBSLNC-aOLYDM-g7wJfcJDiPhbhN7Z7PwVPgs_YQKf8bELE9iN8c4mfGwS9PhyDh6fz9lNZsTr4HMMI77YQIg3-JfLG3wyzeNt2mRXqNtp8N_d9ALtD2ZM8PJuPUKXnz9drL9Wp-dfTtYfTitbc50rakE1mhKmgdFukFpZQZm0zNiuY2CAam06NgCobmCq4zUbRK9UV8ZSW9PzI_R22XeO4ccWUm4nlyyMo_EQtqmlDakZJ0qwx6kmWkpJuXoKZaomkotC39yj12EbfXnzraqJkFIX9fpObbsJ-naOZaTxpv3zSwXQBdgYUoow_CWUtLsmtEsT2tKEdteEVpaMupexbvmIHI0bH0yyJZnKKf4K4j-X_m_oN1hhxn0
CitedBy_id crossref_primary_10_1002_cnm_3334
crossref_primary_10_1007_s11044_020_09731_3
crossref_primary_10_1093_jcde_qwab062
crossref_primary_10_1098_rsif_2018_0541
crossref_primary_10_1080_10255842_2018_1522534
crossref_primary_10_1016_j_euromechsol_2024_105566
crossref_primary_10_1016_j_humov_2024_103182
crossref_primary_10_1007_s10439_018_2026_6
crossref_primary_10_1109_TIM_2022_3225023
crossref_primary_10_1093_iob_obab006
crossref_primary_10_1007_s12283_018_0265_2
crossref_primary_10_1016_j_mechmachtheory_2019_103578
crossref_primary_10_1371_journal_pcbi_1008843
crossref_primary_10_1115_1_4052108
crossref_primary_10_1371_journal_pcbi_1006223
crossref_primary_10_1109_TSMC_2022_3183831
crossref_primary_10_1109_JSEN_2023_3281401
crossref_primary_10_1016_j_ast_2017_11_025
crossref_primary_10_1016_j_ostima_2024_100244
crossref_primary_10_2139_ssrn_4096894
crossref_primary_10_1038_s41598_022_20023_y
crossref_primary_10_1016_j_jbiomech_2020_109669
crossref_primary_10_1109_TMRB_2022_3205509
crossref_primary_10_1016_j_jbiomech_2017_04_038
crossref_primary_10_1080_10255842_2019_1651296
crossref_primary_10_7717_peerj_10975
crossref_primary_10_3389_fnbot_2022_805835
crossref_primary_10_3390_app10031160
crossref_primary_10_1016_j_cma_2023_116162
crossref_primary_10_1038_s41598_020_73856_w
crossref_primary_10_3389_fspor_2023_1123335
crossref_primary_10_1016_j_mechmachtheory_2022_105164
crossref_primary_10_1007_s11044_022_09852_x
crossref_primary_10_3389_fbioe_2024_1483225
crossref_primary_10_1109_TBME_2021_3114374
crossref_primary_10_1007_s11044_020_09747_9
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_3390_app11052037
crossref_primary_10_1007_s11044_019_09685_1
crossref_primary_10_1109_ACCESS_2023_3244062
crossref_primary_10_1371_journal_pcbi_1008493
crossref_primary_10_1109_TNSRE_2019_2922942
crossref_primary_10_1007_s11332_017_0370_9
Cites_doi 10.1146/annurev.bioeng.3.1.245
10.1016/0021-9290(90)90376-E
10.1115/1.2894094
10.1109/TBME.2007.901024
10.1016/0021-9290(87)90310-1
10.1016/j.jbiomech.2011.04.040
10.1152/jn.00291.2014
10.1016/S0021-9290(01)00057-4
10.1115/1.1392310
10.1016/j.cma.2008.04.017
10.1016/0021-9290(91)90321-D
10.1016/j.jbiomech.2012.01.029
10.1115/1.4023151
10.1016/0021-9290(93)90092-S
10.1115/1.4024577
10.1080/10255849908907988
10.1016/j.jbiomech.2009.12.012
10.2514/2.4033
10.1115/1.3426197
10.2514/2.4231
10.1115/1.3423596
10.1017/CBO9781139171731
10.1016/j.jbiomech.2005.12.017
10.1016/j.piutam.2011.04.027
10.1002/zamm.200610290
10.1016/j.jbiomech.2005.02.010
10.1016/0025-5564(76)90098-5
10.1016/j.jbiomech.2015.04.019
ContentType Journal Article
Copyright Biomedical Engineering Society 2016
Copyright_xml – notice: Biomedical Engineering Society 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1007/s10439-015-1538-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Solid State and Superconductivity Abstracts
Engineering Research Database
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 2557
ExternalDocumentID 4111019071
26715209
10_1007_s10439_015_1538_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
ABRTQ
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
ID FETCH-LOGICAL-c438t-1ce7981028e21bf687c5126c2acbb2eae188ab2fee7bf27b342f5d77b1044cad3
IEDL.DBID U2A
ISSN 0090-6964
1573-9686
IngestDate Fri Jul 11 02:13:24 EDT 2025
Fri Jul 11 15:13:07 EDT 2025
Fri Jul 11 13:45:40 EDT 2025
Fri Jul 25 18:52:46 EDT 2025
Wed Feb 19 02:43:10 EST 2025
Thu Apr 24 23:03:45 EDT 2025
Tue Jul 01 00:38:10 EDT 2025
Fri Feb 21 02:37:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Direct shooting
Musculoskeletal model
Motion tracking
Direct collocation
Predictive simulation
Trajectory optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-1ce7981028e21bf687c5126c2acbb2eae188ab2fee7bf27b342f5d77b1044cad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26715209
PQID 1802405668
PQPubID 54090
PageCount 16
ParticipantIDs proquest_miscellaneous_1904230752
proquest_miscellaneous_1808666137
proquest_miscellaneous_1802740635
proquest_journals_1802405668
pubmed_primary_26715209
crossref_primary_10_1007_s10439_015_1538_6
crossref_citationtrail_10_1007_s10439_015_1538_6
springer_journals_10_1007_s10439_015_1538_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160800
2016-8-00
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 8
  year: 2016
  text: 20160800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kistemaker, Wong, Gribble (CR18) 2014; 112
Miller, Brandon, Deluzio (CR19) 2013; 135
Miller, Umberger, Caldwell (CR21) 2012; 45
Thelen, Anderson (CR28) 2006; 39
Hull (CR14) 1997; 20
Seth, Pandy (CR26) 2007; 40
Pandy (CR22) 2001; 3
CR30
Pandy, Anderson, Hull (CR23) 1992; 114
Johnson (CR16) 1985
Pandy, Zajac, Sim, Levine (CR25) 1990; 23
Kaplan, Heegaard (CR17) 2001; 34
Ackermann, van den Bogert (CR1) 2010; 43
Anderson, Pandy (CR3) 1993; 26
Hatze (CR13) 1976; 28
Betts (CR6) 1998; 21
Crowninshield (CR9) 1978; 100
Bryson (CR7) 1975
Ackermann, van den Bogert (CR2) 2012; 45
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (CR11) 2007; 54
Hunt, Crossley (CR15) 1975; 42
Celik, Piazza (CR8) 2013; 135
CR20
Anderson, Pandy (CR4) 1999; 2
van den Bogert (CR29) 2011; 2
Pandy, Zajac (CR24) 1991; 24
Stelzer, Von Stryk (CR27) 2006; 86
Eriksson (CR12) 2008; 197
Davy, Audu (CR10) 1987; 20
Zajac, Gordon (CR31) 1989; 17
Anderson, Pandy (CR5) 2001; 123
FC Anderson (1538_CR3) 1993; 26
MG Pandy (1538_CR22) 2001; 3
RH Miller (1538_CR21) 2012; 45
DA Kistemaker (1538_CR18) 2014; 112
RD Crowninshield (1538_CR9) 1978; 100
MG Pandy (1538_CR23) 1992; 114
M Stelzer (1538_CR27) 2006; 86
M Ackermann (1538_CR2) 2012; 45
H Hatze (1538_CR13) 1976; 28
K Johnson (1538_CR16) 1985
A Eriksson (1538_CR12) 2008; 197
A Seth (1538_CR26) 2007; 40
K Hunt (1538_CR15) 1975; 42
AJ Bogert van den (1538_CR29) 2011; 2
MG Pandy (1538_CR24) 1991; 24
H Celik (1538_CR8) 2013; 135
RH Miller (1538_CR19) 2013; 135
FE Zajac (1538_CR31) 1989; 17
ML Kaplan (1538_CR17) 2001; 34
M Ackermann (1538_CR1) 2010; 43
1538_CR20
JT Betts (1538_CR6) 1998; 21
FC Anderson (1538_CR4) 1999; 2
FC Anderson (1538_CR5) 2001; 123
SL Delp (1538_CR11) 2007; 54
AE Bryson (1538_CR7) 1975
MG Pandy (1538_CR25) 1990; 23
DG Thelen (1538_CR28) 2006; 39
DG Hull (1538_CR14) 1997; 20
DT Davy (1538_CR10) 1987; 20
1538_CR30
References_xml – volume: 3
  start-page: 245
  year: 2001
  end-page: 273
  ident: CR22
  article-title: Computer modeling and simulation of human movement
  publication-title: Ann. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.3.1.245
– volume: 23
  start-page: 1185
  year: 1990
  end-page: 1198
  ident: CR25
  article-title: An optimal control model for maximum-height human jumping
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90376-E
– volume: 114
  start-page: 450
  year: 1992
  end-page: 460
  ident: CR23
  article-title: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894094
– volume: 17
  start-page: 187
  year: 1989
  end-page: 230
  ident: CR31
  article-title: Determining muscle’s force and action in multi-articular movement
  publication-title: Exerc. Sport Sci. Rev.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: CR11
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– ident: CR30
– year: 1975
  ident: CR7
  publication-title: Applied Optimal Control: Optimization, Estimation and Control
– volume: 20
  start-page: 187
  year: 1987
  end-page: 201
  ident: CR10
  article-title: A dynamic optimization technique for predicting muscle forces in the swing phase of gait
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90310-1
– volume: 45
  start-page: 1092
  year: 2012
  end-page: 1097
  ident: CR21
  article-title: Limitations to maximum sprinting speed imposed by muscle mechanical properties
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.04.040
– volume: 112
  start-page: 1815
  year: 2014
  end-page: 1824
  ident: CR18
  article-title: The cost of moving optimally: kinematic path selection
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00291.2014
– volume: 34
  start-page: 1077
  year: 2001
  end-page: 1083
  ident: CR17
  article-title: Predictive algorithms for neuromuscular control of human locomotion
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00057-4
– volume: 123
  start-page: 381
  year: 2001
  end-page: 390
  ident: CR5
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1392310
– volume: 197
  start-page: 4207
  year: 2008
  end-page: 4215
  ident: CR12
  article-title: Optimization in target movement simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.04.017
– volume: 24
  start-page: 1
  year: 1991
  end-page: 10
  ident: CR24
  article-title: Optimal muscular coordination strategies for jumping
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90321-D
– volume: 45
  start-page: 1293
  year: 2012
  end-page: 1298
  ident: CR2
  article-title: Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.029
– volume: 135
  start-page: 011007
  year: 2013
  ident: CR19
  article-title: Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023151
– volume: 26
  start-page: 1413
  year: 1993
  end-page: 1427
  ident: CR3
  article-title: Storage and utilization of elastic strain energy during jumping
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90092-S
– volume: 135
  start-page: 081008
  year: 2013
  end-page: 081008
  ident: CR8
  article-title: Simulation of aperiodic bipedal sprinting
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4024577
– volume: 2
  start-page: 201
  year: 1999
  end-page: 231
  ident: CR4
  article-title: A dynamic optimization solution for vertical jumping in three dimensions
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255849908907988
– volume: 43
  start-page: 1055
  year: 2010
  end-page: 1060
  ident: CR1
  article-title: Optimality principles for model-based prediction of human gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 20
  start-page: 57
  year: 1997
  end-page: 60
  ident: CR14
  article-title: Conversion of optimal control problems into parameter optimization problems
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4033
– volume: 100
  start-page: 88
  year: 1978
  end-page: 92
  ident: CR9
  article-title: Use of optimization techniques to predict muscle forces
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426197
– volume: 21
  start-page: 193
  year: 1998
  end-page: 207
  ident: CR6
  article-title: Survey of numerical methods for trajectory optimization
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/2.4231
– volume: 42
  start-page: 440
  year: 1975
  end-page: 445
  ident: CR15
  article-title: Coefficient of restitution interpreted as damping in vibroimpact
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423596
– year: 1985
  ident: CR16
  publication-title: Contact Mechanics
  doi: 10.1017/CBO9781139171731
– volume: 40
  start-page: 356
  year: 2007
  end-page: 366
  ident: CR26
  article-title: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.12.017
– volume: 2
  start-page: 297
  year: 2011
  end-page: 316
  ident: CR29
  article-title: D. Blana and Heinrich. Implicit methods for efficient musculoskeletal simulation and optimal control
  publication-title: Proc. IUTAM
  doi: 10.1016/j.piutam.2011.04.027
– volume: 86
  start-page: 828
  year: 2006
  end-page: 840
  ident: CR27
  article-title: Efficient forward dynamics simulation and optimization of human body dynamics
  publication-title: ZAMM J. Appl. Math. Mech.
  doi: 10.1002/zamm.200610290
– volume: 39
  start-page: 1107
  year: 2006
  end-page: 1115
  ident: CR28
  article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.02.010
– ident: CR20
– volume: 28
  start-page: 99
  year: 1976
  end-page: 135
  ident: CR13
  article-title: The complete optimization of a human motion
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(76)90098-5
– volume: 114
  start-page: 450
  year: 1992
  ident: 1538_CR23
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894094
– volume: 20
  start-page: 57
  year: 1997
  ident: 1538_CR14
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4033
– volume: 23
  start-page: 1185
  year: 1990
  ident: 1538_CR25
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90376-E
– volume: 123
  start-page: 381
  year: 2001
  ident: 1538_CR5
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1392310
– volume: 135
  start-page: 011007
  year: 2013
  ident: 1538_CR19
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023151
– volume-title: Applied Optimal Control: Optimization, Estimation and Control
  year: 1975
  ident: 1538_CR7
– volume: 45
  start-page: 1092
  year: 2012
  ident: 1538_CR21
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.04.040
– volume: 43
  start-page: 1055
  year: 2010
  ident: 1538_CR1
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 197
  start-page: 4207
  year: 2008
  ident: 1538_CR12
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.04.017
– ident: 1538_CR20
  doi: 10.1016/j.jbiomech.2015.04.019
– volume: 28
  start-page: 99
  year: 1976
  ident: 1538_CR13
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(76)90098-5
– volume: 45
  start-page: 1293
  year: 2012
  ident: 1538_CR2
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.029
– volume: 3
  start-page: 245
  year: 2001
  ident: 1538_CR22
  publication-title: Ann. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.3.1.245
– volume: 86
  start-page: 828
  year: 2006
  ident: 1538_CR27
  publication-title: ZAMM J. Appl. Math. Mech.
  doi: 10.1002/zamm.200610290
– volume: 135
  start-page: 081008
  year: 2013
  ident: 1538_CR8
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4024577
– volume: 20
  start-page: 187
  year: 1987
  ident: 1538_CR10
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90310-1
– volume-title: Contact Mechanics
  year: 1985
  ident: 1538_CR16
  doi: 10.1017/CBO9781139171731
– volume: 24
  start-page: 1
  year: 1991
  ident: 1538_CR24
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90321-D
– ident: 1538_CR30
– volume: 34
  start-page: 1077
  year: 2001
  ident: 1538_CR17
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00057-4
– volume: 112
  start-page: 1815
  year: 2014
  ident: 1538_CR18
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00291.2014
– volume: 2
  start-page: 201
  year: 1999
  ident: 1538_CR4
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255849908907988
– volume: 40
  start-page: 356
  year: 2007
  ident: 1538_CR26
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.12.017
– volume: 2
  start-page: 297
  year: 2011
  ident: 1538_CR29
  publication-title: Proc. IUTAM
  doi: 10.1016/j.piutam.2011.04.027
– volume: 26
  start-page: 1413
  year: 1993
  ident: 1538_CR3
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90092-S
– volume: 100
  start-page: 88
  year: 1978
  ident: 1538_CR9
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426197
– volume: 21
  start-page: 193
  year: 1998
  ident: 1538_CR6
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/2.4231
– volume: 54
  start-page: 1940
  year: 2007
  ident: 1538_CR11
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 39
  start-page: 1107
  year: 2006
  ident: 1538_CR28
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.02.010
– volume: 42
  start-page: 440
  year: 1975
  ident: 1538_CR15
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423596
– volume: 17
  start-page: 187
  year: 1989
  ident: 1538_CR31
  publication-title: Exerc. Sport Sci. Rev.
SSID ssj0011835
Score 2.4077084
Snippet The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2542
SubjectTerms Activation
Biochemistry
Biological and Medical Physics
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Collocation
Computation
Humans
Joints - physiology
Jumping
Mathematical models
Models, Biological
Muscle, Skeletal - physiology
Muscles
Optimal control
Range of Motion, Articular
Shooting
Walking - psychology
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0guiDaP1KrbKCT0rwstnsbp7EFksRTgU9uLewX4GDXnL20v-_M9nNtVK858zlkszuzG92Zn4D8KEuTWlDxXOpeZsLDDrQDmqft1VtlPDEIELnkPMf8nwhvi-rZTpw26ayyskmjoba947OyD8TUxmCCyn1l83fnKZGUXY1jdC4Dw-IuoxWtVruAi7EznHA5qzGEKmWYspqxtY5dMUYSFf5uOflv37pDti8kygd_c_ZU3iSgCP7GjX9DO6F7hAe36ITPISH85Qofw5DNGVsPg6I3jKEpuzXJV2mMmc270ea8IGdUPc9Nf-u3JadoEfzbLHpO_YTLcka_-40VrKz2MLP6NSWjYTC69Sz1LEVSYfu92r9AhZn3_6cnudpwELuRKmHvHBB1ZogRuCFbaVWDv2_dNw4a3kwodDaWN6GoGzLlS0FbyuvlMWPJ5zx5Us46PouvAaGN_CGO6VMy4W0M-MoY-h97XRRCltlMJs-b-MS-zgNwbhobniTSSMNaqQhjTQyg4-7n2wi9cY-4eNJZ03ahdvmZs1k8H53GfcPJUVMF_qrKKMQ1ZTVXhmNYV5Rqj0yNVUYIQDjGbyKa2b31FyqgsqNMvg0LaJbD_m_Vzra_0pv4BGCNxmLEY_hYLi8Cm8RIA323bgLrgFWTAqq
  priority: 102
  providerName: ProQuest
Title Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim
URI https://link.springer.com/article/10.1007/s10439-015-1538-6
https://www.ncbi.nlm.nih.gov/pubmed/26715209
https://www.proquest.com/docview/1802405668
https://www.proquest.com/docview/1802740635
https://www.proquest.com/docview/1808666137
https://www.proquest.com/docview/1904230752
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFsb2MLbuy1sbNNjThqGWZUl-TErS0pK2bAtkT0aSZQg0Tmnc_393lp1ldAvsxX7wWZZ1ku53ui-Az3lqUuszHkvNq1ig0oH7oC7jKsuNEiVlEKFzyOmVPJ-Ji3k27-K41723e2-SbHfqrWA3FJ6o-mZxu0rlHhxkqLqTH9eMDzemA5yjoWxBjnpRLkVvyvxbE38Ko0cI85F1tBU6k5fwokOLbBjY-wqe-PoQnm_lEDyEp9POOv4amrB_sWlbFXrNEI-ym3t6TL7NbLpqc4M3bEQh9xTxu3BrNkIxVrLZ3apm17h9LPFzp8F9nYW4fUZHtazNIrzsApVqtiBqX39fLN_AbDL-cXoed1UVYidS3cSJ8yrXhCs8T2wltXIo9KXjxlnLvfGJ1sbyyntlK65sKniVlUpZHDzhTJm-hf16Vfv3wLCB0nCnlKm4kPbEODITlmXudJIKm0Vw0g9v4bqU41T54rb4nSyZOFIgRwriSCEj-LJ55S7k29hFfNTzrOiW3rqglHaIQqXUEXzaPMZFQ5YQU_vVQ6BRCGXSbCeNRt0uSdUOmpzcihB18QjehTmz6TWXKiEfowi-9pNoq5P_-qUP_0X9EZ4hgJPBIfEI9pv7B3-MIKmxA9hTc4VXPTkbwMHw7OflGO-j8dXNt0G7YH4BR1IMMA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5ICivQAEjwQUU0TiJ7RwQooVlS5uCRFfqLdiOI63UTZZuKsSf4jcyEyfbooq99ZzZbJJ5e2a-AXiZxTo2LuWhULwKE0w60A6qMqzSTMukJAQROofMD8V4knw5To_X4M8wC0NtlYNN7Ax12Vg6I39LSGUYXAih3s9_hrQ1iqqrwwoNLxb77vcvTNkW7_Y-In9fcT76dLQ7DvutAqFNYtWGkXUyU-RXHY9MJZS06PSE5doaw512kVLa8Mo5aSouTZzwKi2lNJi4JFaXMd73GlxPYvTkNJk--rysWqB6-I0JGaZkmUiGKqof1UPXj4l7GnY2RvzrBy8Ft5cKs52_G92B232gyj54yboLa67ehFsX4As34UbeF-bvQetNJ8u7hdQLhqEw-3ZKl6mtmuVNB0vesh2a9qdh46ldsB30oCWbzJuafUXLNcO_2_Wd88xDBjA6JWYdgPGsn5Gq2ZSoXf19OrsPkyv59A9gvW5q9wgY3qDU3EqpK54Is60tVSjLMrMqihOTBrA9fN7C9mjntHTjpDjHaSaOFMiRgjhSiABeL38y91Afq4i3Bp4VvdYvinMZDeDF8jLqKxVhdO2aM08jMYqK05U0CtPKKJYraDLqaMKAjwfw0MvM8qm5kBG1NwXwZhCiCw_5v1d6vPqVnsPN8VF-UBzsHe4_gQ0MHIVvhNyC9fb0zD3F4Kw1zzqNYPDjqlXwL3jMSLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKC8AgUWCS4gq_Xa3l0fECJto5aSEAGRenN312spErFD4wrx1_h1zHjttKgit549cWzP65udF8DrNNKRcQkPhOJFEGPQgXZQ5UGRpFrGOU0QoXPI0VgcTeNPp8npBvzpemGorLKziY2hzitLZ-S7NKkMwYUQardoyyImB8MPi58BbZCiTGu3TsOLyIn7_QvDt-X74wPk9RvOh4ff94-CdsNAYONI1UFonUwV-VjHQ1MIJS06QGG5tsZwp12olDa8cE6agksTxbxIcikNBjGx1XmE970Fm5Kioh5sDg7Hk6-rHAYqi9-fkGKAloq4y6n6xj0EAhjGJ0FjccS_XvEa1L2Wpm283_Ae3G1hK_vo5ew-bLhyG-5cGWa4DVujNk3_AGpvSNmoWU-9ZAiM2eScLlORNRtVzZDymg2o959aj2d2yQboT3M2XVQl-4J2bI5_t-_r6JkfIMDozJg144znbcdUyWZE7cpvs_lDmN7Ix38EvbIq3RNgeINccyulLngszJ62lK_M89SqMIpN0oe97vNmtp19Tis4fmSXU5uJIxlyJCOOZKIPb1c_WfjBH-uIdzqeZa0NWGaXEtuHV6vLqL2UktGlqy48DUoPor61NAqDzDCSa2hSqm9C-Mf78NjLzOqpuZAhFTv14V0nRFce8n-v9HT9K72ELVS_7PPx-OQZ3EYUKXxV5A706vML9xyRWm1etCrB4OymtfAvaNROSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Methods+for+Predicting+Movement+Biomechanics+Based+Upon+Optimal+Control+Theory+with+Implementation+in+OpenSim&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Porsa%2C+Sina&rft.au=Lin%2C+Yi-Chung&rft.au=Pandy%2C+Marcus+G.&rft.date=2016-08-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=44&rft.issue=8&rft.spage=2542&rft.epage=2557&rft_id=info:doi/10.1007%2Fs10439-015-1538-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10439_015_1538_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon