Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to...
Saved in:
Published in | Annals of biomedical engineering Vol. 44; no. 8; pp. 2542 - 2557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. |
---|---|
AbstractList | The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. |
Author | Pandy, Marcus G. Porsa, Sina Lin, Yi-Chung |
Author_xml | – sequence: 1 givenname: Sina surname: Porsa fullname: Porsa, Sina organization: Department of Mechanical Engineering, University of Melbourne – sequence: 2 givenname: Yi-Chung surname: Lin fullname: Lin, Yi-Chung organization: Department of Mechanical Engineering, University of Melbourne – sequence: 3 givenname: Marcus G. surname: Pandy fullname: Pandy, Marcus G. email: pandym@unimelb.edu.au organization: Department of Mechanical Engineering, University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26715209$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ktPFTEYBuDGQOSA_gA3pokbN6O9TC-zlOONBIKJsJ50Ot9wSmbase3R8O_tYdAYEoFVN8_by9f3EO354AGhV5S8o4So94mSmjcVoaKigutKPkMrKhSvGqnlHloR0pBKNrI-QIcpXRNCqebiOTpgUlHBSLNC-aOLYDM-g7wJfcJDiPhbhN7Z7PwVPgs_YQKf8bELE9iN8c4mfGwS9PhyDh6fz9lNZsTr4HMMI77YQIg3-JfLG3wyzeNt2mRXqNtp8N_d9ALtD2ZM8PJuPUKXnz9drL9Wp-dfTtYfTitbc50rakE1mhKmgdFukFpZQZm0zNiuY2CAam06NgCobmCq4zUbRK9UV8ZSW9PzI_R22XeO4ccWUm4nlyyMo_EQtqmlDakZJ0qwx6kmWkpJuXoKZaomkotC39yj12EbfXnzraqJkFIX9fpObbsJ-naOZaTxpv3zSwXQBdgYUoow_CWUtLsmtEsT2tKEdteEVpaMupexbvmIHI0bH0yyJZnKKf4K4j-X_m_oN1hhxn0 |
CitedBy_id | crossref_primary_10_1002_cnm_3334 crossref_primary_10_1007_s11044_020_09731_3 crossref_primary_10_1093_jcde_qwab062 crossref_primary_10_1098_rsif_2018_0541 crossref_primary_10_1080_10255842_2018_1522534 crossref_primary_10_1016_j_euromechsol_2024_105566 crossref_primary_10_1016_j_humov_2024_103182 crossref_primary_10_1007_s10439_018_2026_6 crossref_primary_10_1109_TIM_2022_3225023 crossref_primary_10_1093_iob_obab006 crossref_primary_10_1007_s12283_018_0265_2 crossref_primary_10_1016_j_mechmachtheory_2019_103578 crossref_primary_10_1371_journal_pcbi_1008843 crossref_primary_10_1115_1_4052108 crossref_primary_10_1371_journal_pcbi_1006223 crossref_primary_10_1109_TSMC_2022_3183831 crossref_primary_10_1109_JSEN_2023_3281401 crossref_primary_10_1016_j_ast_2017_11_025 crossref_primary_10_1016_j_ostima_2024_100244 crossref_primary_10_2139_ssrn_4096894 crossref_primary_10_1038_s41598_022_20023_y crossref_primary_10_1016_j_jbiomech_2020_109669 crossref_primary_10_1109_TMRB_2022_3205509 crossref_primary_10_1016_j_jbiomech_2017_04_038 crossref_primary_10_1080_10255842_2019_1651296 crossref_primary_10_7717_peerj_10975 crossref_primary_10_3389_fnbot_2022_805835 crossref_primary_10_3390_app10031160 crossref_primary_10_1016_j_cma_2023_116162 crossref_primary_10_1038_s41598_020_73856_w crossref_primary_10_3389_fspor_2023_1123335 crossref_primary_10_1016_j_mechmachtheory_2022_105164 crossref_primary_10_1007_s11044_022_09852_x crossref_primary_10_3389_fbioe_2024_1483225 crossref_primary_10_1109_TBME_2021_3114374 crossref_primary_10_1007_s11044_020_09747_9 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_3390_app11052037 crossref_primary_10_1007_s11044_019_09685_1 crossref_primary_10_1109_ACCESS_2023_3244062 crossref_primary_10_1371_journal_pcbi_1008493 crossref_primary_10_1109_TNSRE_2019_2922942 crossref_primary_10_1007_s11332_017_0370_9 |
Cites_doi | 10.1146/annurev.bioeng.3.1.245 10.1016/0021-9290(90)90376-E 10.1115/1.2894094 10.1109/TBME.2007.901024 10.1016/0021-9290(87)90310-1 10.1016/j.jbiomech.2011.04.040 10.1152/jn.00291.2014 10.1016/S0021-9290(01)00057-4 10.1115/1.1392310 10.1016/j.cma.2008.04.017 10.1016/0021-9290(91)90321-D 10.1016/j.jbiomech.2012.01.029 10.1115/1.4023151 10.1016/0021-9290(93)90092-S 10.1115/1.4024577 10.1080/10255849908907988 10.1016/j.jbiomech.2009.12.012 10.2514/2.4033 10.1115/1.3426197 10.2514/2.4231 10.1115/1.3423596 10.1017/CBO9781139171731 10.1016/j.jbiomech.2005.12.017 10.1016/j.piutam.2011.04.027 10.1002/zamm.200610290 10.1016/j.jbiomech.2005.02.010 10.1016/0025-5564(76)90098-5 10.1016/j.jbiomech.2015.04.019 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2016 |
Copyright_xml | – notice: Biomedical Engineering Society 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1007/s10439-015-1538-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts Engineering Research Database MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 2557 |
ExternalDocumentID | 4111019071 26715209 10_1007_s10439_015_1538_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 |
ID | FETCH-LOGICAL-c438t-1ce7981028e21bf687c5126c2acbb2eae188ab2fee7bf27b342f5d77b1044cad3 |
IEDL.DBID | U2A |
ISSN | 0090-6964 1573-9686 |
IngestDate | Fri Jul 11 02:13:24 EDT 2025 Fri Jul 11 15:13:07 EDT 2025 Fri Jul 11 13:45:40 EDT 2025 Fri Jul 25 18:52:46 EDT 2025 Wed Feb 19 02:43:10 EST 2025 Thu Apr 24 23:03:45 EDT 2025 Tue Jul 01 00:38:10 EDT 2025 Fri Feb 21 02:37:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Direct shooting Musculoskeletal model Motion tracking Direct collocation Predictive simulation Trajectory optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-1ce7981028e21bf687c5126c2acbb2eae188ab2fee7bf27b342f5d77b1044cad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26715209 |
PQID | 1802405668 |
PQPubID | 54090 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1904230752 proquest_miscellaneous_1808666137 proquest_miscellaneous_1802740635 proquest_journals_1802405668 pubmed_primary_26715209 crossref_primary_10_1007_s10439_015_1538_6 crossref_citationtrail_10_1007_s10439_015_1538_6 springer_journals_10_1007_s10439_015_1538_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160800 2016-8-00 2016-08-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 8 year: 2016 text: 20160800 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kistemaker, Wong, Gribble (CR18) 2014; 112 Miller, Brandon, Deluzio (CR19) 2013; 135 Miller, Umberger, Caldwell (CR21) 2012; 45 Thelen, Anderson (CR28) 2006; 39 Hull (CR14) 1997; 20 Seth, Pandy (CR26) 2007; 40 Pandy (CR22) 2001; 3 CR30 Pandy, Anderson, Hull (CR23) 1992; 114 Johnson (CR16) 1985 Pandy, Zajac, Sim, Levine (CR25) 1990; 23 Kaplan, Heegaard (CR17) 2001; 34 Ackermann, van den Bogert (CR1) 2010; 43 Anderson, Pandy (CR3) 1993; 26 Hatze (CR13) 1976; 28 Betts (CR6) 1998; 21 Crowninshield (CR9) 1978; 100 Bryson (CR7) 1975 Ackermann, van den Bogert (CR2) 2012; 45 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (CR11) 2007; 54 Hunt, Crossley (CR15) 1975; 42 Celik, Piazza (CR8) 2013; 135 CR20 Anderson, Pandy (CR4) 1999; 2 van den Bogert (CR29) 2011; 2 Pandy, Zajac (CR24) 1991; 24 Stelzer, Von Stryk (CR27) 2006; 86 Eriksson (CR12) 2008; 197 Davy, Audu (CR10) 1987; 20 Zajac, Gordon (CR31) 1989; 17 Anderson, Pandy (CR5) 2001; 123 FC Anderson (1538_CR3) 1993; 26 MG Pandy (1538_CR22) 2001; 3 RH Miller (1538_CR21) 2012; 45 DA Kistemaker (1538_CR18) 2014; 112 RD Crowninshield (1538_CR9) 1978; 100 MG Pandy (1538_CR23) 1992; 114 M Stelzer (1538_CR27) 2006; 86 M Ackermann (1538_CR2) 2012; 45 H Hatze (1538_CR13) 1976; 28 K Johnson (1538_CR16) 1985 A Eriksson (1538_CR12) 2008; 197 A Seth (1538_CR26) 2007; 40 K Hunt (1538_CR15) 1975; 42 AJ Bogert van den (1538_CR29) 2011; 2 MG Pandy (1538_CR24) 1991; 24 H Celik (1538_CR8) 2013; 135 RH Miller (1538_CR19) 2013; 135 FE Zajac (1538_CR31) 1989; 17 ML Kaplan (1538_CR17) 2001; 34 M Ackermann (1538_CR1) 2010; 43 1538_CR20 JT Betts (1538_CR6) 1998; 21 FC Anderson (1538_CR4) 1999; 2 FC Anderson (1538_CR5) 2001; 123 SL Delp (1538_CR11) 2007; 54 AE Bryson (1538_CR7) 1975 MG Pandy (1538_CR25) 1990; 23 DG Thelen (1538_CR28) 2006; 39 DG Hull (1538_CR14) 1997; 20 DT Davy (1538_CR10) 1987; 20 1538_CR30 |
References_xml | – volume: 3 start-page: 245 year: 2001 end-page: 273 ident: CR22 article-title: Computer modeling and simulation of human movement publication-title: Ann. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.3.1.245 – volume: 23 start-page: 1185 year: 1990 end-page: 1198 ident: CR25 article-title: An optimal control model for maximum-height human jumping publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90376-E – volume: 114 start-page: 450 year: 1992 end-page: 460 ident: CR23 article-title: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems publication-title: J. Biomech. Eng. doi: 10.1115/1.2894094 – volume: 17 start-page: 187 year: 1989 end-page: 230 ident: CR31 article-title: Determining muscle’s force and action in multi-articular movement publication-title: Exerc. Sport Sci. Rev. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: CR11 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – ident: CR30 – year: 1975 ident: CR7 publication-title: Applied Optimal Control: Optimization, Estimation and Control – volume: 20 start-page: 187 year: 1987 end-page: 201 ident: CR10 article-title: A dynamic optimization technique for predicting muscle forces in the swing phase of gait publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90310-1 – volume: 45 start-page: 1092 year: 2012 end-page: 1097 ident: CR21 article-title: Limitations to maximum sprinting speed imposed by muscle mechanical properties publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.04.040 – volume: 112 start-page: 1815 year: 2014 end-page: 1824 ident: CR18 article-title: The cost of moving optimally: kinematic path selection publication-title: J. Neurophysiol. doi: 10.1152/jn.00291.2014 – volume: 34 start-page: 1077 year: 2001 end-page: 1083 ident: CR17 article-title: Predictive algorithms for neuromuscular control of human locomotion publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00057-4 – volume: 123 start-page: 381 year: 2001 end-page: 390 ident: CR5 article-title: Dynamic optimization of human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.1392310 – volume: 197 start-page: 4207 year: 2008 end-page: 4215 ident: CR12 article-title: Optimization in target movement simulations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.04.017 – volume: 24 start-page: 1 year: 1991 end-page: 10 ident: CR24 article-title: Optimal muscular coordination strategies for jumping publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90321-D – volume: 45 start-page: 1293 year: 2012 end-page: 1298 ident: CR2 article-title: Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.029 – volume: 135 start-page: 011007 year: 2013 ident: CR19 article-title: Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking publication-title: J. Biomech. Eng. doi: 10.1115/1.4023151 – volume: 26 start-page: 1413 year: 1993 end-page: 1427 ident: CR3 article-title: Storage and utilization of elastic strain energy during jumping publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90092-S – volume: 135 start-page: 081008 year: 2013 end-page: 081008 ident: CR8 article-title: Simulation of aperiodic bipedal sprinting publication-title: J. Biomech. Eng. doi: 10.1115/1.4024577 – volume: 2 start-page: 201 year: 1999 end-page: 231 ident: CR4 article-title: A dynamic optimization solution for vertical jumping in three dimensions publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255849908907988 – volume: 43 start-page: 1055 year: 2010 end-page: 1060 ident: CR1 article-title: Optimality principles for model-based prediction of human gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.12.012 – volume: 20 start-page: 57 year: 1997 end-page: 60 ident: CR14 article-title: Conversion of optimal control problems into parameter optimization problems publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4033 – volume: 100 start-page: 88 year: 1978 end-page: 92 ident: CR9 article-title: Use of optimization techniques to predict muscle forces publication-title: J. Biomech. Eng. doi: 10.1115/1.3426197 – volume: 21 start-page: 193 year: 1998 end-page: 207 ident: CR6 article-title: Survey of numerical methods for trajectory optimization publication-title: J. Guid. Control. Dyn. doi: 10.2514/2.4231 – volume: 42 start-page: 440 year: 1975 end-page: 445 ident: CR15 article-title: Coefficient of restitution interpreted as damping in vibroimpact publication-title: J. Appl. Mech. doi: 10.1115/1.3423596 – year: 1985 ident: CR16 publication-title: Contact Mechanics doi: 10.1017/CBO9781139171731 – volume: 40 start-page: 356 year: 2007 end-page: 366 ident: CR26 article-title: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.12.017 – volume: 2 start-page: 297 year: 2011 end-page: 316 ident: CR29 article-title: D. Blana and Heinrich. Implicit methods for efficient musculoskeletal simulation and optimal control publication-title: Proc. IUTAM doi: 10.1016/j.piutam.2011.04.027 – volume: 86 start-page: 828 year: 2006 end-page: 840 ident: CR27 article-title: Efficient forward dynamics simulation and optimization of human body dynamics publication-title: ZAMM J. Appl. Math. Mech. doi: 10.1002/zamm.200610290 – volume: 39 start-page: 1107 year: 2006 end-page: 1115 ident: CR28 article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.02.010 – ident: CR20 – volume: 28 start-page: 99 year: 1976 end-page: 135 ident: CR13 article-title: The complete optimization of a human motion publication-title: Math. Biosci. doi: 10.1016/0025-5564(76)90098-5 – volume: 114 start-page: 450 year: 1992 ident: 1538_CR23 publication-title: J. Biomech. Eng. doi: 10.1115/1.2894094 – volume: 20 start-page: 57 year: 1997 ident: 1538_CR14 publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4033 – volume: 23 start-page: 1185 year: 1990 ident: 1538_CR25 publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90376-E – volume: 123 start-page: 381 year: 2001 ident: 1538_CR5 publication-title: J. Biomech. Eng. doi: 10.1115/1.1392310 – volume: 135 start-page: 011007 year: 2013 ident: 1538_CR19 publication-title: J. Biomech. Eng. doi: 10.1115/1.4023151 – volume-title: Applied Optimal Control: Optimization, Estimation and Control year: 1975 ident: 1538_CR7 – volume: 45 start-page: 1092 year: 2012 ident: 1538_CR21 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.04.040 – volume: 43 start-page: 1055 year: 2010 ident: 1538_CR1 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.12.012 – volume: 197 start-page: 4207 year: 2008 ident: 1538_CR12 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.04.017 – ident: 1538_CR20 doi: 10.1016/j.jbiomech.2015.04.019 – volume: 28 start-page: 99 year: 1976 ident: 1538_CR13 publication-title: Math. Biosci. doi: 10.1016/0025-5564(76)90098-5 – volume: 45 start-page: 1293 year: 2012 ident: 1538_CR2 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.029 – volume: 3 start-page: 245 year: 2001 ident: 1538_CR22 publication-title: Ann. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.3.1.245 – volume: 86 start-page: 828 year: 2006 ident: 1538_CR27 publication-title: ZAMM J. Appl. Math. Mech. doi: 10.1002/zamm.200610290 – volume: 135 start-page: 081008 year: 2013 ident: 1538_CR8 publication-title: J. Biomech. Eng. doi: 10.1115/1.4024577 – volume: 20 start-page: 187 year: 1987 ident: 1538_CR10 publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90310-1 – volume-title: Contact Mechanics year: 1985 ident: 1538_CR16 doi: 10.1017/CBO9781139171731 – volume: 24 start-page: 1 year: 1991 ident: 1538_CR24 publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90321-D – ident: 1538_CR30 – volume: 34 start-page: 1077 year: 2001 ident: 1538_CR17 publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00057-4 – volume: 112 start-page: 1815 year: 2014 ident: 1538_CR18 publication-title: J. Neurophysiol. doi: 10.1152/jn.00291.2014 – volume: 2 start-page: 201 year: 1999 ident: 1538_CR4 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255849908907988 – volume: 40 start-page: 356 year: 2007 ident: 1538_CR26 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.12.017 – volume: 2 start-page: 297 year: 2011 ident: 1538_CR29 publication-title: Proc. IUTAM doi: 10.1016/j.piutam.2011.04.027 – volume: 26 start-page: 1413 year: 1993 ident: 1538_CR3 publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90092-S – volume: 100 start-page: 88 year: 1978 ident: 1538_CR9 publication-title: J. Biomech. Eng. doi: 10.1115/1.3426197 – volume: 21 start-page: 193 year: 1998 ident: 1538_CR6 publication-title: J. Guid. Control. Dyn. doi: 10.2514/2.4231 – volume: 54 start-page: 1940 year: 2007 ident: 1538_CR11 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 39 start-page: 1107 year: 2006 ident: 1538_CR28 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.02.010 – volume: 42 start-page: 440 year: 1975 ident: 1538_CR15 publication-title: J. Appl. Mech. doi: 10.1115/1.3423596 – volume: 17 start-page: 187 year: 1989 ident: 1538_CR31 publication-title: Exerc. Sport Sci. Rev. |
SSID | ssj0011835 |
Score | 2.4077084 |
Snippet | The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2542 |
SubjectTerms | Activation Biochemistry Biological and Medical Physics Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Collocation Computation Humans Joints - physiology Jumping Mathematical models Models, Biological Muscle, Skeletal - physiology Muscles Optimal control Range of Motion, Articular Shooting Walking - psychology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0guiDaP1KrbKCT0rwstnsbp7EFksRTgU9uLewX4GDXnL20v-_M9nNtVK858zlkszuzG92Zn4D8KEuTWlDxXOpeZsLDDrQDmqft1VtlPDEIELnkPMf8nwhvi-rZTpw26ayyskmjoba947OyD8TUxmCCyn1l83fnKZGUXY1jdC4Dw-IuoxWtVruAi7EznHA5qzGEKmWYspqxtY5dMUYSFf5uOflv37pDti8kygd_c_ZU3iSgCP7GjX9DO6F7hAe36ITPISH85Qofw5DNGVsPg6I3jKEpuzXJV2mMmc270ea8IGdUPc9Nf-u3JadoEfzbLHpO_YTLcka_-40VrKz2MLP6NSWjYTC69Sz1LEVSYfu92r9AhZn3_6cnudpwELuRKmHvHBB1ZogRuCFbaVWDv2_dNw4a3kwodDaWN6GoGzLlS0FbyuvlMWPJ5zx5Us46PouvAaGN_CGO6VMy4W0M-MoY-h97XRRCltlMJs-b-MS-zgNwbhobniTSSMNaqQhjTQyg4-7n2wi9cY-4eNJZ03ahdvmZs1k8H53GfcPJUVMF_qrKKMQ1ZTVXhmNYV5Rqj0yNVUYIQDjGbyKa2b31FyqgsqNMvg0LaJbD_m_Vzra_0pv4BGCNxmLEY_hYLi8Cm8RIA323bgLrgFWTAqq priority: 102 providerName: ProQuest |
Title | Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim |
URI | https://link.springer.com/article/10.1007/s10439-015-1538-6 https://www.ncbi.nlm.nih.gov/pubmed/26715209 https://www.proquest.com/docview/1802405668 https://www.proquest.com/docview/1802740635 https://www.proquest.com/docview/1808666137 https://www.proquest.com/docview/1904230752 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFsb2MLbuy1sbNNjThqGWZUl-TErS0pK2bAtkT0aSZQg0Tmnc_393lp1ldAvsxX7wWZZ1ku53ui-Az3lqUuszHkvNq1ig0oH7oC7jKsuNEiVlEKFzyOmVPJ-Ji3k27-K41723e2-SbHfqrWA3FJ6o-mZxu0rlHhxkqLqTH9eMDzemA5yjoWxBjnpRLkVvyvxbE38Ko0cI85F1tBU6k5fwokOLbBjY-wqe-PoQnm_lEDyEp9POOv4amrB_sWlbFXrNEI-ym3t6TL7NbLpqc4M3bEQh9xTxu3BrNkIxVrLZ3apm17h9LPFzp8F9nYW4fUZHtazNIrzsApVqtiBqX39fLN_AbDL-cXoed1UVYidS3cSJ8yrXhCs8T2wltXIo9KXjxlnLvfGJ1sbyyntlK65sKniVlUpZHDzhTJm-hf16Vfv3wLCB0nCnlKm4kPbEODITlmXudJIKm0Vw0g9v4bqU41T54rb4nSyZOFIgRwriSCEj-LJ55S7k29hFfNTzrOiW3rqglHaIQqXUEXzaPMZFQ5YQU_vVQ6BRCGXSbCeNRt0uSdUOmpzcihB18QjehTmz6TWXKiEfowi-9pNoq5P_-qUP_0X9EZ4hgJPBIfEI9pv7B3-MIKmxA9hTc4VXPTkbwMHw7OflGO-j8dXNt0G7YH4BR1IMMA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5ICivQAEjwQUU0TiJ7RwQooVlS5uCRFfqLdiOI63UTZZuKsSf4jcyEyfbooq99ZzZbJJ5e2a-AXiZxTo2LuWhULwKE0w60A6qMqzSTMukJAQROofMD8V4knw5To_X4M8wC0NtlYNN7Ax12Vg6I39LSGUYXAih3s9_hrQ1iqqrwwoNLxb77vcvTNkW7_Y-In9fcT76dLQ7DvutAqFNYtWGkXUyU-RXHY9MJZS06PSE5doaw512kVLa8Mo5aSouTZzwKi2lNJi4JFaXMd73GlxPYvTkNJk--rysWqB6-I0JGaZkmUiGKqof1UPXj4l7GnY2RvzrBy8Ft5cKs52_G92B232gyj54yboLa67ehFsX4As34UbeF-bvQetNJ8u7hdQLhqEw-3ZKl6mtmuVNB0vesh2a9qdh46ldsB30oCWbzJuafUXLNcO_2_Wd88xDBjA6JWYdgPGsn5Gq2ZSoXf19OrsPkyv59A9gvW5q9wgY3qDU3EqpK54Is60tVSjLMrMqihOTBrA9fN7C9mjntHTjpDjHaSaOFMiRgjhSiABeL38y91Afq4i3Bp4VvdYvinMZDeDF8jLqKxVhdO2aM08jMYqK05U0CtPKKJYraDLqaMKAjwfw0MvM8qm5kBG1NwXwZhCiCw_5v1d6vPqVnsPN8VF-UBzsHe4_gQ0MHIVvhNyC9fb0zD3F4Kw1zzqNYPDjqlXwL3jMSLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKC8AgUWCS4gq_Xa3l0fECJto5aSEAGRenN312spErFD4wrx1_h1zHjttKgit549cWzP65udF8DrNNKRcQkPhOJFEGPQgXZQ5UGRpFrGOU0QoXPI0VgcTeNPp8npBvzpemGorLKziY2hzitLZ-S7NKkMwYUQardoyyImB8MPi58BbZCiTGu3TsOLyIn7_QvDt-X74wPk9RvOh4ff94-CdsNAYONI1UFonUwV-VjHQ1MIJS06QGG5tsZwp12olDa8cE6agksTxbxIcikNBjGx1XmE970Fm5Kioh5sDg7Hk6-rHAYqi9-fkGKAloq4y6n6xj0EAhjGJ0FjccS_XvEa1L2Wpm283_Ae3G1hK_vo5ew-bLhyG-5cGWa4DVujNk3_AGpvSNmoWU-9ZAiM2eScLlORNRtVzZDymg2o959aj2d2yQboT3M2XVQl-4J2bI5_t-_r6JkfIMDozJg144znbcdUyWZE7cpvs_lDmN7Ix38EvbIq3RNgeINccyulLngszJ62lK_M89SqMIpN0oe97vNmtp19Tis4fmSXU5uJIxlyJCOOZKIPb1c_WfjBH-uIdzqeZa0NWGaXEtuHV6vLqL2UktGlqy48DUoPor61NAqDzDCSa2hSqm9C-Mf78NjLzOqpuZAhFTv14V0nRFce8n-v9HT9K72ELVS_7PPx-OQZ3EYUKXxV5A706vML9xyRWm1etCrB4OymtfAvaNROSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Methods+for+Predicting+Movement+Biomechanics+Based+Upon+Optimal+Control+Theory+with+Implementation+in+OpenSim&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Porsa%2C+Sina&rft.au=Lin%2C+Yi-Chung&rft.au=Pandy%2C+Marcus+G.&rft.date=2016-08-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=44&rft.issue=8&rft.spage=2542&rft.epage=2557&rft_id=info:doi/10.1007%2Fs10439-015-1538-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10439_015_1538_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |